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CD4+ T lymphocytes have been classified into several lineages, according to their

gene expression profiles and their effector responses. Interestingly, recent

evidence is showing that many lineages could yield hybrid phenotypes with

unique properties and functions. It has been reported that such hybrid lineages

might underlie pathologies or may function as effector cells with protection

capacities against molecular threats. In this work, we reviewed the characteristics

of the hybrid lineages reported in the literature, in order to identify the expression

profiles that characterize them and the markers that could be used to identify

them. We also review the differentiation cues that elicit their hybrid origin and

what is known about their physiological roles.
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Introduction

Helper T lymphocytes (Th), also known as CD4+ T cells, are considered fundamental

components of the immune system. In response to antigen presenting cells (APC), CD4+

T lymphocytes secrete a set of specific cytokines to coordinate immune responses. The

cytokine signature is sustained by specific gene expression programs, that allows CD4+

T cells to be classified in particular subsets, that, in turn underlie their responses to certain

types of threats and determined physiological functions (1). Two main CD4+ T cells groups

have been distinguished: the regulatory cells (Treg) and the effector cells (Teff). Regarding

to canonical effector lineages, they are divided in Th1, Th2, Th9, Th17, Th22 and TFH

(T follicular lymphocytes) subsets, which can be identified as T-bet+ IFN-g+ (Th1),

GATA3+ IL-4+ (Th2), PU.1+ IL-9+ (Th9), RORgT+ IL-17+ (Th17), AHR+ IL-22+ (Th22)

and BCL6+ IL-21+ (TFH) (Figure 1A). On the other hand, regulatory subsets are generally

identified by expressing high levels of transcriptional factor FoxP3, as well as cytokines like

TGF-b and IL-10 (Figure 1A). Each phenotype has a specific physiological role. For

instance, Th1 is specialized in promoting an inflammatory response in response to viral

infections, intracellular bacterial infections, neoplasms, or intracellular deregulations. In

contrast, other subsets such as the iTreg downregulate these effector functions and are

responsible for immune resolution and subsequent restoration of physiological

homeostasis (2). It has been proposed that there are specific Treg lineages for every
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single CD4+ T effector subset (Figure 1A). The latter implies that all

T helper cells can be specifically modulated (3).

As data accumulate, it has been shown that such a strict

categorical approach is limited. For instance, when studying the

ratio of Th1 (T-bet+) versus Th2 (GATA3+) cells under different

conditions (4) (Figure 1B), there are scenarios in which both groups

prevail, producing T-bet+ GATA3+ (Th1/Th2) double positive cells

(Figure 1B). This hybrid subpopulation is able to maintain its

phenotype in the form of memory cells and resist cell

reprogramming (4), but it has been generally ignored because they

have been found at low frequencies. Nevertheless, it is not clear

whether these cells have a low populational frequency because in

nature there are very few scenarios that elicit their differentiation, or

they are rare because the conditions that are used in the laboratory are

rare in nature. The differentiation processes that have been described

under laboratory conditions are indeed relevant. But in order to

understand the conditions that elicit hybrid lineages and their

biological role, a wider range of physiological should be studied.

Here, we review the physiological effects of CD4+ T cell hybrid

lineages and what is currently known about them.
Biological role of effector hybrid
CD4+ T lineages

Th1/Th2 lineage

These hybrid lymphocytes are characterized by being T-bet+

GATA3+ cells, as well as by expressing Th1 and Th2 cytokines.
Frontiers in Immunology 02
These cells were first characterized in mice infected by the

helminths S. mansoni and H. polygyrus (4), but they also

appeared in infections caused by the nematode S. ratti. These

hybrids have been characterized in humans due to infections of

the nematode S. stercoralis (5). Regarding its differentiation, Th1/

Th2 hybrids appear due to the combination of IL-12, IL-4 and

IFN-g (4) (Figure 1B). In fact, they may present heterogeneous

expression levels of T-bet and GATA3 due to variations on IFN-g
levels (4). Interestingly, these cells produce memory cells that are

not susceptible to being reprogrammed after differentiation (4).

Furthermore, in humans it was found that they present a

predominantly Th1 profile (5) but in mice it is known that they

maintain a balance between Th1 and Th2 (4). It is thought that at a

physiological level, these cells act as immunomodulators without

having to resort to immunosuppression, since they prevent the

exacerbation of the Th2 response, which could potentially protect

against allergies (4).
Th1/Th9 lineage

This cell lineage can be identified as T-bet+ IL-9+ or

alternatively as IFN-g+ IL-9+, and it was first observed in humans

as a byproduct of stimulation of Th17 cells with TGF-b (6). Years

later, the Th1/Th9 hybrid was observed again in mice (7).

