TOTAL DOMINATOR TOTAL COLORING OF A GRAPH

ADEL P. KAZEMI, FARSHAD KAZEMNEJAD, AND SOMAYEH MORADI

Abstract

Here, we initiate to study the total dominator total coloring of a graph which is a total coloring of the graph such that each object of the graph is adjacent or incident to every object of some color class. In more detailes: In section 2 we present some tight lower and upper bounds for the total dominator total chromatic number of a graphs in terms of some parameters such as order, size, the total dominator chromatic and total domination numbers of the graph and its line graph. In section 3 we restrict our attention to trees and present a Nordhaus-Gaddum-like relation for them, and finally in last section we show that there exist graphs that their total dominator total chromatic numbers are equal to their orders.

1. Introduction

All graphs considered here are nonempty, finite, undirected and simple. For standard graph theory terminology not given here we refer to [20]. Let $G=(V, E)$ be a graph with the vertex set V of order $n(G)$ and the edge set E of size $m(G)$. The open neighborhood and the closed neighborhood of a vertex $v \in V$ are $N_{G}(v)=\{u \in V \mid u v \in E\}$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$, respectively. The degree of a vertex v is also $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. The minimum and maximum degree of G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. If $\delta(G)=\Delta(G)=k$, then G is called k-regular. For two vertices u and v in a connected graph G the distance between u and v is the minimum length of a shortest (u, v)-path in G and is denoted by $d(u, v)$. The maximum distance among all pairs of vertices of G is the diameter of G, which is denoted by $\operatorname{diam}(G)$. A Hamiltonian path in a graph G is a path which contains every vertex of G. An independent set of G is a subset of vertices of G, no two of which are adjacent. And a maximum independent set is an independent set of the largest cardinality in G. This cardinality is called the independence number of G, and is denoted by $\alpha(G)$. Also a mixed independent set of G is a subset of $V \cup E$, no two objects of which are adjacent or incident, and a

Received by the editors August 12, 2020, and in revised form July 4, 2021.
2000 Mathematics Subject Classification. 05C15, 05C69.
Key words and phrases. Total dominator total chromatic number, total dominator chromatic number, total domination number, total mixed domination number, total graph.
maximum mixed independent set is a mixed independent set of the largest cardinality in G. This cardinality is called the mixed independence number of G, and is denoted by $\alpha_{\operatorname{mix}}(G)$. Two isomorphic graphs G and H are shown by $G \cong H$.

We write K_{n}, C_{n} and P_{n} for a complete graph, a cycle and a path of order n, respectively, and $K_{m, n}$ is a a bipartite complete graph of order $m+n$ while $G[S]$ denote the induced subgraph of G by a vertex set S. A complete bipartite graph $K_{1, n}$ is called a star. The line graph $L(G)$ of G is a graph with the vertex set $E(G)$ and two vertices of $L(G)$ are adjacent when they are incident in G. The total graph $T(G)$ of a graph $G=(V, E)$ is the graph whose vertex set is $V \cup E$ and two vertices are adjacent whenever they are either adjacent or incident in G [1]. It is obvious that if G has order n and size m, then $T(G)$ has order $n+m$ and size $3 m+|E(L(G))|$, and also $T(G)$ contains both G and $L(G)$ as two induced subgraphs and it is the largest graph formed by adjacent and incidence relation between graph elements. In this paper, by assumption $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, we use the notations $V(T(G))=V \cup \mathcal{E}$ where $\mathcal{E}=\left\{e_{i j} \mid v_{i} v_{j} \in E\right\}$, and $E(T(G))=$ $\left\{v_{i} e_{i j}, v_{j} e_{i j} \mid v_{i} v_{j} \in E\right\} \cup E \cup E(L(G))$. obviously $\operatorname{deg}_{T(G)}\left(v_{i}\right)=2 \operatorname{deg}_{G}\left(v_{i}\right)$ and $\operatorname{deg}_{T(G)}\left(e_{i j}\right)=\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)$. So if G is k-regular, then $T(G)$ is $2 k$-regular. Also we have $\alpha_{\operatorname{mix}}(G)=\alpha(T(G))$.

Here, we fix a notation for the vertex set and the edge set of a line and total of a graph which we use thorough this paper. For a graph $G=$ (V, E) with the vertex set $V=\left\{v_{i} \mid 1 \leq i \leq n\right\}$, we have $V(L(G))=\mathcal{E}$ and $E(L(G))=\left\{e_{i j} e_{i k} \mid e_{i j}, e_{i k} \in \mathcal{E}\right.$ and $\left.j \neq k\right\}, V(T(G))=V \cup \mathcal{E}$ and $E(T(G))=E \cup E(L(G)) \cup\left\{e_{i j} v_{i}, e_{i j} v_{j} \mid e_{i j} \in \mathcal{E}\right\}$, where $\mathcal{E}=\left\{e_{i j} \mid v_{i} v_{j} \in E\right\}$. In Figure 1, a graph G and its total graph are shown for an example.

