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There has been increasing attention to produce porous scaffolds that mimic
human bone properties for enhancement of tissue ingrowth, regeneration, and
integration. Additive manufacturing (AM) technologies, i.e., three dimensional
(3D) printing, have played a substantial role in engineering porous scaffolds for
clinical applications owing to their high level of design and fabrication flexibility.
To this end, this review article attempts to provide a detailed overview on themain
design considerations of porous scaffolds such as permeability, adhesion,
vascularisation, and interfacial features and their interplay to affect bone
regeneration and osseointegration. Physiology of bone regeneration was
initially explained that was followed by analysing the impacts of porosity, pore
size, permeability and surface chemistry of porous scaffolds on bone
regeneration in defects. Importantly, major 3D printing methods employed for
fabrication of porous bone substitutes were also discussed. Advancements of MA
technologies have allowed for the production of bone scaffolds with complex
geometries in polymers, composites and metals with well-tailored architectural,
mechanical, and mass transport features. In this way, a particular attention was
devoted to reviewing 3D printed scaffolds with triply periodic minimal surface
(TPMS) geometries that mimic the hierarchical structure of human bones. In
overall, this review enlighten a design pathway to produce patient-specific 3D-
printed bone substitutions with high regeneration and osseointegration capacity
for repairing large bone defects.
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1 Introduction

For the restoration of complex, critically sized difficult-to-heal, or non-healing bone
damages and defects, there is no ideal solution. The current clinical approach is to employ
bone autografts, allografts, or bone fillers at a defect site; however, the efficacy of such
methods for bone regeneration depends on the defect size, its anatomical position, bone
nature, and patient’s underlying conditions (Buttery and Bishop, 2005). These strategies are
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typically inadequate to regenerate all bone defects, and carry the risk
of adverse immune response and diseases transmission. Tissue
engineering (TE) methods have been developed to overcome
these limitations of bone reconstruction through development of
implantable porous scaffolds (Puppi et al., 2010; Henkel et al., 2013;
Roseti et al., 2017). Scaffolds should be able to recreate the structure
of the lost tissue, facilitate the regeneration, offer mechanical
properties supporting tissue function, and eventually integrate
with the native tissue (Hollister and Murphy, 2011; Ghelich
et al., 2022). Bone tissue engineering scaffolds have been
fabricated using different methods including gas foaming (Liu
and Ma, 2004; Salerno et al., 2012; Bak et al., 2014; Poursamar
et al., 2016), laser sintering (Williams et al., 2005; Duan et al., 2010;
Maskery et al., 2018), electrospinning (Liao et al., 2008; Jang et al.,
2009; Prabhakaran et al., 2009; Di Martino et al., 2011; Yu et al.,
2016; Lin et al., 2020), and recently, additive manufacturing (AM)
(Valainis et al., 2012; Mota et al., 2015; Bobbert et al., 2017; Bobbert
et al., 2017; Düregger et al., 2018; Zadpoor, 2019a; Zadpoor, 2019b;
Soro et al., 2019; Yuan et al., 2019). Among them, AM tools
including 3D printing have been explored to fabricate scaffolds
with controlled architectural, topological, biological, mechanical,
and mass transport features (Bobbert et al., 2017; Faramarzi et al.,
2018; Ostrovidov et al., 2019; Maydanshahi et al., 2021) to mimic the
features of native bones.

Due to the staggering number of patients suffering from bone
fracture and loss, the materials and fabrication processes used for
bone scaffolds have been critically reviewed elsewhere and will not
be discussed in detail here. One area that has not been properly
reviewed is the importance of the pore geometrical features on the
bone tissue regeneration. In the following sections, initially, a brief
overview of the physiology of bone regeneration is provided to
provide a better understanding of scaffold design considerations in
practice. Then, effects of design parameters on various features of
scaffold with a particular emphasis on structures having triply
periodic minimal surface (TPMS) geometries are highlighted.
TPMS structures provide a higher surface-area-to-volume ratio in
comparison with conventional lattice structures that promote cell
adhesion, cell migration and cell proliferation. In overall, the
challenges limiting the fabrication of scaffolds by design and the
opportunities for overcoming these barriers are discussed.

2 Bone regeneration physiology and
pathophysiology of large bone defects

Bone is considered as a rigid organ in body which support
and guard some other organs and facilitate mobility of live body
(Martin et al., 2008; Wang and Yeung, 2017). Bone is a porous
composite material, which could be divided into categories of (i)
compact and (ii) cancellous bones. Compact section is a hard
outer-shell of bone (compact bone), which possesses lower
porosity, while cancellous section has a highly porous
structure inside a bone (cancellous bone), which is less dense
than the outer surface. Porosity of compact bone is within the
range of 5%–10% with apparent density of 1.5–1.8 g/cm3; that is
the reason why it is called “compact” bone. Cancellous bones
have 30%–95% porosity with pores sizes range from 200 μm to
1,000 µm. A desirable porous bone substitute is the one that

mimics human bone properties with hierarchical architecture
which enable tissue ingrowth and movement of bodily fluids
through itself that are required for cell proliferation (Bobbert
et al., 2017). Bone is mostly made of hard apatite minerals along
with soft collagen protein networks (Currey, 1969). Such
composite construction generates the stiffness and the
suitable function of bone tissue. For instance, ear bone
content of over 80% mineral allows its vibration to transmit
sound, however, it is unable to resorb energy (Wang and Yeung,
2017). On the other hand, deer antlers consist of less dense
mineral content for absorbing high energy levels (Wang and
Yeung, 2017).

