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FURTHER ROGERS-RAMANUJAN TYPE IDENTITIES

FOR MODIFIED LATTICE PATHS

R. SACHDEVA AND A. K. AGARWAL

Abstract. Recently, the authors introduced the modified lattice paths
which generalize Agarwal-Bressoud weighted lattice paths. Using these
new objects they interpreted combinatorially two basic series identities
which led to two new combinatorial Rogers-Ramanujan type identities.
In this paper we obtain three more Rogers-Ramanujan type identities for
modified lattice paths. This also leads to three new 3-way combinatorial
identities.

1. Introduction

The theory of partitions is closely related to the theory of lattice paths.
MacMahon [[20], Chapter VI] described a relationship between the both
theories. Polya [21] has shown a connection between the lattice path from
the origin to the point (p, q) and a partition, into parts limited in magnitude
to p and in number to q. Agarwal [1] defined n(x, y)-reflected lattice paths
as paths from (0, 0) to (n, n) having the property that for each (x, y) in
the path (n − x, n − y) is also on the path and proved that the number of
2n(x, y)-reflected lattice paths equals the number of partitions of 2n2 into
at most 2n parts each ≤ 2n and the parts which are strictly less than 2n can
be paired such that the sum of each pair is 2n. Agarwal and Andrews [5]
proved that the number of n(y, x)-reflected lattice paths equals the number
of self-conjugate partitions with largest part ≤ n. Agarwal and Bressoud [8]
introduced a new class of weighted lattice paths and using them, they proved
that the multiple basic series identity found by Agarwal, Andrews and Bres-
soud in [7] was indeed the analytic counterpart of the generalized colored
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partition theorem of Agarwal and Andrews [6]. These lattice paths were fur-
ther used to interpret many more basic series identities combinatorially (see
for instance [9]). Recently, the authors in [11] defined modified lattice paths
which generalize Agarwal-Bressoud weighted lattice paths. Using these new
objects they interpreted two basic series identities combinatorially which led
to two new combinatorial Rogers-Ramanujan type identities. In this paper
we obtain three more Rogers-Ramanujan type identities for modified lattice
paths. First we recall the following definitions:

Definition 1.1. (Agarwal and Andrews [6]) A partition with “(n+ t) copies
of n”, (also called an (n+ t)-color partition), t ≥ 0 , is a partition in which
a part of size n, n ≥ 0, can occur in (n + t) different colors denoted by
subscripts n1, n2, ..., nn+t.

Example 1.2. Partitions of 2 with “(n+ 1) copies of n” are

21 , 21 + 01 , 11 + 11 , 11 + 11 + 01,
22 , 22 + 01 , 12 + 11 , 12 + 11 + 01,
23 , 23 + 01 , 12 + 12 , 12 + 12 + 01.

Note that zeros are permitted if and only if t is greater than or equal to
one.

Definition 1.3. (Agarwal and Andrews [6]) The weighted difference of two
elements mi and nj, m ≥ n, is defined by m − n − i − j and is denoted by
((mi − nj)).

Definition 1.4. (Agarwal and Sood [10]) Let mi be a part in an (n+t)-color
partition of a non-negative integer ν. We split the color ‘i’ into two parts —
the green part and the red part and denote them by ‘g’ and ‘r’, respectively,
such that 1 ≤ g ≤ i , 0 ≤ r ≤ i−1, and g+r = i. An (n+t)-color partition in
which each part is split in this manner is called a split (n+t)-color partition.

Example 1.5. In 73+2, the green part is 3 and the red part is 2.

Remark: If the red part is 0, we will not write it. Thus, for example, we will
write 75 for 75+0.

Definition 1.7. (Agarwal and Bressoud [8]) Lattice paths are defined as
paths of finite length lying in the first quadrant. They will begin on the y-
axis or on the x-axis and terminate on the x-axis. Only three moves are
allowed at each step:
northeast: from (i, j) to (i+ 1, j + 1)
southeast: from (i, j) to (i+ 1, j − 1), only allowed if j > 0,
horizontal: from (i, 0) to (i+ 1, 0), only allowed along x-axis.
The following terminology will be used in describing lattice paths:

a) Peak: Either a vertex on the y-axis which is followed by a southeast step
or a vertex preceded by a northeast step and followed by a southeast step.

b) Valley: A vertex preceded by a southeast step and followed by a northeast
step. Note that a southeast step followed by a horizontal step followed by
a northeast step does not constitute a valley.



