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STRUCTURAL THEORY OF TREES

II. COMPLETENESS AND COMPLETIONS OF TREES

RUAAN KELLERMAN, ALBERTO ZANARDO, AND VALENTIN GORANKO

Abstract. Trees are partial orderings where every element has a lin-
early ordered set of smaller elements. We define and study several nat-
ural notions of completeness of trees, extending Dedekind completeness
of linear orders and Dedekind-MacNeille completions of partial orders.
We then define constructions of tree completions that extend any tree
to a minimal one satisfying the respective completeness property.

1. Introduction

Trees are connected partial orderings where every element has a linearly
ordered set of predecessors (smaller elements). They are ubiquitous struc-
tures, naturally arising in a wide variety of contexts in mathematics, com-
puter science, game and decision theory, linguistics, philosophy, etc.; some
applications in these fields are mentioned in [6].

This work is a contribution to the general structural theory of trees, and
a follow-up to [6] which initiated that study. We emphasize that in our
definition and study of trees we do not assume well-foundedness, which is
a standard assumption in the prevailing tradition of set-theoretic studies
of trees, generalizing and extending the theory of ordinals, cf. e.g. [7], [14].
We only point out here that the well-foundedness assumption makes a very
substantial difference, both in the general theory and in the particular prop-
erties of trees, and without that assumption, the study of trees remains
mostly order-theoretic and extends in a quite non-trivial way the theory of
linear orderings comprehensively explored in [11]. Furthermore, whereas our
general theory covers both finite and infinite trees, the notions of complete-
ness that are considered in this paper become nontrivial only in the case of
infinite trees.

In the present paper we define and explore several natural notions of
completeness of trees, intuitively stating that there are no ‘gaps’ or ‘missing
nodes’, in one or another sense. These notions of completeness of trees natu-
rally extend Dedekind completeness of linear orders and Dedekind-MacNeille
completions of partial orders which result in complete lattices. These are
important and well-studied constructions, but there is limited literature on
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their application specifically to trees, where there are some essential sub-
tleties. Dedekind completeness of linear orders can be equivalently defined
in terms of the existence of suprema of all non-empty sets that are bounded
above, and in terms of the existence of infima of all non-empty sets that are
bounded below. However, in the case of trees these two characterisations
differ substantially. Indeed, in a tree, infima of linearly ordered sets of nodes
that are bounded below, are unique whenever they exist, while linearly or-
dered set of nodes that are bounded above may have suprema on some paths
in the tree and not on others, and thus it may have several (if any) suprema
in that tree. This leads to a variety of notions of completeness of trees, gen-
erally of the following type: consider a (natural) family F of sets of nodes
in the tree, and say that the tree is F-complete if every set of nodes in tree
that is bounded below and belongs to F has an infimum. This generic no-
tion, applied to the family of all subsets, defines a standard generalisation
of Dedekind completeness of trees, variations of which have been defined
and studied e.g. in [4], [12], [15], and [1]. Moreover, the generic notion of
F-completeness also makes very good sense when applied to other impor-
tant families of nodes, such as paths (leading to ‘pathwise completeness’),
antichains (leading to ‘antichain completeness’), pairs of nodes (leading to
‘branching completeness’), etc.

Contributions of the paper. Here we study the notions of absolute and
relativised completeness that are mentioned above and that are, in our view,
the most natural and important. We show that they are generally different,
yet related to each other, and that they can be characterised in a fairly
uniform way in terms of suprema and infima of downward closed and upward
closed parts of paths. We then define, in a relatively uniform way, and study,
several generic constructions of tree completions, that extend any tree to a
minimal one satisfying the respective completeness property. Each of these
transforms in a ‘minimal canonical way’ any tree into a complete tree in
the respective sense. In particular, we present alternative constructions for
producing trees that are equivalent to the Dedekind-MacNeille completion
of [15] (applied there to the wider class of ‘cycle-free partial orders’) and the
‘ramification completion’ of [1].

We note that completions of trees have various applications to the general
theory of trees, which go beyond the scope of the present paper, but we only
mention here that both are used when axiomatising the first-order theories,
and other logical theories, of some important classes of trees, and when
proving the completeness of such axiomatisations, cf. [5].

Structure of the paper. First, we provide the necessary terminology
and notation in Section 2. Then we define, compare and characterise sev-
eral notions of completeness in Sections 3 and 4. In Section 5 we introduce
several constructions of tree completions that correspond to the respective
completeness properties defined in Section 3. We end with concluding re-
marks and suggestions for further study in Section 6.
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2. Preliminaries

We define here some basic notions on trees, in order to fix notation and
terminology. The reader may also consult [7], [8], and [9] for further details.

The order types of the linear orders (N;<), (Z;<), (Q;<) and (R;<),
where in each instance < denotes the usual ordering of that set, will be
denoted as ω, ζ, η and λ respectively.

An ordered set (A;<), with a strict partial ordering <, is downward-linear
if for every x ∈ A the set {y ∈ A : y < x} is linear; it is downward-connected
if, for every x, y ∈ A, there exists z ∈ A such that z ⩽ x and z ⩽ y. A forest
is a downward-linear partial order. A tree is a downward-connected forest1.
A subtree of a forest F = (F ;<) is any substructure T =

(
T ;<T

)
of F which

is a tree, i.e., where T is a non-empty downward-connected subset of F and
<T is the restriction of < to T .

The elements of a tree (T ;<) are called nodes or points. If a tree has
a <-minimal node, then it is unique (by downward-connectedness) and is
called the root of the tree. The <-maximal nodes (if any exist) are called
leaves of the tree.

We will define various notions and notation in terms of an arbitrarily
fixed tree T = (T ;<). First, for any nodes t, u ∈ T we define t ⌣ u to
mean that t < u or t = u or u < t. If this holds, we say that t and u are
comparable nodes. If t < u, the intervals (t, u), (t, u], [t, u) and [t, u] are
defined as usual. For instance, if t < u then (t, u] := {x ∈ T : t < x ⩽ u},
etc. We also define the sets T<t := {x ∈ T : x < t}, T⩽t := {x ∈ T : x ⩽ t},
T>t := {x ∈ T : t < x} and T⩾t := {x ∈ T : t ⩽ x}. We will use analogous
notation for the respective substructures (as partial orderings) of the tree T
over these sets, for instance, T<t denotes

(
T<t;<↾T<t

)
, etc.

For non-empty subsets A,B ⊆ T we define A < B (resp. A ⩽ B, A > B,
A ⩾ B) iff x < y (resp. x ⩽ y, x > y, x ⩾ y) for all x ∈ A and y ∈ B.
Instead of {x} < B we will also write x < B, and similarly for other relations
and singleton sets. Then, we define the set T<A := {x ∈ T : x < A} and
likewise the sets T⩽A, T>A and T⩾A. The substructures of T that have
these sets as their underlying sets will be denoted as T<A, T⩽A, T>A and
T⩾A respectively.

More generally, given any subset A of T , TA will denote the structure
(A;<↾A).

Note that, for any A ̸= ∅, T<A and T⩽A are linear orders and that T>A

and T⩾A are empty when A is not linearly ordered. If A is linearly ordered
then T>A and T⩾A, if non-empty, are forests, while for every node t, T⩾t is
a tree that is rooted at t.

