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Background: Hyperuricemia is a serious health problem related to not only gout
but also cardiovascular diseases (CVDs). Low-dose aspirin was reported to inhibit
uric acid excretion, which leads to hyperuricemia. To decrease hyperuricemia-
related CVD, this study aimed to identify the risk of hyperuricemia in people
taking aspirin.

Method: The original data of this cross-sectional study were obtained from the
National Health and Nutrition Examination Survey between 2011 and 2018.
Participants who filled in the “Preventive Aspirin Use” questionnaire with a
positive answer were included in the analysis. Six machine learning algorithms
were screened, and eXtreme Gradient Boosting (XGBoost) was employed to
establish a model to predict the risk of hyperuricemia.

Results: A total of 805 participants were enrolled in the final analysis, of which
190 participants had hyperuricemia. The participants were divided into a training
set and testing set at a ratio of 8:2. The area under the curve for the training set was
0.864 and for the testing set was 0.811. The SHapley Additive exPlanations (SHAP)
method was used to evaluate the performances of the modeling. Based on the
SHAP results, the feature ranking interpretation showed that the estimated
glomerular filtration rate, body mass index, and waist circumference were the
three most important features for hyperuricemia in individuals taking aspirin. In
addition, triglyceride, hypertension, total cholesterol, high-density lipoprotein,
low-density lipoprotein, age, race, and smoking were also correlated with the
development of hyperuricemia.

Conclusion: A predictive model established by XGBoost algorithms can
potentially help clinicians make an early detection of hyperuricemia risk in
people taking low-dose aspirin.
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Introduction

Hyperuricemia is generally caused by an increase in the
concentration of serum uric acid (SUA), which has been
considered the key factor of gout (Dalbeth et al., 2021). It is
estimated that approximately 38 million adults or 16.9% of the
population in the United States are affected by hyperuricemia
(Leung et al., 2022). Concurrently, the estimated hyperuricemia
prevalence among Chinese adults was 14.0% (Zhang et al., 2021).
As an important worldwide public health issue, hyperuricemia is
associated with a state of oxidative stress that promotes a pro-
inflammatory state and produces endothelial dysfunction, which
can contribute to a variety of comorbidities including artery
atherosclerosis, hypertension, chronic kidney disease, and
metabolic syndrome (Zhang et al., 2019; Agnoletti et al., 2021;
Padda et al., 2021). Accumulating evidence reveals that
hyperuricemia is associated with a higher risk of 10-year
cardiovascular diseases (CVDs). Moreover, increased SUA
levels have been independently and significantly linked to the
risk of mortality caused by cardiovascular and cerebrovascular
diseases (Fang and Alderman, 2000; Chen et al., 2022; Wei
et al., 2022).

Hyperuricemia can be attributed to the increased generation
of uric acid or decreased uric acid excretion. Many factors such as
renal problems and dietary factors (purine-rich foods and
drinking) contribute to these two aspects (Petreski et al.,
2020). Additionally, it is noteworthy that multiple medications
also increase SUA levels and play an important role in the
pathogenesis of hyperuricemia (Ben et al., 2017). Aspirin,
which is widely used in the prevention of atherosclerotic
cardiovascular disease, has been reported to reduce uric acid
excretion and may induce hyperuricemia (Leung et al., 2022). As
a non-steroidal anti-inflammatory drug, aspirin showed a
biphasic effect on SUA levels, wherein low doses can increase
the SUA level, while high doses decrease the SUA level. This
paradoxical effect has led to the cautionary use of aspirin in
patients with a history of gout or renal problems (Segal et al.,
2006; Zhang et al., 2014).

Although studies revealed no significant impact of aspirin on
hyperuricemia, hyperuricemia was reported to cause aspirin
resistance, which may lead to failure in the primary prevention
of heart disease (Wong et al., 2004; Li et al., 2021). It has been
documented that approximately 20%–30% of patients are resistant
to their aspirin therapy, which increases the risk of adverse
cardiovascular events by almost three-fold in various patient
populations (Khan et al., 2022). As hyperuricemia is often
asymptomatic, and indications for initiating treatment are not
definitive (Stone et al., 2019), it is crucial to identify individuals
at high risk of hyperuricemia, especially those who take aspirin for
a long term.

