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The Thermosphere Ionosphere Electrodynamic General Circulation Model
(TIEGCM), as one of the most advanced physical models of the Earth’s
thermosphere and ionosphere, is not only widely used in scientific research,
but also has essential reference value in aerospace operations. In this study,
we use Gravity field and steady-state Ocean Circulation Explorer (GOCE) neutral
density to evaluate the accuracy of the TIEGCM. The assessment is performed on
both time and spatial scales. The time scales are conducted annually, monthly, and
daily, while the spatial scales are carried out in terms of altitude, latitude, and local
time. On the time scales, the performance of the TIEGCM on the monthly time
scale is better than that on the annual time scale. Also, the performance on the
daily time scale is better than that on themonthly time scale. The relative deviation
shows a significant seasonal variation, that is, larger in winter and summer and
smaller in spring and autumn. In addition, the relative deviation shows a negative
correlation with F10.7 and Ap. On the spatial scale, with the increase in altitude, the
average relative deviation of the model becomes larger in general. The relative
deviation is usually larger at middle latitudes in the Northern Hemisphere and high
latitudes in the Southern Hemisphere. Finally, on the scale of local time, the
relative deviation changes more dramatically in local morning than at dusk.
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1 Introduction

Although the Earth’s thermosphere is relatively sparse, it occupies a large volume. The
thermosphere is not only an important field of Solar-Terrestrial space but also the main
working area of low Earth orbit satellites. The thermosphere has complex thermodynamic,
photochemical, and kinetic processes, which are closely related to the development of
industry especially spaceflight. Therefore, the study and modeling of the thermosphere have
important significance for scientific research and aerospace activities.

Since the middle of the 20th century, with the launch of a large number of satellites and
the development of high-altitude detection technology, numerous observations of the
thermosphere have been obtained. These datasets have greatly promoted the
understanding of the upper atmosphere. GOCE satellite, developed and launched by the
European Space Agency, is one of the most advanced detection satellites [1]. Thanks to the
gravity gradiometers carried on board the satellites, GOCE datasets are commonly used to
determine the geoid and the Earth’s gravity field [2–4]. Meanwhile, they also provide a great
opportunity for studying thermospheric neutral wind and mass density. [5] presented an
iterative algorithm for determining density and crosswind from multiaxis accelerometer
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measurements on GOCE. [6,7] used GOCE neutral densities and
cross-track winds near 260 km to demonstrate vertical coupling in
this height regime due to the ultra-fast Kelvin Wave (UFKW) and
the eastward propagating diurnal tide with zonal wave number 3
(DE3). [8] studied the seasonal variation of the thermospheric mass
density of GOCE at dawn/dusk. Similarly, [9] investigated the
annual and semi-annual variations of the dawn/dusk
thermospheric mass density over a certain altitude range based
on the neutral density of the GOCE satellite. [10] used GOCE trans-
orbital wind measurements to explore the intra-annual oscillations
(IAOs) of the upper thermospheric winds between 70° S and 70° N.

With the accumulation of observations, modeling work has also
prominently developed in the past few decades. The thermospheric
models can be generally grouped in two categories, empirical models
and physical models. Empirical models capture the statistically
average behavior of the atmosphere in a parameterized
mathematical formulation and usually output temperature and
density are as a function of position, solar activity, geomagnetic
activity and season [11]. Widely used thermospheric empirical
models include the Jacchia [12–15], the Drag Temperature Model
(DTM) [16–21], the Mass Spectrometer and Incoherent Scatter
(MSIS) [22–25], Jacchia-Bowman (JB) [26,27], the Marshall
Engineering Thermosphere Model (MET) [28–31], etc.

