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Stability prediction of muddy
submarine channel slope based
on sub-bottom profile acoustic
images and transfer learning
Jiankang Hou and Cunyong Zhang*

School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang, China
This research addresses the challenging task of predicting the stability of muddy

submarine channel slopes, crucial for ensuring safe port operations. Traditional

methods falter due to the submerged nature of these channels, impacting

navigation and infrastructure maintenance. The proposed approach integrates

sub-bottom profile acoustic images and transfer learning to predict slope

stability in Lianyungang Port. The study classifies slope stability into four

categories: stable, creep, expansion, and unstable based on oscillation

amplitude and sound intensity. Utilizing a sub-bottom profiler, acoustic

imagery is collected, which is then enhanced through Gabor filtering. This

process generates source data to pre-train Visual Geometry Group (VGG)16

neural network. This research further refines the model using targeted data,

achieving a 97.92% prediction accuracy. When benchmarked against other

models and methods, including VGG19, Inception-v3, Densenet201, Decision

Tree (DT), Naive Bayes (NB), Support Vector Machine (SVM), and an unmodified

VGG16, this approach exhibits superior accuracy. This model proves highly

effective for real-time analysis of submarine channel slope dynamics, offering a

significant advancement in marine safety and operational efficiency.
KEYWORDS

muddy, submarine channel, stability, Gabor filter, VGG16, transfer learning
1 Introduction

The morphology of submarine channel slopes, often manually excavated, is influenced

by various factors such as storm surges, waves, sediment deposition, and ship traffic (Wang

et al., 2014; Lawson et al., 2021). Extended creep in these slopes can lead to instability,

reshaping the channel and impeding safe navigation, which negatively impacts port

economic development (Sultan et al., 2004; Hojat et al., 2019). Consequently, predicting

the stability of these submarine channel slopes is crucial.

Advancements in computer vision and artificial intelligence, especially deep learning

and transfer learning, have greatly enhanced the assessment and prediction of slope
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stability. These technologies are widely applied in fields like target

detection (Zhang et al., 2019; Xu et al., 2022a), evaluation (Fu et al.,

2023; Wang et al., 2023), prediction (Long et al., 2022; Zhang and

Zhang, 2022), and classification (Chungath et al., 2022; Zhang et al.,

2022). Yang and Mei (2021) effectively used transfer learning for

surface crack detection on slopes. Similarly, Qin et al. (2022) applied

transfer learning for landslide detection using satellite images. Liu

et al. (2021) combined transfer learning with limited remote sensing

images for landslide type prediction in the southeast Tibetan

Plateau. These studies validate the effectiveness of transfer

learning in forecasting geological disasters, providing rapid

and efficient monitoring and early warning capabilities for

slope stability.

Existing research on slope hazards primarily focuses on surface

slopes, where data collection is relatively straightforward. In

contrast, investigating the stability of muddy submarine channels

is more challenging due to difficulties in data acquisition and the

limited availability of prior research. These submarine slopes

change slowly and have sediments characterized by high water

content, low shear strength, and significant deformability (Vanneste

et al., 2014; Manuel et al., 2022), rendering traditional methods like

precision levels (Tryggvason, 1968), infrared rangefinders (Farzad

et al., 2023), and side-scan sonars (Johnson and Helferty, 1990)

ineffective. The advancement of sub-bottom profiling, known for its

rapid propagation and strong penetration in solids and liquids

(Urlaub and Villinger, 2019; Zhang, 2022), offers a solution.

This study addresses the challenges in detecting slope stability

within submarine channels, utilizing a sub-bottom profiler for

comprehensive walkover detection. The method constructs a

prediction model for the stability of muddy submarine channel by

capturing sound print image of channel slope and combining

transfer learning. To enhance the accuracy of this model, a Gabor

filter is employed to process the acquired sound print images,

yielding amplitude and phase images. This process is augmented

by supervised data enhancement techniques, creating an enriched

dataset for the preliminary training of VGG16 model. This step is

crucial for improving the model’s generalizability and robustness in

subsequent transfer learning phases. Furthermore, the study

conducts a comparative analysis of VGG16 model’s predictive

capabilities post-transfer learning against other models trained via

similar transfer and machine learning methodologies, under
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identical pre-training and environmental setups. The findings