Figure 1. The illustration of G (left) and $T(G)$ (right).
Domination: Domination in graphs is now well studied in graph theory and the literature on this subject has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [7, 8]. Also, recently two new books $[9,10]$ are written on this topics by Haynes, Hedetniemi, and Henning.

A famous type of domination is total domination, and the literature on this subject has been surveyed and detailed in the recent book [11]. A total dominating set, briefly TDS, S of a graph $G=(V, E)$ is a subset of the vertex set of G such that for each vertex $v, N_{G}(v) \cap S \neq \emptyset$. The total domination number $\gamma_{t}(G)$ of G is the minimum cardinality of a TDS of G. Similarly, a subset $S \subseteq V \cup E$ of a graph G is called a total mixed dominating set, briefly TMDS, of G if each object of $V \cup E$ is either adjacent or incident to an object of S, and the total mixed domination number $\gamma_{t m}(G)$ of G is the minimum cardinality of a TMDS [18]. A min-TDS/min-TMDS of G denotes a TDS/TMDS of G with minimum cardinality. Also we agree that a vertex v dominates an edge e or an edge e dominates a vertex v mean $v \in e$. Similarly, we agree that an edge dominates another edge means they have a common vertex. The next theorem can be easily proved.

Theorem 1.1 (Kazemnejad, Kazemi, and Moradi, [18]). For any graph G without isolate vertex,

$$
\gamma_{t m}(G)=\gamma_{t}(T(G)) .
$$

Graph Coloring: Graph coloring is used as a model for a vast number of practical problems involving allocation of scarce resources (e.g., scheduling problems), and has played a key role in the development of graph theory and, more generally, discrete mathematics and combinatorial optimization. Graph colorability is NP-complete in the general case, although the problem is solvable in polynomial time for many classes [5]. A proper coloring of a graph G is a function from the vertices of the graph to a set of colors such that any two adjacent vertices have different colors, and the minimum number of colors needed in a proper coloring of a graph is called the chromatic number $\chi(G)$ of G. In a simlar way, a total coloring of G assigns a color to each vertex and to each edge so that colored objects have different colors when they are adjacent or incident, and the minimum number of colors needed in a total coloring of a graph is called the total chromatic number $\chi_{T}(G)$ of $G[20]$. The Total Coloring Conjecture (Behzad, 1965) states that: Behzad's Conjecture. For every simple graph $G, \chi_{T}(G) \leq \Delta(G)+2$.

A color class in a coloring of a graph is a set consisting of all those objects assigned the same color. For simply, if f is a coloring of G with the color classes $V_{1}, V_{2}, \ldots, V_{\ell}$, we write $f=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$. Motivated by the relation between coloring and total dominating, the concept of total dominator coloring in graphs introduced in [14] by Kazemi, and extended in $[12,13,15,16,17]$. The reader can study section 4 of Part I from the book [10] for more information on this concept.

Definition 1.2 (Kazemi, [14]). A total dominator coloring, briefly TDC, of a graph G with a positive minimum degree is a proper coloring of G in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number $\chi_{d}^{t}(G)$ of G is the minimum number of color classes in a TDC of G.

Here, we initiate to study a new type of coloring called total dominator total coloring of a graph which is obtained from the concept of total dominator coloring of a graph by replacing total coloring of a graph instead of (vertex) coloring of it.

Definition 1.3. A total dominator total coloring, briefly TDTC, of a graph G with a positive minimum degree is a total coloring of G in which each object of the graph is adjacent or incident to every object of some color class. The total dominator total chromatic number $\quad \chi_{d}^{t t}(G)$ of G is the minimum number of color classes in a TDTC of G.

Next theorem can be easily proved.
Theorem 1.4. For any graph G with no isolated vertex, $\chi_{d}^{t t}(G)=\chi_{d}^{t}(T(G))$.
For any TDC (TDTC) $f=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ of a graph G, a vertex (an object) v is called a common neighbor of V_{i} or we say V_{i} totally dominates v, and we write $v \succ_{t} V_{i}$, if vertex (object) v is adjacent (adjacent or incident) to every vertex (object) in V_{i}. Otherwise we write $v \nsucc_{t} V_{i}$. Also v is called a private neighbor of V_{i} with respect to f if $v \succ_{t} V_{i}$ and $v \nsucc_{t} V_{j}$ for all $j \neq i$. The set of all common neighbors of V_{i} with respect to f is called the common neighborhood of V_{i} in G and denoted by $C N_{G, f}\left(V_{i}\right)$ or simply by $C N\left(V_{i}\right)$. Also every TDC or TDTC of G with $\chi_{d}^{t}(G)$ or $\chi_{d}^{t t}(G)$ colors is called respectively a min-TDC or a min-TDTC. For an examples see Figure 2.

Figure 2. A min-TDC of P_{4} (left), a min-TDTC of P_{4} (middle) and a min-TDC of $T\left(P_{4}\right)$ (right).

