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This paper introduces a novel coupling method to enhance the precision of
short- and medium-term renewable energy power load demand forecasting.
Firstly, the Tent chaotic mapping incorporates the standard WOA andmodifies its
internal convergence factor to a nonlinear convergence mode, resulting in an
improved IWOA. It is used for the weight optimization part of BILSTM. Then, the
SA is introduced to optimize the learning rate, the number of nodes in hidden
layers 1 and 2, and the number of iterations of BILSTM, constructing an IWOA-SA-
BILSTM prediction model. Finally, through case analysis, the prediction model
proposed in this paper has the highest improvement of 76.7%, 74.5%, and 45.9% in
terms of Mean Absolute Error, Root Mean Square Error, and R2, respectively,
compared to other optimal benchmark models, proving the effectiveness of
the model.
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1 Introduction

In order to accelerate the transformation of the industrial structure of the power system,
China has vigorously promoted the development of renewable energy power, and in recent
years more and more renewable energy power has been incorporated into the power grid
system. With the increase in installed capacity of renewable energy power generation, the
planning and deployment of power has gradually become the focus of the grid work system.
The power sector’s production deployment and optimal planning depends on the accuracy
of power demand forecasting, therefore, improve the accuracy of renewable energy power
demand forecasting is the focus of the current power workers research.

The process of forecasting electricity can be divided into three stages: ultra-short-term
forecasting, short-term forecasting, and medium-and long-term forecasting. Ultra-short-
term forecasting is to forecast the future power load demand in terms of hours; short-term
forecasting is to forecast the power load demand in the future period in terms of days, weeks,
and quarters; and medium- and long-term forecasting is to forecast the power load demand
in the future time in terms of years. Currently, short-term forecasting has become the focus
of renewable energy power demand research.

Researchers worldwide are conducting studies to enhance the accuracy of forecasting
electricity demand. Forecasting methods are primarily divided into three categories:
statistical, artificial intelligence, and hybrid. Statistical methods mainly include time
series forecasting models (Dong, 2019; Ma et al., 2022; Gao, 2023) and exponential
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smoothing models (Trull et al., 2021). For example, Shang Fangyi
et al. (Shang et al., 2015) utilized the gray Verhulst model to enhance
the precision of electricity demand analysis and forecasting; Zhang
Tao et al. (Zhang and Gu, 2018) introduced Markov chains into the
study of renewable energy load forecasting, and achieved effective
results; Luo Yi-wang (Luo, 2018) applied the ARMR model to the
study of electricity demand forecasting methods, and claimed that
the forecasting errors were less than 1% in all of their studies; Zhang
Yunfei et al. (Zhang Yunfei et al., 2021) developed a grid peaking
demand forecasting model using ridge regression, demonstrating its
effectiveness through a case study; Wu et al. (He et al., 2021)
combined the Seasonal Exponential Adjustment Method (SEAM)
with the time series regression method for the study of load demand
forecasting and confirmed the superiority of the model. Artificial
intelligence forecasting methods include Extreme Learning Machine
(ELM) (He et al., 2021), Support Vector Machine (SVM) (Shi et al.,
2019; MuSAA et al., 2021), and various neural network forecasting
models (Machado et al., 2021; Rajbhandari et al., 2021; Hu et al.,
2023). For example, Shi et al. (Shi et al., 2012) utilized SVM to
forecast the amount of photovoltaic (PV) load generation and
claimed that the results were good; Zare-Noghabi et al. (Zare-
Noghabi et al., 2019) demonstrated the effectiveness of Support
Vector Regression (SVR) in forecasting power system load demand
using actual data; Guo et al. (Guo et al., 2021) developed a load
forecasting model using LSTM, considering demand response, and
demonstrated its practicality through experiments; Wen et al. (Wen
et al., 2022) proposed a short-term load demand forecasting model
based on Bi-directional Long Short-Term Memory(BILSTM)
considering the uncertainty of short-term load demand and
claimed that the model was superior to the traditional forecasting
methods; Su Chang et al. (Su et al., 2023) utilized LSTM and
combined it with multi-feature fusion coding to forecast the
power load demand, which improved the accuracy of the power
load forecasting; Zhang Suning et al. (Zhang et al., 2022) proposed a
cross-region power demand forecasting model based on XGBoost
for different forms of power demand in multiple regions and
claimed that the method can provide fast and accurate
forecasting of power demand; Shu Zhang et al. (Zhang Shu et al.,
2021) proposed a neural network forecasting model based on feature
analysis of the LSTM, which improves the prediction accuracy of
short-term power demand. Hybrid forecasting methods (Qinghe
et al., 2022; He et al., 2023; Sekhar and Dahiya, 2023) combine
various effective forecasting methods to enhance the accuracy of
electricity demand forecasting. For example, Moalem et al. (Moalem
et al., 2022) successfully combined the ELATLBO method with
LSTM neural network for power demand forecasting through
experiments; Hu et al. (Hu et al., 2019) proposed a
decomposition-based combined forecasting model, which will
have the advantage of being able to dynamically combine various
models based on data.