indicate superior predictive performance of VGG16 model post-

transfer learning. This advancement not only bridges a gap in the

domain of muddy submarine channel slope stability prediction but

also significantly contributes to the safety and economic

development of submarine channels. The methodologies and

techniques deployed in this research have broader applications,

extending their utility to related engineering and environmental

contexts. The structure of the paper is methodically organized, with

Section 2 detailing the data detection process and methodologies

employed, Section 3 presenting criteria for data classification,

experimental outcomes, and comparative model analyses, and

Section 4 concluding with discussions on the study’s findings,

limitations, and avenues for future research.
2 Materials and methods

2.1 Field detection

The survey was conducted in a specific area of Lianyungang

Port, Jiangsu Province, situated at coordinates 34°44’-34°46’ N and

119°26’-119°32’ E (Figure 1). The area, a typical muddy shoal deep

water channel, is bordered by Liandao Island to the north and

Yuntai Mountain to the south.

For the navigation detection within this survey area (Figure 2), a

SES-2000 parametric array sub-bottom profiler was deployed. The

device’s transducerwas affixed to a bracket on the ship, positioned at 1/

3 from the bowalong thewaterline,with a draft depth of about 1.4m.A

Global Positioning System (GPS) was set up on a rod, maintaining a

1.5 m horizontal distance from the transducer. The system operated

with a sampling frequency of 96 kHz and a period of 1 second. The

gathered acoustic signals were processed using SES-2000’s ISE post-

processing software, which generated sound print images

characterized by different textural features like dots, lines, and blocks.
2.2 Data processing

The study involved standardizing sound print images to a

uniform size (227×227 pixels) for model compatibility, using
FIGURE 1

Survey region.
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image processing software to crop them (Figures 3A–D). A total of

400 images were manually labeled, with an equal distribution (100)

across each stability state. Data enhancement was crucial to prevent

overfitting, increase data volume, and enhance the model’s

generalization and robustness, especially under limited data

conditions. Two data enhancement approaches are recognized:

supervised and unsupervised. Supervised enhancement, including

techniques like noising, filtering, mirroring, rotation, and

displacement (McArthur et al., 2018; Edgar et al., 2021; Neupane

et al., 2021), is aimed at improving prediction and classification

accuracy. On the other hand, unsupervised enhancement, such as

Autoaugmentation (GAN) (Naghizadeh et al., 2021; Panetta et al.,

2021), focuses on uncovering data’s inherent structures for more

effective processing. This research utilized horizontal mirroring,

linear transformation, Gaussian filtering, salt and pepper noise, and

horizontal displacement to refine the sound print images
Frontiers in Marine Science 03
(Figures 3E–H). This process expanded the dataset to six times its

original size, yielding 2,400 images. These images served as the

target data for the transfer learning model, with 70% allocated for

training and 30% for testing.
2.3 Gabor filter

Gabor filter, a critical tool in texture analysis (Daugman, 1985;

Idrissa and Acheroy, 2002; Rabah et al., 2022), operates as a linear

filter emulating the frequency and orientation sensitivity of human

vision. It is adept at detecting image edges and extracting features

pertaining to specific directions and scales, with a degree of

tolerance for image rotation and deformation. The filter’s ability

to maintain essential spatial and frequency domain features renders

it highly suitable for model pre-training. In this study, Gabor filter
BA

FIGURE 2

Field detection: (A) transducer (B) monitor.
B C D

E F G H

A

FIGURE 3

Target data: Sound print image (A–D) (A) stable state (B) creep state (C) expansion state (D) unstable state; Sound print enhanced image (E–H) (E)
linear transformation (F) Gaussian filtering (G) salt and pepper noise (H) horizontal displacement.
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was applied to process sound print images in different stability

states. Various parameter combinations were experimented with,

such as wavelength l, orientation q, phase offset y, bandwidth s,
and aspect ratio g, to derive amplitude and phase feature images

(Table 1). Optimal feature expression in amplitude and phase was

achieved with settings of l =8, q = 90°, y = 0°, s = 1.5, and g = 4.