Bone formation is continued dynamically through two different
processes, known as modelling and remodelling (Wang and Yeung,
2017) that also contribute to bone fracture recovery. Bone modelling
progression starts with formation of a new bone with no prior bone
resorption, however, during the course of bone remodelling, bone
formation occurs in following with bone resorption (Wang and
Yeung, 2017). Bone modelling starts at the early ages, changes the
shape and size of body bones as it grows to. Bone modelling stops
once body reaches its adult age (Kimmel, 1993). In contrast,
remodelling is a lifelong procedure, which starts at early life and
maintains bone health for proper functionality by constantly
substituting impaired bone with new bone (Kimmel, 1993). In
contrary to other tissues, bone healing enables body to repair a
damaged bone and fully restore it to its previous composition,
construction, and functionality (Einhorn and Gerstenfeld, 2015).
Bone repair can be defined into direct, i.e., primary bone healing, as
well as indirect or secondary bone healing procedures. Direct bone
healing mainly starts when small and narrow gaps, usually less than
0.1 mm fractures, happen and the fraction site is rigidly stabilized.
As direct bone healing progresses, bone gap is filled continuously
through ossification and following Haversian remodelling
(DeLacure, 1994). Indirect bone healing happens once the
fracture edges are smaller than twice the injured bone diameter.
It includes several actions, such as the formation of blood clot,
inflammatory response, and formation of fibro-cartilage callus at the
site of injury; as well as intramembranous and endochondral
ossification, and bone remodelling. The bone fracture repair
mechanism initiates with anabolism, increasing bone,
differentiation of recruiting stem cells, and retardation with
chondrocyte apoptosis (Lee et al., 1998; Einhorn and Gerstenfeld,
2015). Some event such as high-energy trauma, disease, revision and
secondary surgeries, developmental deformities, and tumour
resections can deteriorates bone healing and create large
segmental bone defects (Gugala and Gogolewski, 2002;
Wildemann et al., 2007; Reichert et al., 2009). These large bone
losses can affect blood circulation and tissue differentiation that
finally can lead to bone fracture, that may result in non-union
without interventions (Claes et al., 2003). In addition, defect size is
not the only parameter that determines a critical bone defect
(Lindsey et al., 2006), but defect length is also an important
factor that should be considered for bone healing (Khan et al.,
2005; Lindsey et al., 2006). Regarding the impressive improvement
in the field of bone healing, still non-properly healed fractures or
bone defects can extremely affect the quality of patients’
lives because of treatment costs and prolong period of
healing (Figure 1).

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Toosi et al. 10.3389/fbioe.2023.1252636

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1252636


3 Role of porous scaffolds as bone
substitute in bone tissue engineering

In addition to the properties of bulk materials used for scaffolds
preparation, the architectural features of scaffolds affect their

function and characteristics. For example, porosity, pore size
distribution, and their interconnectivity affect the transport
properties and the mechanical properties (Figures 2, 3). In the
following section, we will discuses the effects of porosity on
various characteristics of scaffolds.

FIGURE 1
Schematics for bone healing process with implantation of scaffold in bone fracture.

FIGURE 2
Design considerations for a bone scaffold. Three parameters including scaffold permeability, mechanical strength of the scaffold and the interfacial
adhesion at the interface will affect bone ingrowth, osteoinduction, osteointegration, bone resorption.
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3.1 Effect of porosity, pore size and porous
scaffold on bone regeneration

Size and geometry of the scaffold’s pores, as well as
interconnectivity of porous structure highly affect cellular
penetration and distribution, their proliferation and
differentiation, and formation of blood vessels.

Osteoblasts size ranges within 10–50 μm (Sugawara et al., 2005),
however, larger pores (100–200 μm) are more suitable for their
function to regenerate mineralised bone post implantation (Toosi
et al., 2016; Abbasi et al., 2020). In this way, macrophages are
allowed to infiltrate and eliminate bacteria. In addition, infiltration
of other cells involved in colonisation, migration and vascularisation
is supported (Iviglia et al., 2019).

However, smaller pore size (<100 μm) may induce the creation
of non-mineralised osteoid or fibrous tissue (Liu et al., 2018; Iviglia
et al., 2019). Previous studies reported that significant bone
formation was observed in scaffolds with 800-μm pore sizes.
Fibroblasts preferred to fill smaller pores while larger pores were
filled bone cells revealing a 800 μm-scaffold could be more suitable
for homing and ingrowth of bone cells (Roosa et al., 2010). In a study
by Karageorgiou and Kaplan (2005), scaffolds with pore sizes greater
than 300 μmwere found to be more appropriate to repair large bone
defects as the formation of new bone and capillaries were enhanced
(Hollister and Murphy, 2011). Excellent osteoinductions were
reported for scaffolds having pore sizes ranges from 500 μm to
1,200 μm (Hutmacher, 2000; Van Bael et al., 2012).

Similar observation has been made in the case of hydrogel-based
scaffolds. Further, pore size significantly affects individual cell’s
response including its attachment, growth as well as proliferation
(Al-Munajjed et al., 2008). Highly porous scaffolds are easier for cells
to penetrate since material degradation through expression of
matrix metalloproteinase (MMPs) is not needed to create space
for cell migration. This can potentially reduce the level of
inflammation as the over expression of MMPs can induce
inflammatory responses (Rosso et al., 2005; Anderson et al.,
2011). However, for scaffolds that are expected to support bone
regeneration throughout their volume, pore size distribution and

their interconnectivity are critical features. In another study, it was
shown that bone cells grow faster and differentiate in scaffolds with
pores within the range of 100 μm–325 µm (Abbasi et al., 2020).
Another important study was performed on scaffolds with small
(90–120 µm) and large (350 µm) pore diameters as implanted in
rats. Scaffolds with small pores showed chondrogenesis before
osteogenesis, while in those with larger pores, direct bone
formation was observed due to enhanced vascularization through
the pores. The vascularization observed in the larger pores facilitated
mass transport through the pores for sufficient oxygen and nutrient
delivery as required for direct osteogenesis. Cheng et al. (2016)
employed magnesium scaffolds in pore sizes of 250 μm and 400 μm.
They observed that formation of mature bone was more in the larger
pores owing to improved vascularisation. In this way, sufficient level
of oxygen and nutrients could be delivered to maintain osteoblastic
activity that result in upregulation of osteopontin (OPN) and
collagen type I with direct impact on augmentation of bone mass
(Cheng et al., 2016).

In another study, Lim et al. (2010) testified that 200 μm–350 μm
was optimum size for osteoblast proliferation whereas cell
attachment was not affected at pores with larger sizes (500 μm).
Cell aggregation and proliferation could be more controlled in
smaller pores (Chen et al., 2018), however, such scaffolds may
stimulate endothelial cell proliferation due to exogenous hypoxic
condition (Bianco et al., 2017). In addition, proinflammatory higher
levels of cytokines including tumour necrosis factor α and
interleukin 6, 10, 12, and 13 could be produced in pores with
larger size that can activate bone regeneration responses
(Mukherjee et al., 2019).

