Pandian Journal of Mathematical Sciences

Some results on l-fuzzy soft groups under bounded sum and bounded difference operations

Dr. J. Arockia Reeta, Guest Faculty, Department of Mathematics, Bharathidasan University, Trichy, Tamilnadu, India.
ORCiD: https://orcid.org/0009-0001-1995-8775

Abstract

Lattice ordered group has been developed by J.Vimala. After that J. Arockia Reeta and J. Vimala introduced Lattice ordered fuzzy soft groups(l-FSG) and obtained real life applications. In this present work, we have attained some results on l-FSGs under the operations of bounded sum and bounded difference.

Keywords: Fuzzy soft groups, l-FSG, operations of bounded sum and bounded difference in l-FSG.

1. Introduction

The notion of lattice theory was proposed by Gratzer [6]. Fuzzy set theory has been propounded by Zadeh [10] and developed by Zimmerman [11]. Soft set theory has been originated by Molodsov [8]. Fuzzy soft set [7] has been developed and used in recent years to solve real life problems [5]. Fuzzy soft group was defined by Abdulkadir Aygunoglu and Halis Aygun [1]. Lattice ordered group has been investigated by J.Vimala [9]. A lattice structure on fuzzy soft group was constructed and some of its properties were investigated by J. Arockia reeta et al [2]. After that, anti-lattice ordered fuzzy soft groups [3] and its matrix operations have been studied and implemented in deciding process. Further, Algebraic relations over l-Fuzzy soft groups has been examined [4]. In this present work, we have attained some results on l-FSGs under the operations of bounded sum and bounded difference.

2. Preliminaries

Definition 2.1[9] Let X be a non-empty set, then a fuzzy set μ over X is a function from X into $I=[0,1]$. ie., $\mu: X \rightarrow \mathrm{I}$.
Definition 2.2 [5] Let X be an initial universe set and E a set of parameters with respect to X . Let $P(X)$ denote the power set of X and $A \subseteq E$. A pair (F, A) is called a soft set over X, where F is a mapping given by $F: A \rightarrow P(X)$.

A soft set over X is a parameterized family of subsets of the universe X .
Definition 2.3 [5] Let I^{X} denote the set of all fuzzy sets on X and $\mathrm{A} \subset \mathrm{E}$. A pair (f, A) is called a fuzzy soft set over X , where f is a mapping from A into I^{X}. That is, for each $a \in A$, $f(a)=f_{a}: X \rightarrow I$, is a fuzzy set on X .
Definition 2.4 [10] The bounded sum of two fuzzy sets $\widetilde{\mathrm{A}}$ and $\widetilde{\mathrm{B}}$ is denoted by $\widetilde{\mathrm{C}}=\widetilde{\mathrm{A}} \oplus \widetilde{\mathrm{B}}=$ $\left\{\left(x, \mu_{\tilde{A} \oplus \tilde{B}}(x)\right) ; x \in X\right\}$, where $\mu_{\tilde{A} \oplus \tilde{B}}(x)=\min \left\{1, \mu_{\tilde{A}}(x)+\mu_{\tilde{B}}(x)\right\}$.

Pandian Journal of Mathematical Sciences

Definition 2.5 [10] The bounded difference of two fuzzy sets \widetilde{A} and $\widetilde{\mathrm{B}}$ is denoted by $\widetilde{\mathrm{C}}=$ $\widetilde{\mathrm{A}} \ominus \widetilde{\mathrm{B}}=\left\{\left(\mathrm{x}, \mu_{\widetilde{\mathrm{A}} \ominus \widetilde{\mathrm{B}}}(\mathrm{x})\right) ; \mathrm{x} \in \mathrm{X}\right\}$, where $\mu_{\widetilde{\mathrm{A}} \ominus \widetilde{\mathrm{B}}}(\mathrm{x})=\operatorname{Max}\left\{0, \mu_{\widetilde{\mathrm{A}}}(\mathrm{x})+\mu_{\widetilde{\mathrm{B}}}(\mathrm{x})-1\right\}$.