Physical models are also known as the first-principles models
which describe the complex coupling process in the mesosphere,
thermosphere, ionosphere, and magnetosphere system through a
series of energy equations, dynamic equations, continuity equations,
and chemical equations [32]. With the improvement of computer
performance, thermospheric physical models have been developed
significantly, such as the Thermosphere-Ionosphere-
Electrodynamics General Circulation Model (TIEGCM), the
Coupled Thermosphere Ionosphere Plasmasphere
Electrodynamics Model (CTIPe) [33–35], and the Whole
Atmosphere Community Climate Model with thermosphere and
ionosphere extension (WACCM-X) [36,37]. Among the physical
models mentioned above, the National Center for Atmospheric
Research (NCAR)’s TIEGCM is one of the most advanced
models which has been widely used in ionosphere and
thermosphere research and achieved fruitful results
[38–48,48–50,52–54].

Since GOCE satellites provide high-precision atmospheric
density data in the lower thermosphere, they are also used in
model accuracy assessment exercises. [55] presented the first
analytical assessment of a thermosphere model against the High
Accuracy Satellite Drag Model (HASDM). Their results showed that
the density of HASDM and GOCE scaled by a constant factor of
1.29 are identical on time scales of 1 day or more. [56] compared the
JB2006 model with the J70, MET, NRLMSIS and DTM models in
terms of altitude, latitude, local time, day of year, solar radiation and
geomagnetic conditions. Their studies showed that the average
values of model accuracies are similar in the altitude region
below 600 km. By using neutral thermospheric mass density data
obtained from CHAMP (Challenging Minisatellite Payload),
GRACE (Gravity Recovery and Climate Experiment) and GOCE,
[19] compared the DTM2013, DTM2009 and JB2008 models. Their
results displayed that the performance of these average climate
models weakens as the weather contribution becomes larger.
Moreover, [57] compared the NRLMISE-00, DTM2009, and

DTM2013 models to provide a comprehensive assessment of the
semi-empirical models. The evaluation uses three time scales, which
are year, month, and day, with model performance decreasing
sequentially on shorter time scales. To specify and predict
fluctuations in thermospheric density during geomagnetic storms,
[21] used CHAMP, GRACE, and GOCEmeasurements to assess the
modeling capabilities of five thermospheric models for different
geomagnetic storm periods. Their results concluded that
DTM2013 and TIEGCM obtained the best results throughout all
storm period. In addition to being directly used for evaluating
models, GOCE data can also be used for assimilating models.
[58] used the DTM2013, which assimilates 4 years of GOCE
data, to conduct a comprehensive comparison with the
remaining 11 representative models. Their results show that the
scale heights of different empirical models show good agreement
during periods of high solar activity.

The above studies have used GOCE neutral density to evaluate
thermospheric empirical modes. This study aims to compare the
GOCE neutral density with the TIEGCM density to evaluate
TIEGCM. Section 2 describes the satellite density data, space
weather indices used in this paper, and TIEGCM. The main
results of the time-scale and space-scale analyses are given in
Section 3. The conclusions are in Section 4.

2 Model and data

2.1 GOCE density data

The GOCE satellite is considered to be the first European
satellite to provide a model of the global gravity field using high-
precision and high-spatial-resolution technology [41]. GOCE
orbited as close to Earth as possible to maximize its sensitivity to
variations in Earth’s gravity field with unprecedented accuracy and
spatial resolution. The satellite adopts a near-circular polar orbit
with an orbital height of 295 km and an orbital inclination of
96.5° [59,60].

The high-precision thermospheric mass densities used in this paper
benefit from these two important payloads on the GOCE satellite. One
of the components is a combined GPS/GLONASS receiver with a 1-s
sampling rate to measure high orbital pseudo-range and phase function
GOCE satellites for tracking and positioning. The high-precision
satellite orbit determination helps in the calibration of
accelerometers and the calculation of atmospheric density [5]. The
other core instrument is the triaxial electrostatic gravity gradiometer,
which is used to obtain high-precision satellite gravity gradient values
[17,61,62]. The non-conservative forces acting on the gravity
gradiometer can be compensated by a drag-free control system
(undamped ion micro-thruster).