76 R. SACHDEVA AND A. K. AGARWAL

c) Mountain: A section of the path which starts on either the x- or y-axis,
which ends on the x-axis, and which does not touch the x-axis anywhere
in between the end points. Every mountain has at least one peak and may
have more than one.

d) Plain: A section of the path consisting of only horizontal steps which
starts either on y-axis or at a vertex preceded by a southeast step and
ends at a vertex followed by a northeast step.

e) Height of a vertex v: It is the y-coordinate of v.
f) Weight of a vertex v: It is the x-coordinate of v.
g) Weight of a path P : It is the sum of weights of all peaks in P .

Example 1.8. The following path has four peaks, two valleys, three moun-
tains and one plain.

Graph 1: A weighted lattice path

In the example given above, there are two peaks of height three and two
of height two, one valley of height one and one of height zero. The weight
of this path is 0 + 3 + 8 + 15 = 26.

Definition 1.9. (Sachdeva and Agarwal [11]) We divide the height ‘h’ of
each peak into two parts — the lower part will be called a pillar and the
upper part a beam and denote their heights by ‘p’ and ‘b’ respectively such
that 1 ≤ p ≤ h, 0 ≤ b ≤ h − 1 and h = p + b. A lattice path wherein the
heights of the peaks are divided into pillars and beams is called a modified
lattice path. In a modified lattice path a pillar will be denoted by a ‘dark
line’ and a beam by a ‘light line’.

A series involving factors like rising q-factorial (a; q)n defined by

(a; q)n =
∞∏
i=0

(1− aqi)

(1− aqn+i)

where |q| < 1 and ‘a’ any constant, is called basic series (or q-series, or
Eulerian series). The following two “sum-product” basic series identities
are known as Rogers-Ramanujan identities:

(1.1)

∞∑
n=0

qn
2

(q; q)n
=

∞∏
n=1

(1− q5n−1)−1(1− q5n−4)−1,

(1.2)

∞∑
n=0

qn
2+n

(q; q)n
=

∞∏
n=1

(1− q5n−2)−1(1− q5n−3)−1.

They were first discovered by Rogers [22] and rediscovered by Ramanujan
in 1913. MacMahon [20] gave the following combinatorial interpretation of
(1.1) and (1.2), respectively:
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Theorem 1.10. The number of partitions of n into parts with minimal dif-
ference 2 equals the number of partitions of n into parts which are congruent
to ±1(mod5).

Theorem 1.11. The number of partitions of n with minimal part 2 and
minimal difference 2 equals the number of partitions of n into parts which
are congruent to ±2(mod5).

Gordon [16] generalized Theorems (1.10) and (1.11) and Andrews [12]
gave the analytic counterpart of Gordon’s generalization. Partition theoretic
interpretations of many more q-series identities like (1.1) and (1.2) have been
given by several mathematicians. See, for instance, Göllnitz [14, 15], Gordon
[17], Connor [13], Hirschhorn [19], Agarwal and Andrews [5], Subbarao [25],
Subbarao and Agarwal [26].

In all these results ordinary partitions were used. Using (n+ t)-color par-
titions several more basic series identities were interpreted combinatorially
in [2, 3, 4, 8, 9, 18]. Very recently, using split (n+ t)-color partitions, Sood
and Agarwal [24] interpreted combinatorially the following three q-series
identities from Slater’s compendium [[23], I(29), I(51), I(50)]:

(1.3)

∞∑
n=0

qn
2
(−q; q2)n
(q; q)2n

=

∞∏
n=1

(1 + q2n−1)(1 + q6n−2)(1 + q6n−4)(1− q6n)

(1− q2n)

(1.4)
∞∑
n=0

qn(n+1)(−q; q2)n
(q; q)2n+1

=
∞∏
n=1

(1− q12n−4)(1− q12n−8)(1− q12n)

(1− qn)