Definition 2.6 [9]The complement of a fuzzy soft set (f, A) is denoted by ($f, A)^{c}$ and is defined by $(f, A)^{c}=\left(f^{c}, \neg A\right)$, where $f^{c}: \neg A \rightarrow P(U)$ is a mapping given by $f^{c}(\sigma)=(f(\neg \sigma))^{c}$ for all $\sigma \in \neg$ A.
Definition 2.7[5] Let X be a group and (f, A) be a FSG over X. A FSG (f, A) is said to be an l - FSG over X. If for the mapping $f: A \rightarrow I^{X}, a \leq b$ implies $f_{a} \subseteq f_{b}$, for all $a, b \in A$.

Example 2.8 Let \mathbb{N} be the set of all natural numbers and (\mathbb{N}, \leq) be a lattice. Let \mathbb{R} be the set of all real numbers. Define $f: \mathbb{N} \rightarrow I^{\mathbb{R}}$ by $f(n)=f_{n}: \mathbb{R} \rightarrow I$ for each $n \in \mathbb{N}$, where

$$
f(x)=\left\{\begin{array}{cl}
1-\frac{1}{n+1}, & \text { if } x=k 5^{n}, \exists k \in Z \\
0, & \text { otherwise }
\end{array}\right.
$$

Then the pair $((f, \mathbb{N}), \vee, \wedge, \subseteq)$ forms an l - FSG over \mathbb{R}.

3. Some results on l-fuzzy soft groups under bounded sum and bounded difference operations

In this section, we develop some results on l-FSGs under the operations of bounded sum and bounded difference.
${ }^{1}$ Throughout this work, let X be a group and $P(X)$ be the power set of X. If the set of parameters E is also a lattice with respect to certain binary operations or partial order, then a non-empty subset A of E also inherits the partial order from the set E and we use v for maximum and \wedge for minimum.
Proposition 4.1 Let (f, A) be an $l-F S G$ over a group X. Then we have the following results for all $a_{1}, a_{2}, a_{3} \in A$ and $a_{1} \leq a_{2} \leq a_{3}$,

1. $f_{a_{1}} \vee\left(f_{a_{2}} \oplus f_{a_{3}}\right)=\left(f_{a_{1}} \vee f_{a_{2}}\right) \oplus\left(f_{a_{1}} \vee f_{a_{3}}\right)$,
2. $f_{a_{1}} \wedge\left(f_{a_{2}} \oplus f_{a_{3}}\right)=f_{a_{1}}$,
3. $\left(f_{a_{1}} \ominus f_{a_{2}}\right) \vee f_{a_{3}}=f_{a_{3}}$,
4. $f_{a_{1}} \oplus\left(f_{a_{2}} \vee f_{a_{3}}\right)=f_{a_{1}} \oplus f_{a_{3}}$,
5. $f_{a_{1}} \oplus\left(f_{a_{2}} \wedge f_{a_{3}}\right)=f_{a_{1}} \oplus f_{a_{2}}$.

Proof:

1. Let X be a group and (f, A) be an l - FSG over X. Then we have for all $a_{1}, a_{2}, a_{3} \in A$, $a_{1} \leq a_{2} \leq a_{3} \Rightarrow f_{a_{1}} \subseteq f_{a_{2}} \subseteq f_{a_{3}}$.
Then, we get $f_{a_{1}} \vee f_{a_{2}}=f_{a_{2}}, \quad f_{a_{1}} \vee f_{a_{3}}=f_{a_{3}}$,
$f_{a_{1}} \subseteq f_{a_{2}} \oplus f_{a_{3}} \Rightarrow f_{a_{1}} \vee\left(f_{a_{2}} \oplus f_{a_{3}}\right)=f_{a_{2}} \oplus f_{a_{3}}$ and
$\left(f_{a_{1}} \vee f_{a_{2}}\right) \oplus\left(f_{a_{1}} \vee f_{a_{3}}\right)=f_{a_{2}} \oplus f_{a_{3}}$.
Therefore $f_{a_{1}} \vee\left(f_{a_{2}} \oplus f_{a_{3}}\right)=\left(f_{a_{1}} \vee f_{a_{2}}\right) \oplus\left(f_{a_{1}} \vee f_{a_{3}}\right)$.
2. $\boldsymbol{f}_{a_{\mathbf{2}}} \oplus \boldsymbol{f}_{a_{3}}=\left\{\left(\boldsymbol{x}, \mathbf{1} \wedge\left[\boldsymbol{\mu}_{\boldsymbol{f}_{a_{\mathbf{2}}}}(\boldsymbol{x})+\boldsymbol{\mu}_{\boldsymbol{f}_{a_{3}}}(\boldsymbol{x})\right]\right) / \boldsymbol{x} \in \boldsymbol{X}\right\}$