For ease of readability, the sets T⩽A and T⩾A of lower bounds and upper
bounds of A will sometimes be denoted as L(A) and U(A) respectively.
If A = {x1, x2, . . . , xk} then L (A) and U (A) will be written simply as
L (x1, x2, . . . , xk) and U (x1, x2, . . . , xk).

1Note that we do not assume well-foundedness of trees, nor even existence of a root.
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A linearly ordered set of nodes in a tree is called a chain. A maximal chain
is called a path. A set of nodes A is downward-closed if z ∈ A whenever y ∈ A
and z < y; respectively, A is upward-closed if z ∈ A whenever y ∈ A and
y < z. A non-empty downward-closed linearly ordered set of nodes that is
bounded above is called a stem. A non-empty subset B of a path A is called
a branch when it is bounded below and upward-closed within A (i.e. if x ∈ B
and y ∈ A with x < y then y ∈ B). Clearly if A is a path with A = B ∪ C,
where B and C are disjoint, then B is a stem if and only if C is a branch.
Note that every two distinct paths in a tree intersect in a stem. The set of
paths containing the node t (resp. the stem S) will be denoted by Pathst
(resp. PathsS).

A set of nodes A is called convex if z ∈ A whenever x, y ∈ A and x < z < y.
A convex linearly ordered set of nodes is called a segment. A bridge is a non-
empty segment A such that, for every path P, either A ⊆ P or A∩P is empty.
Note that every singleton set of nodes {t} is a bridge.

For each node t in T, the maximal bridge in T containing t will be de-
noted by t . A tree in which all maximal bridges are singletons is called a
condensed tree. As shown in [6], the relation between nodes of belonging to
the same maximal bridge is an equivalence relation, and the corresponding
partition of the tree T into a family of maximal bridges defines a condensed

tree, T , called the condensation of T. Moreover, a tree is condensed if and
only if it is isomorphic to its condensation. Further details on properties of
tree condensations and condensed trees can be found in [6].

A set X of nodes is an antichain if x ̸⌣ y for all distinct x and y in X.
Note that the intersection of an antichain X and a linearly ordered set of
nodes Y is either a singleton or the empty set. The second alternative is
excluded when X is a maximal (by inclusion) antichain and Y is a path.

A lower (respectively, upper) bound for a set of nodes X in T is an element
b such that b ⩽ x (respectively, b ⩾ x) for every x ∈ X. An infimum
(respectively, supremum) of X is a greatest lower bound (respectively, least
upper bound) of X. If it exists, the infimum (respectively, supremum) of X
is unique and will be denoted inf(X) (respectively, sup(X)).

A linear order (W ;<) is Dedekind complete when every non-empty subset
in W that is bounded below, has an infimum. Equivalently (cf. [11]) (W ;<)
is Dedekind complete when every non-empty subset in W that is bounded
above, has a supremum. Examples of Dedekind complete linear orders are
(N;<), (Z;<), and (R;<); a non-example is (Q;<).

3. Notions of completeness of trees

3.1. Completeness properties and inter-dependence results. We de-
fine here several natural notions of completeness in a tree. Note that the
two equivalent characterisations of Dedekind complete linear orders do not
transfer as equivalent properties over trees, because a linearly ordered set of
nodes in a tree which is bounded above may have suprema on some paths
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and not on others, and thus it may have several (or none at all) suprema in
the tree. So a variety of completeness properties emerge here.

For some of the definitions we need the following terminology:

• a node t in a tree will be called a branching point when t = inf{u, v}
for some incomparable nodes u and v;

• given two distinct paths P and Q in the tree, the supremum in P (or,
in Q) of the set P ∩ Q, if it exists, will be called a weakly branching
point2.

The examples of trees in Figures 1 – 3 below will be used in the work for
proving independence results. The tree in Fig. 1 consists of the linear order
ω + ζ with a single leaf node attached to each of its elements. Every node
in ω + ζ is then a branching point. In Fig. 2, the tree consists of a copy of
ω with two disjoint copies of ω appended to it. The first elements of each
of these two copies are weakly branching points, but they are not branching
points. The tree in Fig. 3 consists of a copy of the non-positive rational
numbers η⩽0, with two disjoint copies of the positive rational numbers η>0

appended to it. The number 0 in η⩽0 is both a branching point and weakly
branching point of the tree.
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We call a tree:

(C1) (Dedekind) complete when every non-empty set of nodes that is
bounded below, has an infimum.
Hereafter, we will usually omit ‘Dedekind’ and will simply write
complete.

2Note that a weakly branching point may also be a true branching point, in sense of
the previous definition.
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(C2) pathwise (Dedekind) complete when for every path P and each set
X ⊆ P that is bounded below, X has an infimum in P.
Again, hereafter, we will usually simply write pathwise complete.
Note that (C2) is equivalent to:

(C2′) for every path P and each set X ⊆ P that is bounded above, X has
a supremum in P;

(C3) antichain complete when every non-empty antichain that is bounded
below has an infimum;

(C4) branching complete3 when every pair of incomparable nodes (equi-
valently, every finite antichain) has an infimum;

(C5) weakly branching complete when for any two distinct paths P and Q,
the set P ∩ Q has suprema in both P and Q;

(C6) weakly branching point complete when for each path P and each
non-empty set X of weakly branching points in P, if X is bounded
below (respectively, above) then X has an infimum (respectively,
supremum)4 in P.

Note that each of the properties (C1), (C2), (C3) and (C4) fits the fol-
lowing generic notion of completeness: given a family F of sets of nodes
in a tree T, we say that T is F-complete if every set of nodes in T that is
bounded below and belongs to F , has an infimum. In the case of Dedekind
completeness, take F to be the collection of all sets of nodes in T; in the
case of pathwise completeness, take F to be the set of all linearly ordered
sets of nodes in T; in the case of antichain completeness, take F to be the
set of all antichains in T; and in the case of branching completeness, take F
to be the set of all pairs of incomparable nodes in T.

Some simple observations:

• Every branching point is also a weakly branching point, while in
branching complete trees, it also holds that every weakly branching
point is a branching point.

• In any tree, every branching point is the greatest element of a max-
imal bridge, and every weakly branching point is either the greatest
or the least element of a maximal bridge. The converses of these
statements do not hold. For example, consider the tree that resem-
bles the one in Figure 1 but with a single node u inserted between
the initial portion ω and the terminal portion ζ. This node u forms
a maximal bridge (i.e. u = {u}) and u is both the least and the

3In [16], branching complete trees are called jointed trees, in [1] they are called rami-
fication complete trees, and in [3] they are called join-trees.

4Note that the two conditions, for the existence of infima and of suprema, are not
equivalent. Indeed, consider a tree similar to the one in Figure 1 but with the leaves
removed from the terminal ζ-part of the tree. The weakly branching points of this tree
are precisely the non-leaf nodes in the initial ω-part of the tree. Clearly each non-empty
set of weakly branching points has an infimum, while the set of all weakly branching points
is bounded above but has no supremum.
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greatest element of that maximal bridge but u is neither a branching
point nor a weakly branching point.

• In any tree, if P is a path and X is a non-empty subset of P with
infimum u in P, then u will be the infimum of X in every path Q
that contains X; in other words, infima of non-empty chains are not
path specific.