The data used in this study extrapolate the density between the
scientific mission thruster data from 1 November 2009 to
20 October 2013. The spatial resolution of the GOCE neutral
density in orbit is about 80 km and the temporal resolution is
10 s. The GOCE density has a worst accuracy of a few percent,
and it is better than one percent after 2010 [63]. A detailed
description of the specific derivation process and validation of
the GOCE dataset can be found in the final report on the ESA
project website [64].
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2.2 Solar and geomagnetic indices

The solar radio flux at 10.7 cm wavelength is an important
parameter to characterize the level of solar activity, which is called
the solar F10.7 index in “solar flux units” (SFU) [65]. Because of the
strong correlation between F10.7 and solar EUV radiation, F10.7 is
often used as a proxy for solar UV/EUV (SAT et al., 2023 [66]).

The geomagnetic indices used in this work are Kp and Ap. Kp,
also known as the global 3-h magnetic index, is an index used by
individual geomagnetic stations to describe the strength of
geomagnetic disturbances every 3 h [67,68]. The Ap index is a
global index of the intensity of full-day geomagnetic
disturbances, known as the planetary equivalent daily amplitude
(PEDA) [69,70].

Figure 1 illustrates F10.7, Ap and Kp between 1 November
2009 and 20 October 2013. As Figure 1 shows, the F10.7 occurred
below 90 SFU before 2011, which indicates that the sun was at a low
activity condition. The F10.7 increased prominently after 2011 and
varied between 100 SFU and 180 SFU, suggesting that the sun was
under high activity condition. The value of Ap was larger in
2012–2013 compared to the other 3 years, reaching a maximum
of 87 in 2012. There were also several significant fluctuations from
2009 to 2011 and the trend was more gentle than that of 2012–2013,
reaching a maximum of 55 in 2009. As can be seen from the figure,
the Kp shows a similar trend to Ap. Moreover, Kp showed
significant larger values from 2010 to 2013, with the maximum
of 8 in 2012. This phenomenon suggests that geomagnetic activity
was very active during this period. Summing up, majority of the
GOCE density are observed under high solar activity condition,
when the heating in the thermosphere by solar radiation and
energetic particles remains in high level.

2.3 TIEGCM

The TIEGCM developed by the NCAR’s High-Altitude
Observatory (HAO), is a first-principle, time-dependent,

three-dimensional model. The model uses finite difference
techniques to solve the thermodynamic, and continuity
equations for the middle and upper atmosphere, and takes
into account the effects of particle settling in the polar
regions, high-latitude electric fields, and tides from the lower
atmosphere [48,71–77].

As Solomon and Qian [78] stated, the TIEGCM uses F10.7 to
characterize XUV/EUV/FUV solar fluxes and thus replace solar
input. By inputting indices such as F10.7 and Kp, the temperature,
density, wind field, and other distributions of the global middle and
upper atmosphere and its components with altitude and latitude can
be calculated range extending from ~97 km to 600 km [79].
TIEGCM has been developed to version 2.0, with a resolution of
2.5° in latitude and longitude, a vertical resolution of 1/4 scale height,
and a time step of 30 s. In this work, the geomagnetic forcing to the
TIEGCM model is represented by high-latitude precipitation and
convection pattern of the Heelis model [80]. Besides, The TIEGCM-
simulated results are interpolated to the location of GOCE
observations.

3 Results

In this study, the performance of the model is evaluated by
calculating the mean, standard deviation (STD) (Eq. 3) and the root
mean square (RMS) (Eq. 4) of the relative deviations (Eqs 1, 2) which
is calculated by the observations from the satellite and simulations
from the model. The formulas for calculating the indicators used in
the assessment are as follows:

O − C � ρGOCE − ρTIEGCM (1)
O − C
O

� ρGOCE − ρTIEGCM
∣∣∣∣ ∣∣∣∣

ρGOCE
� Δρ
∣∣∣∣ ∣∣∣∣
ρc

(2)

STD � 1
n − 1

∑n

i�1 xi − �x(( )2) 1
2( ) (3)

RMS �
����������
1
N
∑N

i�1 xi| |2
√

(4)

FIGURE 1
(A) F10.7 (yellow), (B) Ap (red), and (C) Kp (black) indices during 1 November 2009 and 20 October 2013.
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The assessment of the model in this work will be carried out in
terms of time scale analysis and spatial scale analysis. Section 3.1
presents the time-scale analysis, where the model will be evaluated in
terms of yearly, monthly, and daily scales. The spatial scale analysis
is presented in Section 3.2, where the model is evaluated in terms of
altitude, latitude, and local time.