(1.5)
∞∑
n=0

qn(n+2)(−q; q2)n
(q; q)2n+1

=
∞∏
n=1

(1− q12n−2)(1− q12n−10)(1− q12n)

(1− qn)

in the following forms:

Theorem 1.12. Let A1(ν) denote the number of split n-color partitions of ν
such that the parts and their subscripts have the same parity, the red part of
the subscripts cannot exceed 1 and the weighted difference of any pair of parts
is non-negative and even. Let B1(ν) denote the number of partitions of ν
such that the odd parts are distinct, even parts congruent to ±2,±4( mod 12)
and two copies of the parts which are congruent to ±2(mod12) are used.
Then

A1(ν) = B1(ν), ∀ν ≥ 0.

Theorem 1.13. Let A2(ν) denote the number of split (n+1)-color partitions
of ν such that the parts and their subscripts have the opposite parity, the red
part of the subscripts cannot exceed 1, the smallest part is of the form ii+1,
the red part of the smallest part is 0 and the weighted difference of any pair
of parts is non-negative and even. Let B2(ν) denote the number of partitions
of ν such that the parts not congruent to ±0,±4(mod12). Then

A2(ν) = B2(ν),∀ν ≥ 0.
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Theorem 1.14. Let A3(ν) denote the number of split (n+2)-color partitions
of ν such that the parts and their subscripts have the same parity, the red
part of the subscripts cannot exceed 1, the smallest part is of the form ii+2,
the red part of the smallest part is 0 and the weighted difference of any pair
of parts is non-negative and even. Let B3(ν) denote the number of partitions
of ν such that the parts not congruent to ±0,±2(mod 12). Then

A3(ν) = B3(ν),∀ν ≥ 0.

In this paper we interpret identities (1.3)–(1.5) combinatorially by using
modified lattice paths. This leads to three new 3-way combinatorial identi-
ties. In our next section we state our main results and prove them in Section
3. We conclude in the last section by posing an open problem.

2. The main results

We shall prove that identities (1.3)–(1.5) have their modified lattice paths
theoretic interpretations in the following theorems, respectively:

Theorem 2.1. Let C1(ν) denote the number of modified lattice paths of
weight ν which start at (0,0)

(i) have no valley above height 0,
(ii) no plain with odd length,
(iii) no beam with height > 1.

Then
C1(ν) = A1(ν), ∀ν ≥ 0.

Example 2.2. C1(5) = 7, the relevant modified lattice paths are

Graph 2: Modified lattice paths enumerated by C1(5)

Graph 3: Modified lattice paths enumerated by C1(5)

Graph 4: Modified lattice paths enumerated by C1(5)
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Graph 5: Modified lattice paths enumerated by C1(5)

Graph 6: Modified lattice paths enumerated by C1(5)

Graph 7: Modified lattice paths enumerated by C1(5)

Graph 8: Modified lattice paths enumerated by C1(5)

Theorem 2.3. Let C2(ν) denote the number of modified lattice paths of
weight ν which start at (0,1)

(i) have no valley above height 0,
(ii) no plain with odd length,
(iii) no beam with height > 1,
(iv) the first peak is supported by a pillar only.

Then
C2(ν) = A2(ν), ∀ν ≥ 0.

Example 2.4. C2(5) = 6, the relevant modified lattice paths are

Graph 9: Modified lattice paths enumerated by C2(5)
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Graph 10: Modified lattice paths enumerated by C2(5)

Graph 11: Modified lattice paths enumerated by C2(5)

Graph 12: Modified lattice paths enumerated by C2(5)

Graph 13: Modified lattice paths enumerated by C2(5)

Graph 14: Modified lattice paths enumerated by C2(5)

Theorem 2.5. Let C3(ν) denote the number of modified lattice paths of
weight ν which start at (0,2)

(i) have no valley above height 0,
(ii) no plain with odd length,
(iii) no beam with height > 1,
(iv) the first peak is supported by a pillar only.
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Then
C3(ν) = A3(ν), ∀ν ≥ 0.