• Moreover, in any branching complete tree, if P is a path andX ⊆ P is
a non-empty set with supremum v in P, then v will be the supremum
of X in every path Q that contains X; in other words, suprema of
non-empty chains in a branching complete tree are not path specific.

It follows from these observations that in branching complete trees, (C6)
is equivalent to the following property:

(C7) every non-empty chain of branching points that is bounded below
(respectively, bounded above) has an infimum (respectively, supre-
mum).

The following theorem summarises all dependence results that hold be-
tween the properties (C1) to (C7).

Theorem 3.1. The following implications hold between the properties (C1)
to (C7) and all implications that hold between (C1) to (C7) follow from these
by transitivity.

(1) (C1) implies each of (C2) to (C7);
(2) (C2) is equivalent to (C2′);
(3) (C2) implies (C5) to (C7);
(4) (C3) implies (C4);
(5) (C4) implies (C5).

(C1)

(C2) (C2′) (C3) (C4)

(C5)

(C6)(C7) �

6 �
�

�
�

��	

�
�
�
�
���

J
J
J
J
JĴ
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Figure 4. The dependencies that hold between (C1) to (C7).

Proof. We first consider the relationships between the properties (C1) to
(C6), after which we will relate them with the auxiliary property (C7).

1. Most implications from (C1) to the properties (C2) to (C6) are trivial.
For (C5), consider the sets of all upper bounds of P∩Q in each of P and Q.
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2. Just like the argument for linear orders: to show that (C2) implies
(C2′), consider the set of all upper bounds of X in P and take its infimum,
and to show that (C2′) implies (C2), consider the set of all lower bounds of
X in P and take its supremum.

3. The implication from (C2) to (C5) is like that of (C1) to (C5); the
implication to (C6) is trivial.

4. (C3) implies (C4) is trivial.
5. Take two points, one on P \ Q and the other on Q \ P. Their infimum

is a supremum of Q ∩ P in each path.

Now, we show that all implications that do not follow from those listed
in the proposition, do not hold.

First, consider the tree in Fig. 2. The properties (C2), and hence (C5)
and (C6), hold in this tree, while none of (C1), (C3) and (C4) hold in it. It
follows that none of the properties (C2), (C5) and (C6) imply any of (C1),
(C3) and (C4).

Next, consider the tree in Fig. 3. This tree shows that (C3) (hence also
(C4)) does not imply (C1), and none of (C3) to (C6) imply (C2).

Similar to the previous example, consider the tree that consists of a copy
of the rational numbers η, with two disjoint copies of the rational numbers
η appended to it. This tree has the same structure as the one in Fig. 3
except that the weakly branching points of that tree are missing from it.
The property (C6) holds vacuously in this tree, while (C5) does not hold in
it, hence (C6) does not imply (C5).

To see that (C4) (hence also (C5)) does not imply (C6), consider the tree
in Fig. 1, which also shows that (C4) does not imply (C3).

The tree obtained from the one on Fig. 1 by removing the leaf nodes that
were attached to the elements of the copy of ζ in ω + ζ, shows that (C3)
does not imply (C6).

This concludes the determination of all possible dependencies between
the properties (C1) to (C6).

Now, regarding the dependencies between (C1) to (C6) and (C7) on the
class of all trees, first note that (C1) and each of the equivalent statements
(C2) and (C2’), implies (C7). Further, none of (C3), (C4), (C5) and (C6)
imply (C7). To see that (C3) does not imply (C7), consider the tree that
consists of the path ω + ζ with an extra node adjoined to the side of each
node in the copy of ω. This tree is antichain complete but does not satisfy
(C7). That neither of (C4) and (C5) implies (C7) can be seen from the
tree in Figure 1. To see that (C6) does not imply (C7), consider the tree
obtained from the one in Figure 2 by adding a leaf to the side of each node
in that tree. Each node from the original tree is a branching node (hence
also weakly branching node) in this new tree. This tree satisfies (C6) but
not (C7) as the set of branching nodes that lie on the initial copy of ω, has
no supremum.
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In the other direction, (C7) does not imply any of (C1) to (C6). Indeed,
the tree in Figure 2 satisfies (C7) but not (C1), (C3) or (C4), while the tree
in Figure 3 satisfies (C7) but not (C2). The tree that resembles the one
in Figure 3 but with the greatest node in the initial copy of η⩽0 removed,
vacuously satisfies (C7), but it does not satisfy (C5). Finally, the tree that
consists of a copy of ω · (ζ + ζ) (i.e. ζ + ζ copies of ω placed end to end)
with another copy of ω placed aside each copy of ω in ω · (ζ + ζ), vacuously
satisfies (C7), but does not satisfy (C6). □

3.2. Rubin completeness. A somewhat more restrictive notion of com-
pleteness is considered in [12] (Def. 0.2). We say that a tree T is Rubin
complete if

(1) every non-empty set of nodes has an infimum;
(2) every non-empty chain has a supremum;
(3) if A and B are disjoint non-empty convex chains, then inf(A) ̸=

inf(B).

Then, Rubin complete trees are (Dedekind) complete and hence they can
be placed above (C1) in the hierarchy considered in this section. It can also
be observed that, by (1), Rubin complete trees are rooted and, by (2), every
path in them has a leaf.

Proposition 3.2. A complete tree is Rubin complete if and only if:

(a) for every set {Pi : i ∈ I} of paths, if
⋂

i∈I Pi ̸= ∅, then this set has a
maximum,

(b) for any two paths P ̸= Q, P \ Q and Q \ P have a minimum, and
(c) every non-leaf node has an immediate successor on each path passing

through it.

Proof. (⇒) Let T be a Rubin complete tree. Consider a set {Pi : i ∈ I} of
paths in T and assume that A =

⋂
i∈I Pi ̸= ∅. By condition (2), A has a

supremum tA. If I is the singleton {i}, A is Pi and tA is the the leaf of it.
If |I| ⩾ 2, assume for reductio tA ̸∈ A, so that tA ̸∈ Pi for some i ∈ I. This
implies tA ̸⩽ v for every v ∈ Pi. But Pi contains upper bounds of A.

Let now P ̸= Q be paths in T. Consider the non-empty segments A = P\Q
and B = Q \ P and let tA and tB be their infima. Let t be the maximum
of P ∩ Q, which exists by condition (a). Assume for reductio that A has no
minimum, so that tA = t. The node t is also the infimum of the segment
B′ = {t} ∪ Q \ P and hence inf(A) = inf(B′) = t. But this contradicts (3)
because A and B′ are disjoint.

Finally, consider a non-leaf node t and a path P passing through it. Let
A be the set of all nodes u ∈ P such that t < u. Then A and B = {t} are
disjoint non-empty convex chains. Since inf(A) ̸= inf(B) = t, inf(A) must
be the immediate successor of t in P.

(⇐) Let T be a complete tree in which (a), (b), and (c) hold. Consider
a non-empty chain A in T and the set {Pi : i ∈ I} of all paths containing
A. Call B the set

⋂
i∈I Pi and tB the maximum of B. Given any Pi, the
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pathwise completeness of T implies that A has a supremum ui in Pi. We
can observe now that tB is an upper bound of A and belongs to every Pi.
Then ui ⩽ tB for each i and hence, for all i, j, ui = uj . This means that ui
is the supremum of A also in T.