At present, more and more scholars have started using ensemble
models to improve the accuracy and effectiveness of renewable
energy demand prediction research. Various optimization
algorithms have also been used by many scholars to optimize the
parameters of basic prediction models, thereby further improving
the prediction performance of the models. Simulated Annealing
Algorithm (SAA) and Whale Optimization Algorithm (WOA) are
two optimization algorithms with good performance. SAA has the

following advantages: 1. The algorithm boasts a superior global
optimization ability, enabling it to find the global optimal solution,
thereby avoiding local optimal solutions; 2. SAA is suitable for
dealing with large-scale complex problems; 3. Compared with other
algorithms, SAA has simpler description, more flexible use, higher
operating efficiency, and is less affected by initial conditions; 4. SA
does not depend on the specific form and attributes of the problem,
only needs to define the objective function and neighbor structure.
WOA has the following advantages: 1. Simulating natural behavior
makes it have stronger optimization ability; 2. The three population
update mechanisms of WOA are independent of each other, and the
global search and local development processes can be separately run
and controlled, which is beneficial to find the optimal solution; 3.
WOA does not require manual setting of various parameters,
reducing the difficulty of use and improving the operation
efficiency; 4. WOA has shown good optimization performance in
solving many numerical optimization and engineering problems.
Therefore, this article chooses two optimization algorithms to
enhance the prediction accuracy and effectiveness of the
basic algorithm.

Therefore, this article adopts a bidirectional long short-term
memory network (BILSTM) as the benchmark prediction model.
Firstly, the benchmark whale optimization algorithm (WOA) has
been improved by incorporating Tent chaos mapping and nonlinear
convergence factor to create an evolutionary whale optimization
algorithm (IWOA); then the weight matrix of BILSTM is optimized
using the evolutionary whale optimization algorithm (IWOA); at the
same time, the simulated annealing algorithm (SA) is utilized
simultaneously to optimize crucial parameters of BILSTM.
Finally, the effectiveness and feasibility of the proposed model
are verified using real-world data from a region in China.

The contributions of this article can be summarized as follows: 1.
A new coupling algorithm is proposed to predict the demand for
renewable energy power, which enhances the accuracy and
efficiency of prediction. 2. The standard WOA algorithm has
been enhanced to improve its global search and local
optimization capabilities, potentially paving the way for future
research. 3. The BILSTM model’s prediction performance is
enhanced by introducing a heuristic algorithm to optimize its
weights and key parameters.

2 Factor analysis and data processing

2.1 Renewable electricity demand analysis

There are many factors that affect the demand for renewable
electricity, which can be categorized into significant and non-
significant factors. Significant factors, i.e., factors that can cause
large fluctuations in the demand for renewable electricity within a
short period of time, are mainly meteorological factors, such as
temperature, humidity, atmospheric pressure, and so on. Secondly,
the power generation of fossil energy will also have an impact on the
demand for renewable electricity, because if fossil energy cannot
support the general demand for electricity by residents within a
short period of time, then the social electricity consumption needs to
be supported by renewable electricity, so the power generation of
fossil energy is taken as a significance factor. Fossil power generation
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is also considered as a significant factor, as the fluctuation in
electricity demand during legal holidays can also be caused by
short periods of time. Non-significant factors, i.e., factors that
require a long period of sustained influence to cause fluctuations
in renewable energy power demand, generally include economic
factors, policy factors, etc. As this paper aims to improve the
accuracy of short-term demand forecasting of renewable
electricity, the non-significant factors are considered to be stable
in this study, and the significant factors are emphasized for in-
depth study.

2.2 Factor data analysis

Meteorological data includes three types of factors, namely,
temperature, relative humidity and atmospheric pressure, with
the temperature factor divided into maximum, minimum and
average temperatures. According to the existing data statistics,
when the daily relative humidity is higher than 80%, the demand
for electricity will rise, while when the daily relative humidity is
lower than 51%, the demand for electricity will be relatively low, so
this paper takes the relative humidity as one of the influencing
factors. Secondly, according to the existing data, holidays and legal
holidays also cause large fluctuations in peak electricity
consumption, so holidays are also an influential factor that
cannot be ignored in the study of renewable electricity demand.
In this study, the sum of the number of days of holidays and legal
holidays is used as the value of the holiday indicator.

Since the scope of this paper is the renewable energy power
demand within the province, the temperature indicator takes the
average temperature as the temperature state of the province. The
provincial average temperature is weighted and averaged with the
temperature values of the municipalities in the province to obtain
the final provincial average temperature. Let the average
temperature of the province as Ta, its expression is as follows:

Ta � ∑n
i�1Ti

n
(1)

Among them, Ti(i � 1, 2, . . . , n) is the temperature value of each
prefecture-level city, and the total number of prefecture-level cities
within a province is denoted by n.