Micropores, however in contrast to macropores, promote
protein adhesion and cell attachment over the scaffolds in vitro
(Wang et al., 2016; Diaz-Rodriguez et al., 2018; Sokolova and Epple,
2021). O’Brien et al. (2005) found that pores with size of 95 μm
could provide the best environment for initial cell adhesion at
in vitro conditions (Mukherjee et al., 2019). In another study it
was reported that scaffolds with pore size of 100 μm–325 μm was
optimal for bone engineering in vitro (Mukherjee et al., 2019). Some
previous studies claimed that although pores larger than 50 μm

FIGURE 3
Schematic illustration of the fabrication of 3D porous scaffolds: properties and application.
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(i.e., >50 μm, macropores) provide favourable effects to enhance
osteogenic quality; cell infiltration is limited in small pore size at
in vitro conditions.

Owing to these facts, it could be concluded that scaffolds
designed to have a gradient in pore size and porosity might
provide an optimal solution for bone regeneration. Gradient PCL
scaffolds could enhance the osteogenic differentiation of human
mesenchymal stem cells (MSCs) at in vitro through increased level of
calcium content and ALP activity as a consequence of improved
supply of oxygen and nutrients in larger pores (Di Luca et al., 2016).
Effect of gradient porosity on cell-seeding was evaluated by Sobral
et al. (2011) on 3D poly (ε-caprolactone) scaffolds with pore size of
100–700–100 μm and 700–100–700 μm. In static conditions, the
gradient porosity showed higher seeding efficiency, as increased
from 35% for uniform porosity to about 70% in the gradient pore
sizes (Sobral et al., 2011). In addition, for degradable scaffolds, pore
size and porosity regulate the degradation rate. As for PLA scaffolds,
Xu et al. (2014) reported that square shape pores had higher
degradability and scaffold weight loss.

Porosity is a morphological property of a porous structure and is
independent of the structure material that highly affects the
biological response of scaffolds (Karageorgiou and Kaplan, 2005;
Lv et al., 2021). Such interconnectivity is one of the most essential
requirements for tissue ingrowth (Lee et al., 2019; Ferrández-
Montero et al., 2020; Dong et al., 2021; Jamee et al., 2021; Jiang
et al., 2021; Kumar et al., 2021).

Porosity (P), defined as void space percentage of a solid
structure, is determined by Eq. 1 as shown in below (Léon and
León, 1998; Yuan et al., 2019):

P � 1 − P structre

Pmaterial
( ) × 100% (1)

where Pmaterial shows the density of the bulk material and Pstructure is
the density of the porous structure (Karageorgiou and
Kaplan, 2005).

3.2 Effect of porosity and pore size on
permeability of porous structures

The microstructure of TE scaffolds is generally characterized by
porosity, pore size, interconnectivity and tortuosity. However, these
parameters are not sufficient to predict the success of a porous
scaffold. On the other hand, permeability is an important parameter
in the assessment of biological performance, including mass
transport parameter and can be considered as an independent
design parameter (Kemppainen and Hollister, 2010; Pennella
et al., 2013; Lipowiecki et al., 2014; Ali and Sen, 2017;
Montazerian et al., 2017; Rahbari et al., 2017; Daish et al., 2019;
Lv et al., 2022a). Therefore, the mass transport through porous bone
substitutes that is mainly measured by permeability, should be well
designed to allow for sufficient oxygenation and delivery of nutrients
to residing cells (Karande et al., 2004; Hollister, 2005; Dias et al.,
2012; Truscello et al., 2012; Bobbert et al., 2017).

Permeability (k) is a proportionally constant between the
average velocity of liquid passing through a porous structure at
an applied pressure gradient and is defined by Darcy’s law as
presented in Eq. 2 (Zhianmanesh et al., 2019):

Ū � −k
µ
∇p (2)

where Ū shows the average fluid velocity, ∇ P is the applied pressure
gradient, and µ is the dynamic viscosity. Several studies have
characterized the permeability of porous scaffolds for biomedical
applications (Tamayol and Bahrami, 2009). In this way, the
constructs with minimal surfaces have received special attention.
They have specific geometrical properties that make them appealing
for bone tissue regeneration. For these surfaces, the mean curvature
is zero which resembles the mean curvature of trabecular bone
(Bobbert et al., 2017).

Scaffold pore size is a vital parameter in TE since it promotes cell
adhesion, proliferation and differentiation. In this way, modulation
of pore size distribution would change the permeability of the TE
scaffolds. Al-Munajjed et al. (2008) showed for hyaluronic-collagen
scaffolds that the permeability and porosity of scaffolds were
increased as pore size was enlarged. Larger pores create less
resistance for fluid to pass through the scaffold and provide
higher Darcy’s constant (Al-Munajjed et al., 2008).

As for scaffolds with higher permeability, cell suspension
experiences less resistance once permeate through the scaffold.
This leads to faster stream, which give cells shorter time period
to attach to a solid surface. Thus, seeding could be more productive
for structures with smaller pores, i.e., lower permeability values (Van
Bael et al., 2012).

3.3 Effect of porosity on interfacial adhesion
and vascularization

In general, pore structure is a significant consideration for TE
constructs. Pores must be highly interconnected to allow for cellular,
migration and proliferation and diffusion of required substances.
Specific surface area per unit mass is an important design parameter
that affects the interfacial cell adhesion of a scaffold. For the scaffolds
with small pores, formation of cellular capsules around the edges of
pores can limit the delivery of nutrients and oxygen (Mostafavi et al.,
2021; Lv et al., 2022b; Lv et al., 2022c). On the contrary, too large
pores reduce the surface area and limit the cellular adhesion
(Murphy et al., 2010).

In a study, Torres-Sanchez et al. (2017) found that small pores
enhanced cell attachment and showed higher cell growth rate until
the third day of cell culture owing to the larger surface area.
However, larger pores supported the cell proliferation and had
larger cell growth rate after the third day (Yuan et al., 2019).
Due to the importance of surface area on cell adhesion, the
upper and lower values of pore size is a major design
consideration for collagen scaffold. O’Brien et al. (2005) tested
this hypothesis that the level cell attachment is modulated by the
average pore size. It was observed that cell binding and activity could
be altered significantly affected by the type of cell, as well as
composition and pore size of a scaffold. It could be expected that
TE of each construct should require an appropriate pore size
[O’Brien et al. (2005)].