Consider now two disjoint segments A and B and let tA and tB be their
infima. Two cases can be distinguished.
Case 1: A ̸< B and B ̸< A. Then there exist two different paths P and
Q containing A and B, respectively. Since A and B are disjoint, one of the
inclusions A ⊆ P \ Q and B ⊆ Q \ P must hold. Assume, w.l.o.g., the first
one. By (b), we can consider the minimum t of P \Q. Then t ⩽ tA ∈ P \Q.
This implies tA ̸= tB because tB ∈ Q.
Case 2: A < B (the case B < A is similar). If A is not a singleton set,
then tA ̸= tB trivially holds. Else, assume A = {u} and let P be any path
containing B, so that u ∈ P. By (c), u has an immediate successor u′ in P.
Then the claim follows by the inequalities tA ⩽ u < u′ ⩽ tB. □

Observe that the strong condition (c) is needed only for dealing with the
very particular case A = {u} < B. This can be avoided, for instance, by
assuming that A and B contain incomparable nodes, or by assuming that
chains are not singleton sets. In these cases, condition (c) and the last part
of the proof above can be dropped.

3.3. Weakly branching completeness and partitions. The property of
weakly branching completeness, apart from being a natural notion of com-
pleteness in trees, also becomes critical when partitioning a tree along one of
its stems. Such partitions are used in [5] for the purpose of approximating
trees as coloured linear orders5.

For T any tree, A any path in T and s ∈ A, we define the following sets:

Fl(s) :=


∅, when s has an immediate predecessor,(⋂

t<s

T>t

)
\ T⩾s, otherwise

and

Fu(s\A) := T>s \

( ⋃
t∈A∩T>s

T⩾t

)
.

Provided that these sets are non-empty, we define the structures Fl(s) :=

TFl(s) and Fu(s\A) := TFu(s\A). In general, either or both of the sets Fl(s)
and Fu(s\A) may be empty, in which case the corresponding structure is left
undefined. The structures Fl(s) and Fu(s\A), if defined, are forests. They
will be called respectively the lower side-forest of s, and the upper side-forest

5There the property of weakly branching completeness is simply called branching com-
pleteness since no stronger form of branching completeness is used in that context.
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Figure 5. The side-forests Fl(s) and Fu(s\A).

of s with respect to A. Finally, the side-forest of s with respect to A is the
forest F (s\A) :=

(
TF (s\A); s

)
where

F (s\A) := {s} ∪ Fl(s) ∪ Fu(s\A).

The forests Fl(s) and Fu(s\A) are depicted in Fig. 5.
Intuitively, the upper side-forest of s with respect to A consists of those

nodes that sit above s but do not sit above any nodes on A ∩ T>s, and
the lower side-forest of s consists of those nodes that sit above T<s but
are incomparable with s, unless s has an immediate predecessor, in which
case its lower side-forest is left empty so as not to coincide with the upper
side-forest of that predecessor.

The following result is adapted from [5].

Proposition 3.3. Let T be a weakly branching complete tree and let A be a
path in T. The set {F (s\A)}s∈A forms a partition of T .

Proof. Each side-forest F (s\A) is non-empty since s ∈ F (s\A), and different
side-forests F (s\A) and F (t\A) are disjoint by the way that side-forests are
defined. To see that {F (s\A)}s∈A covers T , pick any node u ∈ T , and
consider the following cases.

Case 1: u ∈ A. Then u ∈ F (u\A).
Case 2: u ̸∈ A. Then there exists v ∈ A such that {u, v} is an antichain.

Let B be a path that contains u. By the weakly branching completeness of
T, the set A ∩ B has an supremum w in A.

Case 2.1: w < u. Then u ∈ Fu(w\A).
Case 2.2: w ̸< u. Then u ∈ Fl(w).

This shows that
⋃

s∈A F (s\A) = T . □
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4. Characterisations of the notions of completeness

Theorem 4.1. A tree is complete (C1) if and only if it is both pathwise
complete (C2) and branching complete (C4).

Proof. (⇒) Trivial.
(⇐) Suppose that (C2) and (C4) hold in the tree T. Consider a non-

empty set X of nodes in T that is bounded below. Let A be any path in T
that intersects X. Then A ∩X is a non-empty subset of A that is bounded
below, hence, by (C2), it has an infimum on A, call it v. For any path P
that intersects with X, again, P ∩ X has an infimum on P, call it tP. By
(C4), the set {v, tP} has an infimum uP, which is a node on A. Observe that
tA = v = uA. Now consider the set

Y := {uP | P is any path that intersects with X}.
For any lower bound u of X, we have u ⩽ v, u ⩽ tP, and hence u ⩽ uP for
every path P intersecting X. Then, the set Y is a non-empty subset of the
path A and is bounded below. By property (C2) it has an infimum t in A.
We claim that t is the infimum of X. Indeed, the definition of Y implies
that t is a lower bound of X, and we have observed above that every lower
bound t′ of X is also a lower bound of Y , and hence t′ ⩽ t. □

Corollary 4.2. A pathwise complete (C2) tree T is antichain complete (C3)
if and only if T is branching complete (C4), if and only if T is complete (C1).

The next result shows that the property of antichain completeness is
equivalent to the conjunction of the properties of branching completeness
and “half” of weakly branching point completeness (bearing in mind that
in branching complete trees, branching points and weakly branching points
coincide).

Proposition 4.3. A tree T is antichain complete (C3) if and only if T is
branching complete (C4) and every non-empty chain of branching points that
is bounded below, has an infimum.

Proof. (⇒) Assume that every non-empty antichain in T that is bounded
below, has an infimum. It is immediate that T is branching complete. Let X
be a non-empty chain of branching points in T that is bounded below. For
each x ∈ X, let ux and vx be incomparable nodes such that x = inf{ux, vx}
and let Y :=

⋃
x∈X{ux, vx}. It follows from Zorn’s Lemma that there exists

Z ⊆ Y that is maximal with respect to being an antichain, and Z must be
bounded below since X is bounded below. Let t := inf(Z).

Observe that L(X) = L(Y ). Let s ∈ L(X). Since Z ⊆ Y then L(Y ) ⊆
L(Z) from which s ∈ L(Z) hence s ⩽ t. To see that t ∈ L(X), first note
that, by the maximality of Z, there exists, for each y ∈ Y , a node y′ ∈ Z
such that y′ ⌣ y. Let x ∈ X. If (ux)

′ ̸= (vx)
′ then (ux)

′ ̸⌣ (vx)
′ (since Z is

an antichain) hence t ⩽ inf{(ux)′, (vx)′} = inf{ux, vx} = x. If, on the other
hand, (ux)

′ = (vx)
′, then (ux)

′ ⌣ ux, vx, hence t ⩽ (ux)
′ ⩽ inf{ux, vx} = x,

hence t ∈ L(X), from which it follows that t = inf(X), as required.
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(⇐) Let X be a non-empty antichain that is bounded below. Let x0 ∈ X
and let P be a path that passes through x0. For each y ∈ X \{x0}, let uy :=
inf{x0, y} ∈ P. The set {uy : y ∈ X \ {x0}} is then a chain of branching
points that is bounded below, hence this set has an infimum v. It is readily
verified that v is also the infimum of X. □

Completeness issues lead us to consider particular stems and branches.
Recall that t denotes the maximal bridge in the tree containing t. We call
a stem A a trunk when A =

⋃
t∈A t and, similarly, call a branch B a limb

when B =
⋃

t∈B t . For a non-example of a trunk and a limb, consider the
tree T in Figure 2. For each node u in the initial copy of ω in T, the set
T⩽u forms a stem that is not a trunk, and for each node v in each of the
two copies of ω that are appended atop the initial copy of ω, the set T>v

forms a branch that is not a limb.
If P is a path and A ⊆ P then A is a trunk if and only if P\A is a limb. If

A is a trunk and B is a limb for which A∩B = ∅ and A∪B is a path, then A
and B will be called complementary. In condensed trees, stems and trunks
coincide, as do branches and limbs. Note that if a trunk A and limb B are
complementary, then the supremum of A, if it exists, will be the infimum of
B. However, if B has an infimum, that infimum need not be the supremum
of A, in fact, A need not even have a supremum. The tree in Figure 2 can
serve as a counterexample.