This paper uses Pearson correlation coefficient to verify the
correlation between temperature data and renewable energy power
load demand data in historical data to enhance experimental data
validity and scientificity:

Rs � ∑n
i�1 Xi − �X( ) Yi − �Y( )������������∑n

i�1 Xi − �X( )2√ �����������∑n
i�1 Yi − �Y( )2√ (2)

Rs is the correlation coefficient between X and Y, Xi is the value of
the independent variable, �X is the average value of the independent
variable, Yi is the value of the dependent variable, �Y is the average
value of the dependent variable, Rs is in the range of 0–1, and the
closer the value is to 1, the stronger the correlation is, and when Rs

is < 0.3, it means that the two indicators are weakly correlated.
The test results are shown in Table 1, the correlation coefficients

between all three types of temperature indicators and renewable
energy power load demand are greater than 0.3, indicating that all

three types of temperature indicators have a non-negligible impact
on renewable energy power load demand, and therefore all three
types of temperatures will be used as research factors.

In addition, there may be linear correlation between various
types of factors, which leads to the emergence of multicollinearity
problem and affects the prediction accuracy of the model. Therefore,
this paper does the covariance test using variance inflation factor
(VIF) on the collected data, and eliminates the covariance between
the influencing factors through LASSO regression, and finally
utilizes the filtered data for renewable energy power load demand
prediction. The formula for variance inflation factor (VIF) is
as follows:

VIFi � 1
1 − R2

(3)

Where R2 indicates the correlation between a variable in the
independent variables and the rest of the variables; the larger the
VIF, the more serious the covariance the independent variables with
other variables; in this paper, when we take 0<VIF< 10, there is no
multicollinearity, 10≤VIF≤ 100, there is a strong multicollinearity,
and VIF≥ 100, there is a serious multicollinearity.

3 Multidimensional feature analysis and
prediction model based on IWOA-
SAA-BILSTM

This part constructs the IWOA-SAA-BILSTM prediction
model. There are three steps in the construction process: 1.
Building and improving the standard Whale Optimization
Algorithm (WOA), introducing the Tent chaotic mapping
algorithm to enhance WOA’s global solution-seeking ability in
the solution process and avoid it easily falling into local optimal
solutions. At the same time, the convergence factor in WOA is
improved to be nonlinear, which can better simulate the predation
mechanism of whale populations and improve the algorithm’s global
search ability. 2. The BILSTM model’s prediction effect is enhanced
by optimizing the weights using the improved Whale Optimization
Algorithm (IWOA). 3. Introducing simulated annealing algorithm
(SAA) to optimize four hyperparameters of BILSTM’s hidden layer
1 and hidden layer 2, including the number of neurons, iteration
rate, and learning rate. After the above three steps, the IWOA-SAA-
BILSTM prediction model is constructed.

3.1 Whale optimization algorithm and its
improvement

3.1.1 Whale optimization algorithm
The Whale optimization algorithm, introduced by Australian

scholars Mirjalili et al., in 2016, is an intelligent optimization
method. The idea of this algorithm originates from the hunting
behavior of humpback whales, which have two main hunting
behaviors, the first one is encircling hunting and the other one is
bubble net hunting. In this algorithm, the position of each individual
whale during the hunting process is considered as a potential
solution to the problem to be optimized (Yin et al., 2023). The
algorithm uses a random search agent and a spiral structure to
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simulate the humpback whale bubble net attack mechanism,
offering a simple optimization search mechanism and local
optimum jump capability.

3.1.1.1 Surrounding the prey
The WOA algorithm is a method used to optimize the global

solution space of a problem when a group of whales hunt for prey.
The target prey is considered the optimal solution, and the current
location searched by a whale is considered the best candidate
solution. When the best candidate solution is defined, other
whales flock to it, and Equation 4 represents the distance
between other whales and the best candidate solution:

�D � �C·X*
��→

t( ) − �X t( )
∣∣∣∣∣ ∣∣∣∣∣ (4)

where �D represents the distance between other whale individuals
and the best candidate solution; �C is the oscillation factor with the
expression �C � 2 · rand, rand denotes a random number with the
value range of [0,1];X*

�→(t) is the position of the best whale individual
during the tth update iteration; �X(t) the position of the whale
individual during the tth update iteration.

Equation 5 is the formula for updating the position of an
individual whale during the t+first search:

�X t + 1( ) � X*
�→

t( ) − �A · �D (5)

Where �A is the distance adjustment factor, the expression is
�A � 2a · rand − a, rand denotes a random number with the value
range of [0,1], and a is the convergence factor, whose value is linearly
decreasing from 2 to 0 following the increase of the number of
iterations; the meanings of the remaining variables are the same as
that of Equation 4.

3.1.1.2 Bubble net hunting
Humpback whales use contraction encirclement and spiral

renewal predation methods in bubble nets, choosing based on the
probability of the mechanism, p, within the [0,1] range. When p <
0.5, humpback whales choose the contraction encirclement method;
when p ≥ 0.5, humpback whales use the spiral renewal mechanism.