We know that $a_{1} \leq a_{2} \leq a_{3} \Rightarrow \mu_{f_{a_{1}}}(x) \leq \mu_{f_{a_{2}}}(x) \leq \mu_{f_{a_{3}}}(x)$, for each $x \in X$.

$$
\Rightarrow \mu_{f_{a_{1}}}(x)<\mu_{f_{a_{2}}}(x)+\mu_{f_{a_{3}}}(x) \text { and } \mu_{f_{a_{1}}}(x) \leq 1, \text { for each } x \in X
$$

$$
\begin{aligned}
& \Rightarrow \mu_{f_{a_{1}}}(x)<1 \wedge\left(\mu_{f_{a_{2}}}(x)+\mu_{f_{a_{3}}}(x)\right), \text { for each } x \in X . \\
& \Rightarrow \mu_{f_{a_{1}}}(x) \wedge\left[1 \wedge\left(\mu_{f_{a_{2}}}(x)+\mu_{f_{a_{3}}}(x)\right)\right]=\mu_{f_{a_{1}}}(x), \text { for each } x \in X .
\end{aligned}
$$

Then $\left\{\left(x, \mu_{f_{a_{1}}}(x)\right) / x \in X\right\} \wedge\left\{\left(x, 1 \wedge\left[\mu_{f_{a_{2}}}(x)+\mu_{f_{a_{3}}}(x)\right]\right) / x \in X\right\}=\left\{\left(x, \mu_{f_{a_{1}}}\right) / x \in X\right\}$.
Hence we get $f_{a_{1}} \wedge\left(f_{a_{2}} \oplus f_{a_{3}}\right)=f_{a_{1}}$.

$$
\text { 3. } \boldsymbol{f}_{a_{1}} \ominus \boldsymbol{f}_{a_{2}}=\left\{\left(x, 0 \vee\left[\mu_{f_{a_{1}}}(x)+\mu_{f_{a_{2}}}(x)-1\right]\right) / x \in X\right\} \text {. }
$$

We know that $a_{1} \leq a_{2} \leq a_{3} \Rightarrow \mu_{f_{a_{1}}}(x) \leq \mu_{f_{a_{2}}}(x) \leq \mu_{f_{a_{3}}}(x)$, for each $x \in X$.

$$
\begin{aligned}
& \Rightarrow 1+\mu_{f_{a_{3}}}(x) \geq \mu_{f_{a_{2}}}(x)+\mu_{f_{a_{1}}}(x), \text { for each } x \in X . \\
& \Rightarrow \mu_{f_{a_{1}}}(x)+\mu_{f_{a_{2}}}(x)-1 \leq \mu_{f_{a_{3}}}(x), \text { for each } x \in X . \\
& \Rightarrow 0 \vee\left(\mu_{f_{a_{1}}}(x)+\mu_{f_{a_{2}}}(x)-1\right) \vee \mu_{f_{a_{3}}}(x)=\mu_{f_{a_{3}}}(x), \text { for each } x \in X .
\end{aligned}
$$

Therefore

$$
\left.\left\{x, 0 \vee\left[\mu_{f_{a_{1}}}(x)+\mu_{f_{a_{2}}}(x)-1\right]\right) / x \in X\right\} \vee\left\{\left(x, \mu_{f_{a_{3}}}(x) / x \in X\right\}=\left\{\left(x, \mu_{f_{a_{3}}}(x)\right) / x \in X\right\} .\right.
$$

Then we get $\left(f_{a_{1}} \ominus f_{a_{2}}\right) \vee f_{a_{3}}=f_{a_{3}}$.
(iv) and (v) Proof is obvious.