Theorem 4.4. Let T be any tree.

(1) For any non-singleton set {Pi}i∈I of paths in T, the set
⋂
i∈I

Pi, if

non-empty, is a trunk.
(2) For any path Q and any non-singleton set {Pi}i∈I of paths in T, the

set B := Q \
⋃
i∈I

Pi, if non-empty, is a limb (hence Q \ B is a trunk).

(3) Every trunk in T is of one, and possibly both, of the two forms above.

Proof. 1. Let {Pi}i∈I be any set of paths in T and let A :=
⋂

i∈I Pi ̸= ∅.
Pick any path P0 ∈ {Pi}i∈I . That A is a stem follows from the fact that
A ⊆ P0 along with the fact that each path Pi is downward-closed. To see
that A is a trunk it suffices to show, for all nodes u and v with u ∈ A and
v ∈ u , that v ∈ A. Let u and v be any nodes for which u ∈ A and v ∈ u .
For each i ∈ I, since u ∈ Pi then Pi ∩ u ̸= ∅ and so, since u is a bridge,
Pi ∩ u = u , hence v ∈ Pi. It follows that v ∈ A, as required.

2. Let Q be a path, {Pi}i∈I be a set of paths in T, and B := Q\
⋃

i∈I Pi ̸=
∅. Let u ∈ B and let v ∈ Q with u < v. Suppose that v ̸∈ B. Then v ∈ Pj

for some j ∈ I. Then u ∈ Pj , as well, so that u ̸∈ B, a contradiction. It
follows that B is upward-closed in Q hence B is a branch.

To see that B is a limb it again suffices to show, for all nodes u and v with
u ∈ B and v ∈ u , that v ∈ B. So, let u and v be any nodes for which u ∈ B
and v ∈ u , but suppose, for a contradiction, that v ̸∈ B. From v ∈ u , it
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follows that v ∈ Pj for some j ∈ I, hence u = v ⊆ Pj . Then u ∈ Pj , so
that u ̸∈ B, a contradiction.

3. Let A be a trunk, Q a path that contains A, and B := Q \ A. We
consider three cases (Cases 1 and 2 may overlap).

Case 1: A does not contain a greatest maximal bridge. Let A be the set
of maximal bridges in A. Observe that for each J ∈ A there exists a path PJ

and a node uJ ∈ A such that J ⊆ PJ while uJ ̸∈ PJ. Then B = Q \
⋃

J∈A PJ.
Case 2: B does not contain a least maximal bridge. Let B be the set of

maximal bridges in B. Observe that for each J ∈ B there exists a path PJ

such that PJ ∩ J = ∅ while PJ ∩ B ̸= ∅. Then A =
⋂

I∈B PI.
Case 3: A contains a greatest maximal bridge I and B contains a least

maximal bridge J. Since I and J are distinct maximal bridges, there must
exist a path P that contains I but such that P ∩ J = ∅. Then P ∩ Q = A, as
required. □

Trunks that are of the form in Part 1 of Theorem 4.4 will be called type
I trunks, and trunks that are of the form in Part 2 of the theorem will be
called type II trunks. A limb will be called a type I limb or type II limb
according to whether the trunk that complements it is a type I or type II
trunk. The set of paths {Pi}i∈I from Theorem 4.4 will be said to generate
the corresponding trunk or limb as well as its complementary limb/trunk.
A trunk A will be called finitely generated when it can be written in the
form A = P∩Q for some paths P and Q, and a limb B will be called finitely
generated when it can be written in the form B = Q\P for some paths Q and
P. If A is a trunk that is contained in a path P then A is finitely generated
if and only if the limb P \ A is finitely generated. Finitely generated trunks
and limbs are both type I and type II but where the set of paths {Pi}i∈I is
finite.

Lemma 4.5. Let A be a finitely generated trunk in a tree T and let P be a
path such that A ⊆ P. Then there exists a path Q such that A = P ∩ Q.

Proof. Since A is a finitely generated trunk, there exist paths B and C such
that A = B ∩ C.

If P ∩ B = A then we are done, so consider the case where P ∩ B ⊋ A.
Let u ∈ (P ∩ B) \ A. Suppose, for a contradiction, that P ∩ C ⊋ A. Let
v ∈ (P ∩ C) \ A. Then min {u, v} ∈ (B ∩ C) \ A, a contradiction. Hence
P ∩ C = A, as required. □

The following result characterises the notions of completeness (C1) to (C6)
in terms of properties involving stems, branches, trunks, and limbs.

Theorem 4.6. Let T be any tree. Then each of the following claims holds.

(1) T is complete (C1) if and only if every stem in T has a supremum.
(2) T is pathwise complete (C2) if and only if every branch in T has an

infimum.
(3) T is antichain complete (C3) if and only if every type I trunk in T

has a greatest node.
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(4) T is branching complete (C4) if and only if every finitely generated
trunk in T contains a greatest node.

(5) T is weakly branching complete (C5) if and only if every finitely
generated limb in T has an infimum.

(6) T is branching complete (C4) and weakly branching point complete
(C6) if and only if every trunk in T has a supremum.

(7) T is weakly branching complete (C5) and weakly branching point com-
plete (C6) if and only if every limb in T has an infimum.

Proof. Claim 1: (⇒) Given a stem A in T, the infimum of T⩾A can easily
be verified to be the supremum of A.

(⇐) Given X ⊆ T that is non-empty and bounded below, B := T⩽X will
be a stem in T. Its supremum u can readily be verified to be the infimum
of X.

Claim 2: straightforward.
Claim 3: (⇒) Let T be antichain complete and let A :=

⋂
i∈I Pi, where

{Pi}i∈I is a set of paths, be a type I trunk. Let X be a maximal antichain
in
(⋃

i∈I Pi

)
\A. Then X is bounded below (by A) hence X has an infimum

u. Then u is the greatest node of A.
(⇐) Let X be a non-empty antichain that is bounded below. For each

t ∈ X, let Pt be a path that passes through t. Then A :=
⋂

t∈X Pt is a type
I trunk, hence A has a greatest node u. This node u will be the required
infimum of X.

