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STRUCTURAL THEORY OF TREES

I. BRANCHING AND CONDENSATIONS OF TREES

VALENTIN GORANKO, RUAAN KELLERMAN, AND ALBERTO ZANARDO

Abstract. Trees are partial orders in which every element has a lin-
early ordered set of predecessors. Here we initiate the exploration of the
structural theory of trees with the study of different notions of branch-
ing in trees and of condensed trees, which are trees in which every node
is a branching node. We then introduce and investigate two different
constructions of tree condensations – one shrinking, and the other ex-
panding, the tree to a condensed tree.

1. Introduction

Trees are connected partial orders in which every element has a linearly
ordered set of predecessors (smaller elements). After linear orders, trees
are probably the most commonly and naturally occurring partial orders in
a broad variety of contexts. Trees and tree-like structures arise not only
in discrete mathematics but also in computer science (non-deterministic,
concurrent, and interleaving processes, transition systems and computation
trees), philosophy (models of non-determinism and branching time), game
and decision theory (game trees and decision trees), and theoretical lin-
guistics (syntax and parse trees). Trees have various applications and are
associated with deep and important results in set theory ([10], [20]), logic
(Rabin’s theorem of decidability of the monadic second-order theory of some
infinite trees, cf. [16]), mathematics (e.g., theory of ultrametric spaces [14],
[8], [9]), theoretical computer science (automata on trees, cf. [1]), graph the-
ory and computational complexity theory (tree decompositions, structures
with bounded tree width, and Courcelle’s theorem, cf. [3], [2]).

A notable and well-explored class of trees is the class of well-founded trees,
studied mostly in a set-theoretic context, as generalizing and extending the
theory of ordinals, cf. [10], [20]. Indeed, nearly all studies of trees found in
the mathematical literature focus exclusively on that class. In fact, the well-
foundedness assumption has, for historical and specific application-related
reasons, been incorporated in the most commonly adopted definition of a
tree in the set-theoretic tradition of their studies, and is often assumed by
default.
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That is why, we have to emphasize here that in our study, trees are
any connected partial orderings with linearly ordered sets of predecessors of
nodes. They are not assumed to be well-founded, and we do not think that
there are any intrinsic reasons for this assumption. In fact, for most appli-
cations indicated above that assumption is not justified. Thus, we study a
substantially larger class of partial orderings than well-founded trees, and
we do that from a general order-theoretic perspective, not from the spe-
cific set-theoretic perspective mentioned above. We also emphasize that the
well-foundedness assumption makes a very substantial difference, both in
the general theory and in the particular properties of trees. Without that
assumption, the study of trees remains mostly order-theoretic and extends
– in a quite non-trivial and challenging way – the theory of linear orderings,
while remaining much more specific than the general theory of partial or-
derings. Besides the study of well-founded trees, few general aspects of trees
have been explored so far and, according to our knowledge, there has been
no systematic study of the general structural theory of trees yet; certainly
none coming close to the comprehensive exploration of the theory of linear
orderings in [17].

Here we initiate such a systematic exploration of the structural theory of
trees. One general direction in the structural theory of a class C of mathe-
matical structures is to identify such structures with important and desirable
specific properties and then to develop and study natural generic construc-
tions that transform or decompose any structure from C into one with these
desirable properties. The present paper and the study it initiates are in
that spirit. This study has been extended in [13], where completeness and
completions of trees have been explored.

Three of the most important structural characteristics of trees and classes
of trees are:

(1) The spectrum of order types of the paths (maximal chains) in the
tree.

(2) The spectrum of degrees of branching at the different branching
nodes in the tree.

(3) The branching structure of the entire tree.

Previous studies into the first of these characteristics, with emphasis on
the transfer of properties and results from linear orders to trees, include [7],
[5], [6]. Studies related to the degrees of branching include [19], [4], [18]. A
general reference covering some of these results, and more, is [11].

Here we focus on the third of these characteristics, and begin our explo-
ration of the general structural theory of trees with a study of the different
notions of branching in trees and of condensed trees, which are trees in which
every non-leaf node is a branching node. We introduce and investigate two
different constructions of tree condensations: one, shrinking any tree into
its uniquely defined ‘condensation’, and the other – extending the tree to a
condensed tree, containing copies of all paths in the original tree and only
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such paths. We obtain several results relating the structure of any tree to
the structure of its condensations. The notion of tree condensation extends
in a certain sense the notion of condensation of linear orders defined in [17],
which is the quotient structure obtained from a linear order by partitioning
it into intervals. Condensations also have a topological flavour in terms of a
natural notion of homeomorphism. A further motivation to study condensed
trees is that their structural theory is, generally, simpler in that both the
spectra of order types of their paths and their branching structure are easier
to describe than for non-condensed trees. Besides, both branching and con-
densations of trees have various applications to the general theory of trees,
which go beyond the scope of the present paper, but we only mention here
that both are used when axiomatising the first-order and other logical theo-
ries of some important classes of trees, and when proving the completeness
of such axiomatisations, cf. [11], [6].

Structure of the paper. After providing the necessary terminology
and notation in Section 2, we define, compare and study two notions of
branching in Section 3. We then define condensed trees and study two
notions of tree condensations – one shrinking, and the other expanding, the
tree to a condensed tree – respectively in Sections 4 and 5. We end with
concluding remarks and chart our further studies in this project in Section
6.

2. Preliminaries

We define here some basic notions on trees, to fix notation and terminol-
ogy. The reader may also consult [10], [11], and [12] for further details.

An ordered set (A;<), with a strict partial ordering <, is downward-linear
if for every x ∈ A, the set {y ∈ A : y < x} is linear; it is downward-connected
if, for every x, y ∈ A, there exists z ∈ A such that z ⩽ x and z ⩽ y (where
x ⩽ y is defined, as usual, as x < y or x = y). A forest is a downward-linear
partial order. A tree is a downward-connected forest1. A subtree of a forest
F = (F ;<) is any substructure T =

(
T ;<T

)
of F which is a tree, i.e., where

T is a non-empty downward-connected subset of F and <T is the restriction
of < to T .

The elements of a tree (T ;<) are called nodes or points. If a tree has
a <-minimal node, then it is unique (by downward-connectedness) and is
called the root of the tree. The <-maximal nodes in a tree (if there are any)
are called leaves of that tree.