Goal: As we have mentioned before, here we initiate to study the total dominator total coloring of a graph which is a total coloring of the graph such that each object of the graph is adjacent or incident to every object of some color class. In more detailes: In section 2 we present some tight lower and upper bounds for the total dominator total chromatic number of a graphs in terms of some parameters such as order, size, the total dominator chromatic and total domination numbers of the graph and its line graph. In section 3 we restrict our attention to trees and present a Nordhaus-Gaddumlike relation for them, and finally in the last section we show that there exist graphs that their total dominator total chromatic numbers are equal to their orders. The following theorems are useful for our investigation.

Theorem 1.5 (Kazemi, [14]). For any connected graph G of order n with $\delta(G) \geq 1$,

$$
\max \left\{\chi(G), \gamma_{t}(G), 2\right\} \leq \chi_{d}^{t}(G) \leq n
$$

Furthermore, $\chi_{d}^{t}(G)=2$ if and only if G is a complete bipartite graph, or $\chi_{d}^{t}(G)=n$ if and only if G is a complete graph.
Theorem 1.6 (Kazemi, [14]). For any connected graph G with $\delta(G) \geq 1$,

$$
\begin{equation*}
\chi_{d}^{t}(G) \leq \gamma_{t}(G)+\min _{S} \chi(G[V(G)-S]), \tag{1.1}
\end{equation*}
$$

where $S \subseteq V(G)$ is a min-TDS of G. And so $\chi_{d}^{t}(G) \leq \gamma_{t}(G)+\chi(G)$.
Theorem 1.7 (Harary, [6]). For any nonempty graph G,

$$
\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1
$$

Theorem 1.8 (König's theorem, [3]). For any nonempty bipartite graph G,

$$
\chi^{\prime}(G)=\Delta(G) .
$$

Theorem 1.9 (Behzad, Chartrand, and Cooper, [2]). For any complete graph K_{n} of order at least 2,

$$
\chi_{T}\left(K_{n}\right)=2\left\lceil\frac{n+1}{2}\right\rceil-1 .
$$

Theorem 1.10 (Kazemnejad, Kazemi, and Moradi, [18]). For any complete graph K_{n} of order $n \geq 2$,

$$
\gamma_{t m}\left(K_{n}\right)=\left\lceil\frac{5 n}{3}\right\rceil-n .
$$

Theorem 1.11 (Kazemnejad, Kazemi, and Moradi, [18]). For any graph G of order $n \geq 2$ which has a Hamiltonian path, $\gamma_{t m}(G) \leq\left\lceil\frac{5 n}{3}\right\rceil-n$.
Theorem 1.12 (Kazemnejad, Kazemi, and Moradi, [18]). For any tree \mathbb{T} of order $n \geq 3, \gamma_{t m}(\mathbb{T}) \leq\left\lfloor\frac{2 n}{3}\right\rfloor$.

Proof. Let \mathbb{T} be a tree with the vertex set V. It is sufficient to prove $\gamma_{t}(T(\mathbb{T})) \leq\left\lfloor\frac{2 n}{3}\right\rfloor$. Then $V(T(\mathbb{T}))=V \cup \mathcal{E}$. Choose a leaf v of \mathbb{T} and label each vertex of \mathbb{T} with its distance from v to modolu 3 . This partitions V to the three independent sets A_{0}, A_{1} and A_{2} where $A_{i}=\{u \in$ $\left.V \mid d_{\mathbb{T}}(u, v) \equiv i(\bmod 3)\right\}$ for $0 \leq i \leq 2$. Then by the pigeonhole principle at least one of them, say A_{0}, contains at least one third of the vertices of \mathbb{T}, and so $\left|A_{1} \cup A_{2}\right| \leq\left\lfloor\frac{2 n}{3}\right\rfloor$. We see that every nonleaf vertex and every leaf $v_{i} \in V(\mathbb{T})-A_{1} \cup A_{2}$ is adjacent to some vertex in $A_{1} \cup A_{2}$. If needed, we replace every leaf $v_{i} \in A_{1} \cup A_{2}$ by a vertex from $N_{T(\mathbb{T})}\left(v_{i}\right)-A_{1} \cup A_{2}$. The given set S is a TDS of $T(\mathbb{T})$. Because obviously $N\left(v_{i}\right) \cap S \neq \emptyset$ for each $v_{i} \in V(\mathbb{T})$, and $\left\{v_{i}, v_{j}\right\} \cap S \neq \emptyset$ for each $v_{i} v_{j} \in E(\mathbb{T})$ (because $\left.d_{\mathbb{T}}\left(v, v_{i}\right) \not \equiv d_{\mathbb{T}}\left(v, v_{j}\right)(\bmod 3)\right)$, and so every $e_{i j} \in \mathcal{E}$ is dominated by $v_{i} \in S$ or $v_{j} \in S$. So $\gamma_{t}(T(\mathbb{T})) \leq|S| \leq\left\lfloor\frac{2 n}{3}\right\rfloor$.