The second parameter that affects the interfacial adhesion is the
surface structure of scaffold substrate. Surface structure of an
implant plays a crucial role in biocompatibility, bioactivity and
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TABLE 1 Summary of the composition, printing technique, pore size, and biological effect of different 3D porous composite scaffolds.

Scaffold composition Bioprinting technique Pore size In vitro/In vivo effect Ref

Poly (lactic-co-glycolic acid) (PLGA) FDM 300–700 μm; actual
printed scaffolds had
221–775 μm pores

Good cytocompatibility with
fibroblasts, increased osteoblast
adhesion and proliferation over 7 days

Liu et al. (2018b)

Polypropylene fumarate (PPF),
polyethylene glycol-polycaprolactone
(PEG-PCL-PEG), pluronic (PF127)

D Bioplotter® using pressure and
temperature regulated syringe

600 μm Sustained release of simvastatin over
20 days, restored mechanical properties
of fractured human clavicle bone to
99% matrix hardness and 98% matrix
resilience of healthy bone

Kondiah et al.
(2020)

PCL Extrusion-based printing Pore dimensions on the
order of a few hundred

microns

Compressive mechanical properties
measured and compared between
scaffolds with different inner
geometries (lattice, wavy, hexagonal,
shifted); Finite Element Modeling was
employed to predict compressive
properties of the scaffolds, Good
agreement found between modelled
and experimentally measured
properties; properties tailored over a
range by varying the inner geometry
while keeping overall porosity constant

Awwad et al.
(2020)

90% attapulgite (ATP) nanorods + 10%
polyvinyl alcohol (PVA) binder

3D bioprinting with pneumatic
extrusion

500 μm channels but the
actual printed scaffolds
had 20–50 μm pores

Good biocompatibility with osteoblasts;
Increased osteogenic gene expression,
More calcium deposition; More bone
formation vs. controls in rat model,
Bone growth directly on scaffold
surface, Increased blood vessel
formation

Wang et al.
(2020)

Silk fibroin-gelatin composite with cell-
laden alginate-collagen core-shell

microgels

Extrusion-based 3D bioprinting — Microgel-15% silk fibroin/8% gelatin
showed highest cell viability compared
to scaffolds without microgels/
Microgel-15% silk fibroin/8% gelatin
showed better bone regeneration
compared to 15% silk fibroin/8% gelatin
scaffold without microgels

Chai et al. (2021)

Hydroxyapatite (HA) loaded with
superparamagnetic iron oxide
nanoparticles (SPIONs)

3D bioprinted with a geometry that
closely corresponded to the bone defect
using a surgically friendly bioink
mainly composed of hydroxyapatite

— In vitro culture of mouse embryonic
cells and human osteoblast-like cells on
the printed HB scaffolds showed
viability and functionality for up to
14 days/Implantation of the bioprinted
HB scaffolds into a rat model of femoral
bone defect demonstrated significant
regenerative effects over a 2-week time
course. The HB grafts showed rapid
integration with host tissue,
ossification, and growth of new bone.
No infection, immune rejection, or
fibrotic encapsulation was observed

Shokouhimehr
et al. (2021)

90% PCL+ 10% amorphous calcium
phosphate (ACP)

Pneumatic gelling liquid extrusion 50–710 μm Compressive strength 2–12 MPa,
Interconnected pores confirmed by
SEM, Repeatable pore structure

Roque et al.
(2021)

PCL Hybrid bioprinting: Fused deposition
modeling (FDM) of PCL combined
with microextrusion of alginate-gelatin

cell-laden hydrogel

0.53–2.92 mm3 Printing temperature of 140°C provided
good balance between PCL filament
bond strength and cell viability in
surrounding hydrogel, Compressive
modulus of up to 6 MPa achieved for
bare PCL scaffolds, decreasing to
~4 MPa for hybrid PCL-hydrogel
constructs, No significant degradation
of mechanical properties observed over
28 days incubation of hybrid constructs
with encapsulated cells

Koch et al. (2022)

PCL and micron-sized barium titanate
(BaTiO3) particles

Extrusion-based 3D printing,
specifically fused filament
fabrication (FFF)

320 µm The scaffolds with a mean pore size of
320 µm resulted in the highest pre-
osteoblast growth kinetics, Ultrasonic

Sikder et al.
(2022)

(Continued on following page)
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TABLE 1 (Continued) Summary of the composition, printing technique, pore size, and biological effect of different 3D porous composite scaffolds.

Scaffold composition Bioprinting technique Pore size In vitro/In vivo effect Ref

stimulation (US) at 1 Hz enhanced pre-
osteoblast adhesion, proliferation, and
spreading, Ultrasonic stimulation at
3 Hz benefited osteoblast
differentiation by upregulating
important osteogenic markers

Void-forming hydrogel prepared by
digital light processing (DLP)-based
bioprinting of bone marrow stem cells
(BMSCs) mixed with gelatin
methacrylate (GelMA)/dextran emulsion

Digital light processing (DLP)-based
bioprinting

— The 3D-bioprinted hydrogel promotes
the proliferation, migration, and
spreading of the encapsulated BMSCs,
The porous structure of the hydrogel
enhances cell spreading, migration, and
proliferation of the encapsulated
BMSCs, The niche created by the
porous structure stimulates the YAP
signal pathway, leading to enhanced
osteogenic differentiation of BMSCs,
The porous structure of the hydrogel
forces YAP nuclear localization and
upregulation of YAP targeted genes/
The void-forming hydrogel shows great
potential for BMSCs delivery and
significantly promotes bone
regeneration in vivo, The generated
pores in the 3D-bioprinted hydrogels
significantly promote skull repair in
vivo

Tao et al. (2022)

Cartilage phase: Alginate-gelatin (A-G)
hydrogel

Extrusion-based bioprinting of A-G
hydrogel/Direct ink writing (DIW) of
PCL/HA composite