Next, we define various notions and notation in terms of an arbitrarily
fixed tree T = (T ;<). First, for any nodes t, u ∈ T we define t ⌣ u to
mean that t < u or t = u or u < t. If this holds, we say that t and u are
comparable nodes. If t < u, the intervals (t, u), (t, u], [t, u) and [t, u] are
defined as usual. For instance, if t < u then (t, u] := {x ∈ T : t < x ⩽ u},

1Note that we do not assume well-foundedness of trees, nor even the existence of a
root.
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etc. We also define the sets T<t := {x ∈ T : x < t}, T⩽t := {x ∈ T : x ⩽ t},
T>t := {x ∈ T : t < x} and T⩾t := {x ∈ T : t ⩽ x}. We will use analogous
notation for the respective substructures (as partial orders) of the tree T
over these sets, for instance, T<t denotes

(
T<t;<↾T<t

)
, etc.

For non-empty subsets A,B ⊆ T we define A < B (resp. A ⩽ B, A > B,
A ⩾ B) when x < y (resp. x ⩽ y, x > y, x ⩾ y) for all x ∈ A and y ∈ B.
Instead of {x} < B we will also write x < B, and similarly for other relations
and singleton sets. Then, we define the sets T<A := {x ∈ T : x < A} and
likewise T⩽A, T>A, T⩾A. The substructures of T that have these sets as their
underlying sets will be denoted as T<A, T⩽A, T>A and T⩾A respectively.

More generally, given any non-empty subset A of T , TA will denote the
structure (A;<↾A).

Note that, for any A ̸= ∅, T<A and T⩽A are linear orders and that T>A

and T⩾A are empty when A is not linearly ordered. In general, if A is
linearly ordered then T>A and T⩾A are forests, while for every node t, T⩾t

is a tree that is rooted at t.
A maximal linearly ordered set of nodes in a tree is called a path. A set of

nodes A is downward-closed if z ∈ A whenever y ∈ A and z < y; respectively,
A is upward-closed if z ∈ A whenever y ∈ A and y < z. A non-empty linearly
ordered set of nodes that is downward-closed and bounded above is called a
stem. Note that a path cannot be viewed as a stem. A non-empty subset B
of a path A is called a branch when it is bounded below and upward-closed
within A (i.e. if x ∈ B and y ∈ A with x < y then y ∈ B). The set of paths
containing the node t (resp. the stem S) will be denoted by Pathst (resp.
PathsS).

A set of nodes A is called convex if z ∈ A whenever x, y ∈ A and x < z < y.
A convex linearly ordered set of nodes is called a segment. A bridge is a non-
empty segment A such that, for every path P, either A ⊆ P or A∩P is empty.
A segment A is called a furcation when it is not a bridge. Note that every
singleton set of nodes {t} is a bridge.

A set X of nodes is an antichain if x ̸⌣ y for all x ̸= y in X. Note that
the intersection of an antichain X and a linearly ordered set Y of nodes is
either a singleton or the empty set. The second alternative is excluded when
X is a maximal (by inclusion) antichain and Y is a path. Also, note that
every two distinct paths in a tree intersect in a stem.

The linear orders (N;<), (Z;<), (Q;<) and (R;<), where in each instance
< denotes the usual ordering of that set, will be denoted as ω, ζ, η and λ
respectively.

3. Branching in trees

3.1. Connected components and branching stems.

Definition 3.1. Two paths A1 and A2 in a tree T = (T ;<) are undivided
at the stem S ⊆ A1∩A2, denoted A1⋎SA2, iff A1∩A2∩T>S ̸= ∅. Otherwise,
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A1 and A2 are branching at S. If S = T⩽t, we will say that A1 and A2 are
undivided, or branching, at t, and ⋎S will also be written ⋎t.

In the sequel, some notions relative to stems are tacitly extended to nodes,
like in the previous definition.

Proposition 3.2. Let S be a stem. The relation ⋎S is an equivalence rela-
tion on PathsS.

Proof. Straightforward. □

For every path A ∈ PathsS we denote by [A]⋎S
the equivalence class of A

with respect to ⋎S.

Definition 3.3. A <-connected component2 (briefly, <-component) of the
forest F = (F ;<) is a non-empty subset C of F such that:

(1) if t ∈ C, t′ ⩽ t and t′ ⩽ u, then u ∈ C; and
(2) C is minimal (by inclusion) for the condition 1.

Proposition 3.4. Let F = (F ;<) be a forest. For any t ∈ F , let

(3.1) Ct = {u : t ⩾ t′ ⩽ u, for some t′ ∈ F} .

Then:

(1) Every set Ct is a <-component of F, and vice-versa, every <-compo-
nent is of the type Ct.

(2) The set of <-components of F is a partition of F ;
(3) Every <-component of F is a maximal subtree of F.

Proof. 1. To prove that the set Ct is closed under the condition 1 in Def. 3.3,
suppose t′′ ∈ Ct, t

′ ⩽ t′′, and t′ ⩽ u. Then, by the definition of Ct, there is
a v such that t ⩾ v ⩽ t′′. By downward linearity, applied to v and t′, there
are two cases:

i) v ⩽ t′. Then, v ⩽ u, hence u ∈ Ct.
ii) t′ < v. Then t′ < t and t′ ⩽ u. By definition of Ct these imply u ∈ Ct.
To prove condition 2 (the minimality of Ct), take any non-empty set

C ⊆ Ct which satisfies the closure condition 1 of Def. 3.3. Take any u ∈ C.
Then u ∈ Ct, so t

′ ⩽ u for some t′ ⩽ t, hence t ∈ C by condition 1. Therefore,
Ct ⊆ C, again by condition 1 applied to C, hence Ct = C, as required. By
the minimality, this also shows that every <-component is Ct for any t in it.

2. It follows from the above that Ct ∩ Cv ̸= ∅ implies Ct = Cv, and hence
the set of <-components is a partition of F .

3. Clearly, every Ct is a subtree. For any u ̸∈ Ct, there is no w such that
w ⩽ t and w ⩽ u, otherwise u would belong to Ct. Then, no subtree of F
contains Ct properly. □

Corollary 3.5. Let P be a path in a forest F and let TP be the union of all
paths A such that P ∩ A ̸= ∅. Then TP is a <-component of F. Conversely,

2This definition comes from [19].
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every <-component C in F is of the type TP, for any path P that intersects
C.

In the sequel we will be interested in the <-components of forests of the
form T>S, for a given tree T. By C>S

u we will mean the <-component of T>S

that contains the node u.

Lemma 3.6. Given a tree T and a stem S in it, let t, u be nodes in T such
that S < t and S < u. Then C>S

t = C>S
u if and only if A ⋎S B, for all paths

A and B containing respectively t and u.