Example 2.6. C3(5) = 4, the relevant modified lattice paths are

Graph 15: Modified lattice paths enumerated by C3(5)

Graph 16: Modified lattice paths enumerated by C3(5)

Graph 17: Modified lattice paths enumerated by C3(5)

Graph 18: Modified lattice paths enumerated by C3(5)

Theorems 1.12–1.14 and Theorems 2.1, 2.3, 2.5 lead to the following 3-way
combinatorial identities :

Theorem 2.7. For 1 ≤ k ≤ 3,

Ak(ν) = Bk(ν) = Ck(ν),∀ν ≥ 0.

3. Proof of Theorem 2.7

First we remark that for 1 ≤ k ≤ 3, Sood and Agarwal have shown in [24]
that the left-hand sides of the Equations (1.3)–(1.5) generate the sequences
Ak(ν). Here we shall show that the left-hand sides of the Equations (1.3)–
(1.5) also generate the sequences Ck(ν) and we shall also show bijectively
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that Ak(ν) = Ck(ν). Furthermore, since each of these three cases is proved
in a similar way we provide the details for k = 1 and sketch the changes
required to treat the remainder.

3.1. Proof of Theorem 2.1. In

qm
2
(−q; q2)m
(q; q)2m

=
qm

2
(−q; q2)m

(q2; q2)m(q; q2)m

the factor qm
2
generates the lattice path having m peaks which start at

(0, 0) and terminate at (2m, 0) such that each peak is supported by a pillar
of height one. For instance, if we take m = 5, then the path will look like

Graph 19: Illustrations in the proof of Theorem 2.1

Next, we consider two successive peaks, say, Pi and Pi+1 in Graph 19.

Graph 20: Illustrations in the proof of Theorem 2.1

Pi Pi+1

Pi ≡ (2i− 1, 1)

Pi+1 ≡ (2i+ 1, 1)

The factor 1/(q2; q2)m gives rise to m non-negative even parts, say, a1 ≥
a2 ≥ a3 ≥ · · · ≥ am ≥ 0, which are encoded by inserting am horizontal
steps before the first mountain and ai− ai+1 horizontal steps in front of the
(m− i+ 1)st mountain, 1 ≤ i ≤ m− 1. It increases x-coordinate of the ith

peak by am+(am−1−am)+(am−2−am−1)+· · ·+(am−i+1−am−i+2) = am−i+1

and the x-coordinate of the (i+1)th peak by am−i. It transforms Graph 20
to Graph 21.

Graph 21: Illustrations in the proof of Theorem 2.1

Pi Pi+1

Pi ≡ (2i− 1 + am−i+1, 1)

Pi+1 ≡ (2i+ 1 + am−i, 1)

Now, the factor 1/(q; q2)m generates non negative multiples of (2i − 1),
1 ≤ i ≤ m, say, p1 × 1, p2 × 3, · · · , pm × (2m − 1). This is encoded by
enlarging the height of the ith pillar to pm−i+1 +1. Note that if we increase
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the height of a peak by one then its weight also increases by one and the
weight of its successive peak increases by two. Graph 21 now becomes Graph
22 or Graph 23, depending on whether pm−i > pm−i+1 or < pm−i+1. In the
case when pm−i = pm−i+1, the new graph will look like Graph 21.

Graph 22: Illustrations in the proof of Theorem 2.1

Pi+1

Pi

Graph 23: Illustrations in the proof of Theorem 2.1

Pi

Pi+1

In Graph 22 (or Graph 23), the peaks Pi and Pi+1 become

Pi ≡(2i− 1 + am−i+1 + 2(pm + pm−1 + ......+ pm−i+2) + pm−i+1,

pm−i+1 + 1),

Pi+1 ≡(2i+ 1 + am−i + 2(pm + pm−1 + ......+ pm−i+1) + pm−i, pm−i + 1).