Images processed under these parameters were used as the primary

data for model pre-training (Figures 4A–D). Enhancements to this

source data included techniques like horizontal and vertical

mirroring, linear and nonlinear transformation, Gaussian

filtering, salt and pepper noise, horizontal and vertical

displacement, and 180° rotation (Figures 4E–H). This expanded

the source data to ten times its original size, resulting in a dataset of

8,000 images, with 80% designated for training and 20% for testing.
2.4 VGG16

Visual Geometry Group (VGG) model, a deep Convolutional

Neural Network (CNN) introduced in 2014, stands out for its

simplicity compared to newer network structures (Tammina,
Frontiers in Marine Science 04
2019; Thakur et al., 2023). It uses small (3×3) convolution kernel

filters in its convolutional layers, reducing parameter count,

increasing network depth, and enhancing expressiveness. Rectified

Linear Unit (ReLU) activation function is employed to combat

gradient dissipation and increase sparsity. Unlike average pooling,

maximum pooling is utilized to reduce data size while maintaining

image texture, minimizing blurring effects. The training process

includes a Dropout mechanism, randomly deactivating neurons to

simplify the network and improve generalization. The architecture

integrates fully connected layers to merge data from convolution

and pooling layers into a softmax layer for classification and

prediction. With its composition of 13 convolution layers, 5

pooling layers, and 3 fully connected layers, VGG16 is selected

for building the transfer learning prediction model in this study due

to its robust and efficient structure (Mohan et al., 2020).
2.5 Transfer learning

Transfer learning, a method of applying knowledge from one

domain to similar ones, is increasingly recognized for its efficiency
TABLE 1 Gabor filtering amplitude and phase map under different parameter combinations.

Fixed parameters Sound print Gabor filtering amplitude and phase map

q = 90∘   y = 0∘   s = 1:5  g = 0:5

l = 8 l = 12

l = 6  y = 0∘   s = 1  g = 1:5

q = 45∘ q = 90∘

l = 8  q = 90∘   y = 0∘   g = 2:5

s = 1:5 s = 2

l = 10  q = 90∘   y = 0  s = 1:5

g = 1 g = 2
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(Zhang et al., 2020; Iman et al., 2023). It involves transferring

knowledge from a well-understood source domain to a related

target domain, leveraging similarities in data, tasks, and models.

This approach not only personalizes the model but also simplifies it,

leading to reduced training time and enhanced learning

performance in the target domain (Feldens, 2020; Zhang and

Zhang, 2020). The most common technique in transfer learning is

fine-tuning (Vrbančič and Podgorelec, 2020; Xu et al., 2022b),

which entails using pre-trained model weights from the source

domain and then adjusting these parameters with target domain

data. This method offers benefits, including time efficiency and

improved robustness and generalizability, especially after pre-

training with large-scale data models.

This study utilized a transfer learning approach, integrating

features and model structures. Experiments were conducted in the

MATLAB2020 programming environment on a Windows 10

system. The process began with VGG16 model, which was pre-

trained using extensive source data refined through the Gabor filter,

allowing initial learning of feature information. Following this, the

target data was used to fine-tune the pre-trained VGG16 model’s

parameters. While the training parameters of the model’s

convolutional layers, crucial for prediction and classification,

remained largely unchanged, adjustments were made to the batch

size and learning rate to optimize the model’s predictive accuracy.

The training process of this model is depicted in Figure 5.

Figure 6 illustrates the feature transfer process from the source

domain, consisting of amplitude and phase data, to the target

domain of sound print images. This model-based transfer

approach hinges on identifying and utilizing shared parameters

between the two domains. It operates under the assumption that
Frontiers in Marine Science 05
certain model parameters are transferable and applicable to both

source and target domain data (Gabriel and Olga, 2021). Figure 6

highlights which parameters are common and transferable across

these domains. In this process, the model retains its training

parameters from the source domain data, while fine-tuning is

applied using the target domain data to refine and achieve the

best possible prediction outcomes. The target data is integral to this

fine-tuning process, playing a key role in the optimization of the

model parameters.
3 Results and discussion

3.1 Channel slope state assessment

Assessing the stability of submarine channel slopes is inherently

complex, owing to the interplay of multiple factors. Different times

and depths in reflected signals yield varied intensity characteristics

and textures in sound print images, making it difficult to accurately

gauge slope stability through visual inspection alone. Sound print

images, derived from sound intensity, offer a method for classifying

the stability state of a channel slope. This technique provides a

direct measure of the intensity and uniformity of sound print

textures, thereby offering an indirect representation of the

internal structure of the sediment layers. In this study, sound

intensity data, extracted from the sub-bottom profiler post-

processing software ISE, are utilized to determine the average

sound intensity, which forms the foundation for categorizing the

channel slope’s stability state. The stability is classified into four

states: stable, creep, expansion, and unstable. The amplitude of
B C D

E F G H

A

FIGURE 4

Source domain data: Gabor filtering image (A–D) (A, B) amplitude (C, D) phase; source domain enhanced image (E–H) (E) linear transformation (F)
Gaussian filtering (G) salt and pepper noise (H) horizontal displacement.
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sound intensity oscillation in the stable state is mostly concentrated

