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Introduction: Seasonal influenza A H3N2 viruses are constantly changing,

reducing the e�ectiveness of existing vaccines. As a result, the World

Health Organization (WHO) needs to frequently update the vaccine strains to

match the antigenicity of emerged H3N2 variants. Traditional assessments of

antigenicity rely on serological methods, which are both labor-intensive and

time-consuming. Although numerous computational models aim to simplify

antigenicity determination, they either lack a robust quantitative linkage between

antigenicity and viral sequences or focus restrictively on selected features.

Methods: Here, we propose a novel computational method to predict antigenic

distances usingmultiple features, including not only viral sequence attributes but

also integrating four distinct categories of features that significantly a�ect viral

antigenicity in sequences.

Results: This method exhibits low error in virus antigenicity prediction and

achieves superior accuracy in discerning antigenic drift. Utilizing this method, we

investigated the evolution process of the H3N2 influenza viruses and identified a

total of 21 major antigenic clusters from 1968 to 2022.

Discussion: Interestingly, our predicted antigenic map aligns closely with the

antigenic map generated with serological data. Thus, our method is a promising

tool for detecting antigenic variants and guiding the selection of vaccine

candidates.

KEYWORDS

influenza AH3N2 virus, antigenic distances, virus antigenicity prediction, antigenic drift,

antigenic variants

1 Introduction

Each year, seasonal influenza results in an estimated 3–5 million cases of severe
illness, culminating in roughly 290,000–650,000 respiratory-related deaths (Nelson and
Holmes, 2007; Russell et al., 2008; Iuliano et al., 2018). The H3N2 influenza virus is
one of the predominant subtypes responsible for these outbreaks. While vaccination
remains the most effective measure to combat seasonal influenza, the perpetual evolution
of influenza A viruses necessitates regular updates of the flu vaccines. Since the H3N2
viruses became prevalent in humans in 1968, they have spread worldwide and experienced
significant antigenic evolution. This evolution is characterized by alternating phases:
periods of relative stability are followed by phases of rapid phenotypic changes. Research
conducted by Koel et al. (2013), as outlined in their antigenic cartography, reveals
that from 1968 to 2003, ten distinct antigenic clusters of H3N2 viruses were identified.
Moreover, data from the World Health Organization indicates that from 2003 to 2023,
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multiple additional antigenic clusters of H3N2 viruses
have emerged (https://www.who.int/teams/global-influenza-
programme/vaccines/who-recommendations/recommendations-
for-influenza-vaccine-composition-archive). The surface
glycoprotein Hemagglutinin(HA), responsible for attachment
and fusion to host cell membranes, is the primary target of
neutralizing antibodies (Webster et al., 1992; Wille and Holmes,
2020). Consequently, mutation(s) in the HA protein may trigger
antigenic drift which allows the virus to evade the host’s immune
defenses, facilitating its continued spread and infection (Caton
et al., 1982; Wilson and Cox, 1990; Peng et al., 2022b). At
present, researchers largely depend on serological assays, such
as the hemagglutination inhibition (HI) assay, to determine
viral antigenicity. However, these techniques are labor-intensive,
time-consuming, and offer only medium throughput (Sun et al.,
2013). This underscores the pressing need to devise fast and
precise methods to identify antigenic variants. Such advancements
will optimize the selection of vaccines that align with emerging
antigenic strains.

With the advancements in sequencing technology and the
concurrent accumulation of viral sequences and serological data
in databases, efforts are being made to employ computational
algorithms for the prediction of viral antigenicity (Kilbourne et al.,
2002). Such methods have the potential to significantly enhance
the detection of antigenic variants and optimize the selection
of vaccine strains. For example, a statistical method to correlate
the HI titer with the number of mutations in the HA sequence
of viruses was developed by Lee and Chen (2004). Multiple and
logistic regression were applied to assess the relationship between
mutations in the HA sequence and HI data (Liao et al., 2008).
Decision tree algorithms were applied to predict drift varients by
extracting the association from HI data using information theory
(Huang et al., 2009). While these methods lay the foundation for
predicting the antigenic evolution of influenza viruses, they do
not quantify the antigenic distance between the viruses. In recent
years, there have been several attempts to establish a quantitative
relationship between viral HA sequences and antigenic distance.
For instance, Sparse learning methods have been proposed to
identify key sites influencing antigenic changes and establish a
quantitative relationship between key sites and antigenic distances
(Sun et al., 2013; Yang et al., 2014). Previous research has already
demonstrated that only a limited number of sites are active in
the process of antigenic change (Smith et al., 2004). Regression
models such as support vector regression and joint random forest
regression were applied to establish a quantitative relationship
between viral HA sequences and antigenic distances in order
to identify drift variants (Ren et al., 2015; Yao et al., 2017).
However, these methods only consider viral HA sequences, but
biological experiments have unveiled many factors crucial to viral
antigenicity, such as five primary antigenic regions, glycosylation of
HA and so on. Some existing methods have already paid attention
to the features related to antigenic change (Du et al., 2012; Han
et al., 2019; Peng et al., 2022a), but the selected features either still
are not associated with viral sequences or the number of selected
features is limited and not comprehensive enough.