3.1 Performance on time scales

Figure 2 shows the time series of a) thermospheric density
obtained from GOCE and TIEGCM, b) deviation between GOCE
and TIEGCM, and c) relative deviation between GOCE and
TIEGCM for the entire GOCE mission period from November
2009 to October 2013.

As Figure 2A shows, the observations and simulations have similar
tends, i.e., the density increase with year. Combined with the results in
Figure 1, this increase of density in thermosphere is mainly caused by
the heating by solar radiation and energetic particles. It also should be
noted that the thermospheric mass density derived from TIEGCM is
slightly larger than the density derived from GOCE in general.

From Figure 2B, we can see that the deviation values are more
distributed in the region of less than 0. In July 2013 and June 2011,
there are a primary and a secondary peak values of the deviation,
indicating that TIEGCM is underestimated by about 6.6 × 10−11 kg/
m3 and 5.5 × 10−11 kg/m3, respectively. In July 2012, the deviation
has a negative maximum about −6.3 × 10−11 kg/m3, indicating that
TIEGCM overestimates the density significantly. From Figure 3, it

can be seen that the observed density is larger than the simulated
density around March-April and September-November each year,
and the GOCE-derived density is less than the TIEGCM-simulated
density around December-January and June each year. This
phenomenon indicates that there is a semi-annual variation in
the bias, which is most significant in 2012. In general, the
fluctuation in 2009–2011 is not as prominent as that in
2012–2013, which may be related to the heating of the
thermosphere by solar radiation and energetic particles.

As Figure 2C shows, the relative deviation is generally larger in
low solar activity years and smaller in high solar activity years, which
is the opposite of the change of deviation in Figure 2B. The reason
for this phenomenon is that the thermospheric density is larger in
the year of high solar activity, resulting in a smaller relative
deviation. In addition, we can also see the seasonal variation of
relative deviations, that is, larger in winter and summer and smaller
in spring and autumn. The semi-annual mentioned here are further
described in long and monthly time scales.

To illustrate the distribution of the relative deviation data,
Figure 4 shows the probability density function of the relative
deviation with the fitted Gaussian distribution in the year of a)
2009, b) 2010, c) 2011, d) 2012, and e) 2013, respectively. The
general equation for Gaussian fitting (Eq. 5) is as follows:

f x( ) � a1*e
− x−b1

c1
( )2

) + a2*e
− x−b2

c2
( )2

) +/ + an*e
− x−bn

cn( )2 ) (5)
In Figure 4A, the mean relative deviation is −0.497 which is the

worst in the 5 years. While the sum of squared errors (SSE) is

FIGURE 2
(A) GOCE density (red) and TIEGCM density (black), (B) deviation (green), (C) relative deviation (blue), during 2009–2013.
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5 × 10−6 and the R-square of the fit is 0.9995, both of which indicate
that the relative deviation almost follows a Gaussian distribution.
Moreover, the skewness coefficient is very small which shows the
curve approximately exhibits a bell shaped symmetrical distribution.
Correspondingly, in Figure 4E the relative deviation mean is less in
2013, of which the relative deviation mean is −0.145. Moreover, The

SSE is 4 × 10−6 and the R-square of the fit is 0.9995. Overall, the
Gaussian fitting effect is the best in 2013. The relevant data for other
years are shown in Figures 4B–D, and they generally follow a
Gaussian distribution.

Summing up, it can be seen that the relative deviation in 2009 is
the largest among the 5 years. Although the skewness of the

FIGURE 3
Deviation (green) during 2009–2013.