When contraction envelopment is used, the distance between
individual whales is reduced by a convergence factor a. When 当

|A|< 1 时, the position of individual whales after updating will be
close to the target prey, thus realizing contraction envelopment.

When the spiral update mechanism is used, the position update
between it and the target prey uses the spiral update mechanism with
the following expression:

�X t + 1( ) � Db
�→

· ebl · cos 2πl( ) + X*
�→

t( ) (6)
Db
�→

� X*
�→

t( ) − �X t( )
∣∣∣∣∣ ∣∣∣∣∣ (7)

Style:

Db
�→

denotes the distance of the current individual whale from the
optimal solution;

b A constant representing the shape of a logarithmic spiral;
l denotes a random number whose value range is [-1,1]

3.1.1.3 Random search for prey
When |A|≥ 1, the individual whale no longer updates its

position according to the position of the best individual whale in
the population, but randomly selects an individual whale and
approaches it with the following position update formula:

�D � �C · �Xrand t( ) − �X t( )
∣∣∣∣∣ ∣∣∣∣∣ (8)

�X t + 1( ) � �Xrand t( ) − �A · �D (9)
Style:
�Xrand(t) denotes the position of a randomly selected individual

whale, and the rest of the variables have the same meaning as in the
above equation.

3.1.2 Improved whale optimization algorithm
The optimization ability of a swarm intelligence algorithm is

influenced by the diversity and uniformity of its initialization
population. The traditional whale optimization algorithm adopts
random number to generate the initial population, which leads to the
uneven distribution of the initial population and too much simplicity. In
the process of population optimization, it cannot optimize in the whole
solution space, which leads to some solution sets cannot be found, and
ultimately leads to the algorithm falling into the local optimal state. At the
same time, it will also affect the convergence speed of the algorithm. Tent
chaoticmapping can generate chaotic sequenceswith strong randomness,
universality and uniformity, which can improve the problem that WOA
falls into local optimal in the process of population iteration. At the same
time, the standard WOA algorithm’s convergence factor decreases
linearly with population iterations until it reaches 0, adjusting global
search and local development abilities of the population. However, the
article introduces a nonlinear convergence factor to the standard WOA
algorithm, which enhances its capacity to simulate population predation
and optimize population optimization, as the linear decrease of
convergence factor a cannot effectively adjust global search ability and
local development ability.

3.1.2.1 Tent chaos mapping initialization population
Tent chaotic mapping maps the optimization variables to the

value intervals of the entire solution space through the chaotic
mapping rules, so as to make use of the universality, uniformity and
regularity of the chaotic variables for optimization, and ultimately
transform the optimization solution set into the optimization space.
Tent chaotic mapping is characterized by a uniform distribution of

TABLE 1 Pearson’s coefficients for renewable energy load demand and various types of temperatures.

Renewable electricity demand
(billion kWh)

Maximum
temperature

Minimum
temperature

Average
temperatures

Renewable electricity demand
(billion kWh)

1 0.621 0.521 0.601
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the functions and good correlation between the functions, and its
expression is as follows:

Hi+1 �
Hi

α
, Hi ∈ 0, α( ]

1 −Hi( )
1 − α( ) , Hi ∈ α, 1( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (10)

where Hi is the chaotic mapping value at the ith moment; α is the
chaotic mapping coefficient.

The WOA after adding chaotic mapping is able to produce a
uniformly distributed initial population during the process of
population initialization, thus avoiding the defect of the algorithm
falling into local optimum. Figures 1, 2 show the distribution of the
initial population before and after the addition of the Tent
chaotic mapping.

3.1.2.2 Nonlinear convergence factor
The improved convergence factor is used to vary the factor size

in a nonlinear way with the following update formula:

a � ainitial − afinal( ) − sin
t

Tmax
( )* cos λ( )μ (11)

where ainitial is the starting value of the convergence factor and afinal
is the final value; The maximum number of iterations of the
algorithm is denoted by Tmax, while the current number of
iterations is represented by t; λ and μ are the coefficient numbers.

The flowchart of the improved whale optimization algorithm is
shown in Figure 3.

The specific steps are:

1. Introduce Tent chaotic mapping, use Tent chaotic mapping to
initialize the population, set the maximum number of
iterations of the population tMax;

2. Calculate the fitness of individual whales in the population,
confirm the optimal whale individual in the current population
and keep its position information;

3. Add a nonlinear convergence factor a, calculate the probability
of predation mechanism p, distance adjustment vector �A and

�D. Judge p. If p < 0.5, further judge the value of | �A|; otherwise,
use the spiral update mechanism to update the position;

4. Make a judgment on the mode | �A| of the distance adjustment
vector, if | �A| < 1, then adopt the way of encircling the prey, and use
Eq. 5 to carry out the position updating; otherwise, adopt theway of
random search, and use Eq. 8 to carry out the position updating;

5. After the position update of the population, calculate the fitness
of each whale individual in the population again, compare it
with the fitness of the previous optimal whale individual, and if
it is better than that, replace the previous optimal whale
individual with the current whale individual;

6. Determine whether the population reaches the maximum
number of iterations, if so, output the optimal solution,
otherwise return to step 3 for the next iteration.