— A-G hydrogel supported high viability
and proliferation of encapsulated
chondrocytes, PCL/HA composite
supported attachment, spreading,
proliferation, and mineralization of
seeded osteoblasts

Chen et al. (2023)

Bone phase: PCL with HAmicroparticles

Gelatin methacrylate (GelMA),
polyethylene glycol diacrylate (PEGDA),
and Pluronic F127 diacrylate (F127DA)

Digital light processing (DLP) printing — The GelMA/PEGDA/F127DA (GPF)
scaffold facilitated the adhesion and
proliferation of cells and promoted the
osteogenic differentiation of
mesenchymal stem cells in an
osteoinductive environment, The
osteogenic differentiation of rat bone
marrow mesenchymal stem cells
(rBMSCs) was not promoted by either
the PEGDA/F127DA (PF) or GPF
scaffolds/The bone tissue volume

Gao et al. (2023)

Methacrylated gelatin (GelMA)/
methacrylated alginate (AlgMA) system,
with the addition of rat platelet-rich
plasma (PRP) and a nanoclay called
laponite (Lap)

layer-by-layer printing of the hydrogel
bioink with PCL

— The PRP-GA@Lap hydrogel
significantly promoted the
proliferation, migration, and osteogenic
differentiation of rat bone marrow
mesenchymal stem cells, accelerated the
formation of endothelial cell vascular
patterns, and promoted macrophage
M2 polarization/In vivo experiments
using subcutaneous and femoral
condyle defects in rats showed that the
PRP-GA@Lap/PCL scaffolds
significantly promoted vascular inward
growth and enhanced bone
regeneration at the defect site

Gao et al. (2023)

10%–15% gelatin methacryloyl (GelMA) Microextrusion — Bioprinting enhanced osteogenic gene
expression compared to 2D culture,
2 weeks pre-induction + 3 weeks post-
induction osteogenic culture showed
highest osteogenic potential in vitro and
bone formation in vivo, Similar bone
formation for 5 weeks total osteogenic
induction regardless of pre- vs. post-
induction timing, Residual GelMA
observed after 8 weeks implantation in
rat calvarial defect

Raveendran et al.
(2023)

(Continued on following page)
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osseointegration of a scaffold. After implantation, surface of a
scaffold directly starts to interact with surrounding bio fluids and
tissues. Adsorption of proteins is affected by the scaffolds surface
texture and chemistry. Scaffold surface chemistry can affected by the
roughness of the surface, response to wettability, and its mechanical
attributes (O’Brien et al., 2005; Dave and Gomes, 2019). In this way,
cellular-related activities including binding, proliferation and
differentiation are highly regulated by the composition and type
of absorbed proteins on the surface of the scaffold (Civantos
et al., 2017).

4 Additively manufactured scaffolds

3D printing, also known as additive manufacturing (AM), has
shown great potential for bone tissue engineering by enabling the
fabrication of customized porous scaffolds that mimic the structural
properties of natural bone extracellular matrix (Tables 1, 2)
(Praveena et al., 2022). The key 3D printing technologies
explored for bone scaffold fabrication can be categorized as follows.

4.1 Extrusion-based techniques

Fused deposition modeling (FDM) is a widely usedmethodology
due to its simplicity and cost-effectiveness. It employs a
thermoplastic polymer filament that is heated and then extruded
layer by layer through a nozzle, allowing for the creation of a desired
scaffold structure. FDM allows for the incorporation of ceramic
particles into polymer to improve bone bioactivity. However, high
temperatures limit direct printing of cells or bioactive factors.
Overall, FDM is ideal for rapidly fabricating customized
biopolymer bone scaffolds (Lee et al., 2019; Jiang and Ning, 2020;
Winarso et al., 2022; Zhang et al., 2023). Numerous 3D porous
scaffolds were created using FDM method (Lee et al., 2019;
Ferrández-Montero et al., 2020; Jiang and Ning, 2020; Dong
et al., 2021; Jiang et al., 2021).

4.2 Inkjet printing techniques

Inkjet bioprinting utilizes thermal or piezoelectric mechanisms
to eject bioink droplets containing cells, growth factors, and other
components onto a platform in order to create tissues. This
methodology facilitates the generation of bioactive bone scaffolds

with exceptional accuracy. However, there are limitations regarding
the consistency of bioinks that can be printed (Jamee et al., 2021;
Kumar et al., 2021; Parodi et al., 2023).

Generally, inkjet bioprinting offers the advantages of high
output, cost-effectiveness, easy implementation, and compatibility
with low viscosity biomaterials (Yenilmez et al., 2019; Dell et al.,
2022). Consequently, inkjet bioprinting is extensively used in
preclinical research and clinical applications (Lv et al., 2018; Li
et al., 2020).

4.3 Laser-based techniques

4.3.1 Selective laser sintering (SLS)
SLS is a manufacturing technique that uses a laser to fuse layers

of a powdered material based on a three-dimensional (3D) model.
The process involves heating and fusing a thin layer of powder using
a laser beam that follows a predetermined scanning path. This
process is repeated layer by layer until a 3D porous scaffold is
formed. The SLS technique has proven to be effective in producing a
variety of scaffolds suitable for bone tissue engineering, with an
optimal pore structure and improved mechanical properties. This
technique has been successfully used to create porous scaffolds using
both polymers and metals (Sun et al., 2016; Shuai et al., 2018).

4.3.2 Stereolithography (SLA)
SLA is a 3D printing technique that uses a UV laser to selectively

cure and solidify liquid photopolymer resins in layer-by-layer
fashion to build a 3D object. This approach possesses a
remarkable level of precision and has the capability to generate
complex internal configurations. Nonetheless, the range of available
materials is limited, and there is a potential hazard associated with
the use of toxic resins (Shirvan et al., 2021; Raguraman and Rajan,
2023). Previous researches have reported successful fabrication of
3D scaffolds for bone repair using SLA technique (Elomaa et al.,
2020; Ronca et al., 2021).

4.4 Low-temperature printing techniques

Low-temperature deposition manufacturing (LDM) utilizes a
process of extrusion to avoid the risks of temperature-induced
damage to cells and proteins, thereby ensuring their intact
wellbeing. Freeze-drying removes solvents from printed parts.
LDM can create bone scaffolds with nano-scale pores for cell

TABLE 1 (Continued) Summary of the composition, printing technique, pore size, and biological effect of different 3D porous composite scaffolds.