in 1~1200 db, and the peak value of oscillation mostly appears on

the surface of the slope. The amplitude of sound intensity oscillation

in creep state is mostly concentrated in 1201~6000 db, and the peak

value of oscillation mostly appears in the shallow layer of slope. The

amplitude of sound intensity oscillation in expansion stage is mostly

concentrated in 6001~12000 db, and the peak value of oscillation

mostly appears in the middle layer of slope. The amplitude of sound

intensity oscillation in unstable state is mostly concentrated in

12001~15000 db, and the peak value of oscillation mostly appears

in the deep layer of slope. This classification is based on the

oscillation amplitude and peak value variations in sound

intensity, combined with insights from previous simulation

experiments conducted in the region (Zhang, 2021; Zhang, 2022;

Zhang and Hou, 2022).

In Figures 7A–H, the variations in sound intensity

corresponding to different stability states of a channel slope are

illustrated. During the stable state (Figure 7A), the sound intensity
Frontiers in Marine Science 06
oscillation amplitude is relatively low, with the maximum average

sound intensity around 1200 db. The vertical series in Figure 7E

reveals a stepped decline in sound intensity, with high-frequency

oscillations primarily at the slope’s surface layer. In the creep state,

Figure 7B depicts an increase in the oscillation amplitude of sound

intensity, reaching a maximum average of about 6000 db. The

vertical series (Figure 7F) shows intensified sound intensity with

high-frequency oscillation peaks in the shallow layer, coupled with

distinct low-frequency oscillations. For the expansion state,

Figure 7C indicates a further increase in oscillation amplitude,

with the maximum average sound intensity at approximately 12000

db. The vertical series in Figure 7G demonstrates an extension of

sound intensity, where the peak of high-frequency oscillation is

situated in the middle layer of the slope. In the unstable state,

Figure 7D displays a severe fluctuation in sound intensity oscillation

amplitude, peaking at around 15000 db. The corresponding vertical

series in Figure 7H shows significant changes throughout the slope,

characterized by multiple peaks, with high-frequency oscillation
BA

FIGURE 6

Schematic representation of feature transfer: (A) source domain image (B) target image.
FIGURE 5

Flow chart of prediction model transfer learning.
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peaks in the deeper layers. These results indicate that the oscillation

amplitude and peak value of sound intensity vary markedly across

different stability states. The distribution and shift in intensity can

effectively indicate changes in the internal stability of the slope.

Figures 7I–L presents sound print images that qualitatively

illustrate the stability states of a channel slope. In the stable state

(Figure 7I), the sound print appears almost parallel, exhibiting

uniform thickness and spacing, resembling a smooth, continuous curve

with clearly visible surface peristalsis. For the creep state (Figure 7J), the

sound print reveals peristalsis with variations in intensity, shape, and

spacing. The lower part of the print changes more gradually, largely

maintaining parallelism with the texture. In the expansion state

(Figure 7K), the middle layer displays pronounced peristaltic sound

prints with significant distortion and deformation. The texture appears

rough and uneven, marked by noticeable cracks, yet it retains a roughly

linear connection in local areas.During theunstable state (Figure7L), the

sound print takes on a wavy, winding pattern. The deeper layers exhibit

intenseperistaltic printswith irregular intensity and shape, characterized

by fragmented and distorted internal textures, indicative of loss and

discontinuity. These sound print images, captured by a sub-bottom

profiler, provide a qualitative reflection of the internal stability of the

channel slope. Therefore, they serve as a reliable data foundation for the

development of a prediction model for channel slope stability using

transfer learning techniques.
3.2 Feature extraction in deep CNNs

Understanding the process of feature extraction and learning in

deep CNNs can be challenging. To elucidate the learning status of

sound print features in VGG16 model post-transfer learning, the

features of the convolution and activation layers are visualized by

mapping them onto a pixel space. This visualization provides a

clearer insight into the abstract nature of feature extraction and
Frontiers in Marine Science 07
learning in CNNs. Transfer learning VGG16 model each

convolution layer or activation layer has multiple channels, each

channel corresponds to a feature image. For example, the 7th

convolution in the model has 128 channels (128 feature images).