3.2 Simulated annealing algorithm

The Simulated Annealing Algorithm (SAA) is a stochastic
optimization technique developed in the early 1980s, employing
the Monte Carlo iterative solution strategy. The algorithm simulates
the physical process in thermodynamics in which an object
gradually cools down from some higher temperature and is
called annealing. The advantage of the simulated annealing
algorithm is its ability to select the worse of the solutions in the
current solution neighborhood with a certain probability, which
avoids the problem of local optimality and thus achieves the
advantage of finding the optimal solution globally.

The main step of the Simulated Annealing Algorithm consists
of two inner and outer loops. The outer loop defines the algorithm
loop’s termination condition, while the inner loop focuses on
finding a new optimal solution within the current
hyperparameters of the bi-directional neural network. When the
loop ends, the algorithm converges to the optimal solution. The
specific steps are as follows:

1. Initialization parameters, set the cooling table temperature T0,
the end of iteration temperature Tend, the temperature decay

FIGURE 1
Population distribution after adding Tent chaotic mapping.

FIGURE 2
Population distribution before adding Tent chaotic mapping.
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frequency q, the number of inner loop iterations K, the number
of outer loop iterations W, the initial solution x0;

2. Start the kth iteration at the current temperature, k = 1,2,
. . . , K;

3. Randomly generate a new solution x1;
4. Compute the function E(x) � E(x1) − E(x0) to obtain ΔE;
5. Determine the excellence of the solution. If ΔE≤ 0, the new

solution x1 can be used as the current optimal solution, in this
case, let x0 � x1; if ΔE> 0, calculate the probability that the
new solution x1 is accepted, P, P � exp (−ΔET ), and T is the
current temperature; if x1 is accepted, then x0 � x1;

6. Slowly cool down the temperature, so that T � T*q, when
T<Tend, output the optimal solution, the algorithm ends.
Otherwise repeat steps (3) (4) (5).

3.3 Bidirectional long and short-term
memory networks

The creation of BILSTM goes back to RNNs (Recurrent Neural
Networks). RNNs are commonly utilized in time series prediction,
but they often face issues like gradient vanishing or explosion when
dealing with long time series, which leads to the algorithms failing
to capture the long term dependencies. To solve this problem,

researchers proposed LSTM (Long Short-Term Memory Neural
Network). When the data is input to the LSTM, it selects the input
value by adjusting the input gate parameter; the role of the
forgetting gate when the extracted invalid information is
eliminated, and at the same time, the extracted valid
information will be input to the next mitigation, and finally, its
structure is shown in Figure 4.

However, with the widespread application of LSTM, researchers
have found that LSTM has a problem of unidirectional prediction,
which can only predict based on the forward information input to
the neural network. To solve the unidirectional prediction problem
of LSTM, BILSTM was born. BILSTM is composed of a forward
LSTM and a backward LSTM under the same time series. Its gate
unit is the same as that of standard LSTM, and its advantage is that it
can combine forward and backward information to process input
data bi-directionally, thus mining hidden features in the data
sequence and improving the prediction effect. Its structure is
shown in Figure 5.

3.4 IWOA-SAA-BILSTM

In this paper, in order to improve the prediction effect of the
benchmark BILSTM, the standard BILSTM algorithm is improved,

FIGURE 3
Flowchart of IWOA algorithm.
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which is mainly optimized for the weights and hyperparameters.
Specifically, the improved whale optimization algorithm (IWOA)
and simulated annealing algorithm (SAA) are introduced to
optimize the weights and hyperparameters of BILSTM,
respectively. The specific improvement ideas of the model are
as follows: Firstly, tent chaos mapping is introduced as a new
feature in the standard whale optimization algorithm (WOA)., so
that the WOA can produce uniformly distributed populations to
avoid falling into local optimum; then, the WOA’s convergence
factor is modified to a nonlinear factor during iteration to enhance
the optimality-seeking capacity of whale populations, and the
improved IWOA is obtained; and the weights and
hyperparameters of the standard BILSTM are optimized by

using the IWOA. weights for optimization. At the SAA me
time, the simulated annealing algorithm (SAA) is introduced to
optimize the hyperparameters of the standard BILSTM, specifically
including the number of nodes in the hidden layer 1, the number of
nodes in the hidden layer 2, the number of neural network
iterations, and the neural network learning rate. Finally, the
IWOA-SAA-BILSTM prediction model is obtained. The
flowchart of the algorithm is shown in Figure 6.

The specific steps of IWOA-SAA-BILSTM include:

1. Input data. Test the data for missing values and outliers and
normalize the data. Divide the data, divide the training set and
test set according to 4:1.

FIGURE 4
Structure of LSTM neural network.

FIGURE 5
Structure of BILSTM neural network.
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2. Construct the BILSTM network, initialize the parameters, set
the number of hidden layer 1, the number of hidden layer 2, the
learning rate, and the number of iterations.