Scaffold composition Bioprinting technique Pore size In vitro/In vivo effect Ref

Silk fibroin/gelatin composite scaffold
loaded with silicon nitride (Si3N4)

nanoparticles

Low-temperature 3D bioprinting 600–700 μm Good cytocompatibility, Promoted
osteogenic differentiation of rat
BMSCs/1% Si3N4 scaffold showed best
bone regeneration in rat femoral defect
model

Yunsheng et al.
(2023)

Alginate-HA Extrusion-based 3D bioprinting 150 μm Good interconnectivity between pores,
80% porosity

Krishna and
Sankar (2023)
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TABLE 2 Materials employed for 3D printing of tissue engineered bone substitute.

Composition Features Reference

Titanium coated with chitosan- hydroxyapatite Enhanced proliferation, differentiation, and osteogenesis of MC3T3-
E1 cells

Wei et al. (2018)

Titanium Promoting collagen-producing, alkaline phosphatase activities, and
osteocalcin level

Maleksaeedi et al. (2013)

Titanium coated with chitosan magnesium calcium silicate Promoting regeneration of the critical size bone defects Tsai et al. (2019)

Tricalcium phosphate Mg2+ induces cellular adhesion, proliferation, and alkaline phosphatase
expression, Si4+ shows stimulatory effect on proliferation, osteogenic,
differentiation, and mineralization of preosteoblasts

Bose et al. (2017)

Hydroxyapatite Improving the ability of ceramic templates to promote bone healing Dutta Roy et al. (2003)

MgP MgP is completely degradable at 4 weeks; pore architecture formed by
the template struts greatly influences bone formation

Kim et al. (2016)

CaP It creates a proper combination of growth, cell populations and other
osteoinductive elements for bone regeneration

Kruth et al. (2005)

Polycaprolactone-fish bone extract Supporting cell proliferation, inducing calcium deposition, expression
of osteogenic markers such as bone morphogenic protein, osteocalcin,
alkaline phosphatase, and osteopontin

Heo et al. (2019)

Poly (propylene fumarate) resin No sign of inflammation, the formation of lamellar bone bridges in
critical-sized cranial defects of a rat model

Nettleton et al. (2019)

Polycaprolactone-bioactiveglass Proliferation and viability of the fibroblast cells Korpela et al. (2013)

Polycaprolactone The cell-seeded constructs revealed about 60% more calcification area
than the unseeded templates orunrepaired defects

Jensen et al. (2014)

Ppolydimethylsiloxane (PLGC) PLGC template with hDPSCs/OF induced highest new bone formation Kwon et al. (2015)

Polyamide-hydroxyapatite Supporting cell migration, expression of alkaline phosphatase,
accelerate the new femoral bone formation

Ramu et al. (2018)

chitosan-hydroxyapatite Enhancement of osteoconductivity Ang et al. (2002)

polycaprolactone mixed with β-tricalcium phosphate New bone formation 8 weeks after implantation in rabbit calvarial
defects

Pae et al. (2019)

Polylactic acid-glycolic acid copolymer/tertiary calcium phosphate Increasing osteoconductive capacity Pati et al. (2015)

wollastonite/Magnesium/tertiary calcium phosph -ate (CSi/Mg/TCP) CSi/Mg/TCP templates showed significant synergetic effect on
osteoconductivity than CSi or TCP templates alone

Shao et al. (2017)

Human induced pluripot -ent stem cell-derived cardiomyocytes
(hiPSC-CM)

Enabled cost-effective, reproducible and scalable hiPSC- CM
production with high activity for tissue engineering, drug screening
and regenerative medicine

Sasano et al. (2020)

Alginate, gelatin and human mesenchymal stem cells Optimizing for stiffness and cell density, showing great promise for
bone tissue engineering applications

Zhang et al. (2020)

Collagen-infilled 3D printed scaffolds loaded with miR-148b-transfect
-ed bone marrow stem cells

3D printing enabled the fabrication of hybrid scaffolds for calvarial
defect repair; miR-148b-transfected stem cells underwent early
differentiation in hybrid scaffolds; miR-148b-transfected stem cells
improve bone regeneration in rat calvarial defects

Lih et al. (2019)

barium titanate and 45S5 bioactive glass Piezoelectric properties with piezoelectric constant d33 ranging from
1–21 pC/N, Compressive strength of 23.8–56.4 MPa, Formed
hydroxyapatite layer during in vitro bioactivity testing,
Cytocompatible with pre-osteoblast cells

Polley et al. (2023)

β-TCP and CaSiO3 Interconnected porous architecture fabricated by 3D printing,
Coculture system of HUVECs and hBMSCs promoted osteogenesis
and angiogenesis, Induced early osteogenic protein secretion and
capillary tube formation in vivo

Liu et al. (2022)

PCL or PLLA with β-TCP Produced by fused deposition modeling 3D printing, β-TCP content
up to 50 wt%, Rough and porous surface morphology, Young’s
modulus around 100–800 MPa, Compressive strength up to 67 MPa,
Non-cytotoxic to fibroblast and osteoblast cells

Podgórski et al. (2023)

(Continued on following page)
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infiltration. However, harsh solvents are involved, and weaker
structures are produced. LDM uniquely facilitates room-
temperature printing of hierarchically porous bioactive bone
scaffolds (Zerankeshi et al., 2022). The applications of LDM to
fabricate 3D porous polymer-metal composite bone scaffolds have
been reported (Ma et al., 2020; Long et al., 2021; Ali et al., 2022).

4.5 Biological 3D printing

This technique focuses on printing cell-laden hydrogel-based
bioinks to generate living bone tissue constructs. Key techniques
include inkjet bioprinting, extrusion bioprinting, and laser-assisted
bioprinting. These methods allow for the printing of bone constructs
encapsulating living cells, growth factors, etc. They are essential for
fabricating vascularized, functional bone grafts with a physiological
cell distribution (Arastouei et al., 2021; Zhou et al., 2021; Maresca
et al., 2023). Among the available techniques, FDM is the most
widely used 3D printing technique for bone scaffolds due to its
simplicity, low cost, and ability to process a range of biomaterials.
However, extrusion-based techniques like FDM provide lower
resolution compared to light-based methods like SLA or SLS.
Inkjet bioprinting enables high precision cell printing but has
limitations on the viscosity of printable. The optimal choice
depends on factors such as desired resolution, mechanics, and
incorporation of biological components. Each 3D printing
approach has its own advantages and disadvantages that make it
suitable for different bone tissue engineering applications (Ngo et al.,
2018; Gharibshahian et al., 2023).