After convolution of these channels through the first few layers, the

texture of the feature image obtained by some channels is relatively

obvious, and the texture features obtained by some channels almost

disappear. In order to visually represent the evolution process of the

model’s extraction of the four state features, this sectionmainly selects

the feature image corresponding to a channel in the convolution layer

or the activation layer for display. Figure 8 illustrates the evolution of

feature extraction in the transfer learning VGG16 model.

Figure 8 illustrates the evolution of feature extraction in the

transfer learning VGG16 model. Figure 8 reveals that the initial

layers of the deep CNN primarily extract basic geometric features

from the sound print image, such as edges, corners, and textures.

These layers can also approximate the overall profile of the image.

As the network progresses in depth, these elementary features are

amalgamated and reorganized to form more complex,

representative high-level features. Consequently, the differences of

the initial image profile diminishes, and the resulting feature images

become increasingly abstract.
3.3 Original model
performance comparison

The performance of the original VGG16 model, chosen for this

study, was evaluated by comparing it with a range of other

prominent deep learning models. These included AlexNet

(Schönfeldt et al., 2022), ResNet18 (Irwansyah et al., 2023),

ResNet50 (Hacıefendioğlu et al., 2021), MobileNetv2 (Anupama

et al., 2023), DarkNet19 (Sirisha et al., 2023), GoogleNet (Catani,

2020), and SqueezeNet (Sreeparna et al., 2022). All models were
B
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A

FIGURE 7

Acoustic data: Time series sound intensity (A–D) (A) stable (B) creep (C) expansion (D) unstable; Vertical series sound intensity (E–H) (E) stable (F)
creep (G) expansion (H) unstable; typical sound print image (I–L) (I) stable (J) creep (K) expansion (L) unstable.
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tested under identical settings, including a learning rate of 0.001, a

batch size of 20, a dropout rate of 0.5, and using the Sgdm

optimizer, as well as the same target data. To mitigate the issues

of overfitting and underfitting during the training process, a cross-

test method was employed (Bergmeir et al., 2018). In this approach,

the enhanced target dataset was randomly divided five times in a 7:3

ratio, creating two subsets for each division. One subset, containing

1,680 images, was used for training, while the other, comprising 720

images, served as the test set.

Figure 9 presents the outcomes of five cross-tests involving

VGG16 model and other comparative models. Figure 9A displays the

prediction accuracy for eachmodel, which is the proportion of correct

predictions in the total sample size. Figure 9B shows the loss values for

each model, calculated using the cross-entropy loss function to

measure the deviation between predicted outputs and target values

(Qu et al., 2020). The results from Figure 9 indicate that all models

achieved a prediction accuracy above 80% and maintained loss values

below 2.6. Notably, VGG16 model consistently exhibited the highest

prediction accuracy and the lowest loss values across all training

instances. For instance, in the fourth cross-test, VGG16 achieved its

highest prediction accuracy at approximately 93.89% and its lowest

loss value around 0.97. Conversely, the lowest prediction accuracywas

observed in DarkNet19 at about 81.81%, with the highest loss value

reaching approximately 2.44. These findings suggest that VGG16 is a

particularly effective model for predicting the stability of channel

slopes. This can be attributed to VGG16’s deeper network structure

and additional convolutional layers compared to AlexNet, enhancing

its ability to capture complex image features. Despite its simpler

structure relative to ResNet18 and ResNet50, VGG16 demonstrates

better generalization and training capabilities. Furthermore, compared

tomodels likeMobileNetv2, DarkNet19, GoogleNet, and SqueezeNet,
Frontiers in Marine Science 08
VGG16 efficiently reduces the number of model parameters, a

significant advantage when computing resources and memory are

limited, thereby effectively enhancing model performance. In

summary, under the specific datasets and scenarios of this study,

VGG16 model outperforms its counterparts, affirming its suitability

and effectiveness in this application domain.

Table 2 provides a comprehensive overview of the number of

deepnetwork layers invariousmodels includingVGG16, alongside their

primary design purposes. AlexNet, VGG16, ResNet18, ResNet50, and

DarkNet19arepredominantlydeveloped forgeneral object classification

(Irwansyah et al., 2023; Sirisha et al., 2023). MobileNetv2 focuses on

object classification inmobile and embedded devices (Chen et al., 2020),

GoogleNet targets large-scaleobject classification (Zhuoet al., 2017), and

SqueezeNet is designed for object classification in environments with

embedded devices and limited computing resources (Lee et al., 2019).