Here, we propose a novel computational method, named
MFPAD, that establishes a quantitative relationship between viral

sequences and antigenic distances while integrating four categories
of features influencing viral antigenicity. The overview of MFPAD
is shown in Figure 1. MFPAD significantly improves the accuracy
of identifying antigenic variants and reduces the prediction error
of antigenic distance. We apply MFPAD to the H3N2 influenza
A virus and successfully present its antigenic evolution patterns,
and further confirm the positive impact of the four categories of
features on prediction accuracy.

2 Materials and methods

2.1 HA sequence and serologic data

The HA sequences of H3N2 influenza viruses are collected
from the Influenza Virus Database (https://www.ncbi.nlm.nih.
gov/genomes/FLU/Database/nph-select.cgi?go=database). The
serological data consists of two parts: (1) the first part contains
cross-reactive HI antibody titers of 79 antisera with 270 H3N2
viruses isolated from 1968 to 2003, which is generated by Koel
et al. (2013), (2) the second part contains cross-reactive HI titers
of 173 serum with 1493 virus sequences isolated between 2003 and
2022 (collected from annuel and interim reports from Worldwide
Influenza Centre Lab, https://www.crick.ac.uk/research/platforms-
and-facilities/worldwide-influenza-centre/annual-and-interim-
reports).

2.2 MFPAD model

Based on the integration of information from the literature,
we select four categories of features based on HA sequence
that are closely related to antigenic change. We then develop
a novel computational framework integrating the HA sequence
information with 12 features and propose a model to quantitatively
correlate HA sequences with antigenic distance, thereby improving
the accuracy of antigenic variant recognition and reducing
the prediction error of antigenic distance. The computational
framework consists of three steps: feature representation based
on HA sequences, multi-task HI matrix completion for antigenic
distances, training and prediction of the XGBoost model.

2.2.1 Feature representation based on HA
sequences

A pair of HA sequences (only HA1 sequences were used) is
generally represented in two ways: one is binary representation, and
the other is Pattern-Induced Multi-sequence Alignment (PIMA)
scoring function (Smith and Smmith, 1992). Through comparison
(see in Section 3.3), the binary method yields higher prediction
accuracy, because of which we converted the HA sequence into the
binary format. Based on features identified by various researchers
that affect the antigenicity of influenza A viruses, a total of four
categories of features are selected in this study. We calculate four
categories of features between each pair of viruses based on the
HA sequence. The primary category encompasses the number
of substitutions in the viral HA sequences (Feature 1), since
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FIGURE 1

The workflow of MFPAD. (A) The dataset comprises two types of data: HA sequences and HI data. Four categories of features, and we introduce 12

features related to viral antigenicity. The antigenic distances are obtained through multi-task low-rank matrix completion of the HI matrix. (B)

Establishing the quantitative relationship between virus sequences and antigenic distances using XGBoost regression model. (C) The antigenic

evolution map of H3N2 influenza viruses from 1968 to 2022 includes two parts: (1) 270 HA sequences of viruses from 1968 to 2003, (2) 1,493 HA

sequences of viruses from 2003 to 2022.