Example 4.1 From the example 2.8, consider the l-FSG $(f, A)=\left\{f_{2}, f_{5}, f_{7}, f_{8}, f_{10}\right\}$

$$
i e .,(f, A)=\left\{\frac{\mathrm{k}^{-2}}{0.7}, \frac{\mathrm{k} 5^{-5}}{0.8}, \frac{\mathrm{k} 5^{-7}}{0.88}, \frac{\mathrm{k} 5^{-8}}{0.89}, \frac{\mathrm{k} 5^{-10}}{0.9}\right\} .
$$

Clearly it shows that $f_{2} \subseteq f_{5} \subseteq f_{7} \subseteq f_{8} \subseteq f_{10}$.

$$
\begin{align*}
f_{2} \vee\left(f_{5} \oplus f_{7}\right) & =\left\{\frac{k 5^{-2}}{0.7} \vee\left(\frac{k 5^{-5}}{0.8} \oplus \frac{k 5^{-7}}{0.88}\right)\right\} . \\
& =\left\{\frac{k 5^{-2}}{0.7} \vee \frac{k 5^{-5}}{1}\right\} . \tag{1}\\
& =\left\{\frac{k 5^{-5}}{1}\right\} . \\
\left(f_{2} \vee f_{5}\right) \oplus\left(f_{2} \vee f_{7}\right) & =\left\{\left(\frac{k 5^{-2}}{0.7} \vee \frac{\mathrm{k} 5^{-5}}{0.8}\right) \oplus\left(\frac{\mathrm{k} 5^{-2}}{0.7} \vee \frac{\mathrm{k} 5^{-7}}{0.88}\right)\right\} . \\
& =\left\{\frac{\mathrm{k} 5^{-5}}{0.8} \oplus \frac{\mathrm{k} 5^{-7}}{0.88}\right\} . \tag{2}\\
& =\left\{\frac{\mathrm{k} 5^{-5}}{1}\right\} .
\end{align*}
$$

From (1) and (2), we get $f_{2} \vee\left(f_{5} \oplus f_{7}\right)=\left(f_{2} \vee f_{5}\right) \oplus\left(f_{2} \vee f_{7}\right)$.
Proposition 4.2 Let (f, A) be an $l-F S G$ over a group X. Then

1. $\left(f_{a_{1}} \oplus f_{a_{2}}\right)^{c}=f_{a_{1}}^{c} \ominus f_{a_{2}}^{c}$,
2. $\left(f_{a_{1}} \ominus f_{a_{2}}\right)^{c}=f_{a_{1}}^{c} \oplus f_{a_{2}}^{c}$,
3. $\left(f_{a_{1}}^{c} \oplus f_{a_{2}}^{c}\right)^{c}=f_{a_{1}} \ominus f_{a_{2}}$,
4. $\left(f_{a_{1}}^{c} \ominus f_{a_{2}}^{c}\right)^{c}=f_{a_{1}} \oplus f_{a_{2}}$,

Proof:

1. $f_{a_{1}} \oplus f_{a_{2}}=\left\{\left(x, \min \left\{1, \mu_{f_{a_{1}}}(x)+\mu_{f_{a_{2}}}(x)\right) / x \in X\right\}\right.$.

Then $\left(f_{a_{1}} \oplus f_{a_{2}}\right)^{c}=\left\{\left(x, 1-\left\{1 \wedge\left\{\mu_{f_{a_{1}}}(x)+\mu_{f_{a_{2}}}(x)\right\}\right\}\right) / x \in X\right\}$.

$$
\begin{aligned}
& =\left\{\left(x,\{1-1\} \vee\left\{1-\mu_{f_{a_{1}}}(x)-\mu_{f_{a_{2}}}(x)\right\}\right) / x \in X\right\} . \\
& =\left\{\left(x, 0 \vee\left\{1-\mu_{f_{a_{1}}}(x)+1-\mu_{f_{a_{2}}}(x)-1\right\}\right) / x \in X\right\} .
\end{aligned}
$$