According to the table, MobileNetv2 possesses the highest number of

deep network layers, totaling about 53. On the simpler end, AlexNet

comprises 8 layers. ResNet18, DarkNet19, and SqueezeNet display a

similar range in termsof their deepnetwork layers.Additionally,Table 2

outlines the time invested in five cross-test training sessions for each

model. Models like ResNet18, ResNet50, and GoogleNet required

approximately 32 minutes for training. AlexNet, with fewer deep

layers, took about 26 minutes. MobileNetv2 and DarkNet19, on the

other hand, needed around 37 minutes.
3.4 Transfer model
performance comparison

In this study, Gabor filter is used to process the sound print

images of four states to obtain amplitude images and phase images.
BA

FIGURE 8

Evolution process of transfer learning VGG16 feature extraction: (A) convolution layer (B) activation layer.
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Each image is considered as an independent sample, and the data

set is expanded by the enhancement method. Then, the amplitude

image data set, phase image data set, amplitude image and phase

image combined data set are divided into training set and test set

according to the ratio of 8:2 to pre-train the VGG16 model. The

results show that the accuracy of VGG16 model pre-trained by

amplitude image is 70%, the accuracy of VGG16 model pre-trained
Frontiers in Marine Science 09
by phase image is 65%, and the accuracy of VGG16 model pre-

trained by vibration value image and phase image is 75%. This is

because the amplitude image and the phase image contain different

texture feature information, which has an important improvement

effect on the pre-training model. Therefore, in this section, the

VGG16 model pre-trained by amplitude image and phase image is

selected for transfer learning.

To further improve the prediction accuracy of the transfer

learning model, the enhanced original data was used to conduct

experiments on the learning rate and batch size of different

combinations. When the learning rate was set to 0.001 and the

batch sizes were set to 20, 30, 40 and 50, the prediction accuracy of

the model was 93.75%, 94.86%, 95.28% and 93.89% respectively.

When the learning rate was set to 0.0001 and the batch sizes were

set to 20, 30, 40 and 50, the prediction accuracy of the model was

95.56%, 95.97%, 97.92% and 95.42% respectively. When the

learning rate was set to 0.00001 and the batch sizes were set to

20, 30, 40 and 50, the prediction accuracy of the model was 92.36%,

93.19%, 92.64% and 94.03% respectively. The results show that

when the learning rate is set to 0.0001 and the batch size is set to 40,

the prediction accuracy of the trained VGG16 model is the best. To

validate the effectiveness of the proposed transfer learning VGG16
TABLE 2 Deep network layers for VGG16 model and other models.

Model Network depth Training time (s)

AlexNet 8 layers 1579

VGG16 16 layers 1731

ResNet18 18 layers 1961

ResNet50 50 layers 1933

MobileNetv2 53 layers 2308

DarkNet19 19 layers 2185

GoogleNet 22 layers 1923

SqueezeNet 18 layers 1691
B

A

FIGURE 9

Results of 5 cross-tests of VGG16 and other models: (A) Accuracy (B) Loss.
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model, it was benchmarked against other network models under

identical settings and data.

Figure 10 presents the comparative performance of various

transfer learning models, including VGG16. All models

demonstrated a prediction accuracy above 95% and a loss value

below 0.6. Specifically, VGG16 model showcased the highest

prediction accuracy at approximately 97.92% and the lowest loss

value around 0.33. In contrast, DarkNet19 recorded the lowest

prediction accuracy at roughly 95.42% and the highest loss value

near 0.59. Notably, all models exhibited an improvement in

accuracy by over 4% and a reduction in loss value by more than

0.6 after pre-training with source domain data prior to transfer

training. This is because the Gabor filter can effectively extract the

texture features and edge information in the sound print images,

provide richer information to the pre-trained model, and help

improve the model’s ability to understand and characterise the

channel slope. At the same time, Gabor filter can help to remove the

noise and irrelevant features in the sound print images, highlight

the distinguishability and discrimination of the main features of the

channel slope, and help the pre-trained model to extract and retain

some texture features or edge information. This can effectively

improve the generalization ability and robustness of the new

training network model, so that the overall performance of the

new model is better than the original model.