researchers have demonstrated that the number of mutations will
substantially change the viral antigenicity (Lee and Chen, 2004).
The second group pertains to the glycosylation sites (Feature 2),
which was identified as the key factor affecting viral antigenicity
(Wang et al., 2010; Tate et al., 2014; Hervé et al., 2015; Abdelwhab
et al., 2016; Gu et al., 2019; York et al., 2019; Gao et al., 2021;
Yin et al., 2021; Xu et al., 2022). The tertiary group integrates
crucial antigenic positions (Feature 3) and substitutions within
the five predominant antigenic regions designated as A, B, C, D,
and E (Feature 4-8). Because many researchers have mapped the
antigenic epitopes of H3N2 viruses and demonstrated that the
viral antigenicity was mainly determined by five antigenic regions
in the globular head of HA (Wiley et al., 1981; Tsuchiya et al.,
2001; Hensley et al., 2009). More recently, Koel et al. and others
further identified that key substitutions near the receptor-binding
site in HA mainly determine the antigenic evolution of H3N2
viruses (Gerhard et al., 1981; Koel et al., 2013; Kong et al., 2021).
The quaternary category embodies four intrinsic physicochemical
properties of amino acids: hydrophobicity (Feature 9), volume
(Feature 10), charge (Feature 11), and polarity (Feature 12), which
significantly determine the antibody-protein interactions (Karadag
et al., 2020). For a given pair of viruses i, feature j(j = 1, ...,N,N =

12), N represents the number of features. fij represents feature j for
a pair of virus i. For Feature 1, fij is calculated as the amino acid
site mutations in the HA sequence of virus pair i. For Feature 2, we
identify glycosylation sites in the HA sequence based on the NXT/S
sequons (where X is any amino acid except proline), and then
compare whether these sequons exist in the pair of virus i. If there is
a glycosylation sequon, then fik = 1, otherwise fik = 0. For features
3-8, the calculation method for fij is similar to the calculation
method for the Feature 2. If there is a mutation occurring at any site
within the set, then fij = 1, otherwise fij = 0. For features 9-12, if

the number of amino acidmutations between virus pairs is less than
3, then fij is calculated as the mean difference in the quantitative
values of the physicochemical properties of the mutation sites.
If the number of mutations is greater than 3, only the 3 amino
acid sites with the greatest differences in quantitative values
are considered.

2.2.2 Multi-task HI matrix completion for antigen
distances

The antigenic distances between viruses are used to measure
the degree of antigenic difference between viruses. The antigenic
difference is typically assessed and measured through HI assay.
The HI matrix typically presents three different types of data:
high-reacting values, low-reacting values, and missing values (Sun
et al., 2013). After arranging the antigens and antisera in increasing
order by year, the data within the HI matrix exhibits an overall
banded distribution. The diagonal region primarily consists of
high-reacting values and missing values, while others consist of
low-reacting values and missing values. The completion of missing
values in the HI matrix can be transformed into a low-rank matrix
completion problem (Cai et al., 2010). To minimize the impact of
low-reacting values, the completion task of the HI matrix is divided
into multiple subtasks using a time sliding window (Cai et al., 2010;
Sun et al., 2013). Due to the division of the task and the diversity of
subsets, the amount of data and information involved varies from
each subtask, resulting in different optimal ranks for each subtask.
Nuclear norm regularization techniques can address the challenge
of optimizing the general rank for all tasks (Jaggi et al., 2010; Han
and Zhang, 2016).

Formally, given a m x n matrix A, The matrix completion
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problem infers missing values and replaces low-reacting values
with more confident values by solving the following optimization
problem:

min
1

2

m∑

i=1

n∑

i=1

(H�
i,j − A�

i,j)(H
�
i,j > θ)+ λ||H||∗ (1)

||H||∗ =

min(m,n)∑

i=1

σi (2)

where the matrix H is the estimate of A, � is a set of low-reacting
values and determined values. In equation (1), θ is denoted as the
threshold for low-reacting values. In equation (2), ||H||∗ is the
nuclear norm, which is the sum of all singular values of the matrix
H. And λ is a regularization parameter that strikes a compromise
between data fitting and matrix rank regularization.

The antigenic distances between viruses are derived from
HI matrix (Cai et al., 2010). Each unit of antigenic distance
is equivalent to 2log2(HI). In the antigenic map, 2 units of
the antigenic distance represent 4-fold change in HI titer. This
threshold is also used as a criterion for assessing virus variants
(Smith et al., 1999). If the antigenic distances between viruses are
greater than 2 units, they are considered antigenically different and
belong to different antigenic cluster. Conversely, they are deemed
antigenically similar and belong to the same antigenic cluster.