3. Build the IWOA weight optimization model. Set the important
parameters such as whale population size, number of
population iterations, and spatial dimension; meanwhile,
introduce Tent chaotic mapping to generate the initial
whale population, and the other population converges and
iterates according to the nonlinear way, and the objective
function is to determine the value of the population. The
optimal whale population position information is mapped
into the weights of BILSTM.

4. Build the SAA optimization algorithm. Initialize the SAA
parameters, set the cooling table temperature T0, the
iteration end temperature Tend, the temperature decay
frequency q, the number of inner loop iterations K, the
number of outer loop iterations W, and set the initial
temperature. The input variables of the algorithm are set as
important parameters of BILSTM, and the parameters
optimized in this paper are the number of nodes in hidden
layer 1, the number of nodes in hidden layer 2, the number of
iterations in a neural network and its learning rate are crucial
factors to consider. Perform the algorithm iteration and take
the prediction error as the return value of the
objective function.

5. Run the algorithm and judge whether IWOA and SAA reach
the maximum number of iterations and whether it meets the
termination conditions, respectively; if the weak algorithm
meets the termination conditions, the optimal parameters
are encoded and outputted to the BILSTM network,
otherwise, repeat step 3.

6. After many iterations, the objective function with the
minimum error as well as the optimal parameters and
weights can finally be obtained, and finally the IWOA-SAA-
BILSTM prediction model is obtained.

This article presents a model with several advantages:

a. The IWOA-SAA-BILSTM model improves the initial
population distribution of the standard WOA by making it
more uniform, the goal is to enhance the diversity of the
population and enhance their global search ability. The
introduction of a dynamic step factor enhances the
optimization performance of the whale algorithm by
regulating its local development and global search abilities.

b. The BILSTM network in the IWOA-SAA-BILSTM model has its
own dual memory units and gating mechanism, which can
effectively capture and store long-term dependencies in
bidirectional sequences, and learn models and features from the
data, which enables the model to better predict. In addition, the

FIGURE 6
Flowchart of IWOA-SAA-BILSTM algorithm.
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IWOA-SAA-BILSTMmodel optimizes the weights and important
parameters of the BILSTMmodel to better leverage the predictive
performance of BILSTM and improve prediction efficiency.

3.5 Pseudo code of main functions of
the algorithm

1.Improve the whale optimization algorithm
def tent_map(x):

return 1–2 * abs(x)
#dynamic step factor

def dynamic_step_size(iter_num, max_iter, step_size)
return step_size/(iter_num/max_iter)
# Initialize whale optimization algorithm

whale_optimizer = initialize_whale_optimizer()

2.Simulated annealing algorithm initialization
simulated_annealing = initialize_simulated_annealing()
3.Initialize BILSTM neural network
bilstm_model = initialize_bilstm_model()
4.Constructing IWOA-SA-BILSTM
for iter_num in range(max_iter):

# Improving whale optimization algorithm using Tent
chaotic mapping
whale_optimizer.improve(tent_map(whale_
optimizer.position))
# Optimizing BILSTM weights using an improved whale
optimization algorithm
bilstm_model.optimize(whale_optimizer.position)
# Optimizing BILSTM hyperparameters using simulated
annealing algorithm
simulated_annealing.optimize(bilstm_model.hyperparameters)
# Dynamically adjust the step factor
whale_optimizer.step_size = dynamic_step_size(iter_num,

max_iter, whale_optimizer.step_size)

4 Arithmetic analysis

4.1 Description of the arithmetic example

In this part, the renewable energy power load demand forecasting
model IWOA-SAA-BILSTM proposed in this paper is used, for
example, prediction to verify its reliability and superiority in

TABLE 2 Optimal parameter combination of BILSTM model.

Parameters R2

Learning rate 0.0045

The number of neurons in hidden layer 1 49

The number of neurons in hidden layer 2 52

Number of iterations 200

Time step 5

FIGURE 7
Renewable electricity load demand, January 2017 to December 2022.
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practical application. The experimental data are taken from the official
website of the National Bureau of Statistics of China, the China Price
Information Network, and the Xihe Energy Big Data Platform, and the
preliminary data are firstly extracted, and then the data are precisely
analyzed according to the data processing method in the second part of
this paper, and the data are collated to obtain a total of 72 monthly
renewable energy power load demand and various types of data in
Shaanxi Province of China, including the data of the renewable energy
power load demand for the period from January 2017 to December
2022, including thermal power generation and the data of the renewable
energy power load demand in China. The data reveals six influencing
factors, including thermal power generation, maximum temperature,
minimum temperature, average temperature, relative humidity, and the
number of legal holidays, the dependent variable is the renewable
energy power load demand, Figure 7 shows the change curve graph of
load demand between January 2017 and December 2022.

4.2 Experimental environment and
parameter settings

This article conducted experiments in a virtual
Python3.9 environment on Anaconda2.0.3, using a
Windows11 system laptop with an Intel Core i7-9750H CPU,
NVIDIA GTX 1660ti GPU, and 16G RAM.