Currently, machine learning (ML) algorithms are gaining
popularity in addressing complex problems of healthcare
decision making. In this study, by using the data from the
National Health and Nutrition Examination Survey (NHANES),
we aim to make use of a machine learning method to develop a
prediction model to identify hyperuricemia risk in individuals
taking low-dose aspirin.

Materials and methods

Study population

Data for the analysis were collected from the NHANES (https://
www.cdc.gov/nchs/nhanes/index.htm) around 2011–2018 (covered
four periods: 2011–2012, 2013–2014, 2015–2016, and 2017–2018).
As a public database, the NHANES is a nationally representative
survey that assesses the health and nutrition status of the US non-
institutionalized civilian population. Participants over 40 years of
age who answered the questionnaire “Preventive Aspirin Use”with a
positive answer were enrolled in our analysis. All individual privacy
is kept strictly confidential, and the NCHS Research Ethics Review
Board approved all NHANES protocols of the survey (https://www.
cdc.gov/nchs/nhanes/irba98.htm).

Sociodemographic information and relative laboratory
parameters were extracted from the database year by year. The
hyperuricemia criteria were defined as SUA ≥6.0 mg/dL in females
and ≥7.0 mg/dL in males (Yu et al., 2020). The estimated glomerular
filtration rate (eGFR) was calculated using the CKD-EPI creatinine
equation (2021). Other illness statuses such as hypertension and
type 2 diabetes of the participants were determined according to the
guidelines, combined with the drug they were taking and the self-
reported questionnaire (Whelton et al., 2018; Committee, 2022).
Smoking, drinking, and physical activity status was obtained from
the corresponding questionnaire data and defined according to the
relative criteria published in our earlier study (Zhu et al., 2023).

Machine learning algorithm

All participants were randomly divided into training and testing
sets. Six machine learning algorithms, namely, logistic regression,
random forest, adaptive boosting, light gradient-boosting machine,
category boosting, and eXtreme gradient boosting (XGBoost), were
utilized to identify the optimal performing model. The receiver-
operating characteristic (ROC) curve was used to validate the
modeling efficiency, and the area under the curve (AUC) was
calculated to evaluate the performance of the ML algorithms
between the training and testing sets. To further improve the
predictive value of the model, we also used the recursive feature
elimination (RFE) method to screen the most important variables
that can influence the modeling efficacy (this method involves two
main components: RFE, which rates the importance of features
through elimination, and cross-validation, which determines the
optimal number of features through cross-validation after feature
ranking). Additionally, the SHapley Additive exPlanations (SHAP)
method, which calculates the marginal contributions of variables,
was employed to interpret and rank the importance of each
selected variable.

Statistical analysis

The data are presented as the means with standard deviations,
while categorical variables were presented as percentages. Fisher’s
exact test or an x2 test was conducted for binary variables, and
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Student’s t-test or a Mann–Whitney U test was used for the
continuous variables. The XGBoost algorithm was developed and
validated using Python software (version 3.8). Statistical significance
was set at p ≤ 0.05.

Results

Basic characteristics

There were 15,063 participants who answered the questionnaire
“Preventive Aspirin Use” from 2011 to 2018. After further screening,
805 participants, who were taking aspirin for treating or preventing
diseases, were finally enrolled for additional analysis. Of the
805 people, 190 participants were found to have hyperuricemia.
The average age of participants without hyperuricemia was 65.0 ±
10.07 years and 66.0 ± 10.68 years for those with hyperuricemia. The

eGFR level in the two groups was nearly within the normal range,
which was 88.27 ± 16.73 or 70.15 ± 20.68, respectively (p < 0.01). In
addition, the values of waist circumference, body mass index (BMI),
triglyceride (TG), and hypertension rate were much higher in
hyperuricemia participants than in those without hyperuricemia
(p < 0.01). The detailed basic demographic characteristics are shown
in Table 1.

Model performance

All participants were randomly divided into training and testing
sets at a ratio of 8:2. After screening for six machine learning
algorithms, the XGBoost algorithm was chosen for the final
modeling (Figure 1). A total of 11 variables, namely, age, race,
BMI, waist circumference, TG, low-density lipoprotein (LDL), high-
density lipoprotein (HDL), total cholesterol (TC), eGFR,

TABLE 1 Basic characteristics of the enrolled participants who were taking aspirin for treatment or prevention.