Claim 4: straightforward.
Claim 5: straightforward (using Lemma 4.5).
Claim 6: (⇒) Assume that T satisfies (C4) and (C6), and therefore also

(C7). Let A be a trunk in T. First, consider the case where A is a type I
trunk, say A :=

⋂
i∈I Pi for some set of paths {Pi}i∈I . Fix j ∈ I and for

each i ∈ I \ {j}, let ti be the greatest node in Pj ∩Pi, which exists by (C4).
By (C7) the set {ti}i∈I\{j} has an infimum u, which is readily seen to be
the supremum of A. In the case where, instead, A is a type II trunk, it can
similarly be shown that the supremum of the set of branching points that
are formed on A by the paths that generate A is also a supremum of A itself.

(⇐) Suppose that every trunk in T has a supremum. To see that (C4)
holds, let u and v be incomparable nodes and let A and B be paths that
contain u and v. The supremum of the trunk A∩B will also be the infimum
of {u, v}. To see that (C7), and therefore also (C6), holds, let X be a non-
empty chain of branching points in T and let P be a path for which X ⊆ P.
For each t ∈ X, let Pt be a path for which t is the supremum of the trunk
P ∩ Pt. If X is bounded below, then the supremum of the type I trunk⋂

t∈X Pt will be the infimum of X, while if X is bounded above, then the
supremum of the type II trunk P \

⋃
t∈X Pt will be the supremum of X.

Claim 7: The proof is similar to that of Claim 6. □
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Proposition 4.7. A tree T is pathwise complete (C2) if and only if T is
weakly branching complete (C5) and weakly branching point complete (C6)
and each of the maximal bridges in T is complete.

Proof. (⇒) Immediate.
(⇐) Let P be any path in T and let X ⊆ P be non-empty and bounded

below.
Case 1: there exists a limb A in T such that X is co-initial in A. Then the

infimum of A, which exists by Part 7 of Theorem 4.6, is also the infimum of
X.

Case 2: there exists a least maximal bridge B in T such that B ∩X ̸= ∅,
and a node b ∈ B such that b < x for each x ∈ X. Since B is complete, the
set B ∩X has an infimum which is also the infimum of X. □

Corollary 4.8. Let T be a condensed tree.

(1) T is pathwise complete (C2) if and only if it is weakly branching
complete (C5) and weakly branching point complete (C6).

(2) T is complete (C1) if and only if it is branching complete (C4) and
weakly branching point complete (C6).

Proof. 1. This follows from Proposition 4.7 and the fact that every maximal
bridge in a condensed tree is a singleton and hence complete.

2. This follows from Theorem 3.1, Theorem 4.1 and Part 1 above. □

In what follows we need the notion of <-connected components in a forest.

Definition 4.9. A <-connected component6 (briefly, <-component) of the
forest F = (F ;<) is a non-empty subset C of F such that:

(1) if t ∈ C, t′ ⩽ t and t′ ⩽ u, then u ∈ C;
(2) C is minimal (by inclusion) for the property (1).

It can be verified that the <-components of a forest coincide with the max-
imal subtrees of that forest. The following characterisation will be needed
when constructing completions of trees in Section 5.

Proposition 4.10. Let T be any tree.

(1) T is pathwise complete (C2) if and only if for every stem X in T,
each <-component of T⩾X has a root.

(2) T is weakly branching complete (C5) if and only if for every finitely
generated trunk X in T, each <-component of T⩾X has a root.

Proof. 1. (⇒) Let X be a stem in T. If X has a greatest node u then u is the
root of T⩾X, so let us consider the case where X has no greatest node. Let T′

be any <-component of T⩾X and let A be a path in T′. Then A is a branch
in T for which T<A = X. By Part 2 of Theorem 4.6, A has an infimum v in
T. Since X has no greatest node then v must be the least element of A. It
follows that v is the root of T′.

6This definition comes from [13].
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(⇐) By Part 2 of Theorem 4.6, it suffices to show that each branch in
T has an infimum. Let A be such a branch. If A has a least node then
this least node will be its infimum, so let us consider the case where A has
no least node. Let B := T<A and let T′ be that <-component in T⩾B that
contains A. By assumption, T′ has a root u. Since A has no least node, u
must be the greatest node of B, from which it follows that u is the infimum
of A.

2. (⇒) By considering a finitely generated trunk X, it can be shown, in a
similar manner as in the forward direction of Part 1 of this proof, but using
Part 5 rather than Part 2 of Theorem 4.6, that each <-component of T⩾X

has a root.
(⇐) This direction can be proved similarly to the backward direction of

Part 1 of this proof, but again using Part 5, rather than Part 2, of Theorem
4.6, and considering a finitely generated limb A rather than a branch, from
which B := T<A will be a finitely generated trunk, rather than a stem. □

5. Completions of trees

We now turn to the problem of constructing completions of trees. Intu-
itively, this will involve adding the necessary “missing” nodes to a tree so
that it becomes complete, in one sense or another. The completions that
will be considered here, are Dedekind completions, antichain completions,
branching completions, pathwise Dedekind completions, weakly branching
completions, and α-fillings. Theorem 4.6 and Proposition 4.10 will be key
in constructing these completions in intuitive terms.

5.1. Dedekind completions. We start by outlining a construction for ob-
taining the Dedekind completion of a tree that is given in [15] (applied there
to the wider class of so called ‘cycle-free partial orders’). Given a tree T,
a nonempty subset X of T is called a Dedekind ideal when X is bounded
above and L(U(X)) = X; X is called a principal ideal when it has the form
X = T⩽y for some y ∈ T . Let I (T) denote the set that consists of all
Dedekind ideals of T and let us define TI := (I (T) ;⊆).

Fact. [15, Lemma 2.2.5] For any tree T, the structure TI is a complete tree.7

The tree TI can be related to T as follows: define f : T → TI by x 7→ T⩽x,
i.e., each node in T is mapped to the principal ideal that it generates.

Fact. [15, Lemmas 2.2.3, 2.2.5, 2.2.7] The mapping f is an isomorphic em-
bedding of T into TI , and TI is a substructure of every complete tree that
extends f [T].

We note that the above construction is an adaptation of the usual Dede-
kind-MacNeille completion (see e.g., [10], [2]) of a partially ordered set, but
with the following differences: the Dedekind-MacNeille completion of a tree

7In [15], Dedekind completeness is defined as the property that each ideal is principal.
This amounts to the same as the definition of (Dedekind) completeness that is used in
this paper.
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T takes for its underlying set all subsets of T for which L(U(X)) = X, not
only those sets X that are non-empty and bounded above, and the resulting
structure is (up to isomorphism) the smallest complete lattice that contains
T.

We now describe how to construct the Dedekind completion of a tree in
more intuitive terms.8 Given a tree T := (T ;<), let S denote the set that
consists of all stems in T that do not have a supremum. For each S ∈ S, let
tS denote a new node that is not in T, and let TDC := T ∪{tS : S ∈ S}. Let
<DC be the relation

(5.1) {(x, y) ∈ T × T : x < y} ∪ {(tR, tS) : R,S ∈ S with R ⊊ S}∪⋃
S∈S

{(u, tS) : u ∈ S} ∪
⋃
S∈S

{(tS, u) : u is any upper bound of S}

on TDC and let us denote the structure
(
TDC ;<DC

)
as TDC .