FIGURE 4
Distribution (blue) and fitted Gaussian distribution (red) of relative deviation in the year of (A) 2009, (B) 2010, (C) 2011, (D) 2012, (E) 2013.
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distribution of the relative deviation is closest to 0 in the 5 years,
there is still a small degree of left bias (Figures 4D, E) and right bias
(Figures 4A–C). In general, the data distribution is relative
symmetric. From 2011 to 2012, the probability density of relative
deviation near 0 is large, indicating that the sum of the data that
model simulations are close to the satellite observations is large.
Furthermore, the fitted R-square statistics in the 5 years are all
greater than 0.99, which indicates the fitted Gaussian distribution
has a good agreement.

3.1.1 Long time scales
The performance of the model on a long time scale is shown in

Figure 5 and Table 1. In Table 1, it should be noted that the mean of
the relative deviation for the 5 years is not equal to the mean of each
year due to the different number of observations in each year. As can
be seen in Figure 5 and Table 1, maximum and minimum of the
mean relative deviation’s is 0.4979 in 2009 and 0.1608 in 2013,
respectively. Moreover, the 5-year average is 0.2238. It also shows a
decreasing trend in 5 years, and the most obvious decreasing trend
occurs from 2009 to 2010. One of the possible reason of this
phenomenon is relevant to the solar activities. The relative
deviation is smaller because the thermospheric density is usually
larger in high solar activity years. Therefore, the relative deviation is
larger in 2009 when the thermospheric density is smaller. Another
possible reason of the relative deviation becoming larger in 2009 is
that the data for 2009 are mainly concentrated at the end of the year,
which have been described in Figure 2C. Moreover, the STD of the
relative deviation is the largest in 2009 and the least in 2013, which is
0.2591 and 0.1163, respectively. The 5-year average is 0.2004 which
is closest to the value in 2011. Similarly, the RMS decreases
monotonically from 2009 to 2013, with its maximum and
minimum is 0.5613 in 2009 and 0.1984 in 2013, respectively. The
average RMS of the relative deviation is 0.3004. Generally, the
change trend of three indicators is quite similar in general, and
the decreasing of the RMS is more prominent.

Consistent with Figures 1C, 5 also reflects the impact of solar
activity on the density of the thermosphere atmosphere and the
relative deviation of the model. In low solar activity years, the

thermospheric density is small and the relative deviation is large,
while in high solar activity years, the thermospheric density is large
and the relative deviation is actually small.

3.1.2 Month time scales
The performance of the model on the month time scale will be

described here. Figure 6 shows the mean and STD of relative
deviation, and correlation between GOCE-derived and TIEGCM-
simulated density. As can be seen from the figure, the monthly mean
reaches a maximum of 0.63 in July 2010 and a minimum in April
2011 at 0.0825. The monthly mean exhibits larger values around
December and July, and smaller values around March and
September, showing a semi-annual variation. This phenomenon
shows the relative deviation has primary and secondary peaks
around the winter solstice and summer solstice, and minimal
values around the vernal equinox and the autumnal equinox.
This seasonal variation is agreeing with the results which has
been shown in Figure 2C, but it is more clear here. The STD
averaged on month scale shows the similar fluctuation trend as
the monthly mean but its fluctuation is less significant than the
mean. The peak of the STD is 0.3659 in July 2010, while the trough is
0.0651 in April 2011.The fluctuation range of the monthly mean
STD is larger in the years of low solar activity in 2009–2010 than in

FIGURE 5
Annually means (blue), STD (red), and RMS (green) values of relative deviations of GOCE satellite and TIEGCM thermospheric density simulations
from 2009 to 2013.

TABLE 1 Means, STD and RMS values of relative deviations of GOCE satellite
and TIEGCM thermospheric density simulations from 2009 to 2013.

Year

Mean STD RMS

2009 0.4979 0.2591 0.5613

2010 0.2907 0.2474 0.3818

2011 0.2232 0.1881 0.2919

2012 0.1801 0.1589 0.2402

2013 0.1608 0.1163 0.1984

5 years 0.2238 0.2004 0.3004
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the years of high solar activity in 2011–2013. In addition, although
the correlation between GOCE observations and TIEGCM
simulations fluctuates during the selected period, it has remained
almost above 0.9 on average. It is worth noting that the minimum
correlation coefficient of each year always appears between
November and February. Among them, the minimum correlation
coefficient of all years is around 0.76 in February 2013.