Conventionally, it has been accepted that the way to induce Th9

polarization is using the combination of IL-4 plus TGF-b. However,

when testing the combination IL-4 plus IL-1b, Th9 cells appeared

that were T-bet+ IL-9+ (7). In addition, it was proven that they had
BA

FIGURE 1

Classification of CD4+ T lymphocyte subpopulations. (A) Lymphocyte subpopulations are classified based on the transcriptional factors and cytokines
they express. In this panel, differentiation environment is reported with colored labels as well as the name of each lineage. Also, the signature
transcription factors and cytokines are shown in black labels. (B) This figure shows a schematic representation of flow cytometry results that show
the emergence of hybrid lineages, which are outside the pure definitions of classical phenotypes Th1 and Th2. Here, the combination of the
cytokines IFN-g, IL-12 and IL-4 produces a population of T-bet+ GATA3+ hybrid cells, which correspond to a Th1/Th2 hybrid lineage.
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strong antitumor activity when tested against the B16 melanoma

cell line (7).
Th1/Th17 lineage

This population of cells can be identified as T-bet+ RORgT+ or

alternatively as IFN-g+ IL-17A+. This lineage was first characterized in

humans in the context of multiple sclerosis, and various studies have

shown that it has a pathogenic effect (8). In addition, they have also

been associated with severe orbitopathy of graves (9), type 1 diabetes,

autoimmune uveitis and dry disease, intestine of Crohn’s disease,

Sjogren’s disease, psoriasis (8) and cancer (10). Contradictorily, there

are studies that suggest that these hybrids could have therapeutic

effects. In mice, it has been reported that these cells present strong

antitumor activity (11) and in humans, it has been seen that they

promote recovery from sarcoidosis (12). Likewise, in observations in a

murine model of colitis it was found that these hybrids can have a

protective effect, since by hindering this hybrid population by deleting

T-bet, the expression of IL-17 and IL-22 is triggered, drastically

increasing the pathogenicity of inflammation of the intestine (13).

Molecularly, Th1/Th17 hybrids are highly proliferative in response to

stimulation by the TCR, they also increase their expression of GLUT1

and they can be stimulated by the action of IL-1b (8). Regarding their

differentiation, in mice it was possible to obtain them in environments

with IL-6, IL-23, IL-1b, IL-12 and low levels of TGF-b (11). Ex vivo

observations show that in mice, IL-23 is essential to obtain these

hybrids without affecting the differentiation of the Th1 and Th17 base

phenotypes (13). On the other hand, in humans it is known that the

secretion of IL-21 by central memory cells prevents the appearance of

Th1/Th17 hybrids (13).
Th1/Th22 lineage

This lineage is identifiable as T-bet+ AhR+ IL-22+, or alternatively as

IFN-g+ IL-22+. These cells were first found as a byproduct of murine

Th22 lymphocyte differentiation in response to C. rodentium infection

(14). Regarding their differentiation conditions, in mice it is known that

Th22 cells obtained by the combination of cytokines TNF-a and IL-6 in

an inflammatory context rich in IL-12, can transition to pure Th1 and

Th1/Th22 hybrids (15). At the genetic level, experimental evidence

suggests that this hybrid originates from a balance between themutually

exclusive regulation of AhR and T-bet (15), since the absence of any of

these transcriptional factors hinders the expression of IL-22 (15). In

humans, it has been found that this population appears before the

worsening of multiple sclerosis begins (16). Furthermore, it was found

that this cell lineage has autoreactive properties, and is insensitive to

treatment with IFN-b, consolidating itself as a fundamental factor to

hinder the treatment of multiple sclerosis (16).
Th1/TFH lineage

Th1/TFH hybrids are characterized as T-bet+ BCL6+ CXCR5+,

although they can also be labeled as T-bet+ IL-6+ or IFN-g+ IL-21+
Frontiers in Immunology 03
or IFN-g+ BCL6+. These cells were characterized in mice infected

with P. chabaudi (17, 18). Concerning to differentiation, these cells

appear in environments rich in IFN-g and IL-27, the latter being

responsible for biasing differentiation towards the TFH side (17).