Proof. Let A and B be paths containing t and u, respectively. If C>S
t = C>S

u ,
then (3.1) from Proposition 3.4 implies t ⩾ t′ ⩽ u for some t′ in T>S. Then
t′ ∈ A ∩ B and S < t′, hence A⋎S B.

Conversely, let A ⋎S B and let t ∈ A and u ∈ B. Consider any v ∈ A ∩ B
with S < v. We can assume w.l.o.g. that v ⩽ t and v ⩽ u; otherwise, t or
u can play the role of v. Then v ∈ C>S

t ∩ C>S
u , which implies C>S

t = C>S
u by

Proposition 3.4. □

This observation shows that there is a one-to-one correspondence between
equivalence classes modulo undividedness at S and <-components of T>S.
For every [A]⋎S

, the set {B ∩ T>S : B ∈ [A]⋎S
} is the set of all paths of

a unique <-component of T>S. Conversely, for every <-component C of
T>S, the set {P ∪ S : P is any path in C} is the set of all paths in a unique
equivalence class modulo undividedness at S.

The undividedness classes at a given node represent the way in which a
tree branches out at that node. There are cases, though, in which this seems
to conflict with the intuition. For instance, consider the tree T obtained by
taking a copy η0 of the rationals and by attaching another copy ηr of the
rationals at every positive rational r in η0 (see Figure 1). At the node 0 in
η0 of this tree there is only one undividedness class, but it can hardly be
said that the tree does not branch out at 0.
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Figure 1. A tree with a stem that is branching2 but not
branching1.
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Then, two definitions can be considered.

Definition 3.7. A stem S in a tree T is

(1) branching1 iff ⋎S has more than one equivalence class or, equiva-
lently, iff T>S has more than one <-component or, equivalently, iff
there are two different paths A1,A2 ∈ PathsS that are branching at
S;

(2) branching2 iff every node from T>S has an incomparable node in
T>S.

We say that a node in T is branchingi iff the stem ending at that node is
branchingi, for i = 1, 2.

Proposition 3.8.

(1) branching1 implies branching2.
(2) branching2 does not imply branching1.

Proof. 1. Let T be any tree and S be a stem in it. Suppose that S is
branching1 and let u be any node in T>S. Consider any <-component C of
T>S different from C>S

u . By Proposition 3.4, u ̸⌣ v for all v ∈ C.
2. The tree of Figure 1 provides a counterexample: the stem (−∞, 0] of

η0 is branching2 but not branching1. □

A bar over a stem S is a set X of nodes such that S < v for every v ∈ X
and X ∩ A ̸= ∅ for every path A containing S. A bar over the node t is
a bar over the stem T⩽t. Bars can also be used for describing how a tree
branches out at a given stem, but the following result shows that nothing
new is added in this way.

Proposition 3.9. A stem S in the tree T is branching2 iff, for every bar X
over S, |X| ⩾ 2.

Proof. Assume that S is branching2 and let v be any element of T>S. The
set T>S contains a node u that is not comparable with v. Then, for every
path P passing through u, we have S ⊆ P and {v} ∩ P = ∅, and hence {v}
cannot be a bar over S.

Conversely, suppose that there exists a node t in T>S such that t ⌣ u for
every u ∈ T>S. Then, it can be easily verified that {t} is a bar over S. □

3.2. Bounded branching. For any sets of nodes X,Y in a tree, we say
that X underlies Y , notation X ≤und Y , if for every u ∈ Y , there exists
v ∈ X such that v ⩽ u.

Definition 3.10. For any n ∈ N, the tree T is

(1) n-branching1 at the stem S iff ⋎S has exactly n equivalence classes
or, equivalently, iff T>S has exactly n <-components;

(2) n-branching2 at the stem S iff for every antichain X in T>S, there
exists an antichain LX in T>S such that LX ≤und X and |LX | = n.
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For i ∈ {1, 2}, T is finitely branchingi at S if it is n-branchingi at S
for some n. If T is not finitely branchingi at S then it is called infinitely
branchingi at S.

Recall that stems are assumed to be non-empty. One can, however, ex-
pand the notion of n-branching2 to include the ‘empty stem’ as follows.
When S is not a stem but the empty set then by definition T>S = T>∅ = T.
Hence we say that T is n-branching2 at ∅ when for every antichain X in T
there exists an antichain LX in T such that LX ≤und X and |LX | = n. As
before, T is then called finitely branching2 at ∅ when it is n-branching2 at ∅
for some n.

Definition 3.11. A tree T is called finitely branching2 when it is finitely
branching2 at ∅ and at each of its stems.

It does not make sense to expand the of notion n-branching1 to include
the empty set, because the relation ⋎S is only defined for stems. However,
if one were to attempt such an expanded definition, then from the fact that
a tree T is n-branching1 at the stem S if and only if T>S has exactly n
<-components, a natural expansion would be that T is n-branching1 at ∅ if
and only if T has exactly n <-components. This would result in the trivial
definition that each tree is 1-branching1 since trees, being connected, have
exactly one <-component.

Lemma 3.12. Let T be a tree and let S be either the empty set or a stem
in T. If T is finitely branching2 at S, then every path in T>S has an initial
segment that is a bridge.

Proof. Let T be n-branching2 at S and let X be a maximal antichain in
T>S. Then, there exists a finite antichain L ⊆ T>S such that L ≤und X and
|L| = n. For every path P in T>S, let uP be the unique node from L on P.

Now, fix any path A in T>S. Then, for every w ∈ L we select a node
w(A) ∈ A such that w(A) ⩽ w and w(A) ⩽ uA, if such node exists, else
w(A) := uA. Consider the set LA consisting of all these nodes. Let vA be
the least node in LA. It exists because LA is finite, linearly ordered, and
uA ∈ LA. Then the set BA = {v : S < v ⩽ vA} is an initial segment of A
and a bridge in A. Indeed, if there is a path P in T>S such that BA ̸⊆ P
then P ̸= A and vA /∈ P, hence uA /∈ P. Suppose BA ∩ P ̸= ∅ and let
x ∈ BA ∩P. Then x < uP and x ⩽ vA ⩽ uA. By the choice of uP(A), it then
must be the case that uP(A) ⩽ uP, hence uP(A) ∈ P, hence uP(A) ⩽ vA,
hence uP(A) = vA by definition of vA. This contradicts the assumption that
BA ̸⊆ P. □

The following results establish a relationship between the two notions of
finite branching.