2.2.3 Training and prediction of the XGBoost
model

The overall goal of this study is to develop an HA sequence
basedmethod to predict viral antigenicity.We employ the XGBoost
regression model to establish a quantitative relationship between
viral sequences and antigenic distances. XGBoost is a machine
learning model based on ensemble principles and its core idea root
in gradient boosting and decision trees (Chen and Guestrin, 2016).

For a given virus pair i, the feature vector is represented as xi,
and yi represents its antigenic distance. The objective function of
the XGBoost model is defined as follows:

Obj(t) =

n∑

i=1

l(yi, ŷi
(t))+ �(ft)+ C (3)

where i represents a pair of virus, n denotes the total number
of virus pairs, l(yi, ŷi

(t)) is the loss function, ŷi
(t) represents the

current prediction, and yi represents the true value. In equation (3),
�(ft) represents the complexity of the t-th tree, and C represents a
constant term. The prediction result for the t-th round is obtained
by summing the prediction results of the previous subtrees as
illustrated in equation (4):

ŷi
(t) = ŷi

(t−1) + ft(xi) (4)

ŷi
(t−1) represents the model predictions from the previous t − 1

rounds, and ft(xi) represents the tree. The loss function use mean
squared error:

l(yi, ŷi
(t)) =

1

n

n∑

i=1

(yi − ŷi
(t))2 (5)

�(ft) represents the complexity of the t-th tree in equation (5),
where complexity is defined as the sum of the number of leaf nodes
and the square sum of the weights of all leaf nodes:

�(ft) = γT +
1

2
λ

T∑

j=1

w2
j (6)

T represents the number of leaf nodes, γ denotes the difficulty of
node splitting, λ is used to indicate the sparsity of L2 regularization,
and wj represents the weight of the leaf node j in equation (6).

3 Results

3.1 MFPAD predicts the antigenic evolution
of H3N2 influenza viruses

By combining HA sequences of the influenza viruses with
12 relevant features affecting viral antigenicity, we establish a
quantitative relationship with viral HA sequences and antigenic
distances, thereby improving the accuracy of assessing viral
antigenicity. The MFPAD is applied to gain insight into the
antigenic evolution of H3N2 viruses. After collecting available
cross-reactive HI data between H3N2 viruses and sera, we process
the missing values in HI data by using a multi-task low-rank
matrix completion method. In addition to using the binary
representation of the viral HA sequence, we additionally select
four categories of features, including a total of 12 features closely
related to viral antigenicity. These features encompass the number
of mutations, glycosylation sites, key antigenic positions and
mutations in five antigenic regions, and four kinds of amino
acid physicochemical properties (hydrophobicity, polarity, charge,
volume). We utilize the XGBoost regression model to establish
a quantitative relationship between viral sequences and antigenic
distances. Ultimately, we applyMFPAD toH3N2 virus sequences to
predict the antigenic evolution process of H3N2 influenza viruses.

In order to obtain the completion matrix with the smallest
error, we choose a parameter λ = 0.3, and set the size of the
time sliding window to 12 during the multi-task low-rank matrix
completion process (Cai et al., 2010; Sun et al., 2013). Error
calculation is carried out by randomly selecting 10% of the high-
response values in the matrix for testing.

During the building of the XGBoost regression model, we
employ a stratified sampling method to select 90 virus sequences
from virus isolated from 1968 to 2003 and 502 viruses sequences
from viruses isolated from 2003 to 2022 as training data. The
antigenic evolution map includes all the viruses in the dataset. The
model performance evaluation is carried out using ten-fold cross-
validation, and model hyperparameters are optimized using grid
search. The selected parameters are as follows: booster type is based
on tree models, maximum tree depth is set to 7, learning rate is 0.1,
the number of decision trees is 200, the minimum loss reduction
for tree growth is 0.1, and the remaining parameters are default
values. The model achieves a Root Mean Square Error (RMSE) of
0.314 in the virus dataset from 1968 to 2003 and 0.326 in the virus
dataset from 2003 to 2022. When the antigenic distances between
viruses exceeded 2, it is considered that the antigenic drift occurred.
Based on this, 2 units distance are set as the threshold for antigenic
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variants. MFPAD yields a high prediction accuracy of 0.948 in the
virus dataset from 1968 to 2003 and 0.942 in the virus dataset from
2003 to 2022 for identifying virus variants. Furthermore, we utilize
historical training data from 1968 to the target prediction year to
assess our model’s predictive accuracy for upcoming seasons. The
average accuracy in predicting antigenic variants emerging in the
coming year reaches 92.3%. Detailed information can be found in
Supplementary Tables S2, S3.