The factor (−q; q2)m introduces non negative multiples of distinct (2i−1),
1 ≤ i ≤ m, say, b1 × 1, b2 × 3, · · · , bm × (2m− 1), where b1, b2, · · · , bm are
0 or 1. This is encoded by putting a beam of height bm−i+1 on the ith pillar.
The Graph 22 (or Graph 23) will either not change or may change to three
possible shapes. For instance, following are the three possibilities of Graph
23:

Graph 24: Illustrations in the proof of Theorem 2.1

Pi

Pi+1

Graph 25: Illustrations in the proof of Theorem 2.1

Pi
Pi+1
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Graph 26: Illustrations in the proof of Theorem 2.1

Pi

Pi+1

In Graphs 24, 25, 26

Pi ≡(2i− 1 + am−i+1 + 2(pm + pm−1 + ......+ pm−i+2) + pm−i+1

+ 2(bm + bm−1 + ....+ bm−i+2) + bm−i+1, 1 + pm−i+1 + bm−i+1)

Pi+1 ≡(2i+ 1 + am−i + 2(pm + pm−1 + ......+ pm−i+1) + pm−i

+ 2(bm + bm−1 + ....+ bm−i+1) + bm−i, 1 + pm−i + bm−i).

Each modified lattice path starting at (0, 0), with all valleys at height 0, no
plain with odd length and no beam with height > 1 is uniquely generated in
this manner. This proves that the left-hand side of equation (1.3) generates
C1(ν).

Next, we shall show that there is a bijection between the modified lattice
paths enumerated by C1(ν) and the split n-color partitions enumerated by
A1(ν). We do this by considering each path as the sequence of the weights of
the peaks such that each weight is subscripted by the height of the respective
peak. Further, the height of each peak is considered as the height of the
supporting pillar which is associated with the green color plus the height
of the supporting beam which is associated with the red color. In the final
graph let us denote Pi and Pi+1 by Ax and By (B ≥ A), respectively, then

A =(2i− 1) + am−i+1 + 2(pm + pm−1 + ......+ pm−i+2)

+ pm−i+1 + 2(bm + bm−1 + ....+ bm−i+2) + bm−i+1,

x =1 + pm−i+1 + bm−i+1,

B =(2i+ 1) + am−i + 2(pm + pm−1 + ....+ pm−i+1)

+ pm−i + 2(bm + bm−1 + .....+ bm−i+1) + bm−i,

and

y =1 + pm−i + bm−i.

The weighted difference of these two parts is

((By −Ax)) = B −A− x− y = am−i − am−i+1,

which is non-negative and even.
Next, we consider the split n-color part Ax. Note that the parity of both

A and x depends on the parity of pm−i+1 + bm−i+1. If pm−i+1 + bm−i+1

is even (resp., odd) then both A and x are odd (resp., even). This shows
that the parts and their subscripts have the same parity. Since the height
of any beam can be 0 or 1, the red part in the corresponding split n-color
partition cannot exceed 1. Since the lengths of the plains correspond to
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a′is, 1 ≤ i ≤ m, which are non-negative and even, no plain can have odd
length.

Conversely, we consider two parts of a partition enumerated by A1(ν),
say Cu and Dv (Note that the split subscripts are not needed here). Let
Q1 ≡ (C, u) and Q2 ≡ (D, v) be the corresponding peaks in the associated
lattice path.

Graph 27: Illustrations in the proof of Theorem 2.1

Q1 ≡ (C, u)

Q2 ≡ (D, v)

Suppose there is a plain between Q1 and Q2. Then the length of the plain
would be D−C−v−u which is the weighted difference of Cu and Dv and is,
hence, non-negative and even. Thus, we get that there is no plain with odd
length in the corresponding lattice path. Next, we prove by contradiction
that there cannot be any valley above height 0. If there is a valley V of
height r (r > 0) between the peaks Q1 and Q2, then there is a descent of
u − r from Q1 to V and an ascent of v − r from V to Q2 (See Graph 27).
This implies that D = C +(u− r)+ (v− r), or D−C −u− v = −2r. Using
the fact that the weighted difference is non-negative, we get r = 0. Hence
we get Theorem 2.1.