2. SOME BOUNDS

Since the problem of finding total dominator chromatic number of a graph is NP-complete [14], the problem of finding total dominator total chromatic number of a graph is also NP-complete by Theorem 1.4. Also since for any graph G with no isolated vertex of order n and size $m, \gamma_{t}(G) \leq \chi_{d}^{t}(G) \leq n$, by Theorem 1.5, and every TDTC is a total coloring, and also $\chi_{d}^{t t}(G)=$ $\chi_{d}^{t}(T(G))=n+m$ if and only if $G \cong K_{2}$, we have the next theorem.
Theorem 2.1. For any connected graph G of order $n \geq 3$ and size m,

$$
\max \left\{\chi_{T}(G), \gamma_{t m}(G)\right\} \leq \chi_{d}^{t t}(G) \leq n+m-1
$$

Also since for any graph $G=G_{1}+G_{2}+\cdots+G_{\omega}$ with (connected) components $G_{1}, G_{2}, \ldots, G_{\omega}$ which has no isolated vertex,

$$
\max _{1 \leq i \leq \omega} \chi_{d}^{t}\left(G_{i}\right)+2 \omega-2 \leq \chi_{d}^{t}(G) \leq \sum_{i=1}^{\omega} \chi_{d}^{t}\left(G_{i}\right)
$$

from [14], and since $T(G)=T\left(G_{1}\right)+T\left(G_{2}\right)+\cdots+T\left(G_{\omega}\right)$, we have the next theorem.

Theorem 2.2. For any graph G with (connected) components $G_{1}, G_{2}, \ldots, G_{\omega}$ which has no isolate vertex,

$$
\max _{1 \leq i \leq \omega} \chi_{d}^{t t}\left(G_{i}\right)+2 \omega-2 \leq \chi_{d}^{t t}(G) \leq \sum_{i=1}^{\omega} \chi_{d}^{t t}\left(G_{i}\right)
$$

Therefore, it is sufficient to verify the total dominator total chromatic number of connected graphs. Next theorem gives some bounds for the total dominator total chromatic number of a connected graph in terms of the total dominator chromatic numbers of the graph and its line graph.

Theorem 2.3. For any connected graph G of order at least 3 and with no isolated vertex,

$$
\max \left\{\chi_{d}^{t}(G), \chi_{d}^{t}(L(G))\right\} \leq \chi_{d}^{t t}(G) \leq \chi_{d}^{t}(L(G))+\chi_{d}^{t}(G)
$$

And the bounds are tight.
Proof. Let $G=(V, E)$ be a connected graph of order $n \geq 3$ with $\delta(G) \geq 1$ and the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and let $\mathcal{E}=\left\{e_{i j} \mid v_{i} v_{j} \in E\right\}$. Let also $f=\left(V_{1}, \ldots, V_{\ell}\right)$ be a min-TDTC of G. To prove $\chi_{d}^{t}(G) \leq \chi_{d}^{t t}(G)$, without loss of generality, we may assume $V_{i} \cap V \neq \emptyset$ if and only if $1 \leq i \leq m$ for some $1 \leq m \leq \ell$. For every $1 \leq k \leq m$ or every $m<k \leq \ell$ such that for every vertex $v_{i} \in V, v_{i} \nsucc_{t} V_{k}$, we set $W_{k}=V_{k}-\mathcal{E}$. Notice that if $v_{i} \succ_{t} V_{k}$ for some $v_{i} \in V$ and some $m<k \leq \ell$, then $V_{k}=\left\{e_{i j} \mid\right.$ for some $\left.j \neq i\right\}$, and since V_{k} is a (mixed) independent set, we have $V_{k}=\left\{e_{i j}\right\}$ for some $j \neq i$. On the other hand $e_{i j} \succ_{t} V_{k^{\prime}}$ for some $k^{\prime} \neq k$ implies $V_{k^{\prime}} \subseteq\left\{v_{i}, e_{j \ell}\right\}$ for some $\ell \neq i$ (or similarly $V_{k^{\prime}} \subseteq\left\{v_{j}, e_{i \ell}\right\}$ for some $\ell \neq j$). Then we set $W_{k}=\left\{v_{i}\right\}$ and $W_{k^{\prime}}=\left\{v_{j}\right\}$. Therefore the coloring function $\left(W_{1}, \ldots, W_{\ell}\right)$ is a TDC of G, and so $\chi_{d}^{t}(G) \leq \ell=\chi_{d}^{t t}(G)$.