To evaluate the accuracy of MFPAD, the MFPAD is compared
with other models, including two single-task models [Lasso
(Cai et al., 2012) and Antigen-Bridges (Sun et al., 2013)], two
multi-task models [GG-MTSL (Han et al., 2019) and MTL (Liu
et al., 2012)], and the PREDAC model based on network built
on virus similarity (Du et al., 2012). Among the compared
models, MFPAD exhibit the smallest error and the highest
accuracy in predicting antigenic variants, as shown in Table 1 and
Figure 2. These results indicate that the quantitative relationship
established in this study is significantly effective and accurate
in predicting antigenic distance between viruses and identifying
antigenic variants.

3.2 Antigenic evolution of H3N2 influenza
viruses

We apply MFPAD to H3N2 influenza viruses, which includes
(1) 270 HA sequences of virus from 1968 to 2003 and (2) 1,493
HA sequences of virus from 2003 to 2022. We predict their
antigenic distances and create antigenic evolution maps through
Multidimensional Scaling(MDS). Through the antigenic evolution
maps, we are able to identify major antigenic clusters and pathways
of antigenic evolution, gaining insights into the antigenic distances
among different virus strains. We identify a total of 10 virus
antigenic clusters for the period from 1968 to 2003 (HK68, EN72,
VI75, TX77, SI87, BE89, BE92, WU95, SY97, FU02), as well as 11
virus antigenic clusters for the period from 2003 to 2022 (CA04,
BR07, PE09, TX12, SWZ13, HK14, SG16, KA17, HK19, CA20,
DA21), as shown in Figures 3A, D. To validate the accuracy and
reliability of the antigenic evolution maps generated based on
the computational method proposed in this study, we compare
them with antigenic evolution maps constructed by using HI
data measured with various antisera, as shown in Figures 3B, E.
The results show that both maps exhibit similar evolutionary
patterns, with each major predicted antigenic cluster matching
that generated with serological data. Furthermore, We use RAxML
to construct the phylogenetic tree of H3N2 viruses from 1968
to 2022, which is based on the Maximum Likelihood estimation
method, as shown in Figures 3C, F. During the tree construction
process, certain parameter choices are necessary. Specifically, we
choose the General Time Reversible (GTR) substitution model and
the Subtree Pruning and Regrafting (SPR) tree topology search
algorithm. Additionally, RAxML supports Bootstrap analysis, and
we performed 1,000 replicates for the analysis. Our results exhibit
consistency and similarity when compared to the evolutionary
patterns presented in phylogenetic trees, thus validating the
accuracy and reliability of our predicted results.

3.3 The impact of 12 features on model
performance

In antigenic evolution studies of influenza viruses, viral
sequences are commonly depicted using binary encoding or PIMA
to quantify the genetic or antigenic distances between viruses.
In this study, we investigate beyond solely considering virus
sequences. Instead, we incorporate 12 features intrinsically linked
to the antigenic evolution of influenza A viruses (Gerhard et al.,
1981; Koel et al., 2013; York et al., 2019). Originating from viral
HA sequences, these features are grouped into four categories.
The first encompasses the number of amino acid mutations
within the virus HA sequences. The second category of features
include the glycosylation sites. The third category of features
include the key antigenic positions, and the mutations in the
five antigenic regions (A, B, C, D, and E). The fourth set of
features focus on the physicochemical attributes of amino acids
(hydrophobicity, volume, charge, and polarity). To substantiate
the impact of these 12 features on enhancing the accuracy
and reliability of antigenic evolution prediction, we undertake
comparative tests. We conduct a comparative analysis between
two methods: the first method involves training an XGBoost
model utilizing solely the genetic distances represented by viral
HA sequences, characterized through PIMA or binary encoding as
features; the second method incorporates an additional 12 features
into the model. Our experimental results demonstrate that the
enriched model, supplemented with these 12 features, substantially
outperform the model relying solely on PIMA or binary-encoded
HA sequences. Notably, the inclusion of these 12 features markedly
enhances the accuracy of predicting antigenic variants and also
leads to a reduction in RMSE, as shown in Figure 4.