Figure 11 presents the training trajectories of both the transfer

learning VGG16 model and the original VGG16 model. As training

progresses through numerous iterations, an improvement in

accuracy is observed for both models. However, differences

emerge in their performance dynamics. The transfer learning

VGG16 model, after approximately 40 iterations, shows a

convergence of its accuracy and loss curves, which then proceed

to run almost parallel to the horizontal axis. This indicates a quick

stabilization and a steady state of performance. In contrast, the

original VGG16 model, which did not undergo pre-training with

source domain data, displays considerable fluctuations and more

pronounced changes in its accuracy and loss curves. In terms of

performance metrics, the transfer learning VGG16 model achieves a

high prediction accuracy of about 97.92% and a relatively low loss
Frontiers in Marine Science 10
value of approximately 0.33. The original VGG16 model, on the

other hand, attains a prediction accuracy of around 92.64% with a

loss value of about 1.17. These outcomes clearly illustrate that the

transfer learning VGG16 model not only surpasses the original

VGG16 in accuracy but also demonstrates greater robustness,

characterized by faster convergence and quicker stabilization in

its training process.

Figure 12 displays the test results for both the original and

transfer learning VGG16 models. The data from this figure clearly

demonstrate a significant improvement in the prediction accuracy

of the transfer learning VGG16 model compared to the original

version. Notably, the accuracy in identifying the unstable state of

the channel slope has increased by up to 12.22%, with the expansion

state following closely at an approximate 5% increase. The models

encounter the highest error rates in accurately predicting the creep

stable state and the unstable state, each with an error rate of around

3.89%. This is attributed to the ambiguity in the variation trends of

sound print textures in the creep stable state, which can lead to

misclassifications. In the case of the unstable state, the complexity is

compounded by disturbances from seawater dynamics, where

certain sound print textures might be blended or superimposed

within the same image, occasionally leading to misidentification as

the expansion state. Significantly, the transfer learning VGG16

model achieves a perfect 100% accuracy in predicting the stable

state and a 99.44% accuracy for the expansion state. These results

underscore the model’s high effectiveness and feasibility in

predicting the stability of channel slopes, indicating the

substantial benefits of incorporating transfer learning to enhance

model performance in complex prediction scenarios.

Figure 13 presents a detailed comparison of the performance

metrics between the transfer learning VGG16 model and other

training methodologies, including VGG19 (Liu et al., 2021),

Inception-v3 (Hacıefendioğlu et al., 2021), Densenet201 (Xia

et al., 2022), Decision Tree (DT) (Park et al., 2018), Naive Bayes

(NB) (Zheng et al., 2021), and Support Vector Machine (SVM)

(Wang and Brenning, 2021). In Figure 13A, focusing on accuracy

metrics, the transfer learning VGG16 model stands out with the

highest accuracy rate, approximately 97.92%. This performance
BA

FIGURE 10

Performance of transfer learning VGG16 and other transfer learning models: (A) Accuracy (B) loss.
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markedly surpasses that of other models and methods; for instance,

DT model achieves about 88.19% accuracy, and NB model around

86.95%. Figure 13B illustrates the precision rate metrics, where the

transfer learning VGG16 model again leads with the highest

precision rate of about 97.98%. This contrasts with slightly lower

precision rates from other models, such as DT at around 88.26%

and NB at approximately 86.99%. This is because VGG16 after

transfer learning has a faster training speed, smaller model size and

better adaptability than VGG19. Compared to Inception-v3 and

Densenet201 models, VGG16 after transfer learning has a simpler
Frontiers in Marine Science 11
architecture and number of parameters, faster training speed and

better performance on limited data sets. Compared to Decision Tree

(DT), Naive Bayes (NB) and Support Vector Machine (SVM),

VGG16 after transfer learning can automatically extract features

from the original data, automatically learn more abstract and

advanced features, and has strong scalability. These findings

clearly demonstrate the superiority of the transfer learning

VGG16 model developed in this study, particularly in identifying

the stability of muddy submarine channel slopes. Its enhanced

accuracy and precision rates indicate that it is more suitable and
BA

FIGURE 12

Test set prediction results: (A) transfer learning VGG16 (B) original VGG16.
B

C D

A

FIGURE 11

Model training process: Transfer learning VGG16 (A, B) (A) accuracy (B) loss; Original VGG16 (C, D) (C) accuracy (B) loss.
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effective for this specific application than the alternative

methods compared.
3.5 Stability prediction of channel slope

This study highlights a crucial aspect of predicting the stability

of submarine channel slopes. It was observed that using the entire

field detection input might overlook localized anomalous areas,

which are critical for accurate stability assessment. To address this,

the study employed a horizontal circulation method to segment the

channel slope images from top to bottom. This segmentation

approach leads to a more accurate reflection of the stability

changes across the entire channel slope area. Figure 14 provides a

schematic representation of the predicted slope stability for a

specific muddy submarine channel located at coordinates 34°45’