Interestingly, it was found that in response to prolonged P.

chabaudi infections, Th1/TFH hybrids tend to be biased towards

the TFH side, increasing the stimulation of antibody production

(17). However, brief infections bias differentiation towards the Th1

side, which favors the Th1/TFH memory being able to protect

against reinfection by P. chabaudi. This suggests that the emergence

of the Th1/TFH hybrid population could have beneficial effects in

the short term, but may represent a subsequent risk (18).

Additionally, these cells were found in human nasal polyps. In

humans, this lineage appears through the action of IL-12; and these

hybrids were found to be responsible for the inflammation of nasal

polyps (19). Counterintuitively, it is suggested that the role of this

Th1/TFH population is protective, since differentiation towards the

TFH pole protects from damage produced by an enhanced Th1

response (19).
Th2/Th9 lineage

Th2/Th9 hybrids identifiable as IL-4+ IL-9+ or alternatively

GATA3+ PU.1+, were observed in patients as a product of

mutations in STAT1 or STAT3. It is speculated that these hybrids

could make patients prone to contracting candidiasis, cancer and

sinopulmonary infection (20). Similarly, these hybrid cells were

observed at low frequencies in E. granulosus infection (21). In mice,

these hybrids were observed as a byproduct of papain-induced

airway inflammation (22). However, the conditions of its

differentiation and its exact physiological function are unknown.
Th2/Th17 lineage

This hybrid population can be identified as GATA3+ RORgT+;

or alternatively, as IL-4+ IL-17A+ or GATA3+ CD161+. Th2/Th17

hybrids were found in patients with asthma, and have the ability

to induce IgE secretion (23). Interestingly, it was not possible to

obtain these hybrids under in vitro conditions, but CCR6+

CD161+ memory cells produced these hybrids in IL-4-rich

environments, suggesting that the Th2/Th17 population could

appear in this context (23). Furthermore, this population was

also found in a murine model of asthma, and it was found that

they had the ability to exacerbate the inflammation produced in

asthma (24). Years later it was found that in the context of asthma

in mice, these hybrids could differentiate based on the activity of

dendritic cells when repeatedly exposed to pro-inflammatory

treatments with ovalbumin (25). Memory cells with Th2/Th17

phenotype were recently found, and they were linked to the

appearance of Palmoplantar pustulosis (26). Regarding

differentiation of these hybrids in mice, Th2/Th17 cells were

detected in low quantities as byproducts of an unconventional

pro-Th17 differentiation pathway, in which the combination of IL-

9 plus TGF-b was used (27).
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Th9/Th17 lineage

These hybrids have been identified as IL-9+ IL-17+.

Experimentally, it has been seen that Th9/Th17 hybrids appear due

to the joint stimulation of the cytokines TGF-b, IL-1b, IL-6, IL-21
and IL-23 (6). Alternatively, it was also found that they could

differentiate in the presence of the combination of cytokines TGF-b
plus IL-12, or TGF-b plus IL-1b, or by the classic Th9 differentiation
conditions, TGF-b plus IL-4 (6). Although, they have also appeared

due to the combination of cytokines TGF-b, IL-4, IL-1b and IL-23

(28). This lineage was first characterized in patients with autoimmune

diabetes; being significantly more frequent than what is observed in

healthy people (6). Later these cells were found again in both humans

and mice, in the context of autoimmune gastritis (28). However, trials

showed that the decrease in the Th9/Th17 hybrid population severely

worsened the development of the disease (28). Therefore, it is

suggested that these cells could have a protective effect against

damage caused by the Th17 response (28).
Th9/TFH lineage

This hybrid line, defined by the presence of the IL-9+ BCL6+

markers, should ideally not exist. This is because Th9 differentiation

conditions inhibit BCL6 activity, yet a tiny fraction of this hybrid

lineage was found in mice (29). Experimental data suggest that IL-2

in the presence of a classical pro-Th9 environment could stabilize

this hybrid population, albeit at low levels (29). It is not known if it

has any specific physiological function.
Th17/Th22 lineage

Th17/Th22 hybrids can be identified as IL-17+ IL-22+ or

alternatively as RORgT+ BCL6+. Originally, it was thought that

these cells were pathogenic, since in murine models of colitis,

increasing their frequency triggers the severity of intestinal

inflammation (13). However, recent evidence suggests that these

cells play an important role in the regulation of intestinal

homeostasis; since in rhesus macaques infected with simian

immunodeficiency virus (SIV), decreasing the frequency of these

hybrids, enhanced the severity of SIV infection (30). There are no

reports on the conditions that promote their differentiation, but it

was observed that the presence of IL-23 increases the differentiation

of these hybrids (13). Additionally, it has been reported that the

absence of T-bet drastically increases its amount (31).
Biological role of regulatory hybrid
CD4+ T lineages