3.2. Proof of Theorem 2.3. This theorem is proved in a similar manner
as Theorem 2.1. The only point of departure is that the extra factor of qm

puts a southeast step from (0,1) to (1,0) in front of the lattice path. Thus

qm
2+m generates a lattice path of one south-east step from (0,1) to (1,0) and

m peaks starting from (1,0) and terminating at (2m+1, 0). For m = 5, the
path begins as

Graph 28: Illustrations in the proof of Theorem 2.3

The extra factor of (1 − q2m+1)−1 introduces a non-negative multiple of
2m+1, say, pm+1× (2m+1). This is encoded by having the first peak grow
to height pm+1 + 1 in the north-east direction. In the final graph the first
peak looks like
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Graph 29: Illustrations in the proof of Theorem 2.3

We say that the first peak is supported by a pillar of height pm+1+1. So if
we denote the (i+1)th and (i+2)th peaks by (A, x) and (B, y), respectively,
then

A =(2pm+1 + 1) + (2i− 1) + am−i+1 + 2(pm + pm−1 + ......+ pm−i+2)

+ pm−i+1 + 2(bm + bm−1 + ....+ bm−i+2) + bm−i+1 ,

x =pm−i+1 + bm−i+1 + 1 ,

B =(2pm+1 + 1) + (2i+ 1) + am−i + 2(pm + pm−1 + ....+ pm−i+1)

+ pm−i + 2(bm + bm−1 + .....+ bm−i+1) + bm−i ,

and

y =pm−i + bm−i + 1.

The weighted difference is given by B−A−x−y i.e. am−i−am−i+1 which
is non-negative and even. Here, A and x and also B and y have opposite
parity. This implies that even parts appear with odd subscripts and odd
with even. The first part is (pm+1)pm+1+1, which is of the form ii+1 and
shows that we are using n+ 1 copies of n.

3.3. Proof of Theorem 2.5. The proof is same as Theorem 2.1 except that
the extra factor of q2m puts two southeast steps (0, 2) to (1, 1) and (1, 1)
to (2, 0) at the beginning of the path. The extra factor of (1 − q2m+1)−1

introduces a non-negative multiple of (2m+1), say pm+1 × (2m+1), which
causes the first peak grow in the north east direction to height pm+1 + 2.
We state that the first peak is supported by a pillar of height pm+1 + 2. In
this way, the weight of each subsequent peak will be increased by 2pm+1+2
which will not change the parity of the weight of any peak. So the parts and
their subscripts have the same parity. The first part is (pm+1)pm+1+2 which
is of the form ii+2 and shows that we are using n + 2 copies of n. Proving
Theorems 2.1, 2.3 and 2.5 completes the proof of Theorem 2.7.

To illustrate the bijections we have constructed to prove Theorems 2.1,
2.3, 2.5 we give the example for ν = 5 shown in Tables I–III.
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Table I: Illustration of bijection to prove C1(5) = A1(5)
Split n-color partitions Corresponding modified lattice
enumerated by A1(5) paths enumerated by C1(5)

51

53

41+1 + 11

42 + 11

55

52+1

54+1
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Table II: Illustration of bijection to prove C2(5) = A2(5)
Split (n+ 1)-color partitions enumerated Corresponding modified lattice paths

by A2(5) enumerated by C2(5)

52 + 01

51+1 + 01

41 + 12

54 + 01

56

53+1 + 01
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Table III: Illustration of bijection to prove C3(5) = A3(5)
Split (n+ 2)-color partitions enumerated Corresponding modified lattice paths

by A3(5) enumerated by C3(5)

57

51 + 02

53 + 02

52+1 + 02

4. Conclusion

We hope that many more Rogers-Ramanujan type identities can be found
for modified lattice paths. The most obvious question which arises from this
work is: Do the three identities found in this paper lead to an infinite family
of Rogers-Ramanujan type identities for modified lattice paths analogous
to Agarwal-Bressoud’s infinite family of Rogers-Ramanujan identities for
weighted lattice paths in [8]?
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Util. Math., 79(2009), 145–155.

10. A. K. Agarwal and G. Sood, Split (n+ t)-color partitions and Gordon-McIntosh eight
order mock theta functions, Electron J. Combin., 21(2)(2014), Paper # P2.46.

11. A. K. Agarwal and R. Sachdeva, Basic series identities and combinatorics, Ramanujan
J., 42(2017), 725–746.

12. G. E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd
moduli, Proc. Nat. Acad. Sci. USA, 71(1974), 4082–4085.

13. W. G. Connor, Partition theorems related to some identities of Rogers and Watson,
Trans. Amer. Math. Soc., 214(1975), 95–111.
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