Proposition 5.3. The structure TDC is a complete tree that contains T.

Proof. It is straightforward to check that <DC is irreflexive, transitive,
downward-linear, and downward-connected, hence TDC is a tree.

By Theorem 4.6, we have only to show that every stem in TDC has a
supremum. Observe firstly that every stem S that is also a stem in T, has a
supremum in TDC , namely either its supremum sup(S) in T, or tS.

Next, let R be any stem in TDC that is not a stem in T. If R has a greatest
element, there is nothing to prove. Otherwise, consider the set R− := R∩T ,
which is a stem in T. It suffices to show that R− is cofinal in R, that is, for
every u ∈ R, there is a t ∈ R− such that u ⩽DC t; then tR− , the supremum
of R− in TDC , will also be the supremum of R in TDC .

Indeed, suppose that u is an element of R such that t <DC u for all t ∈ R−.
Then u ̸∈ R−, hence u = tS for some stem S in T. Since S ⊆ R then S ⊆ R−,
and it is easily verified that R− ⊆ S, hence S = R−, so that u = tS = tR− .
Now consider any node u′ in R for which u <DC u′; such u′ exists because R
has no greatest element. Then t <DC u′ for all t ∈ R− and it again follows
that u′ = tR− hence u′ = u, which contradicts the irreflexivity of <DC . □

The tree TDC will be called the Dedekind completion of T. By Theorem
4.6, every complete tree must have a supremum for each of its stems. It
follows that TDC can be embedded in every complete tree that extends T.
Using Fact 5.2, it therefore must be the case that TDC ∼= TI .

5.2. Antichain completions and branching completions. Given a tree
T := (T ;<) with Dedekind completion TDC , the antichain completion and
branching completion9 of T can be obtained respectively as⋂{

S : S is an antichain complete tree such that T ⊆ S ⊆ TDC
}

8A similar construction is given in [4], §5.
9[1] defines branching completions, there called ramification completions, in this way.
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and ⋂{
S : S is a branching complete tree such that T ⊆ S ⊆ TDC

}
.

Theorem 4.6 again suggests intuitively simple constructions for these com-
pletions, this time in terms of the trunks of T.

Let TI be the set of all type I trunks in T that do not contain a greatest
node, and let Tfin be the set of all finitely generated trunks in T that do not
contain a greatest node. For each trunk S in T, let tS denote a new node
that is not in T , and let us define

TAC := T ∪ {tS : S ∈ TI} ,
TBC := T ∪ {tS : S ∈ Tfin} .

Now, we define the relations <AC and <BC as in (5.1) but respectively with
the sets TI and Tfin replacing the set S. Finally, let TAC :=

(
TAC ;<AC

)
and

TBC :=
(
TBC ;<BC

)
.

Proposition 5.4. Let T be any tree.

(1) TAC is an antichain complete tree that contains T.
(2) TBC is a branching complete tree that contains T.

Proof. 1. To show that TAC is a tree, we can use an argument identical to
the one used in the proof of Proposition 5.3 to show that TDC was a tree.

Let R be a type I trunk in TAC , say R =
⋂

i∈I Pi for some set of paths

{Pi}i∈I in TAC . Let R− := R∩ T and P−
i := Pi ∩ T for each i ∈ I. Then for

each i, P−
i is a path in T, and R− =

⋂
i∈I P

−
i is a type I trunk in T.

First consider the case where R− has a greatest node u. Then u is also
the greatest node of R. To see this, suppose, for a contradiction, that there
exists v ∈ R for which u <AC v. Then v ̸∈ T (else v ∈ R−, a contradiction)
hence v = tS for some trunk S in TI. Since also S ⊆ R (because v ∈ R) then
S ⊆ R−, and since u <AC tS then R− ⊆ S, hence S = R−. This contradicts
the fact that S does not have a greatest node.

Next, consider the case where R− does not have a greatest node. Then
TAC contains the node tR− , and u := tR− will be the greatest node of R. To
see this, first note, from the way that <AC is defined, that u ∈ Pi for each
i ∈ I, hence u ∈ R. Next, suppose again, for a contradiction, that there
exists v ∈ R for which u <AC v. It follows again that v ̸∈ T , for if v ∈ T
then, as above, v ∈ R− hence v <AC tR− , which contradicts the fact that
u <AC v. Hence, v = tS for some trunk S in TI. Again, it follows from v ∈ R
that S ⊆ R, hence S ⊆ R−, while from tR− = u <AC v = tS can be concluded
that R− ⊊ S, a contradiction.

The proof of Claim 2 is similar. □

The trees TAC and TBC will be called, respectively, the antichain com-
pletion and branching completion of T. Using Theorem 4.6, it follows that
TAC can be embedded in every antichain complete tree that extends T, and
TBC can be embedded in every branching complete tree that extends T.
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5.3. Pathwise Dedekind completions and weakly branching com-
pletions. The case of constructing a pathwise Dedekind completion of a
tree poses a minor complication, in that the construction is not determinis-
tic. In general, there need not be a unique minimal pathwise complete tree
that extends a given tree. In terms of Theorem 4.6, to obtain a pathwise
complete tree from a given tree it suffices to add either missing least nodes
to the tree’s branches, or missing greatest nodes to its stems, and there is
some freedom in how one can go about doing this.

Instead, we will use Proposition 4.10 as the basis for our construction.
The reason for performing the construction using<-components, rather than
using branches as suggested by Theorem 4.6, is that, if one were to simply
add nodes as infima to branches that are without infima, it could happen
that multiple nodes get added to the same branch since different branches
may have the same set of lower bounds.

The construction presented below will produce, from any tree T, a mini-
mal pathwise complete tree TPDC , without introducing any additional bran-
ching points. Thus, TPDC will be the most conservative pathwise Dedekind
completion of T in the sense that, amongst all pathwise Dedekind comple-
tions of T, TPDC will be the one that is furthest away from being branching
complete.

Similar observations hold when producing weakly branching completions
from a tree, where, again, a tree need not have a unique minimal weakly
branching completion. Here we will again base the construction on Propo-
sition 4.10, rather than on Theorem 4.6, to obtain from a tree T a mini-
mal weakly branching complete tree TWBC that does not contain any new
branching points and which, amongst all weakly branching complete trees
that extend T, will be the one that is furthest away from being branching
complete.

Let T := (T ;<) be any tree. Let S ′ be the set of all stems in T, and let

(5.2) C(S ′) :=
⋃
S∈S′

{
C : C is a <-component without root in T⩾S

}
.

For each C ∈ C(S ′), let tC denote a new node that is not in T, and define
TPDC := T ∪{tC : C ∈ C(S ′)}. Let <PDC be the following relation on TPDC :

(5.3) {(x, y) ∈ T × T : x < y} ∪
{
(tC, tD) : C,D ∈ C(S ′) with D ⊊ C

}
∪⋃

C∈C(S′)

{(u, tC) : u is any lower bound of C} ∪
⋃

C∈C(S′)

{(tC, u) : u ∈ C} .

Now, we define TPDC :=
(
TPDC ;<PDC

)
.