24’’-34°45’39’’N and 119°27’11’’-119°27’19’’ E (Figure 1 at position

①). Analysis of 34 sound print images from this area indicated that
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30 images represented stable states, while 4 were identified as creep

states. These predictions suggest that sound prints indicative of

creep states are predominantly located at the shoulder or foot of the

slope along the side of the channel. This pattern can be attributed to

the intense seawater erosion experienced at the shoulder and the

high structural self-weight at the foot of the slope. The findings

imply that, overall, the submarine channel slope at this location is

predominantly stable. However, localized areas, specifically the

shoulder and foot of the slope, exhibit a creep state. These results

are consistent with the observed development patterns of the

channel slope’s stability state. The model developed in this study,

therefore, proves to be of practical significance when applied to the

prediction of the stability of actual muddy submarine channels,

offering a valuable tool for marine and geological assessments.

The results of this study show that the proposed model has a

good predictive effect on the stability of the submarine channel

slope of Lianyungang Port. In order to ensure the universality and

applicability of the model to the submarine channel slope of other
FIGURE 14

Schematic diagram of predicted slope results for a muddy submarine channel.
BA

FIGURE 13

Transfer learning VGG16 and other method training performance metric: (A) accuracy (B) precision.
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geographical locations, it is necessary not only to use the sub-

bottom profiler to carry out navigation detection to collect sufficient

data, but also to analyse and label the collected data, and to train

and test the model in combination with the actual situation of the

submarine channel. At the same time, considering the geological

characteristics, dynamic characteristics, detection requirements and

application scenarios of different geographical locations, the model

needs to be further optimised to meet the prediction requirements

of submarine channel slope stability in other geographical locations.

In the future, we will use the sub-bottom profiler to detect the

submarine channel slopes in other geographical locations, and then

obtain new data samples to improve and optimise the model, so as

to further enhance the applicability of the model.
4 Conclusion

This paper develops a prediction model for the stability of muddy

submarine channel slopes, utilizing sub-bottom profiler sound print

images and a transfer learning approach. The process involves

initially classifying channel slope sound print images into four

states: stable, creep, expansion, and unstable based on sound

intensity variations. This classification effectively reflects slope

stability in a quantitative manner. The study then employs the

Gabor filter to process the images, generating amplitude and phase

images, and expands these using supervised data enhancement. This

expanded source data is pre-trained in VGG16 model, ensuring the

preservation of spatial and frequency domain information. This pre-

training enhances the model’s ability to extract and retain texture

features, improving its generalization and robustness. Transfer

learning is subsequently incorporated by fine-tuning the pre-

trained VGG16 model with enhanced target data, including

techniques like horizontal mirroring and salt and pepper noise.

This fine-tuning results in a predictive model with a high accuracy

of approximately 97.92% and a low loss value of approximately 0.33,

outperforming other networkmodels. This research demonstrates the

feasibility of using the model for comprehensive stability prediction

of channel slopes. Its significance lies in its application to port and

channel safety maintenance, dynamic detection, prediction, and early

warning, offering a valuable tool in marine engineering and

environmental monitoring.

While the proposed method effectively predicts the stability of

muddy submarine channel slopes, there are areas for improvement

and innovation. One primary concern is the optimization of

VGG16 network model. Given its drawbacks, such as lengthy

training times, challenging parameter adjustments, and

substantial storage requirements, it is not ideally suited for

integration into embedded systems. Future research could explore

the integration of more advanced deep network models, like

Region-based CNN (RCNN) and You Only Look Once (YOLO)

series, to enhance the intelligence and user-friendliness of detection

outcomes. Further enhancements could be made in terms of model

structure, activation functions, loss functions, and model

integration, aiming to boost both performance and efficiency.

Another avenue for advancement involves multi-factor coupling
Frontiers in Marine Science 13
research. The stability of submarine channel slopes is influenced by

a myriad of complex factors, including hydrodynamic forces, waves,

tides, and sediment characteristics. Future studies could delve into

the interrelations and coupling effects of these factors, integrating

them into the predictive model for a more comprehensive analysis.

Such an approach is anticipated to augment both the accuracy and

reliability of model predictions.
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