Th1/Th2-like regulatory lineage

Recently, experimental evidence was found for the existence of a

hybrid Th1/Th2-like regulatory lineage in humans (32). This

lineage was identified as T-bet+ GATA3+ FoxP3+, and its
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prevalence was observed to decrease in patients with

cardiovascular disease (32). The differentiation conditions of this

phenotype are unknown, and it is thought that it may have a

protective effect against cardiovascular disease.
Th1/Th17-like regulatory lineage

In humans, a regulatory hybrid Th1/Th17-like lineage was

found; labeled as T-bet+ RORgT+ FoxP3+ (33). This lineage was

found as part of memory cells and was seen to have a high

proliferative capacity compared to other regulatory cells. At the

systemic level, these hybrids were predominantly observed in the

colon. Interestingly, in the context of cancer, a significant decrease

in this cell population was observed (33). Furthermore, it was

observed that in the context of cancer, Th2-like regulatory cells

(GATA3+ FoxP3+) are attracted to the tumor, and inhibit regulatory

Th1/Th17-like cells, so it is thought that they may have a protective

role against the tumors (33). The conditions that favor their

differentiation in vitro are unknown.
Complexity of hybrid CD4+ T lineages

In addition to the limitations that hybrid lineages represent for

the conventional classification system, there are effector cells whose

classification is impossible. For example, effector cells were found in

mice, whose phenotypes were IL-2+, TNF+, IL-2+ TNF+ IL- 22+ IL-

5+, GM-CSF+ IL-5+ IL-13+ and IL-2+ IFN-g+ TNF+ IL-22+ IL-5+

(34). In addition, it was also shown that even the traditionally

defined lineages might present notable variations, for example, Th1

cells identified as IFN-g+, and IFN-g+ TNF+ GM-CSF+ IL-22+ have

been described (34). Physiologically, these polyfunctional

lymphocytes, i.e., CD4+ T cells that express more than one

biologically active cytokine, have been found to have completely

different functions from each other (35). Indeed, polyfunctional

Th1 lymphocytes identified as IFN-g+ TNF-a+, IL-2+ provide

effective protection against COVID-19 (36), unlike conventional

Th1 lymphocytes (IFN-g+). Interestingly, Th17/Th22 hybrid cells

were found to be polyfunctional in healthy Rhesus macaques,

because they express up to four additional cytokines (30). In the

presence of SIV, not only did the Th17/Th22 population decrease,

but polyfunctional hybrid cells also decreased in frequency (30).

Furthermore, increments of these cells have been found to be

correlated with the reduction of SIV viremia levels, thus

suggesting their role in health (30).
Discussion

Traditionally, CD4+ T lymphocytes were thought to have clearly

distinguishable phenotypes, with specific functions and regulatory

pathways. Nowadays, several experimental results suggest the

opposite. In fact, the evidence shows that the differentiation of

CD4+ T lymphocytes occurs in the form of a gradient, which

implies that hybrid subpopulations can be limitless (Table 1).
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The open question is to understand how such lineages emerge.

The answer requires deal ing with the complexity of

the microenvironments in which the differentiation of CD4+ T

cells occurs, including intracellular alterations such as epigenetic

changes. In this sense, systems biology allows to visualize the effect

of intrinsic and extrinsic variables that impact the differentiation of

CD4+ T cells, in conditions that are not feasible to achieve

experimentally. For example, by using multistable models, it has

been possible to reproduce the molecular mechanisms that

originate all differentiation patterns of the canonical lineages of

CD4+ T lymphocytes (37). In addition, these models predicted that

stochastic intracellular perturbations in the signaling and the
Frontiers in Immunology 05
expression of signature transcription factors caused the

emergence of non-canonical lineages (37).