3.4 Changes in the 12 features during
antigenic drift

To probe the significance of these supplementary features in the
antigenic evolution of the H3N2 influenza viruses, we calculate the
mean values of these 12 features between two adjacent antigenic
clusters undergoing antigenic drift as well as within individual
antigenic clusters. Compared to values derived from the individual
antigenic clusters, the values of these features derived from two
adjacent antigenic clusters display various levels of increase, as
shown in Figure 5. The accumulation of mutations leads to a higher
probability of generating antigenic variants. In the virus dataset
from 1968 to 2003, within one antigenic cluster, the value for virus
mutations averages below 12, while in 66.7% of adjacent clusters,
the value for virus mutations averages above 12. Glycosylation can
either shield or reveal specific antigenic epitopes on HA proteins,
thus plays an important role on viral antigenicity (York et al.,
2019). A similar trend is observed for glycosylation sites, with
90% of individual antigenic clusters having mutation frequencies
below 0.7, but in 66.7% of adjacent clusters, these frequencies
are above 0.7. Studies have identified that there were five main
antigenic regions (A-E) in HA (Wiley et al., 1981; Wilson et al.,
1981), and the antigenicity of H3N2 viruses is mainly determined
by key antigenic positions around the receptor binding site in HA
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TABLE 1 Model performance comparison.

Model Accuracy RMSE Sensitivity Specificity

1968–
2003

2003–
2022

1968–
2003

2003–
2022

1968–
2003

2003–
2022

1968–
2003

2003–
2022

MFPAD 0.948 0.942 0.314 0.326 0.941 0.929 0.913 0.903

Lasso 0.869 0.873 0.815 0.859 0.862 0.851 0.822 0.809

Antigen-
Bridges

0.891 0.883 0.803 0.866 0.914 0.907 0.861 0.859

GG-MTSL 0.911 0.905 0.701 0.732 0.906 0.895 0.853 0.842

MTL 0.895 0.879 0.766 0.813 0.878 0.855 0.827 0.801

PREADC 0.894 0.887 N/A N/A 0.898 0.887 0.863 0.843

Performance of MFPAD, two single-task models (Lasso and Antigen-Bridges), two multi-task models (GG-MTSL and MTL), and the PREDAC method. Root Mean Square Error (RMSE)
represents the error in predicting antigenic distances, accuracy represents the performance of the model in identifying antigenic variants with a threshold of 2.

FIGURE 2

Comparative Radar Chart of Model Performance Metrics. (A) Represents the performance metrics of models on the dataset from 1968 to 2003. (B)

Represents the performance metrics of models on the dataset from 2003 to 2022.

(Koel et al., 2013, 2014). In 80% of individual antigenic clusters,
virus mutations at key antigenic positions remain below 0.8, while
in 66.7% of neighboring clusters, they consistently exceed 0.8.
Furthermore, mutations in the five major antigenic regions of the
H3N2 viruses are closely associated with changes in antigenicity.
In individual antigenic clusters, the virus mutation frequencies
in antigenic region A are consistently below 0.8, while 66.7% of
adjacent antigenic clusters have frequencies exceeding 0.8. For
antigenic region B, 90% of viruses within antigenic clusters have
mutation frequencies below 0.8, while in adjacent clusters, 88.9%
are above 0.8, with 55.6% surpassing 0.9. Regarding antigenic
region C, 60% of viruses within antigenic clusters have mutation
frequencies below 0.3, while 44.4% of adjacent antigenic clusters
have frequencies above 0.3. As for antigenic region D, in 90%
of antigenic clusters, virus mutation frequencies are below 0.5,
while 55.7% of adjacent antigenic clusters have frequencies above
0.5. Finally, for antigenic region E, in 70% of antigenic clusters,

virus mutation frequencies are below 0.2, while in 44.4% of
adjacent antigenic clusters, they exceed 0.2. Overall, the mutation
frequencies in antigenic regions C and E, as well as their variation
within individual and adjacent antigenic clusters, are slightly lower
than those in regions A, B, and D. In addition, we also examine four
amino acid physicochemical properties (hydrophobicity, polarity,
charge, and volume), which significantly determine the antibody-
protein interactions (Karadag et al., 2020). In 80% of antigenic
clusters, the differences in hydrophobicity between viruses are
below 4, while in 77.8% of adjacent antigenic clusters, the
differences in hydrophobicity are above 4. Regarding changes in
amino acid volume, 80% of individual antigenic clusters remain
below 55, while 77.8% of adjacent antigenic clusters exceed 55.
Differences in amino acid charge are below 4 in 70% of individual
antigenic clusters, but in 66.7% of adjacent antigenic clusters,
they are above 4. Within individual antigenic clusters, differences
in polarity between viruses remain below 75, while in 66.7% of
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FIGURE 3