In existing research, it is known that among the hyperparameters of
BILSTM neural networks, The number of hidden layer neurons (m)
and learning rate (l) significantly influence the prediction performance
of neural networks. The number of hidden layer neurons m in neural
networks is usually determined by empirical formulas, as shown in
formula (12). Using this formula, an approximate range of values for the
number of hidden layer neurons in a neural network can be obtained.
Within this range, specific parameter settings can be obtained through
repeated experiments.

m �
�����
α + β

√
+ n (12)

The formula involves α representing the number of output layer
nodes, β representing the number of input layer nodes, and n being
a constant.

The study employs the Adam optimizer with an initial
learning rate of [0.0001, 0.01], a maximum of 500 iterations,
and an initial population generated by Tent chaos; SA’s initial
temperature is set to 100°C, and temperature decay frequency is
set to 0.95; both IWOA and SAA optimization algorithms aim to
achieve a target error of 0. BILSTM neural network’s initial input
layer node range is [1, 50], hidden layer node range is [1, 100],
and time step is set to 5; forget gate and input gate activation
functions choose Sigmoid function, and output gate activation
function chooses tanh function. In the iterative process, after
each iteration, validation is performed, and the model parameters
with the smallest error obtained in the latest iteration are used to
replace the previous optimal parameters for the next
loop. Finally, the model with the smallest error throughout the
entire iterative process is retained as the final prediction model.
The experiment employs the Mean Squared Error (MSE Loss)
loss function, which is expressed as follows:

MSE � 1
n
∑n
i�1

yi − yi( )2 (13)

After multiple iterations of the IWOA and SA algorithms, the
optimal parameters of the BiLSTM model were finally output,
resulting in the optimal parameter combination shown in Table 2.

4.3 Evaluation indicators

The model’s prediction accuracy is tested using three indicators:
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and
R_squared. The formulas for the three indicators are respectively:

RMSE �
������������
1
n
∑n
i�1

ŷi − yi( )2√
(14)

MAE � 1
n
∑n
i�1

ŷi − yi

∣∣∣∣ ∣∣∣∣ (15)

R2 � 1 − ∑n
i�1

yi−ŷi( )2
n∑n

i�1
yi−yi( )2

n

(16)

FIGURE 8
Model stability before and after IWOA optimization.
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4.4 Ablation experiments

This paper uses a mode of ablation experiment to assess the
effectiveness of model improvement. Specifically, the example
prediction is carried out with BILSTM, IWOA-BILSTM and the
proposed model IWOA-SAA-BILSTM in this paper, respectively. In
order to make the prediction results more scientific and reliable, the
initial parameters of the BILSTM part of the three groups of models
are kept consistent with part 7.1 during the experiment. In addition,
the IWOA parameter settings of the IWOA-BILSTM model and the
IWOA-SAA-BILSTM model were kept consistent. The model
parameters were set, and the data was divided into training and
test sets in an 8:2 ratio. After testing, the model stability before and
after adding the IWOA optimization model is shown in Figure 8,
and the IWOA model adaptation curve is shown in Figure 9:

The model’s accuracy improved by IWOA has remained stable,
with 90% of points now better than before, indicating a significant
impact of IWOA on model prediction accuracy. Figure 9 and
Figure 10 reveal that IWOA has a significantly faster convergence
speed than WOA. IWOA has approached the optimal solution
around the 140th iteration, while WOA needs to iterate
200 times to reach the optimal solution. The paper demonstrates
the effectiveness of the proposed optimization method by
highlighting the significant improvement in prediction efficiency
and accuracy through the enhancement of WOA.

TABLE 3 Evaluation index values for BILSTM, IWOA-BILSTM, IWOA-SAA-
BILSTM.

Model MAE(BKWh) RMSE(BKWh) R2

BILSTM 2.75 3.47 0.62

IWOA-BILSTM 1.98 2.27 0.75

IWOA-SAA-BILSTM 1.39 1.67 0.89

FIGURE 12
Loss function change curve diagram of five groups of models.

FIGURE 11
Plot of IWOA-SAA-BILSTM predicted values vs actual values.

FIGURE 9
IWOA adaptation curve.

FIGURE 10
WOA adaptation curve.
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Figure 11 displays the predicted and actual values of the IWOA-
SAA-BILSTM model after three different model runs. By doing the
ablation experiment with the other two groups of models, all the
evaluation indexes of the models proposed in this paper are better
than the other two groups of models. The ablation experiment
demonstrates that the proposed model improvement can enhance
the performance of the original model, thereby improving prediction
efficiency and accuracy. Table 3 displays the evaluation indexes of the
prediction results of the three model groups:

4.5 Comparative experiments

In addition to ablation experiments on the proposed model, this
article also built several other commonly used models in existing
research to demonstrate that the proposed model is not only superior
to the pre-improved basic model, but also superior to common
models in current research. This article selected four models with
good performance in existing research, includingWOA-SVM,WOA-
LSTM, WOA-RBF, and WOA-ELM, as comparison models. The
parameters of the IWOA-SAA-BILSTM model in this part of the
experiment were kept consistent with the ablation experiment.