In a similar way, to prove $\chi_{d}^{t}(L(G)) \leq \chi_{d}^{t t}(G)$, without loss of generality, we may assume $V_{i} \cap \mathcal{E} \neq \emptyset$ if and only if $1 \leq i \leq m$ for some $1 \leq m \leq \ell$. For every $1 \leq k \leq m$ or every $m<k \leq \ell$ such that for every vertex $e_{i j} \in \mathcal{E}$, $e_{i j} \nsucc_{t} V_{k}$, we set $W_{k}=V_{k}-V$. Notice that if $e_{i j} \succ_{t} V_{k}$ for some $e_{i j} \in \mathcal{E}$ and some $m<k \leq \ell$, then $V_{k} \subset\left\{v_{i}, v_{j}\right\}$, by $e_{i j}=v_{i} v_{j} \in E(G)$. So, without loss of generality, we may assume $V_{k}=\left\{v_{i}\right\}$. If $\operatorname{deg}_{G}\left(v_{i}\right) \geq 2$, then $v_{i} v_{\ell} \in E$ for some $\ell \neq j$, and in this case we set $W_{k}=\left\{e_{i \ell}\right\}$. Otherwise, since $\left\{e_{i p} \mid v_{p} \in N_{G}\left(v_{i}\right)\right\}=\left\{e_{i j}\right\}$, we set $W_{k}=\left\{e_{j \ell}\right\}$ where $v_{\ell} \in N_{G}\left(v_{j}\right)$. Then the function $\left(W_{1}, \ldots, W_{\ell}\right)$ is a TDC of $L(G)$, and so $\chi_{d}^{t}(L(G)) \leq \ell=$ $\chi_{d}^{t t}(G)$. Therefore we have proved $\max \left\{\chi_{d}^{t}(G), \chi_{d}^{t}(L(G))\right\} \leq \chi_{d}^{t t}(G)$. Since $\chi_{d}^{t}\left(K_{3}\right)=\chi_{d}^{t}\left(L\left(K_{3}\right)\right)=\chi_{d}^{t t}\left(K_{3}\right)=3$, the lower bound is tight for K_{3}.

The upper bound is proved by considering this fact that for any min$\operatorname{TDC}\left(V_{1}, \ldots, V_{p}\right)$ of G and any min-TDC $\left(V_{1}^{\prime}, \ldots, V_{q}^{\prime}\right)$ of $L(G)$, the coloring function $\left(V_{1}, \ldots, V_{p}, V_{1}^{\prime}, \ldots, V_{q}^{\prime}\right)$ is a TDTC of G. The upper bound is tight for the cycle C_{4}, because of $\chi_{d}^{t}\left(C_{4}\right)=\chi_{d}^{t}\left(L\left(C_{4}\right)\right)=2$ (because $\left.L\left(C_{4}\right) \cong C_{4}\right)$, and $\chi_{d}^{t t}\left(C_{4}\right)=4$ (because for any min-TDTC $f=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ of C_{4}, $8=|V \cup \mathcal{E}|=\sum_{i=1}^{\ell}\left|V_{i}\right| \leq \ell \cdot \alpha_{m i x}\left(C_{4}\right)=2 \ell$ implies $\ell \geq 4$, and the coloring function $\left(\left\{e_{12}, e_{34}\right\},\left\{e_{23}, e_{14}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right)$ is a TDTC of C_{4}).

Next theorem gives an upper bound for the total dominator chromatic number of a connected graph in terms of the total domination numbers of the graph and its line graph.

Theorem 2.4. Let G be a connected graph with $\delta(G) \geq 1$. Then we have the following tight bound

$$
\chi_{d}^{t t}(G) \leq \chi\left(T(G)-S_{1} \cup S_{2}\right)+\gamma_{t}(G)+\gamma_{t}(L(G))
$$

where S_{1} is a min-TDS of G and S_{2} is a min-TDS of $L(G)$.
Proof. Let S_{1} be a min-TDS of G and S_{2} be a min-TDS of $L(G)$. Color $T(G)-S_{1} \cup S_{2}$ with minimum colors, and assign $\left|S_{1}\right|+\left|S_{2}\right|$ new colors to the $\left|S_{1}\right|+\left|S_{2}\right|$ vertices of $S_{1} \cup S_{2}$. Since $S_{1} \cup S_{2}$ is a TDS of $T(G)$, this coloring of $T(G)$ is TDC, and so $\chi_{d}^{t t}(G)=\chi_{d}^{t}(T(G)) \leq \chi\left(T(G)-S_{1} \cup S_{2}\right)+\gamma_{t}(G)+$ $\gamma_{t}(L(G))$.

Let G be the graph given in Figure 3. Obviously $S_{1}=\left\{v_{1}, v_{5}\right\}$ is a minTDS of G and $S_{2}=\left\{e_{12}, e_{23}, e_{56}, e_{67}\right\}$ is a min-TDS of $L(G)$. Since $T(G)-$ $S_{1} \cup S_{2}$ can be easily colored by 4 colors and the subgraph of $T(G)-S_{1} \cup S_{2}$ induced by $\left\{v_{4}, e_{14}, e_{24}, e_{34}\right\}$ is isomorphic to K_{4}, we have $\chi\left(T(G)-\left(S_{1} \cup\right.\right.$ $\left.\left.S_{2}\right)\right)=4$, and so
(2.1) $\chi_{d}^{t t}(G)=\chi_{d}^{t}(T(G)) \leq \chi\left(T(G)-\left(S_{1} \cup S_{2}\right)\right)+\gamma_{t}(G)+\gamma_{t}(L(G))=10$.