3.1.3 Daily time scales
The performance of the model on a daily time scale is shown in

Figures 7–9 and Tables 2, 3. Figure 7 shows the daily mean and STD
of the relative deviations and the correlation coefficients between the
daily GOCE-derived and TIEGCM-simulated density. It shows that
the maximum mean of relative deviation (peak) on the daily time
scale is 0.84 in 2009, while the minimum mean of it is 0.046 in 2013.
Moreover, the relative deviation averaged on the daily time scales
shows a similar trend of variation with the monthly mean.
Furthermore, the daily STD of the relative deviation has a largest
value of 0.37 in May 2010. However, the relative deviation tended to
be stable, with the daily STD within 0.2. The minimum of the STD is
0.034 in 2013.The daily mean and daily STD of the relative deviation
almost match those of the monthly scales in terms of the fluctuation
trend, but the range of the daily mean is larger than the monthly
mean. Furthermore, the minimum correlation coefficient is
0.0664 in 2011, and the maximum is 0.9869 in 2013. In general,
most of the correlation coefficients are larger than 0.8, which
indicating there is a high correlation between the observations
and simulations on daily time scale.

It is noticeable that [81] found that the percent difference is
negatively correlated with space weather conditions. In this section,
we also investigated the relationship between the relative deviation
and Ap and F10.7, respectively. Figure 8 shows a time-series
comparison plot of the daily mean of the relative deviation and
the Ap. Meanwhile, Table 3 shows the value of the correlation
coefficient between the daily relative deviation and the Ap for each
year. It can be seen from Figure 8 and Table 3, the relative deviation
is larger in the year with the smaller Ap index, but smaller in the year
with larger Ap index. The absolute value of the correlation

coefficient reaches a maximum of 0.51 in 2009 and a minimum
of 0.0450 in 2012. Generally, the relative deviation and Ap show
negative correlation except 2012.

Figure 9 shows the analysis of the daily mean relative deviation
against the F10.7 for each year from 2009 to 2013. In general, the
relative deviation is larger in the year with smaller F10.7 index,
while the relative deviation is smaller in the year with larger
F10.7 index. That is, F10.7 and relative deviation are negatively
correlated overall. During high solar activity (larger F10.7), the
mean of the TMD (Thermosphere Model Density) ratio is closer
to 1 than during low solar activity (smaller F10.7). The TMD ratio
can be converted into a relative deviation according to Eq. 2,
which implies that the mean of the relative deviation is closer to
0 during high solar activity than during low solar activity. That is,
the higher the level of solar activity, the smaller the relative
deviation between GOCE-derived and TIEGCM-simulated
density. Combined with the correlation analysis in Table 3, it
can be seen that the correlation between mean relative deviation
and F10.7 is strongest in 2011 with a correlation coefficient value
of −0.55, followed by 2009 and 2010 with a correlation coefficient
value of −0.40 and −0.33, respectively. In 2012, it shows a weak
positive correlation between the F10.7 and daily average relative
deviation. Therefore, except 2012, the relative deviation and
F10.7 show a negative correlation. This is consistent with the
conclusion reached by [58], which is concluded from empirical
thermospheric models.

To sum up, comparing Figure 6 with Table 1 and Figure 5, the
relative deviation increases from 0.49 or less of the annual mean to
0.63 or less, i.e., the range of fluctuation of the relative deviation is
becoming larger significantly when the model is evaluated on a
shorter time scale (month). Similarly, the annually mean STD of the
relative deviation increases from 0.25 or less to 0.39 or less. In other
words, the range of fluctuation of the STD also becomes larger,
suggesting that the model perform worse on the monthly time scale
than on the longer time scale. Moreover, the relative deviation
increases from 0.63 or less of the monthly mean to 0.84 or less,
which also shows that the model performs better on the longer
time scale.