$$
=f_{a_{1}}^{c} \ominus f_{a_{2}}^{c}
$$

2. The proof is similar to (1).
3. $f_{a_{1}}^{c} \oplus f_{a_{2}}^{c}=\left\{\left(x, \min \left\{1,1-\mu_{f_{a_{1}}}(x)+1-\mu_{f_{a_{2}}}(x)\right\}\right) / x \in X\right\}$

$$
\begin{aligned}
\left(f_{a_{1}}^{c} \oplus f_{a_{2}}^{c}\right)^{c} & =\left\{\left(x, 1-\left\{1 \wedge\left\{1-\mu_{f_{a_{1}}}(x)+1-\mu_{f_{a_{2}}}(x)\right\}\right\}\right) / x \in X\right\} \\
& =\left\{\left(x,\{1-1\} \vee\left\{1-1+\mu_{f_{a_{1}}}(x)-1+\mu_{f_{a_{2}}}(x)\right\}\right) / x \in X\right\} \\
& =\left\{\left(x, 0 \vee\left\{\mu_{f_{a_{1}}}(x)+\mu_{f_{a_{2}}}(x)-1\right\}\right) / x \in X\right\} \\
& =f_{a_{1}} \ominus f_{a_{2}}
\end{aligned}
$$

4. The proof is similar to (3).

Proposition 4.3 Let (f, A) and (f, B) be an $l-F S G$ over a group X. Then
(1) $((f, A) \cup(f, B))^{c}=\left(f^{c}, \neg A\right) \cup\left(f^{c}, \neg B\right)=(f, A \cup B)^{c}$.
(2) $((f, A) \cap(f, B))^{c}=\left(f^{c}, \neg A\right) \cap\left(f^{c}, \neg B\right)=(f, A \cap B)^{c}$.

Proof:(1)
Let $(f, A)=\left\{f_{a_{1}}, f_{a_{2}}, f_{a_{3}}, f_{a_{4}}, f_{a_{5}}\right\}$ and $(f, B)=\left\{f_{b_{1}}, f_{b_{2}}, f_{b_{3}}, f_{b_{4}}, f_{b_{5}}\right\}$.
Therefore $(f, A) \cup(f, B)=\left\{f_{a_{1}}, f_{a_{2}}, f_{a_{3}}, f_{a_{4}}, f_{a_{5}}, f_{b_{1}}, f_{b_{2}}, f_{b_{3}}, f_{b_{4}}, f_{b_{5}}\right\}$.

$$
\begin{aligned}
((f, A) \cup(f, B))^{c}= & \left\{f_{\neg a_{1}}, f_{\neg a_{2}}, f_{\neg a_{3}}, f_{\neg a_{4}}, f_{\neg a_{5}}, f_{\neg b_{1}}, f_{\neg b_{2}}, f_{\neg b_{3}}, f_{\neg b_{4}}, f_{\neg b_{5}}\right\} . \\
& =\left\{f_{\neg a_{1}}, f_{\neg a_{2}}, f_{\neg a_{3}}, f_{\neg a_{4}}, f_{\neg a_{5}}\right\} \cup\left\{f_{\neg b_{1}}, f_{\neg b_{2}}, f_{\neg b_{3}}, f_{\neg b_{4}}, f_{\neg b_{5}}\right\}, \\
& =\left(f^{c}, \neg A\right) \cup\left(f^{c}, \neg B\right), \\
& =\left(f^{c}, \neg A \cup \neg B\right), \\
& =(f, A \cup B)^{c} .
\end{aligned}
$$

Hence $((f, A) \cup(f, B))^{c}=\left(f^{c}, \neg A\right) \cup\left(f^{c}, \neg B\right)=(f, A \cup B)^{c}$.
Proof of (2) is similar to (1).
Proposition 4.4 Let (f, A) and (f, B) be an $l-F S G$ over a group X. Then
(1) $(f, A \cup B)^{c}=(f, A)^{c} \cup(f, B)^{c}(2)(f, A \cap B)^{c}=(f, A)^{c} \cap(f, B)^{c}$.