Proposition 3.13. If the tree T is n-branching2 at the stem S, then T is
also n-branching1 at S.
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Proof. For every A in T>S, let bA be the intersection of all paths P in T>S

such that P ∩ A ̸= ∅. It follows from Lemma 3.12 that each bA is a bridge.
Assume bA ̸= bB and bA ∩ bB ̸= ∅, and consider u ∈ bA ∩ bB and v ∈ bA \ bB.
Then the interval [u, v] is a furcation contained in bA, which contradicts the
fact that bA is a bridge. Thus, for all paths A and B, either bA = bB, or
bA∩bB = ∅. Moreover, for bA ̸= bB, we have u ̸⌣ v for all u ∈ bA and v ∈ bB.
Let B be the set of all bridges bA.

Let X be any set contained in
⋃

b∈B b and such that X∩b is a singleton for
each b ∈ B. Then X in an antichain. Since T is n-branching2, there exists
an antichain LX ⊆ T>S such that LX ⩽und X and |LX | = n. Then LX must
contain exactly one element from each b ∈ B, hence B consists of exactly n
bridges. Any two paths A and B in PathsS (in T) are undivided at S if and
only if they contain the same bridge from B, which is unique. Thus, there is
a one-to-one correspondence between B and the set of undividedness classes
at S. Therefore T is n-branching1. □

The converse of this proposition does not hold. Indeed, the tree considered
in Figure 1 has only one undividedness class at the node 0 in η0, but it
is not finitely branching2 at that node. The following result, which is a
straightforward consequence of the previous proposition, establishes a more
precise relationship between finite branching1 and finite branching2.

Corollary 3.14. If the tree T is n-branching1 at the stem S, then either T
is n-branching2 at S or it is infinitely branching2 at S.

Consider now, in a tree T, any path A containing the stem S and the
undividedness class [A]⋎S

. Let T′ be the subtree of T, the domain T ′ of which
is the union of all paths in [A]⋎S

. The tree T′ is clearly 1-branching1 at S and
hence it is either 1-branching2 or infinitely branching2 at S. This suggests
that the only difference between the two notions derives from situations
similar to that described in Figure 1.

4. Condensations of trees

The constructions of condensations of trees, introduced here, extend those
of the condensations of linear orders as e.g. in [17]. They relate to the notion
of condensed trees, formally defined further.

4.1. Segments and bridges.

Lemma 4.1. Let {Ii : i ∈ I} be a set of segments in a given tree T, such
that, for some index i0, Ii0∩Ii ̸= ∅ for all i ∈ I. Assume also that I∗ =

⋃
i∈I Ii

is linearly ordered. Then I∗ is a segment.

Proof. We have to prove that I∗ is convex. Assume x < z < y, where x and
y are elements of I∗. Assume x ∈ Ii and y ∈ Ij and let ti and tj be elements
of Ii ∩ Ii0 and Ij ∩ Ii0 , respectively. Now several cases can be considered
according the relative positions of ti, tj , x, y, and z in Ii0 ∪ Ii ∪ Ij . In all
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cases it is easy to conclude z ∈ Ii0 ∪ Ii ∪ Ij by using the convexity of Ii0 , or
of ∈ Ii, or of Ij . Therefore, z ∈ I∗. □

Proposition 4.2. Let T be a tree. Then:

(1) If {Ii : i ∈ I} is a set of bridges such that Ii0 ∩ Ii ̸= ∅ for some i0 and
all i in I, then I∗ =

⋃
i∈I Ii is a bridge.

(2) If I is a bridge in T, then I is contained in a unique maximal bridge.
(3) The set of maximal bridges in T forms a partition in T, i.e., the

relation of two nodes in T belonging to the same maximal bridge
forms an equivalence relation on T.

Proof. 1. Let C be a path such that Ii0 ⊆ C. For every i, it holds that
C ∩ Ii ⊇ Ii0 ∩ Ii ̸= ∅, which implies Ii ⊆ C because every Ii is a bridge. Then
I∗ ⊆ C, which is linearly ordered, and hence, by Lemma 4.1, I∗ is a segment.

Let P be any path such that P ∩ I∗ ̸= ∅. Then, P ∩ Ii ̸= ∅ for some i.
Since Ii is a bridge, we have P ⊇ Ii ⊇ Ii ∩ Ii0 , so that P ∩ Ii0 ̸= ∅. Therefore,
P ⊇ Ii0 . Then, by the assumption for Ii0 , P has non-empty intersection with
every Ij , and hence Ij ⊆ P for all j. Thus, I∗ ⊆ P.

2. Let A be the family of all bridges J such that I ⊆ J. Then, by claim 1,
I∗ =

⋃
A is a bridge. Clearly, it is the only maximal bridge containing I.

3. Let I1 and I2 be maximal bridges with non-empty intersection. Then,
by claim 1, I1 ∪ I2 is a bridge and hence, by the maximality of I1 and I2, we
have I1 = I1 ∪ I2 = I2. □

For each t ∈ T , the maximal bridge in T = (T ;<) containing t (recall,
that {t} is a bridge) will be denoted as t . Recall that the notation t < u
means that x < y for all x ∈ t and y ∈ u , and t ⌣ u will indicate that
t < u or t = u or u < t .

Proposition 4.3. Let T = (T ;<) be a tree and let t, u ∈ T .

(1) If t < u and t ̸= u then t < u .
(2) If t ̸⌣ u then x ̸⌣ y for all x ∈ t and y ∈ u .

Proof. 1. Let A be a path in T such that t, u ∈ A. Since t and u are
bridges then t , u ⊆ A so that t ∪ u is linearly ordered. Since t ̸= u
then t ∩ u = ∅. Since bridges are segments, hence they are convex, it
follows that t < u .

2. Follows from part 1. □

Corollary 4.4. Let T = (T ;<) be a tree and let t, u ∈ T . Then t ⌣ u if
and only if t ⌣ u .

Proposition 4.5. Let T = (T ;<) be a tree and t, u ∈ T . The following are
equivalent:

(1) there exists a bridge B such that t, u ∈ B;
(2) t = u ;
(3) for every path P in T, t ∈ P if and only if u ∈ P;
(4) for every node v ∈ T, v ⌣ t if and only if v ⌣ u.
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Proof. 1 ⇐⇒ 2: Immediate.
2 =⇒ 3: Suppose t = u . Let P be a path such that t ∈ P. Then

t ⊆ P, hence u ∈ u ⊆ P. Likewise, if u ∈ P then t ∈ P.
3 =⇒ 2: Suppose condition 3 holds. If t = u then the claim is immediate,

so assume t ̸= u and let A be a path with t ∈ A. Then u ∈ A and so t ⌣ u,
say t < u. Consider the segment [t, u] and let P be any path such that
P ∩ [t, u] ̸= ∅. Then t ∈ P, so u ∈ P, hence [t, u] ⊆ P. Therefore, [t, u] is a
bridge. By Proposition 4.2, [t, u] is contained in a unique maximal bridge,
hence t = u .