Now let $f=\left(V_{1}, \ldots, V_{\ell}\right)$ be a TDC of $T(G)$. Since $v_{0} \succ_{t} V_{k}$ implies $V_{k}=\left\{v_{1}\right\}$ or $V_{k}=\left\{e_{01}\right\}$, and also $v_{9} \succ_{t} V_{t}$ implies $V_{t}=\left\{v_{5}\right\}$ or $V_{t}=$ $\left\{e_{59}\right\}$, we assume $V_{k}=\left\{v_{1}\right\}$ and $V_{t}=\left\{v_{5}\right\}$, and then we choose set $A=\left\{e_{01}, e_{12}, e_{13}, e_{14}, e_{15}, e_{56}, e_{57}, e_{58}, e_{59}\right\}$ (notice: if $V_{k}=\left\{e_{01}\right\}$ or $V_{t}=$ $\left\{e_{59}\right\}$, then we replace e_{01} by v_{1} or e_{59} by v_{5} in A, respectively). Since
the subgraph of $T(G)$ induced by A is in fact two copies of K_{5} which have only e_{15} in common, we can color it by minimum 5 colors other than the colors of v_{1} and v_{5}. Let $f\left(v_{1}\right)=1, f\left(v_{5}\right)=2, f\left(e_{12}\right)=f\left(e_{56}\right)=3$, $f\left(e_{13}\right)=f\left(e_{57}\right)=4, f\left(e_{14}\right)=f\left(e_{58}\right)=5, f\left(e_{01}\right)=f\left(e_{59}\right)=6, f\left(e_{15}\right)=7$. Obviously $e_{i j} \in \mathcal{E}-A$ implies $e_{i j} \nsucc_{t} V_{k}$ for every $1 \leq k \leq 7$. Since the number of indices of the vertices in the set $B=\left\{e_{23}, e_{24}, e_{34}\right\}$ is three, we obtain $\mid\left\{k \mid e_{i j} \succ_{t} V_{k}\right.$, for every $\left.e_{i j} \in B\right\} \mid \geq 2$, that means $\ell \geq 9$. On the other hand, we have $e_{67} \nsucc_{t} V_{k}$ for every $1 \leq k \leq 9$, because $N\left(e_{67}\right) \cap N\left(e_{i j}\right)=\emptyset$ for each $e_{i j} \in B$. So $\ell=10$ by (2.1).

Figure 3. The illustration of $G, L(G), T(G)$ and $T(G)-$ $S_{1} \cup S_{2}$.

Now, we establish an upper bounds on the total dominator total chromatic number of the complete graphs and then a family of graphs. First, a lemma.
Lemma 2.5. For any complete graph K_{n} of order $n \geq 2, \alpha_{\operatorname{mix}}\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Proof. Let K_{n} be the complete graph with the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and let $\mathcal{E}=\left\{e_{i j} \mid 1 \leq i<j \leq n\right\}$. Let S be a mixed independent set of K_{n}. Since $|S \cap V| \leq 1$ and so $\{p, q\} \cap\{r, k\}=\emptyset$ for every $e_{p q}, e_{r k} \in S$, we conclude $|S| \leq\left\lceil\frac{n}{2}\right\rceil$. On the other hand, since the sets $\left\{e_{(2 i-1)(2 i)} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$ when n is even, and $\left\{v_{n}, e_{(2 i-1)(2 i)} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$ when n is odd, are two independent sets with cardinality $\left\lceil\frac{n}{2}\right\rceil$, we obtain $\alpha_{\operatorname{mix}}\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Proposition 2.6. For any complete graph K_{n} of order $n \geq 2$,

$$
n+\epsilon \leq \chi_{d}^{t t}\left(K_{n}\right) \leq\left\lceil\frac{5 n}{3}\right\rceil
$$

where ϵ is 1 when n is even, and is zero otherwise.
Proof. Let K_{n} be the complete graph with the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and let $\mathcal{E}=\left\{e_{i j} \mid 1 \leq i<j \leq n\right\}$. We first prove the lower bound. Let $f=\left(V_{1}, \ldots, V_{\ell}\right)$ be a TDTC of K_{n}. Then, by the partition $V \cup \mathcal{E}=\bigcup_{i=1}^{\ell} V_{i}$ and Lemma 2.5, we have

$$
\begin{aligned}
\frac{n(n+1)}{2} & =\sum_{i=1}^{\ell}\left|V_{i}\right| \\
& \leq \ell \cdot \alpha_{m i x}\left(K_{n}\right) \\
& =\ell\left\lceil\frac{n}{2}\right\rceil
\end{aligned}
$$

which implies $\chi_{d}^{t t}\left(K_{n}\right)=\chi_{d}^{t}\left(T\left(K_{n}\right)\right) \geq n+\epsilon$ in which $\epsilon=1$ for even n and $\epsilon=0$ otherwise. For the upper bound, first we have