Proof:
(1) $(f, A \cup B)^{c}=\left(f^{c}, \neg(A \cup B)\right)$,

$$
\begin{aligned}
& \left.=\left(f^{c}, \neg A \cup \neg B\right)\right), \\
& \left.=\left(f^{c}, \neg A\right) \cup\left(f^{c}, \neg B\right)\right), \\
& =(f, A)^{c} \cup(f, B)^{c} .
\end{aligned}
$$

Proof of (2) is similar to (1).
Proposition 4.5 Let (f, A) be an l-FSG over a group X. Then it holds the following results: $\forall a_{1}, a_{2}, a_{3} \in A$,

1. $f_{a_{1}} \oplus\left(f_{a_{2}} \ominus f_{a_{1}}\right)=f_{a_{1}}$, when $\mu_{f_{a_{1}}}, \mu_{f_{a_{2}}} \leq 0.5$,
2. $f_{a_{1}} \ominus\left(f_{a_{2}} \oplus f_{a_{1}}\right)=f_{a_{1}}$, when $\mu_{f_{a_{1}}}, \mu_{f_{a_{2}}} \geq 0.5$.

Proof:
Let X be a group and (f, A) be an l - FSG over X . Then we have for all $a_{1}, a_{2}, a_{3} \in A$, $a_{1} \leq a_{2} \leq a_{3} \Rightarrow f_{a_{1}} \subseteq f_{a_{2}} \subseteq f_{a_{3}}$.
$f_{a_{2}} \ominus f_{a_{1}}=\left\{\left(x, 0 \vee\left[\mu_{f_{a_{2}}}(x)+\mu_{f_{a_{1}}}(x)-1\right]\right) / x \in X\right\}=\{(x, 0) / x \in X\}$,
Then $f_{a_{1}} \oplus\left(f_{a_{2}} \ominus f_{a_{1}}\right)=\left\{\left(x, \min \left\{1, \mu_{f_{a_{1}}}(x)+0 / x \in X\right\}\right\}\right.$,

Pandian Journal of Mathematical Sciences

$$
\begin{aligned}
& =\left\{x, \mu_{f_{a_{1}}}(x)\right\}, \\
& =f_{a_{1}}(x)
\end{aligned}
$$

Proof of (2) is similar to (1).

5. Conclusion

In this present work, we have obtained some results on l-FSGs under the operations of bounded sum and bounded difference. In future, application of l-FSGs will be established and analysed.

References

[1] Abdulkadhir Aygunoglu and H. Aygun, Introduction to fuzzy soft groups, Computer Mathematics and Applications, 58 (2009), 1279-1286.
[2] J.Arockia Reeta, and J.Vimala, A study on distributive and modular lattice ordered fuzzy soft group and its duality, Applied Mathematics Journal of Chinese University, 31(4) (2016), 491-502.
[3] J. Arockia Reeta, J. Vimala, Implementation of anti-lattice ordered fuzzy soft groups and its matrix operations in deciding process,Journal of Intelligent \& fuzzy systems,(2018), 35(4): pp. 4857-4864.
[4] J. Arockia Reeta, J. Vimala and AB saeid, Algebraic relations over l- fuzzy soft groups, Afrika Mathematika, 32(5)(2020), 1-15.
[5] N.Cagman, F.Citak and S.Enginoglu, Fuzzy soft set theory and its applications, Iranian Journal of Fuzzy Systems, 8(3) (2011), 137-147.
[6] G. Gratzer, Lattice Theory: First Concepts and Distributive Lattices, University of Manitoba, W. H. Freeman and Company, San Francisco, 1971.
[7] P.K. Maji, P. Biswas and A.R. Roy, A fuzzy soft sets, Journal of Fuzzy Mathematics, 3 (2001), 589-602.
[8] D.A. Molodtsov, Soft set theory - First result, Computer Mathematics and Applications, 37 (1999), 19-31.
[9] J. Vimala, Lattice Ordered Groups, International Journal of Scientific and Engg. Research, 5(9), (2014) 58-60.
[10] L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
[11] H. J. Zimmermann, Fuzzy set theory and its Applications, Springer International Edition, Fourth Edition, New Delhi, 1934.

Author Contribution Statement: NIL.
Author Acknowledgement: NIL.
Author Declaration: I declare that there is no competing interest in the content and authorship of this scholarly work.
(c) © The content of the article is licensed under https://creativecommons.org/licenses/by/4.0/ International License.