3 =⇒ 4: Suppose condition 3 holds.
Let v ∈ T with v ⌣ t and let A be a path with v, t ∈ A. Then u ∈ A and

so v ⌣ u. Likewise, if v ⌣ u then v ⌣ t.
4 =⇒ 3: Suppose condition 4 holds.
Let P be a path with t ∈ P. Since v ⌣ t for every v ∈ P then v ⌣ u for

every v ∈ P, hence u ∈ P. Likewise, if u ∈ P then t ∈ P. □

Thus, two nodes x and y in a tree belong to the same maximal bridge if
and only if they satisfy in that tree the formula

(4.1) β(x, y) := ∀z (z ⌣ x ↔ z ⌣ y) .

So, β defines an equivalence relation on the set of nodes in the tree.

4.2. Condensations.

Definition 4.6. Given a tree T = (T ;<), define the set T :=
{
t : t ∈ T

}
.

The structure T :=
(
T ;<

)
is called the condensation (or, the condensa-

tion quotient) of the tree T.

Thus, the condensation of a tree is its quotient structure generated by
the equivalence relation of membership to the same maximal bridge. Con-
sequently, the condensation of a tree shrinks all maximal bridges in it to
single nodes.

The following is a straightforward consequence from Proposition 4.3.

Proposition 4.7. For any tree T, its condensation T is also a tree.

Lemma 4.8. Let T be a tree. Then every bridge in the tree T consists of
a single node.

Proof. Let t , u ∈ T and t ̸= u . Then t and u belong to different
maximal bridges in T. From Proposition 4.5 we may conclude, without loss
of generality, that there exists w ∈ T such that w ⌣ t and w ̸⌣ u. By
Corollary 4.4 this implies that w ⌣ t and w ̸⌣ u , so t and u belong

to different maximal bridges in T . Thus, all maximal bridges in T are
singletons. □

Remark 4.9 The condensation of a tree can be equivalently defined in
terms of the sets Pathst of paths containing a given node t. Let PathsT :=
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{Pathst : t ∈ T}. It is easily verified that the inverse inclusion ⊃ is a tree
relation on PathsT . By Proposition 4.5, the nodes t and u belong to the same
bridge if and only if Pathst = Pathsu. Therefore, the map χ : t 7→ Pathst
is a bijection. Moreover, t < u if and only if Pathst ⊃ Pathsu. Thus, the

map χ : t 7→ Pathst is an isomorphism from T to (PathsT ;⊃).

The operator · defines a canonical mapping

· : T → T .

For X ⊆ T , y ∈ T and Y ⊆ T , we denote

X :=
{
x ∈ T : x ∈ X

}
,

y −1 := {x ∈ T : x = y} ,
Y

−1
:= {x ∈ T : x ∈ Y } .

Then X ⊆ X
-1

and Y = Y
−1

for all X ⊆ T and Y ⊆ T .

Example 4.9. Figure 2 shows a tree T together with its condensation T .
The bridges t1 through t6 are linear orders which may be infinite, and are

condensed respectively to the nodes A1 through A6 in T , so that T is
finite.
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A6

T: T :

Figure 2. The condensation of a tree (see Example 4.9).

Proposition 4.10. Let T = (T ;<) be a tree and let X ⊆ T .

(1) If X is an antichain in T then X is an antichain in T .

(2) If X is linear in T then X is linear in T .

(3) If X is a path in T then X is a path in T .

(4) If X is convex in T then X is convex in T .

(5) If X is downward-closed in T then X is downward-closed in T .

(6) If X is upward-closed in T then X is upward-closed in T .
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Proof. 1., 2. From Corollary 4.4.
3. Let X be maximal linear in T. Then X is linear. Let u ∈ T \ X .

Then u ̸∈ X so u ̸⌣ v for some v ∈ X. This implies u ̸⌣ v for v ∈ X .

Thus, it follows that X is maximal linear in T .
4. Let t , u ∈ X and let y ∈ T be such that t < y < u . Then

t < y −1 < u, hence y −1 ∈ X. This implies y
−1

= y ∈ X .
The proofs of parts 5 and 6 are similar. □

Proposition 4.11. Let T = (T ;<) be a tree and let Y ⊆ T .

(1) If Y is linear in T then Y
−1

is linear in T.

(2) If Y is a path in T then Y
−1

is a path in T.

(3) If Y is convex in T then Y
−1

is convex in T.

(4) If Y is downward-closed in T then Y
−1

is downward-closed in T.

(5) If Y is upward-closed in T then Y
−1

is upward-closed in T.

The proof is very similar to that of Proposition 4.10.

Thus, paths, segments, stems, and branches are preserved between a tree
and its condensation under the mapping · and its inverse.

4.3. Singular and emergent paths.

Definition 4.12. A path A in a tree T is called singular if there exists
t ∈ A such that T⩾t is linear (and, therefore, T⩾t ⊆ A). Otherwise A is
called emergent.

Singular paths are of special interest from a model-theoretic viewpoint
because each singular path can be defined by a first-order formula: if A is
singular and t ∈ A is such that T⩾t is linear then A can be defined in T by
the formula φ(x) given by x ⌣ t.

Proposition 4.13. A path A in a tree T is singular if and only if A
contains a greatest node in T .

Proof. Let A be singular and let t ∈ A be such that T⩾t is linear. Then note

that T⩾t is a bridge in T and T⩾t ⊆ t , hence t is the greatest node of A
Conversely suppose A contains a greatest node t . Then t ∈ A. Let

u, v ∈ T⩾t. Then t ⩽ v and t ⩽ v , hence u = v = t , so u ⌣ v.
Thus, T⩾t is linear. □

Thus, a path A is emergent if and only if A does not contain a greatest
node.

A tree T is called well-founded when every non-empty set of nodes from
T contains a minimal node. Note that a tree is well-founded if and only if
each of its paths is well-ordered.

Proposition 4.14. Let T be a well-founded tree and let A be a path in T.
Then:



STRUCTURAL THEORY OF TREES I. BRANCHING AND CONDENSATIONS 201

(1) T is a well-founded tree;

(2) A is singular if and only if the order type of A is a successor ordinal;

(3) A is emergent if and only if the order type of A is a limit ordinal.