FIGURE 6
Monthlymean (blue), STD (red) of the relative deviation and correlation (green) of the GOCE satellite and TIEGCM thermospheric density simulations
from 2009 to 2013.
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3.2 Performance on spatial scales

3.2.1 Altitude
Figure 10 displays the relative deviation curves with altitude for

each year except 2009. The altitude in each year is divided into six
equal segments within its range of variation.

As would be expected from the data in Figure 10, the relative
deviation in 2010 is systematically larger than those for the rest of
the years at all altitudes. It shows that the overall trend of the
relative deviation decreases with altitude in 2010. The relative
deviation in 2011 is a turning point at 270 km. The relative
deviation decreases with altitude that below 270 km and increases
with altitude that above 270 km. Overall, the relative deviation
shows an increasing trend with altitude in 2011. In 2012, the
mean value of the relative deviation shows an increasing trend
with altitude in the orbit altitude range, and the relative deviation
increases most significantly from 279 to 287 km, which is about
0.08. The relative deviation also being a turning point at 270 km,

which is the similar as that in 2011. In 2013 the relative deviation
shows a definite increase with altitude that below 256 km and
then decrease with altitude. The relative deviation appears a
minimum at about 270 km. In addition to the treatments
carried out for each year, the relative deviation with altitude is
analyzed for the 4 years. The average curve of relative deviation
averaged over the 4-year period has the similar trend as the
2013 curve below 240.7 km. After that the relative deviation
increases with altitude. The overall trend of the 4-year relative
deviation is increasing with altitude.

In order to present the true variation of relative deviation with
altitude more intuitively, we averaged all altitudes by the resolution
of 1 km. The result is displayed in Figure 11. It can be seen that below
290 km, the relative deviation showed a slow increasing trend.
Within the range of 290–295 km, there is a significant increase in
relative deviation. One of the reasons is that thermospheric density
decays with altitude increase. Therefore, generally speaking, the
smaller relative deviations appear at lower altitude, while the larger

FIGURE 7
Daily mean (blue), STD (red) of the relative deviation and correlation (green) of the GOCE satellite and TIEGCM thermospheric density simulations
from 2009 to 2013.

FIGURE 8
Daily average of relative deviations (blue) and Ap (pink) from 2009 to 2013.
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relative deviations occur at higher altitude. This is make an
agreement with the conclusion in Figure 9, which shows that the
performance of the TIEGCM may degrade as the altitude increase.

3.2.2 Latitude
Figure 12 shows the latitudinal structure of the models

evaluated by computing relative deviation in 10° -latitude
bands. In Figure 12, the relative deviation exhibits a structure
of peak and trough with the variation of latitude in 2010. The
peak appears at 30° N with a value of 0.32, while the trough occurs
at 40° S with a value of 0.36. Furthermore, we note that the relative
deviation at high latitudes is slightly larger in the Southern
Hemisphere than that in the Northern Hemisphere. The
relative deviation of other years has maintained a similar
trend as 2010, but generally it has shown a significant
decrease with year. Moreover, in other years, the maximum of
relative deviation occurs in the high-latitude regions in the
Southern Hemisphere, which makes the relative deviation at
mid-latitude in the Northern Hemisphere become a secondary
peak. That is, there is a clear hemispheric asymmetry in the
latitudinal variation of relative deviations, with greater relative
deviation occurs in the Southern Hemisphere except 2010.

FIGURE 9
Comparative analysis of the daily average of relative deviation (blue) and F10.7 (orange) from 2009 to 2013.

TABLE 2 Correlation between Ap and relative deviations from 2009–2013.

Year Correlation

(Ap&relative deviation) 2009 2010 2011 2012 2013

−0.5141 −0.2674 −0.0256 0.0450 −0.1261

TABLE 3 Correlation between F10.7 and relative deviations from 2009–2013.