$$
\chi_{d}^{t t}\left(K_{n}\right) \leq \begin{cases}\left\lceil\frac{5 n}{3}\right\rceil & \text { if } n \text { is odd, } \\ \left\lceil\frac{5 n}{3}\right\rceil+1 & \text { if } n \text { is even },\end{cases}
$$

by Theorems 1.6, 1.9, 1.10. So we may assume that n is even. Let $f=$ $\left(V_{1}, \ldots, V_{n+1}\right)$ be a proper coloring of $T\left(K_{n}\right)$ with minimum number of colors such that $v_{i} \in V_{i}$ for $1 \leq i \leq n$. Then $\left|V_{i}\right|=\frac{n}{2}$ for each $1 \leq i \leq n+1$ and $V_{n+1} \subseteq \mathcal{E}$. From the proof of Theorem 1.10, we know that the sets

$$
\begin{array}{ll}
S_{0}=\left\{e_{(3 i+1)(3 i+2)}, e_{(3 i+2)(3 i+3)} \left\lvert\, 0 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor-1\right.\right\} & \text { if } n \equiv 0(\bmod 6), \\
S_{1}=S_{0} \cup\left\{e_{(n-1) n}\right\} & \text { if } n \equiv 4(\bmod 6), \\
S_{2}=S_{0} \cup\left\{e_{(n-2)(n-1)}, e_{(n-1) n}\right\} & \text { if } n \equiv 2(\bmod 6),
\end{array}
$$

are min-TDSs of $T\left(K_{n}\right)$. Since the complete graph K_{n} is a subgraph of $T\left(K_{n}\right)-S_{i}$ for each i, we have $\chi\left(T\left(K_{n}\right)-S_{i}\right) \geq n$ for each i. Let $h=$ $\left(V_{1}^{\prime}, \ldots, V_{\ell}^{\prime}\right)$ be a proper coloring of $T\left(K_{n}\right)-S_{i}$ for each i. Then $\left|V_{j}^{\prime}\right| \leq \frac{n}{2}$ for each j. Similar to the proof of Lemma 2.5, since every independent set of $T\left(K_{n}\right)-S_{i}$ has cardinality at most $\left\lceil\frac{n}{2}\right\rceil$, and $\left\{e_{i(n / 2+i)} \left\lvert\, 1 \leq i \leq \frac{n}{2}\right.\right\}$ is an independent set of $T\left(K_{n}\right)-S_{i}$, we obtain $\alpha\left(T\left(K_{n}\right)-S_{i}\right)=\left\lceil\frac{n}{2}\right\rceil$. On the other hand, by knowing $\left|V\left(T\left(K_{n}\right)-S_{i}\right)\right|=\frac{3 n^{2}-n-2 i}{6}$ when $n \equiv i(\bmod 3)$ and $0 \leq i \leq 2$, we have $\left|V\left(T\left(K_{n}\right)-S_{i}\right)\right| \leq n\left\lceil\frac{n}{2}\right\rceil$ and so $\chi\left(T\left(K_{n}\right)-S_{i}\right)=n$ for $0 \leq i \leq 2$. Therefore, by Theorem 1.6, $\chi_{d}^{t}\left(T\left(K_{n}\right)\right) \leq \chi\left(T\left(K_{n}\right)-S\right)+$ $\gamma_{t}\left(T\left(K_{n}\right)\right)=\left\lceil\frac{5 n}{3}\right\rceil$ in which S is a min-TDS of $T\left(K_{n}\right)$, and this completes our proof.

Since every connected graph G of order $n \geq 2$ is a subgraph of a complete graph K_{n}, obviously $\chi_{T}(G) \leq \chi_{T}\left(K_{n}\right)$. Similar to the proof of Proposition 2.6 , the following theorem can be proved.

Theorem 2.7. For any graph G of order $n \geq 2$ and with the total mixed domination number at most $\left\lceil\frac{5 n}{3}\right\rceil-n, \chi_{d}^{t t}(G) \leq\left\lceil\frac{5 n}{3}\right\rceil$.

By Theorem 1.11, every graph which has a Hamiltonian path satisfies in Theorem 2.7.

3. Trees

3.1. Total dominator total chromatic number of a tree. Here, we calculate the total dominator total chromatic number of a tree of order at most 4 or diameter at most 3 , and give tight lower and upper bounds for the total dominator total chromatic number of a tree of order $n \geq 5$.