Moreover, continuous approaches of multistable models

showed that the majority of Th phenotypes follow bimodal

dynamics, but depending on the levels of polarizing cytokine,

non-canonical phenotypes may emerge (38). Indeed, the model

predicts that microenvironments mixed with IL-4+ and IFN-g+

affect cell differentiation depending on their concentration. To be

precise, high levels of exocrine IFN-g or IL-4 produces either Th1 or
Th2 cells that are not plastic, which means that even in presence of

the contrary cytokine, they maintain their phenotype (38). On the

contrary, low levels of exocrine IFN-g or IL-4 generates plastic Th1
or Th2 phenotypes (38). Molecularly, the model predicts that Th2

lineage requires to produce autocrine IL-4 to maintain its

phenotype. But if the autocrine production of this cytokine is

reduced, then it may appear Th1/Th2 hybrids (38), which implies

that plasticity is governed by the microenvironment and the

intracellular state. Concerning to the effect of other external

influences, multistable models reveled that, systemic hormones

such as insulin (39) or local bioactive signals like adipokines (40)

are able to bias CD4+ T cell differentiation towards inflammatory

phenotypes, reducing the presence of regulatory lineages even in

anti-inflammatory microenvironments.

Recently, independent studies have demonstrated these

predictions. Indeed, inhibiting the enzyme ornithine

decarboxylase increased epigenomic alterations in histone

acetylation, which augments transcriptional noise as well as the

frequency of hybrid lineages (41). Similarly, it has been reported

that the majority of genes responsible for the emergence of Th1

and Th2, present bimodal dynamics, and only a fraction of them

present mixed behaviors (42). Furthermore, it has been

demonstrated that high exposition to polarizing cytokines IL-12

and IFN-g during the infection of P. chabaudi, reduces the

frequency of Th1/TFH hybrids (18). On the contrary, low

exposition to such cytokines, increases the hybrid subset (18).

Perhaps, these mechanisms could be extrapolated to other

immune cells, like CD8+ T lymphocytes. In fact, Tc1/Tc17

lymphocytes (identified as IFN-g+ IL-17+ CD8+) have been

described as important downregulators of encephalitis (43). In

conclusion, the study of hybrid lineages of CD4+ T lymphocytes is

important to further understand the complex dynamics of

immune systems and their plastic responses under various cues.

Understanding such complexity will necessarily require the use of

formal and computer modeling approaches.
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TABLE 1 Hybrid lineages of CD4+ T cells.

Phenotype Markers Differentia-
tion signals

Source
of
observations

Th1/Th2 T-bet+

GATA3+,
IFN-g+ IL-4+

IL-12 + IL-4 +
IFN-g

Mus musculus (4),
Homo sapiens (5)

Th1/Th9 T-bet+ IL-9+,
IFN-g+ IL-9+,

TGF-b + IL-4 +
IL-1b

Mus musculus (7),
Homo sapiens (6)

Th1/Th17 T-bet+

RORgT+,
IFN-g+ IL-17A+

IL-6 + IL-23 + IL-
1b + IL-12 + TGF-
b low

Mus musculus
(13),
Homo sapiens (8)

Th1/Th22 T-bet+ AhR+

IL-22+,
IFN-g+ IL-22+

TNF-a + IL-6 +
IL-12

Mus musculus
(14),
Homo sapiens (16)

Th1/TFH T-bet+ BCL6+

CXCR5+,
T-bet+ IL-6+,
IFN-g+ IL-21+,
IFN-g+ BCL6+.

IFN-g + IL-27 Mus musculus
(17),
Homo sapiens (19)

Th2/Th9 IL-4+ IL-9+,
GATA3+ PU.1+

Deletion of STAT1
or STAT3

Mus musculus
(22),
Homo sapiens (20)

Th2/Th17 GATA3+

RORgT+,
IL-4+ IL-17A+,
GATA3+

CD161+

IL-9 + TGF-b
(only as a
byproduct in mice)

Mus musculus
(24),
Homo sapiens (23)

Th9/Th17 IL-9+ IL-17+ TGF-b + IL-1b +
IL-6 + IL-21 + IL-
23,
TGF-b + IL-4 +
IL-1b + IL-23

Mus musculus
(28),
Homo sapiens (6)

Th9/TFH IL-9+ BCL6+ TGF-b + IL-2 +
IL-4

Mus
musculus (29)

Th17/Th22 IL-17+ IL-22+,
RORgT+ BCL6

IL-23 excess ()? Mus musculus
(13),
Rhesus
macaques (31)

Th1/Th2-
like regulatory

T-bet+

GATA3+

FoxP3+

Unknown Homo sapiens (32)

Th1/Th17-
like regulatory

T-bet+

RORgT+

FoxP3+

Deletion of T-bet Homo sapiens (33)
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