Year Correlation

(F10.7&relative
deviation)

2009 2010 2011 2012 2013

−0.4035 −0.3304 −0.5546 0.0750 −0.1682

FIGURE 10
The curve of relative deviation with altitude for each selected year except 2009.
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3.2.3 Local time
In this section, we will discuss the variation of relative deviation

with local time. We convert longitude into local time through the
conversion Eq. 6. Due to the high inclination angle of GOCE, local
time coverage is limited. In order to prevent interference from the
data which is accepted from both high latitude and Cross-time zone,
we exclude data with latitudes higher than 70° during our analysis.

LT � UT + LON/15 (6)
Figure 13 shows the relative deviation with local time from

2010 to 2013. The relative deviation varies relative similar with local
time from 2010 to 2013. The relative deviation decreases from the
day side (from 5:30 LT to 7:30 LT) in 2010, reaching a minimum
value of 0.287 at 7:30 LT. From 17:30 LT to 19:30 LT, the relative
deviation has a significant decrease. Similar to the relative deviation
of 2010, the relative deviation of 2011–2013 show the maximum
deviation in local early morning and then the relative deviation
rapidly decreases after that. However, the relative deviation has

changed at dusk (from 17:30 LT to 20:30 LT). The relative deviation
in 2011 and 2012 both show a sudden increase then decreases with
local time, while the curve of 2013 is more stable from 18:30 LT to
20:30 LT. It can be seen that the relative deviation is usually larger in
the dawn at about 5:30 LT, and decreases sharply to a minimum
around 8:30 LT.

4 Conclusion

In this paper, the density derived from the GOCE between
November 2009 and October 2013 are used to validate the
performance of the TIEGCM. We assess the model accuracy via
both the time and spatial scales. The conclusions are as follows:

For the time scale, when assessed on the long time scale, the mean
relative deviations for 2010–2013 are all within 0.30 and the STD are all
within 0.25, while it had a mean relative deviation of 0.49 in 2009. In
contrast, when evaluated on a monthly time scale, the mean relative

FIGURE 11
Curves of relative deviation relative to altitude change from 2009–2013 (blue) and the average of relative deviation at each altitude (black).

FIGURE 12
Relative deviation of GOCE and TIEGCM thermospheric density with 10° latitude bands mean for each year excep 2009.
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deviation is below 0.1 in the April and reaches 0.63 in the July, the
model bias covers a larger range, and the mean relative deviation
changes from 0.49 to 0.63, an increase of 0.14. When evaluated on the
daily time scale, the model bias coverage becomes larger, with the mean
relative deviation changing to 0.84, a 0.21 increase from year to day.
Also in the time scale, we analyzed the relationship between the daily
average of relative deviation and the daily average of space weather
conditions. Both Ap and F10.7 shows a negative correlation with the
relative deviation, where the correlation coefficient between the relative
deviation and F10.7 in 2011 is up to −0.56, i.e., The relative deviation of
TIEGCM and GOCE is negatively correlated with F10.7 and Ap. The
TIEGCMperforms better on long-time scales than on short-time scales,
which is agree with the conclusion reached by the empirical models.

For spatial scales, when assessed at altitude scales, the relative
deviation regarding altitude is increased throughout the
2010–2013 years, and the relative deviation is larger at higher
altitudes versus at lower altitudes. When evaluated on a
latitudinal scale, by calculating the average of relative deviations
in the 10°-latitude bands, it can be concluded that, there is a clear
hemispheric asymmetry in the variation of relative deviations about
latitude, with greater variation in the Southern Hemisphere. There is
a clear hemispheric asymmetry in the latitudinal variation of relative
deviations, with greater relative deviation occurs in the Southern
Hemisphere except 2010. When evaluated at the local time scale, the
relative deviations also show the similar structure with local time
over the 4 years–they all show the relative deviation changes more
dramatically in local morning than at dusk.

In summary, the high accuracy of the GOCE satellite atmospheric
density data provides a good opportunity to evaluate the performance of
TIEGCM at middle thermosphere. The differences between
observations and simulations indicate some shortcomings of the
model and thus will benefit from future model improvement.
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