First, five groups of models were used to train the set, and the test
set was used for fitting. The learning ability and fitting of the five
groups of models for the data variation rule were compared. After
the experiment, the loss function changes of the five groups of
models are shown in the following figure.

Figure 12 provides a clear representation of the situation, the loss
function of IWOA-SA-BILSTM is the smallest at the later stage of the
iterative process, indicating that the model fitting effect of IWOA-
SAA-BILSTM is superior to other models; and the loss function
variation curve of IWOA-SAA-BILSTM decreases continuously with
the increase of fitting times, until it reaches a stable state in the final
stage of fitting, indicating that the IWOA-SAA-BILSTM model can
correctly capture the data variation rules in the training data, has
strong learning ability, and thus performs better prediction.

At the same time, using actual data for testing, we used
evaluation indicators to measure the prediction accuracy and
prediction accuracy of the five models. Table 4 displays the
rating indicators of the four comparative models and the
proposed model based on comparative experiments.

From the table, it can be seen that the prediction effects of
IWOA-SAA-BILSTM are all better than the other four comparison
models, with the optimal MAE value of 1.39 BKWh and the optimal
RMSE value of 1.67 BKWh, this paper presents results that

demonstrate the effectiveness of enhancing the standard whale
optimization algorithm. And the R2 value shows that the effect
of IWO-SAA-BILSTM prediction model is more stable. Therefore,
the model proposed in this paper can be used as a favorable tool for
renewable energy power load demand forecasting research.

4.6 Parameter sensitivity analysis

Themodel’s encoding dimension directly impacts the number of
parameters and prediction performance. Therefore, analyzing the
encoding dimension on the prediction performance of the model
can help to find the optimal encoding dimension position, the
model’s prediction performance has been enhanced.

Set the encoding dimensions to {32, 64, 128, 256, 512} and perform
model operations separately. Use RMSE andMAE as evaluation metrics
formodel performance. The experimental results are shown in Figure 13.

As can be seen from the figure, when the model encoding
dimension is 32 dimensions, the model is too simple and cannot
learn enough effective data, resulting in poor model performance.
Therefore, the model’s predictive performance can be enhanced by
increasing its embedding dimension. When the encoding dimension
is 128 dimensions, as can be seen from the figure, the prediction
performance of the model is the best. This is because a higher model
dimension can store more data information, allowing the model to
better learn and simulate the regularities and changing characteristics

TABLE 4 Evaluation index value of each prediction model.

Model MAE(BKWh) Increase in
percentage

RMSE(BKWh) Increase in
percentage

R2 Increase in
percentage

WOA-SVR 5.97 76.7% 6.54 74.5% 0.61 45.9%

WOA-RBF 5.63 75.3% 6.31 73.5% 0.65 36.9%

WOA-LSTM 4.93 71.8% 5.85 71.5% 0.69 29%

WOA-ELM 3.36 58.6% 4.53 63.1% 0.76 17.1%

IWOA-SAA-
BILSTM

1.39 —— 1.67 —— 0.89 ——

FIGURE 13
The influence of encoding dimensions on model performance.
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of the data. However, an excessive encoding dimension is also not
conducive to improvingmodel performance. For example, when set to
256 dimensions and 512 dimensions, the prediction performance of
the model decreases, which is due to the learning of excessive data
noise and redundant information during data learning and feature
simulation, affecting the prediction performance of the model.

Therefore, when the encoding dimension of the model is set to
128 dimensions, the IWOA-SAA-BILSTM model achieves the best
prediction performance.

5 Conclusion

The objective is to enhance the precision of medium and short-
term renewable energy power load demand forecasting, this article
proposes an IWOA-SAA-BILSTM prediction model based on multi-
dimensional feature analysis. Firstly, the factors that affect the
renewable energy power load demand are screened, the study
identifies the significant factors that significantly influence medium
and short-term load demand. Then, the benchmark Whale
Optimization Algorithm (WOA) is improved by adding Tent chaos
mapping, and its internal convergence method is improved to be
nonlinear, the improved Whale Optimization Algorithm (IWOA) has
been obtained. Then, IWOA is used to optimize the weights of
BILSTM, and Simulated Annealing Algorithm (SAA) is introduced
to optimize the learning rate of BILSTM, the number of nodes in
hidden layers 1 and 2 and the number of iterations are crucial factors to
consider. The IWOA-SAA-BILSTM prediction model is obtained. At
the end of the article, through case analysis, the prediction accuracy
indicators of themodel proposed in this article are: MAE is 1.39, RMSE
is 1.67, and R_squared index is 0.89, which are all better than other
comparison models. It shows that the prediction results of this model
are reliable, and can provide corresponding theoretical basis for the
research on renewable energy power load demand forecasting, as well
as more theoretical guidance for power planning departments.
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