Variable All (n = 805) Negative (n = 615) Positive (n = 190) p-value

Age 65.0 ± 10.22 65.0 ± 10.07 66.0 ± 10.68 0.088

Gender (male) (%) 437 (54.29) 335 (54.47) 102 (53.68) 0.915

BMI 28.7 ± 6.27 28.0 ± 5.53 31.65 ± 7.45 <0.01

Waist circumference 103.0 ± 14.48 101.5 ± 13.44 108.60 ± 15.74 <0.01

TC 177.0 ± 44.37 176.0 ± 43.03 178.5 ± 48.22 0.075

LDL 98.0 ± 37.90 97.0 ± 35.78 99.0 ± 43.73 0.038

HDL 51.0 ± 16.91 51.0 ± 17.49 48.5 ± 14.32 <0.01

TG 107.0 ± 65.80 103.0 ± 64.08 128.5 ± 68.68 <0.01

eGFR 84.85 ± 18.55 88.27 ± 16.73 70.15 ± 20.68 <0.01

Diabetes (%) 331 (41.12) 242 (39.35) 89 (46.84) 0.08

Coronary heart disease (%) 124 (15.4) 92 (14.96) 32 (16.84) 0.608

Stroke (%) 75 (9.32) 57 (9.27) 18 (9.47) 0.954

Hypertension (%) 679 (84.35) 502 (81.63) 177 (93.16) <0.01

Physical_activity (%) 333 (41.37) 262 (42.6) 71 (37.37) 0.232

Ethnicity

Mexican American (%) 83 (10.31) 63 (10.24) 20 (10.53) 0.08

Other Hispanic (%) 80 (9.94) 62 (10.08) 18 (9.47)

Non-Hispanic White (%) 348 (43.23) 276 (44.88) 72 (37.89)

Non-Hispanic Black (%) 178 (22.11) 122 (19.84) 56 (29.47)

Other race (%) 116 (14.41) 92 (14.96) 24 (12.63)

Smoking

Never smoker (%) 397 (49.32) 300 (48.78) 97 (51.05) 0.029

Former smoker (%) 279 (34.66) 205 (33.33) 74 (38.95)

Current smoker (%) 129 (16.02) 110 (17.89) 19 (10.0)

Drinking (%) 111 (13.79) 87 (14.15) 24 (12.63) 0.683
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hypertension, and smoking, were chosen for modeling after being
screened by the RFE algorithm (Figure 2). The modeling results
showed that the AUC for the training set was 0.864, and after further
evaluation by the testing set, it was 0.811 (Figure 3). In addition, the
sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), Matthew’s correlation coefficient (MCC),
and Kappa in XGBoost modeling for the training and testing dataset
are shown in Table 2.

Interpretation and evaluation of themachine
learning model

To interpret the prediction achieved by the XGBoost model, the
SHAP method was used to evaluate the performances of the
modeling. Based on the SHAP results, the feature ranking
interpretation showed that the eGFR, BMI, and waist
circumference were the three most important features for

FIGURE 1
ROC curves of the training set and the testing set obtained by the six machine learning algorithms. (A) Training set and (B) testing set.

FIGURE 2
Screening of the most important variables by using the RFE method.
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hyperuricemia in individuals taking aspirin. In addition, TG,
hypertension, TC, HDL, LDL, age, race, and smoking were also
correlated with the development of hyperuricemia (Figure 4).

Discussion

Aspirin, which has been widely recommended by European and
American guidelines, is the cornerstone of antithrombotic
management among patients with potential risk factors for
cardiovascular and cerebrovascular diseases (Davidson et al.,
2022; Guirguis-Blake et al., 2022). However, some studies had
reported that low-dose aspirin may also increase SUA levels and
result in hyperuricemia, which limited its application. Thus,
evaluating the risk factors which may cause hyperuricemia in
individuals taking low-dose aspirin for a long time is of great
importance. By using the XGBoost algorithm, we established a
model with 11 variables to predict the hyperuricemia risk. This
study demonstrated that machine learning models can predict
hyperuricemia in people taking low-dose aspirin.