Proof. First, every path in T is a quotient P of a path P in T, and P is
well-ordered (hence, has the order type of an ordinal) whenever P is well-
ordered. The claims now follow from Proposition 4.13. □

4.4. Condensed trees.

Definition 4.15. A tree T is called condensed when T ∼= T .

Proposition 4.16. Let T = (T ;<) be a tree. The following conditions are
equivalent:

(1) T is condensed;

(2) T ∼= T′ for some tree T′;
(3) w = {w} for every w ∈ T ;
(4) Pathsu ̸= Pathsv for all u ̸= v in T .3

Proof. 1 =⇒ 2: Let T be condensed. Then T ∼= T .

2 =⇒ 3: Suppose that f : T → T′ is an isomorphism. Let t, u ∈ T
with t ̸= u. Then f(t) ̸= f(u) and, by Lemma 4.8, f(t) and f(u) belong to

different maximal bridges in T′ . From Proposition 4.5 we may conclude,

without loss of generality, the existence of a node s in T′ such that s ⌣ f(t)
and s ̸⌣ f(u). Since f is an isomorphism then f−1(s) ⌣ t and f−1(s) ̸⌣ u.
Hence by Proposition 4.5, t ̸= u and the result follows.

3 =⇒ 1: If w = {w} for every w ∈ T , then the canonical map given as

w 7→ w defines an isomorphism from T to T .
3 ⇐⇒ 4: In Remark 4.9 we have observed that the map t 7→ Pathst is

a bijection. Then every bridge is a singleton if and only if part 4 holds. □

Proposition 4.17. Let T be a tree and let y be any non-leaf node in T .
Then y −1 is a final segment of a branching2 stem S in T, i.e. a subset of
S which is upward-closed in S.

Proof. The set y −1 is a segment. The set S = {t : t ⩽ u for some u ∈ y −1}
is a stem in T, and y −1 is a final segment of it. Consider any node v in
T>S. If v ⌣ t for every t ∈ T>S, then y −1 ∪ {u : y −1 < u ⩽ v} is a
bridge, which contradicts the maximality of y −1. Thus, S is a branching2
stem. □

Proposition 4.18. Let T be a finitely branching2 tree. Then T is well-
founded.

Proof. Suppose T is not well-founded. Then there exists an infinite se-
quence {yi}i∈N ⊆ T such that yi+1 < yi for all i ∈ N.

3Because of this property, condensed trees are called totally branching in [18].
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Let Y = {y ∈ T : y < yi for all i ∈ N} (note that Y may be empty)

and Z = {y ∈ T : Y < y < y0}. Then either Y
−1

= ∅ or Y
−1

is a

stem in T, and Z
−1

is a segment in T such that there is no node v ∈ T

for which Y
−1

< v < Z
−1
. Then every initial subsegment of Z

−1
(i.e., a

downward-closed subset of Z
−1
) contains infinitely many disjoint bridges

and hence it is a furcation. From Lemma 3.12 it follows that T is not
finitely branching2 from Y

−1
. □

Some useful observations follow from the propositions above:

(1) A tree is condensed iff each of its (maximal) bridges is a singleton.
(2) A tree is condensed iff each of its non-leaf nodes is a branching2

node.
(3) The condensation of a condensed tree is (isomorphic to) the same

tree.

4.5. Refinements and homeomorphisms of trees. A refinement of a
tree T is again a tree obtained from T by inserting nodes inside bridges.
(Note the class of trees is closed under such insertions.) Two trees are
homeomorphic if they have isomorphic refinements. The relation between
trees of being homeomorphic is an equivalence relation. This fact is readily
seen using the following observation.

Trees T and S are homeomorphic if and only if T ∼= S . The forward
direction is clear: if T′ and S′ are isomorphic refinements of T and S then

T ∼= T′ ∼= S′ ∼= S . Conversely, if T ∼= S then a tree T′ that is
isomorphic to refinements of both T and S can be constructed as follows.

Let f : T → S be an isomorphism. Obtain T′ from T as follows. For

each t in T , if t ∼= f
(
t
)
then leave the bridge t in T as it is, while

if t ̸∼= f
(
t
)
then replace the bridge t in T with a copy of t followed

by a copy of f
(
t
)
. It is readily seen that this tree T′ is isomorphic to

refinements of both T and S.
Now, take a tree T and consider a partition of it into a set S of bridges.

The ordering in T is inherited in S, just like in its condensation quotient,
which turns the set S into a tree itself, denoted by T(S). The canonical
mapping from T to T(S) is called a homeomorphism of T onto T(S), and
T(S) is called a homeomorphic abstraction of the tree T. Thus, two trees
are homeomorphic if and only if they share a common, up to isomorphism,
homeomorphic abstraction. Note that homeomorphic abstractions gener-
alise the condensation quotient construction, obtained when S is the set of
maximal bridges, and many of the results about condensations in this sec-
tion apply likewise to homeomorphic abstractions. We leave out the routine
details.
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Clearly, every homeomorphism of trees is a homomorphism of partial
orders, but not vice versa. Indeed, any tree-like partial order can be ho-
momorphically mapped onto a linear order, but that, in general, is not a
homeomorphism of trees.

We also remark that the notion of homeomorphism of trees has a topo-
logical nature, in the following sense. The set Paths(T) of paths in a tree
T = (T ;<) can be endowed with a topological structure by considering
the family PathsT of all sets of the type Pathst, for t ∈ T , as a subbase
of open sets. Denote this topology by τT. It turns out that (Paths(T), τT)
is a non-Archimedean topological space ([15]) because it is Hausdorff and
{Pathst : t ∈ T} is a rank 1 subbase, that is, for all t, t′ ∈ T , either
Pathst ⊆ Pathst′ , or Pathst′ ⊆ Pathst, or Pathst ∩ Pathst′ = ∅. Thus, by
Remark 4.2, it follows that homeomorphic trees generate homeomorphic
topologies, which also justifies the adopted terminology.

5. Condensed forkings and extensions

The definition of condensed trees can be extended to condensed forests in
a natural way. It can be easily verified that all results for condensed trees in
the previous section hold for condensed forests, too. Note also that a forest
is condensed if and only if all of its <-components are condensed trees.

Propositions 4.10 and 4.11 show that the condensation of a given tree T
produces a new tree having the same ‘branching structure’ as T. But most
of the inner structure of its paths is lost with this operation. It is sometimes
desirable to preserve the type and structure of the paths, while ensuring
condensed branching. For that purpose, following [18], here we introduce
and study an alternative construction which does not condense the tree, but,
instead, extends it to produce a new condensed tree in which every path is
isomorphic to a path in the original tree.