The antigenic evolution map of H3N2 influenza viruses from 1968 to 2022. (A, D) Represent antigenic evolution maps based on viral sequences,

while (B, E) represent those based on HI data. (C, F) Represent phylogenetic trees for the periods 1968-2003 and 2003-2022.

adjacent antigenic clusters, they exceed 75. The analysis of the virus
from 2003 to 2022 is presented in the Supplementary material.
Compared to viruses within individual antigenic clusters, viruses
within the two antigenic clusters show varying degrees of increased
differences in these four amino acid physicochemical properties.
Changes in the physicochemical properties of amino acids can
affect the viral antigenicity and its interaction with the host’s
immune response.

3.5 Inferring the antigenicity of H3N2v
variants based on virus sequences

Based on our proposed computational method, it is possible to
make an initial assessment of the antigenicity of influenza viruses
without biological experiments. H3N2v virus is a variant of the
H3N2 influenza virus, and was first discovered at the United
States Agricultural Fair in 2011 [Centers for Disease Control and
Prevention (CDC), 2012]. During the period from August 2011 to

April 2012, there were a total of 2,055 reported cases of H3N2v
virus infections (Biggerstaff et al., 2013). Through the analysis of the
antigenic evolution map of H3N2 virus, we find that the strains of
H3N2v (A/Indiana/08/2011 and A/WestVirginia/06/2011) exhibit
the closest antigenic distance to the BE92 (A/Beijing/32/1992)
and WU95 (A/Wuhan/359/1995) virus strains, as shown in
Figure 6. This indicates their similarity in viral antigenicity, and
this research finding has been previously confirmed in earlier
studies (Sun et al., 2013). We compare the virus sequences of
H3N2v (A/Indiana/08/2011, A/WestVirginia/06/2011) with WU95
(A/Wuhan/359/1995) and BE92 (A/Beijing/32/1992), and find that
their sequence similarities are 88.1% and 89.6%, respectively. The
H3N2v virus is believed to transmit from humans to pigs during
the 1990s and humans come into contact with pigs infected
with the H3N2v virus in 2011, leading to its reemergence in the
human (Feng et al., 2013). Such inter-species transmission events
could have occurred in settings like farms, swine-rearing facilities,
or other environments with close interactions between humans
and pigs.
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FIGURE 4

Comparative results with and without the addition of 12 features, HA sequence represented using PIMA or binary encoding. (A, B) Includes viruses

from 1968 to 2003 and (C, D) includes viruses from 2003 to 2022. (A, C) Comparison results of accuracy, (B, D) comparison results of RMSE.

FIGURE 5

The di�erences in the 12 features between viruses within two adjacent antigenic clusters during antigenic drift and among viruses within the same

antigenic cluster. Twelve features between viruses from two antigenic clusters show varying degrees of increase compared to the values between

viruses within the same antigenic cluster.

Frontiers inMicrobiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1345794
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2024.1345794

FIGURE 6

H3N2v-like virus (A/Indiana/08/2011, A/WestVirginia/06/2011) marked in cyan, an antigenic variant that emerged in 2011 with antigenic similarity to

BE92 and WU95.

4 Discussion

In this study, We propose a novel method for quantifying
antigenic distances based on viral sequences. MFPAD not only
takes into account the viral sequences but also integrates four
categories of features related to antigenic change. Compared to
previously established methods for predicting antigenic distances
between viruses, MFPAD exhibits smaller errors in predicting
antigenic distances between viruses and demonstrates higher
accuracy in identifying antigenic variants.