The tree TWBC :=
(
TWBC ;<WBC

)
is defined similarly, as follows. Let T ′

be the set of all finitely generated trunks in T, and define C(T ′) as in (5.2)
but using the set T ′ in place of S ′. For each C ∈ C(T ′), let tC again denote a
new node that is not in T, and again define TWBC := T ∪ {tC : C ∈ C(T ′)}.
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Finally, we define the relation <WBC as in (5.3), but again using the set T ′

instead of S ′.

Proposition 5.5. Let T be any tree.

(1) TPDC is a pathwise complete tree that contains T.
(2) TWBC is a weakly branching complete tree that contains T.

Proof. 1. The verification that TPDC is a tree is straightforward.
Let R be a stem in TPDC and let C be a <PDC-component in the forest(

TPDC
)⩾PDC R

. By Proposition 4.10, it suffices to show that C has a root.
Let C− := C ∩ T . Two cases will be considered.

Case 1. Suppose that C− has a root u. Then u is also a root in C.
To see this, it suffices to show that u <PDC tD for each node in C of the
form tD, since it is immediate that u <PDC v for each v ∈ C−. Suppose,
for a contradiction, that u ̸⌣PDC tD or tD <PDC u. If u ̸⌣PDC tD then
u ̸<PDC D and u ̸∈ D. It follows that u ̸⌣PDC v for each v ∈ D, which
contradicts the fact that D ⊆ C− while u is the root of C−. On the other
hand, if tD <PDC u then u ∈ D. Since u is the root of C− then C− ⊆ D, and
since tD ∈ C then D ⊆ C hence D ⊆ C−, so that D = C−. Hence tD = tC− ,
but this contradicts the assumption that C− has a root.

Case 2. Suppose that C− does not have a root. Then the node tC− is the
root of C. That tC− ∈ C follows from R ⩽PDC tC− <PDC C−, along with

the fact that C ⊇ C− and C is a <PDC-component in
(
TPDC

)⩾PDC R
. It now

suffices to show that tC− <PDC tD for each tD ∈ C with tD ̸= tC− . Indeed,
if tD ∈ C then D ⊆ C hence D ⊆ C−, and since, in addition, tD ̸= tC− , then
D ⊊ C− from which tC− <PDC tD.

2. The proof is identical to that of Claim 1, except for using finitely
generated trunks, rather than stems. □

Using Proposition 4.10, it follows that TPDC is minimal in the class of
pathwise complete trees that extend T, and TPDC can be embedded in every
pathwise complete tree that extends T and has the same branching points
as T. Similarly, TWBC is minimal in the class of weakly branching complete
trees that extend T, and TWBC can be embedded in every weakly branching
complete tree that extends T and has the same branching points as T.

Lastly, we raise a question, which we leave open: for which families F of
sets of nodes in a tree, does the generic notion of F-completeness give rise to
a generic construction of an F-completion of the tree that can be obtained
in a way similar to the constructions presented here?

5.4. α-fillings. The Dedekind completion that was proposed above need not
preserve some natural properties, such as denseness. For example, consider
a tree T that consists of a copy of the rationals η, on top of which two
incomparable copies of 1 + η are appended. T has two paths, each of order
type η + 1 + η ∼= η. Both of these paths become copies of the linear order
λ+ 2 + λ in the Dedekind completion of T. The paths in T are thus dense
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linear orders whereas the paths in the Dedekind completion of T are not
dense.

The question therefore arises how to modify the construction to pro-
duce a dense Dedekind completion? Here we propose an alternative gen-
eral construction that, in particular, does that. The construction is non-
deterministic, and is defined as follows.

Given a condensed tree S := (S;<S), a set of linear orders A := {Ai}i∈I ,
and a function f : S → I, the f -product S ×f A := (|S×f A|;<) is the
structure that is defined as follows:

• |S×f A| :=
⋃
t∈S

(
{t} × |Af(t)|

)
;

• for (t1, x1) , (t2, x2) ∈ |S×f A|,

(t1, x1) < (t2, x2) ⇐⇒ t1 <S t2 or
(
t1 = t2 and x1 <Af(t1)

x2

)
.

Informally, the structure S×f A is obtained from S by replacing each node
t in S with the linear order Af(t). It is easily seen that S×f A is a tree, that
the condensation (cf. [6]) of S×fA is isomorphic to S, and that the distinct
maximal bridges in S×f A are, up to isomorphism, precisely the elements
of f (S) ⊆ A. The tree S×f A is, strictly speaking, not an extension of S
itself, because the elements of S×f A are ordered pairs while the elements
of S are not. However, S×f A is isomorphic to a tree S′ that extends S,
and S×f A will, for the sake of simplicity, be identified with this tree S′.

Now, let α be any dense linear order without endpoints and let T = (T ;<)
be a condensed tree. Take A0 := α and A1 := α + 1. Define an α-filling of
T to be any tree of the form

(5.4) T×f {A0,A1}
where f : T → {0, 1} is any function. Intuitively, an α-filling of T is obtained
by replacing each node in T with either α or α+1. Thus, the tree T provides
the branching structure, and α provides the filling pattern inside maximal
bridges. A tree that is of the form (5.4) will also be said to be a locally
α-tree. If f(x) = A0 for each leaf in T, and f(x) = A1 otherwise, then
T×f {A0,A1} will be called the full α-filling of T.

In the example of the tree T described above, that consists of a copy of η
with two disjoint copies of 1 + η appended on top of it, producing the full
η-filling from the condensation of T, will have the effect of collapsing the
two least elements of each of the copies of 1+η in T, into a single branching
node. The resulting η-filling will be both dense and branching complete.

A linear order is called continuous when it is dense, without endpoints,
and complete. A linear order A := (A;<) is called separable if each subset
X of A that is dense in A (i.e., whenever a, b ∈ A with a < b, there exists
x ∈ X such that a < x < b) is at most countable. Recall the following two
facts:

• Cantor’s Theorem (see e.g. [11, Theorem 2.8]): every countable dense
linear order without endpoints is isomorphic to η; and
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• a linear order is isomorphic to λ if and only if it is continuous and
separable (see e.g. [11, Theorem 2.30]).

The following two special cases of α-fillings are now singled out:

• When α = η. Every full η-filling of a condensed tree T has the prop-
erty that each of its paths is a dense linear order without endpoints.
Moreover, if each path in T is at most countable then, by Cantor’s
Theorem, each path in the full η-filling of T will be isomorphic to η.

• When α = λ. Given a condensed pathwise complete tree T, each
path in the full λ-filling of T will be a continuous linear order. More-
over, if each path in T is at most countable then, by the above char-
acterisation of λ, it follows that each path in the full λ-filling of T
will be isomorphic to λ. Finally, if T is branching complete then, by
Theorem 4.1, its full λ-filling will be complete.

6. Concluding remarks

This work continues the study of the general theory of trees initiated in
[6]. Further planned work on this project will include:

• the study of general operations on trees, such as sums and prod-
ucts, thus extending classical studies of ordinal arithmetic (Cantor,
Sierpinski, and others) and, more generally, operations on linear or-
derings (cf. [11]);

• the study of classes of trees generated by applying such operations,
and their structural and logical theories.

The ultimate goal of this project is a systematic development of a struc-
tural theory of trees. One intended application of this study is to ob-
tain structural characterisations of elementary equivalence and other logical
equivalences of trees and to use them to obtain new axiomatisations and de-
cidability or undecidability results for logical theories of important classes
of trees.
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