5 Triply periodic minimal
surfaces (TPMS)

Triply periodic minimal surface (TPMS) structures have a
higher surface-area-to-volume ratio in comparison with
conventional lattice structures. Specifically, the TPMS sheet
constructs exhibit significantly large surface areas. The advantage
of high surface area for TPMS-based scaffolds is an enhancement in
cell adhesion, migration and proliferation. Besides, these geometries
have an infinitely continued surface with smooth joints that causes
lower levels of stress concentration and enhances the mechanical
strength of the scaffold. TPMS surfaces known to Schwartz works
and defined as periodically infinite structures along with three
independent axes that have zero mean curvature of the surface
(Karcher, 1989; Yuan et al., 2019; Lv et al., 2022d).

Titanium alloys have been commonly employed as the most
appropriate materials for biomedical devices. Such metal alloys have
elastic modulus greater than bone tissues that this mismatch in
mechanical properties may lead to stress shielding (Claes et al., 2003;
Truscello et al., 2012; Liu et al., 2018; Kondiah et al., 2020;
Samandari et al., 2022). In this case, stress is removed from bone
and majority of exerted forces are bypassed through adjacent
implanted scaffolds. Stress shielding results in failure of bone
scaffold (Wang et al., 2019) due to the reduction of bone density.
A healing bone usually remodels itself at the presence of mechanical
loadings. This remodelling process helps bone to adjust its
mechanical properties in response to loading. Reduction in load,
due to the existence of the implanted scaffold, would cause a bone to
become thinner and weaker because there are no stimuli to induce
remodelling (Brien et al., 2005). To solve this problem, either a
metallurgical method can be applied or porosity can be introduced
into the metals (Wang et al., 2019; Yuan et al., 2019). Porosity in
metallic constructs reduces the elastic modulus of metal materials
which result in stress transfer between bone tissue and its adjacent
construct, and allows the porous construct, i.e., scaffold, to get
integrated into bone tissue, making long-term osteointegration
achievable (Wang et al., 2019). Several studies have been
performed to find correlations between design parameters and
mechanical properties of porous scaffolds (Bobbert et al., 2017;
Maskery et al., 2018; Al-ketan et al., 2019;Wang et al., 2019). Among
different methods of fabricating porous structure, the additive
manufacturing techniques are prominent because of their abilities
in optimization of TPMS structures due to their dimensional and
high level of design flexibility with periodic regular structures
(Bobbert et al., 2017) (Figure 4). Li et al. (2019) used graded
TPMS porous scaffolds and showed that these types of scaffolds
are more suitable technique for implant fabrication.

In the last decade, TPMS scaffolds have been fabricated from a
variety of materials including metals, polymers (Karageorgiou and
Kaplan, 2005; Karageorgiou and Kaplan, 2005; Faramarzi et al.,
2018; Martinez-marquez et al., 2018; Cai et al., 2019; Efraim et al.,
2019; Ostrovidov et al., 2019; Yan et al., 2019; Gerdes et al., 2020;
Javid-Naderi et al., 2023), ceramics (Hulbert et al., 1970; Kokubo,
1996; Will et al., 2004; Zhang et al., 2016; Bobbert et al., 2017;
Elsayed et al., 2017; Diaz-Rodriguez et al., 2018; Toosi et al., 2022), as
well as hydrogels (Somo et al., 2015; Bianco et al., 2017; Mohammadi
et al., 2018; Wong et al., 2019). 3D printed porous scaffolds from
metals, polymers, and ceramics offer mechanical properties
comparable to native bones. The structural and mass transport
properties of these scaffolds, especially permeability, have a
significant effect on bone formation and implant integration.

TABLE 2 (Continued) Materials employed for 3D printing of tissue engineered bone substitute.

Composition Features Reference

Bentonite and HA Fabricated by robocasting 3D printing, Compressive strength up to
52 MPa, Porosity 31%–38% and water absorption 28%–45%,
Degradation rate 15%–20% after 28 days, Biocompatible with 91% cell
viability

Logeshwaran et al. (2023)

84 wt% HA particles in PCL matrix treated with 2 and 2.5 M NaOH Improved surface hydrophilicity, reduced foreign body reaction,
promoted M2 polarization and bone formation, Excessive corrosion of
PCL, rapid degradation, weaker mechanical properties

Li et al. (2023a)
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FIGURE 4
Topological design based on six different types for TPMS porous biomaterial fabrication.

TABLE 3 Summary of the TPMS structure, substrate materials, printing technique, porosity and mechanical properties.

TPMS structure Substrate
materials

Printing
technique

Porosity Mechanical properties Ref

Primitive, IWP, Neovius Polyamide 12 Selective laser
sintering

4%–25% Compressive modulus and strength increase with
relative density. Neovius and IWP have higher

modulus and strength than Primitive

Abueidda et al.
(2017)

Primitive, Diamond,
Gyroid

316L stainless steel Selective laser
melting

60%–80% Diamond has highest compressive modulus. All
TPMS structures outperform BCC lattice in
stiffness, strength and energy absorption

Zhang et al. (2018)

Gyroid Wollastonite Digital light
processing

50%–55% Gyroid structure had lower compressive strength
than cubic and cylindrical pore structures

Li et al. (2023b)

Diamond, Gyroid,
Primitive, Lattice

Ti6Al4V SLM 50%–70% Diamond and s-Diamond had highest compressive
strength and elastic modulus

Zhu et al. (2018)

Diamond, Gyroid,
Schwarz

PLA FDM 35%–65% Elastic modulus: 170–324 MPa, Compressive
strength: 5–27 MPa

Diez-Escudero
et al. (2020)

Schwarz-P, Gyroid PLA/Graphene oxide
(GO) nanocomposite

FDM ~50% Compressive modulus: 60–90 MPa, Compressive
strength: 9.8–11.3 MPa

Guo et al. (2023)