With the development of high-throughput sequencing
technologies, sequence data has become both cost-effective and
rapid to obtain. Compared to hemagglutination inhibition (HI)
data, sequence data is also more reliable and less susceptible
to laboratory-specific variations. In this context, accurate
computation of antigenic distances between viruses based
on HA sequences has become critically important for virus
classification, epidemiological investigation, and vaccine design.
However, existing methods still have certain errors and limitations.
Currently, research on the evolution of influenza viruses primarily
focuses on viral sequence features, with a specific emphasis on
amino acid mutation sites. For instance, applying regression
models to construct HA sequences or identify key sites in

order to establish a quantitative relationship with antigenic
distances (Sun et al., 2013; Ren et al., 2015; Yao et al., 2017;
Han et al., 2019). Nevertheless, besides mutations in amino acid
positions within viral sequences, there are multifaceted factors
influencing antigenic evolution. Li et al. (2020) treat glycosylation
sites as a separate category of features. Additionally, in the
approach proposed by Du et al. (2012), features include various
physicochemical properties of amino acids. These properties
directly influence the structure, function, and stability of viral
proteins. In this study, We integrate the viral sequence information
along with categories of features related to antigenic change.
These features include the number of sequence mutations,
glycosylation sites, key antigenic positions, five major antigenic
regions, and four physicochemical properties of amino acids,
which encompass hydrophobicity, volume, charge, and polarity.
By comprehensively considering these features, we can conduct a
more comprehensive assessment of viral antigenic change, improve
the accuracy of viral variant recognition, and reduce the error
in predicting antigenic distances. When new antigenic variants
emerge, MFPAD enables a rapid assessment of their antigenicity,
determining their potential for epidemiological relevance and
transmission risk. It can also provide essential guidance for
vaccine preparation.
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The 12 features in this study are closely associated with the
antigenic evolution of H3N2 influenza virus. Among viruses from
adjacent antigenic clusters, these 12 features exhibit varying degrees
of increase in their values when compared to viruses within
the same antigenic cluster. We observe that the frequency of
mutations occurring in antigenic positons A, B, and D is higher
in neighboring antigenic clusters compared to epitopes C and E.
Particularly in antigenic epitope B, in nearly 90% of antigenic
drift events, the mutation frequency between viruses exceeds 0.8,
with over 50% of antigenic drift events even surpassing 0.9.
Ndifon et al. (2009) also highlight that amino acid mutations
occurring in antigenic epitopes with high antigenic efficiency
(A, B, and D) exhibit a stronger correlation with viral antigenic
drift when compared to epitopes with low to moderate efficiency
(C and E). Noteabley, biological studies have demenstrated that
antigenic region A and B play an major role to induce host
immune response, and antigenic region B is immunodomant
(Popova et al., 2012; Broecker et al., 2018; Wu et al., 2020). The
consistent between the predicted result and biological findings
further demonstrate that our model is feasible to predict the
antigenicity of H3N2 viruses.

In this study, we apply MFPAD to predict the antigenic
evolution of H3N2 influenza viruses based on HA sequences,
including 270 sequences spanning from 1968 to 2003, and an
additional 1493 sequences from 2003 to 2022. Our predictive
analyses reveal the existence of 21 distinct major antigenic
clusters, aligning closely with those identified through biological
experiments. Although MFPAD is a robust system, our ability to
represent the antigenic evolution of H3N2 viruses is somewhat
limited. Rather than presenting it as a single integrated antigenic
map, we are constrained to depict it in two separate maps. This
limitation arises from the challenge of training the XGBoost model
using HI data obtained from two independent sources, yielding a
crowded and less reliable predicted map (data not shown). Several
issues contribute to the challenges in processing and interpreting
the HI data. Firstly, the HI data originates from different
laboratories and are measured using varying protocols. Secondly,
recent H3N2 viruses exhibit reduced binding to red blood cells
(RBCs), necessitating a shift from turkey RBCs to guinea pig RBCs
for HI assays (Lin et al., 2012). Thirdly, the surface protein NA
of recent H3N2 viruses display RBC agglutination activity, which
could introduce further variability into the HI data (Lin et al., 2010;
Mögling et al., 2017). For assessing the antigenicity of influenza
viruses, the gold standard is typically the Microneutralization assay
(MN) or Focus ReductionAssay (FRA). Therefore, generatingmore
reliable biological data, such as MN and FRA results, to train
the prediction model could further enhance the accuracy of our
predictive model.
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