Owing to the existence of unexpected potential heterogeneous
variables and the inherent noise of data encountered in clinical care,

several strategies have been investigated to inform decision making.
ML algorithms that leverage statistical methods to learn key patterns
from clinical data are gaining extensive popularity (Handelman
et al., 2018). As a crucial branch of artificial intelligence, ML
algorithms deal with medicine’s multi-modal data (such as
clinical, genetic, and many other laboratory outputs) to obtain a
greater understanding of human health and disease (Ng et al., 2023).
Benefiting from this method, clinicians can identify patients with an
undiagnosed disease or those at risk of future disease much earlier
and with better predictive accuracy than before (Oikonomou et al.,
2022). Previous studies have externally validated the possibility of
ML algorithms in addressing complex problems of healthcare
decision making under a clinical scenario. Guan et al. used a
hybrid machine learning framework to improve the prediction of
all-cause rehospitalization among elderly patients in Hong Kong
(Guan et al., 2023). Mahajan et al. established an ML model to
identify patients at high risk of adverse outcomes prior to surgery,
which made perioperative care much more individualized and
improved patient outcomes (Mahajan et al., 2023). Furthermore,
Lee et al. found that the machine learning model has the potential to
empower trained operators to estimate gestational age with higher
accuracy in a cohort of 3,842 participants (Lee et al., 2023).

Hyperuricemia is one of the serious health problems not only for
individuals with gout but also for those with cardiovascular diseases.
Chen et al. reported that hyperuricemia was related to a higher risk
of 10-year CVD (Chen et al., 2022). Stone et al. also reported that
increased SUA concentration was associated with significantly
increased odds of heart failure (Stone et al., 2019). However,
except for some traditional risk factors such as a sedentary
lifestyle, increased intake of high-protein and high-purine foods,
and drinking, drug-induced hyperuricemia also presents an
emergent and increasingly prevalent problem in clinical practice.

FIGURE 3
ROC curves of the training set and the testing set under the XGBoost algorithm. (A) Training set and (B) testing set.

TABLE 2 Established prediction model with 11 variables by using the XGBoost
algorithm.

Sensitivity Specificity PPV NPV MCC Kappa

Training
set

0.684 0.821 0.542 0.894 0.469 0.463

Testing
set

0.632 0.846 0.558 0.881 0.458 0.456
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Aspirin can bind to cyclooxygenase and block the synthesis of
thromboxane A2, thus inhibiting platelet aggregation. Some
studies had reported that low-dose aspirin was associated with
hyperuricemia, but others did not (Zhang et al., 2014; Leung
et al., 2022). This inconsistency may be attributed to the
differences in primary and combined diseases, age, types of
medications, and other confounding factors, which lead to
patients taking aspirin presenting highly variable effects. The
current study pursued the investigation and refinement of ML
algorithms for the accurate prediction of hyperuricemia in
individuals taking low-dose aspirin.

Although we established a predictive model for hyperuricemia in
individuals taking low-dose aspirin, due to the “black box”
characteristic, the predictive value of ML should be treated with
caution, and it cannot substitute the clinical judgment of a medical
professional (Finlayson et al., 2021). In addition, as the sensitivity in
our model was lower than specificity, more data, in addition to
continuously optimizing and upgrading the model, are needed.

In our study, certain limitations should also be noted. First, this
was a cross-sectional study with a small sample size, which may
influence the model’s predictive efficiency. Although the total number
of participants in the NHANES was large, not enough people were

FIGURE 4
Interpretation and evaluation of themodel, whichwasmodeling by the XGBoost algorithm. (A) Ranking of feature importance indicated by SHAP. (B)
SHAP method used to evaluate the performances of the modeling.
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satisfied with our criteria, and further validation in larger sample size
is required. Second, most of the variables we used for modeling were
from the laboratory index; nevertheless, diet/dietary supplement
exposure, living style, or drugs besides aspirin were also important
confounding factors for hyperuricemia development. Third, we do not
know the duration of people taking low-dose aspirin. This limited the
application of our predictive model.

Conclusion

We leveraged anMLmodel trained onNHANES data to establish a
hyperuricemia model for individuals taking aspirin. The results showed
that the XGBoost model can potentially help clinicians make an early
detection of hyperuricemia risk in general clinical practice. Future
studies are warranted to assess whether this prediction model would
decrease hyperuricemia occurrence in people taking low-dose aspirin.
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