Various, including
Primitive, Gyroid,

Diamond

Various, including
polymers, metals,

ceramics

Various AM
techniques discussed

Variable porosity
discussed

Wide range of mechanical properties discussed Pugliese and
Graziosi (2023)

Primitive Stainless steel SLM Designed:
75%–90%

Not studied Zhu et al. (2022)

Diamond, Gyroid,
Primitive

HA 3D printing
(CeraFab 7500)

70%–82% Diamond and Gyroid had ×2 higher compressive
strength than Primitive and Lattice; Diamond had

highest Young’s modulus

Maevskaia et al.
(2023)

I-WP lattice PLA + 2.5–10% porous
iron particles

SLS 40% relative
density

2.75–4.28 MPa compressive strength Xu et al. (2023)

Gyroid VisiJet M3 Crystal 3D MultiJet printing 50%–70% Lower porosity correlated with higher stiffness;
numerical predictions matched experimental data

Castro et al. (2019)

(Continued on following page)
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AM has shown major potential for manufacturing complex
structures such as TPMS with extremely extending surfaces.
Researchers have demonstrated the feasibility of 3D printing
TPMS structures for bone regeneration applications. In a study
TPMS structures fabricated with 316L stainless steel by using SLM
technology, and discovered their mechanical properties and energy
absorption capacities (Zhang et al., 2018). In another one, with SLM
printed TPMS specimens compare between finite element method
and experimental data then examine elastic modulus, yielding
strength, stress strain distribution and the failure occurrence
mechanisms of Ostrovidov et al. (2019). In other study,
Abueidda et al. (2017) used SLS technology to make different
TPMS samples and established that different porosity can alter
the mechanical properties of structures. Maskery found that the
polymer 3D printed Schwarz primitive lattice displayed stretching
and bulking, whereas the Gyroid and diamond deformed in a
blending manner (Maskery et al., 2018). A list of scaffolds with
TPMS structures is provided in Table 3.

6 Conclusion and future directions

In summary, this paper provides a review on the effect of
porosity, pore size, pore structure and interfacial adhesion on the
exchange of nutrient, vascularization, and bone formation. Special
attention is given to the AM porous structures, especially TPMS
scaffolds. The main conclusions are as follows:

(1) Porous structures that facilitate cell differentiation; migration
and formation of blood vessels are desirable for implant
applications. Porous scaffolds with 200–350 µm pore size,
which mimics the porosity of cancellous bone, facilitate bone
ingrowth. It is shown that increasing pore size increases
permeability and porosity. In addition, in vivo experiments
suggest that larger pore size enhances vascularization, and
higher porosity enhances osteogenesis and bone formation.
The specific surface area is another factor that affects
osteointegration. It is shown that smaller pore size for a
scaffold provides a larger specific surface area that is an

important factor for cell attachment. Thus, there is a
compromise between the optimum pore size for the cell
migration and the specific surface area.

(2) Use of porous metallic scaffolds reduces the effect of stress
shielding, which results in stress transfer between bone tissue
and scaffolds. This effect results in the integration of porous
structure in bone tissue and in making long-term
physiological fixation. Among different methods of
fabricating porous structures, AM of the TPMS surfaces is
the optimal method.

(3) Permeability, which can be considered as an independent
design parameter, is an essential parameter in determining the
mass transport properties of a scaffold for sufficient delivery
of nutrients and proper oxygenation.

(4) Engineering scaffolds with multiscale porosity is challenging and
3D printing is a powerful tool for achieving that. However,
advanced biomaterials inks and printing nozzles are needed to be
developed to achieve a combination of micro to macropores.
Another important consideration is the method for the
implantation of scaffolds. The fixation of polymeric and
hydrogel scaffolds in place is challenging and therefore new
strategies are needed to facilitate the implantation of scaffolds.
One emerging technique is in vivo 3D (bio) printing, where the
scaffold is directly built inside the defect site (Samandari et al.,
2022). Such technique eliminates the need to implantation and
also facilitate the formation of scaffolds that seamlessly fit the
defect site. This area is expected to advance the field of
bioprinting for treating complex injuries.

(5) 3D-printed biodegradable metallic scaffolds are also
emerging that can facilitate improved bore
regeneration. In this way, the incorporation of other
materials including polymers/hydrogels into the
metallic scaffolds can create a composite structure that
can provide proper mechanical strength with suitable
microenvironment for cell seeding.

(6) Another critical design consideration is easy handing and
manipulation during implantation and surgery for practical
use. In this way, scaffold, i.e., bone substitute, should maintain
its mechanical shape and integrity during implantation. In

TABLE 3 (Continued) Summary of the TPMS structure, substrate materials, printing technique, porosity and mechanical properties.

TPMS structure Substrate
materials

Printing
technique

Porosity Mechanical properties Ref

Schwartz Surface,
Diamond, Gyroid

Ti6Al4V SLM 50%–80% G had smoothest variation in mechanical properties
across porosities; S had steep variation

Lv et al. (2022e)

Diamond, s-Diamond,
Gyroid, s-Gyroid, IWP

Wollastonite Digital light
processing

50%–60% s-Diamond and s-Gyroid had ×3–4 higher
compressive strength than Diamond, Gyroid, IWP

Shen et al. (2023)

Primitive, Diamond,
Gyroid, Octo

— Finite element
analysis

50%–75% Anisotropic arrangements matched bone elastic
properties. Accuracy within 3% for 3 targets and 5%

for 6 targets

Liu et al. (2023a)

Bredigite Wollastonite Digital light
processing

50%–70% TPMS structure had significantly better mechanical
properties than open-rod scaffold with same

porosity

Liu et al. (2023b)

Gyroid, Diamond Ti6Al4V Selective laser
melting

50%–60% Elastic modulus 10.6–11.2 GPa. Yield strength
367–419 MPa. Stable properties in different loading

directions

Ye et al. (2023)
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addition, any employed materials for scaffold production
should enable the conduct of sterilization process prior
implanting. Importantly, quality control protocols and
regulatory considerations should be also applied to those
patient-specific scaffolds and bone substitutes that are
produced in factories or hospitals with advanced
manufacturing capabilities.
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