We will present two versions of the construction, a full version and a
refined one. The basic idea of both is that non-singleton bridges can be
eliminated by duplicating nodes and the subtrees generated by those nodes.
Furthermore, the property of being condensed is ensured by duplicating the
subtrees rooted at every node of the original tree in the full version, and
only at the non-branching nodes of the original tree in the refined version.

As the construction (in both versions) generally produces forests, we will
present it applied not just to trees, but to forests. Every connected <-
component of each of the resulting extensions will be a condensed tree.

We first define the full version. Given any t ∈ T , we start duplicating all
nodes in T⩽t. This is formally obtained by considering functions that assign
0 or 1 to each element of T⩽t. The new structure will consist of all these
functions for t ranging over T . We define

(5.1) FT :=
⋃{

2T
⩽t

: t ∈ T
}
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where 2X denotes the set of all functions f : X → {0, 1}. When X ⊂ Y ,
f ∈ 2X , and g ∈ 2Y , by f ⊂ g we denote the claim that g extends f , i.e.,
that f is the restriction g↾X of g to X.

For any given T, FT will denote the structure (FT;⊂), defined above.

Now, the definition of FT can be refined in order to obtain a smaller

extension F †
T according to the following informal explanation. Observe first

that the duplication of nodes in the construction of FT essentially aims at
turning non-singleton bridges into furcations. Moreover, if t is the initial
node of a bridge, then, for every u < t, the interval [u, t] is a furcation, and
hence the duplication of t produces only copies of already existing furcations.
This means that the duplication of t is unnecessary. Then, we set
(5.2)

F †
T := FT \ {f : f(t) = 0 for some initial node t of a maximal bridge}.

Thus, F †
T is the set of all functions in FT such that f(t) = 1 whenever t is

the initial point of a maximal bridge. We now define F†
T := (F †

T;⊂).
Observe that, if T is condensed, the set {t} is a maximal bridge for every

node t, which is its initial node. Then, F †
T is the set of all functions in FT

that constantly take the value 1. For every node t, there is only one function

of this kind having T⩽t as domain and hence F†
T is (a tree) isomorphic to T.

Also, if T is not rooted, then F†
T might be a (condensed) proper forest.

Example 5.1. Figure 3 shows a tree T on the left, a <-component of the

full construction FT applied to T in the middle, and the refined version F†
T

on the right.
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t
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v0 v1w0 w1

F†
T:

Figure 3. A tree T, a <-components of FT, and F†
T.

As another example, if T = (N;<), then F†
T is the infinite binary branching

tree and FT consists of two copies of that tree.

Proposition 5.2 ([18], Proposition 5.19).
For any tree T = (T ;<), the structure FT = (FT;⊂) is a condensed forest.

The same holds for the refined extension F†
T.

Proposition 5.3. For any tree T = (T ;<), the structure F†
T = (F †

T;⊂) is a
condensed forest.
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Proof. The definition of forest does not involve existential assumptions.

Then F†
T is a forest because F †

T ⊆ FT and FT is a forest. We show that

Pathsf ̸= Pathsg, for all different nodes f and g in F†
T. This implies that F†

T
is condensed by Proposition 4.16.

The claim is trivial if f ̸⌣ g. Assume f ⊂ g and let t be an element of
dom(g) \ dom(f). Two cases can be considered.

Case a: t is not the initial node of a maximal bridge. Let g′ be the element

of F †
T defined by: dom(g′) = dom(g); g′(u) = g(u) for all u ̸= t in dom(g);

g′(t) ̸= g(t). Then g and g′ are ⊂-incomparable nodes and f ⊂ g′. Any path

containing g′ in F†
T is an element of Pathsf \ Pathsg.

Case b: t is the initial node of a maximal bridge b. Assume f ∈ 2T
⩽u
,

so that u < t. Observe that, if v ⌣ t for all v > u, then b ∪ [u, t] is a
bridge and this contradicts the maximality of b. Then we can consider a

node v > u such that v ̸⌣ t. Let g′ be any extension of f in 2T
⩽v
. Every

path containing g′ in F†
T is an element of Pathsf \ Pathsg. □

Now, let π denote the function from FT onto T defined by

(5.3) π(f) = t for all f ∈ 2T
⩽t
.

Proposition 5.4. For any tree T = (T ;<), the function π has the following
properties:

(1) π is order-preserving;

(2) for every path P̃ in FT, π
(
P̃
)
is a path in T and the restriction of

π to P̃ is an isomorphism;
(3) every path in T is the π-image of a path in FT.

Proof. Observe first that, for f ∈ 2T
⩽t

and g ∈ 2T
⩽u
, f ⊂ g iff t < u and f

is the restriction g↾T⩽t of g to T⩽t. Then part 1 holds.

Consider a path P̃ in FT and let A be π(P̃). The linearity of ⊂ on P̃ implies

that A is linearly ordered by <. Moreover,
⋃
{f : f ∈ P̃} is a function ξ in

2A and every element of P̃ can be written as ξ↾T⩽u for some u ∈ A. Assume

that A ∪ {v} is linearly ordered. If v < u for some u ∈ A then P̃ ∪ {ξ↾T⩽v}
is also linearly ordered. So ξ↾T⩽v ∈ P̃ and v ∈ A. If u < v for all u ∈ A, so

that v ̸∈ A, consider the function ξ′ = ξ ∪{⟨v, 0⟩}. For every f ∈ P̃, we have

f ⊂ ξ′↾T⩽v and hence the set P̃ ∪ {ξ′↾T⩽v} is linearly ordered by ⊂. The

maximality of P̃ implies that it contains ξ′↾T⩽v , which contradicts v ̸∈ A.
Then A is a path in T.

We have observed that P̃ = {ξ↾T⩽t : t ∈ A}. This implies that the restric-

tion of π to P̃ is injective and surjective on A. Then it is an isomorphism
because π is order preserving. This concludes the proof of part 2.

Given any path P in T, consider an element χ of 2P and set

(5.4) χ∗ := {χ↾T⩽t : t ∈ P}.
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Observe first that P = π(χ∗). It is easily verified that χ∗ is linearly ordered

by ⊂. If f ∈ 2T
⩽t

for some t ∈ T and χ∗∪{f} is linearly ordered by ⊂, then

the maximality of P implies t ∈ P. Since f ⌣ χ↾T⩽t and f ∈ 2T
⩽t
, then

f = χ↾T⩽t ∈ χ∗. We conclude that χ∗ is a path in FT and part 3 holds. □

Note that FT is a proper forest for every tree T. Indeed, consider any

node t in T and let f and g be elements of 2T
⩽t

such that, for every u ∈ T⩽t,
f(v) ̸= g(v) for some v ⩽ u. For no h ∈ FT do we have h ⊂ f and h ⊂ g.

In the particular case where T is rooted, FT consists of two disjoint con-

densed trees. In fact, if t0 is the root, for every f ∈ 2T
⩽t
, either {⟨t0, 0⟩} ⊆ f

or {⟨t0, 1⟩} ⊆ f . Then, {⟨t0, 0⟩} and {⟨t0, 1⟩} are the roots of the two dis-
joint subtrees, T0 and T1. Observe that T0 = {f ∈ FT : {⟨t0, 0⟩} ⊆ f} and
T1 = {f ∈ FT : {⟨t0, 1⟩} ⊆ f}. Then T0 and T1 are isomorphic.

These observations can be generalized as follows.

Lemma 5.5. For every path P in the tree T and every <-component T∗ of
FT, there exists a path P̃ in T∗ such that π(P̃) = P.

Likewise for every <-component of F†
T.

Proof. We will only prove the claim for FT, as the proof for F
†
T is very similar.

Consider any path Ã in T∗ and let A be π
(
Ã
)
. Let S = P ∩ A. Since the

restriction of π to Ã is an isomorphism, S is the π-image of a downward-
closed subset S̃ of Ã in T∗. The set ξ = ∪{f : f ∈ S̃} is a function from S to 2
and it can be extended to a function χ from P to 2. The set {χ↾T⩽t : t ∈ P}
is a path P̃ in T∗ and π

(
P̃
)
= P. □

Proposition 5.6. All <-components of FT are isomorphic to each other.

Likewise, all <-components of F†
T are isomorphic to each other.

Proof. Again, we only prove the claim for FT, as the proof for F†
T is very

similar. Let T0 and T1 be components of FT and let P be a path in T.
By Lemma 5.5, we can consider a path P̃0 in T0 and a path P̃1 in T1 such
that π

(
P̃0

)
= π

(
P̃1

)
= P. Call ξ0 and ξ1 the sets

⋃
{f : f ∈ P̃0} and⋃

{f : f ∈ P̃1}, respectively. Clearly, ξ0 and ξ1 are functions from P to 2.

Let f be an element of T0 and assume f ∈ 2T
⩽t
. We define the element

φ(f) of T1 by

(5.5) φ(f) ∈ 2T
⩽t

and φ(f)(u) :=

{
f(u) if u ∈ T⩽t \ P
ξ1(u) if u ∈ P

.

We prove that φ is an isomorphism. It is readily verified that φ is order
preserving, which implies that it is injective. For every g ∈ T1, φ

−1(g) can
be defined in the same way as φ(f), by exchanging T0 and T1. □

Observation. Let χ be any fixed element of 2T and consider the set Tχ =
{χ↾T⩽t : t ∈ T}. The correspondence t 7→ χ↾T⩽t is a bijection and t < t′ iff

χ↾T⩽t ⊂ χ↾T⩽t′ , so that (Tχ;⊂) is isomorphic to T. Thus, FT contains 2|T |

copies of T. In this context, we just mention and eventually leave open the
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question of how many <-components FT has. Still, as a first step towards
answering that question, one can observe that the set FT can be described
as {χ↾T⩽t : t ∈ T and χ ∈ 2T }. Hence, f and g belong to the same <-
component of FT whenever f = χ↾T⩽t , g = ξ↾T⩽u , and χ and ξ coincide on
a stem in T. We denote this relationship between χ and ξ by χ ≈ ξ. Then
≈ is an equivalence relation and the number of <-components of FT is the
number of equivalence classes modulo ≈.

Definition 5.7. For every tree T = (T ;<), a condensed forking of T is a
pair (Tc, πc) such that:

(1) Tc = (Tc;<c) is a condensed tree;
(2) πc is an order-preserving function from Tc onto T ;
(3) for every path P in Tc, the restriction of πc to P is an isomorphism

between P and a path in T;
(4) every path in T is the πc-image of a path in Tc.

If, in addition,

5. there exists a subtree T′
c of Tc such that the restriction of πc to T′

c

is an isomorphism,

then (Tc, πc) will be called a condensed extension of T.

For every <-component T∗ of FT, we denote by π∗ the restriction of the
function π defined in Equation (5.3) to T ∗. Then, by Propositions 5.4 and
5.6, the pair (T∗;π∗) is a condensed forking of T. By the observation above,
(T∗;π∗) is also a condensed extension of T. The same holds likewise for

every <-component of F†
T.

Examples of condensed forkings that are not condensed extensions are
the trees Tc

1 and Tc
2 in Figure 4 below.

Thus, there can be many non-isomorphic condensed forkings or extensions
of a given tree. A natural question arises whether there exists among them a
unique one that is smallest by inclusion (up to isomorphism). The following
example shows that the answer is negative in both cases.

Example 5.8. The trees Tc
1 and Tc

2 at the bottom of Figure 4 are condensed

forkings of T, which are smaller in size than F†
T and are isomorphically em-

beddable in it. It is easy to see that each of these two smaller condensed
forkings of T is minimal with this property. In this example they are iso-
morphic, but they can be made non-isomorphic by extending the leaves x, y, z
in the original tree T with pairwise non-isomorphic (and condensed) sub-
trees. Then, the resulting tree will not have a smallest, up to isomorphism,
condensed forking.

Similarly, the non-existence of minimal condensed extensions of T can be

shown by considering the trees obtained by removing y1 or z1 from F†
T.

6. Concluding remarks

With this work we have initiated an exploration of the general theory of
trees. Follow-up research will include:
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Figure 4. A tree T, the condensed extension F†
T, and 2 smaller

(and minimal) condensed forkings of T .

• a study of complete trees (in the sense of Dedekind completeness)
and constructions of tree completions. This research has been carried
out in [13];

• a study of general operations on trees, such as sums and products,
thus extending classical studies of ordinal arithmetic, due to Can-
tor, Sierpinski, and others, and, more generally, operations on linear
orders (cf. [17]);

• a study of classes of trees generated by applying such operations,
and their structural and logical theories.

Our ultimate goal is a systematic development of a structural theory
of trees. One intended target application of this study is to characterise
elementary equivalence and other logical equivalences of trees and to obtain
new axiomatisations and decidability or undecidability results for logical
theories of important classes of trees, in the spirit of those in [6].
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