Theorem 3.1. For any tree \mathbb{T} of order $n \geq 2$,

$$
\chi_{d}^{t t}(\mathbb{T})= \begin{cases}3 & n=2 \\ n & n=3,4\end{cases}
$$

and if $n \geq 5$, we have the tight bounds

$$
5 \leq \chi_{d}^{t t}(\mathbb{T}) \leq\left\lfloor\frac{2 n}{3}\right\rfloor+\Delta(\mathbb{T})+1
$$

Proof. Let $f=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a min-TDC of $T(\mathbb{T})$ in which $\mathbb{T}=(V, E)$ is a tree of order $n \geq 2$, and so $V(T(\mathbb{T}))=V \cup \mathcal{E}$ where $\mathcal{E}=\left\{e_{i j} \mid v_{i} v_{j} \in\right.$ $E(\mathbb{T})\}$. First consider $2 \leq n \leq 4$. Then $\mathbb{T} \in\left\{P_{2}, P_{3}, P_{4}, K_{1,3}\right\}$. Let $\mathbb{T}=$ $P_{n}: v_{1} v_{2} \cdots v_{n}$ when $2 \leq n \leq 4$. Then $V\left(T\left(P_{n}\right)\right)=V \cup \mathcal{E}$ where $\mathcal{E}=$ $\left\{e_{i(i+1)} \mid 1 \leq i \leq n-1\right\}$. Since $T\left(P_{2}\right)$ is isomorphic to K_{3}, and also K_{3} is a subgraph of $T\left(P_{3}\right)$ and $\left(\left\{v_{1}, e_{23}\right\},\left\{v_{3}, e_{12}\right\},\left\{v_{2}\right\}\right)$ is a TDC of $T\left(P_{3}\right)$, we have $\chi_{d}^{t t}\left(P_{n}\right)=\chi_{d}^{t}\left(T\left(P_{n}\right)\right)=3$ for $n=2,3$. Since the subgraph of $T\left(P_{4}\right)$ induced by $\left\{v_{1}, v_{2}, e_{12}\right\}$ is isomorphic to a complete graph of order 3 , we may assume $f\left(v_{1}\right)=1, f\left(v_{2}\right)=2$ and $f\left(e_{12}\right)=3$. Then, $v_{4} \nsucc_{t} V_{i}$ for $1 \leq i \leq 3$ implies $\ell \geq 4$. Now since $\left(\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{1}, e_{23}, v_{4}\right\},\left\{e_{12}, e_{34}\right\}\right)$ is a TDC of $T\left(P_{4}\right)$, we have $\chi_{d}^{t t}\left(P_{4}\right)=4$. In the next step, let $\mathbb{T}=K_{1,3}=(V, E)$ where $V=\left\{v_{i} \mid 0 \leq i \leq 3\right\}$ and $E=\left\{v_{0} v_{i} \mid 1 \leq i \leq 3\right\}$. Then on one hand, this fact that the subgraph of $T\left(K_{1,3}\right)$ induced by $\left\{e_{0 i} \mid 1 \leq i \leq\right.$ $3\} \cup\left\{v_{0}\right\}$ is a complete graph of order 4 implies $\ell \geq 4$, and on the other hand, since $\left(\left\{v_{0}\right\},\left\{e_{01}, v_{3}\right\},\left\{e_{02}, v_{1}\right\},\left\{e_{03}, v_{2}\right\}\right)$ is a TDC of $T\left(K_{1,3}\right)$, we obtain $\chi_{d}^{t t}\left(K_{1,3}\right)=4$. Therefore we continue our proof when $n \geq 5$. For the lower bound, since the subgraph $H_{v_{i}}$ of $T(\mathbb{T})$ induced by $\left\{v_{i}\right\} \cup\left\{e_{i j} \mid v_{j} \in N_{\mathbb{T}}\left(v_{i}\right)\right\}$ is a complete graph of order $1+\operatorname{deg}_{\mathbb{T}}\left(v_{i}\right)$, we have done when $\Delta(\mathbb{T}) \geq 4$. Thus $\Delta(\mathbb{T}) \leq 3$. If $\Delta(\mathbb{T})=d e g_{\mathbb{T}}\left(v_{i}\right)=3$ for some v_{i}, then $H_{v_{i}} \cong K_{4}$, and by assumption $f\left(V\left(H_{v_{i}}\right)\right)=\{1,2,3,4\}, n \geq 5$ implies that there exists a vertex $v_{j} \notin N_{T(\mathbb{T})}\left(v_{i}\right)$ which is not totally dominated by V_{i} when $1 \leq i \leq 4$. So $\ell \geq 5$, as desired. Finally, let $\Delta(\mathbb{T})=2$. Then $\mathbb{T}=P_{n}: v_{1} v_{2} \cdots v_{n}$ is a path of order $n \geq 5$. Since v_{1} is totally dominated only by $\left\{v_{2}\right\}$ or $\left\{e_{12}\right\}$, and v_{n} is totally dominated only by $\left\{v_{n-1}\right\}$ or $\left\{e_{(n-1) n}\right\}$, and since $H_{v_{3}}$ is a subgraph of $T(\mathbb{T})-\left(V_{k} \cup V_{m}\right)$, we have $\ell \geq 5$, as desired. The lower bound is tight for $\mathbb{T}=P_{5}$. Because $\left(\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{1}, e_{23}, e_{45}\right\},\left\{e_{12}, e_{34}, v_{5}\right\}\right)$ is a TDC of $T\left(P_{5}\right)$.

To prove the upper bound, first

$$
\chi_{d}^{t t}(\mathbb{T})=\chi_{d}^{t}(T(\mathbb{T})) \leq \gamma_{t m}(\mathbb{T})+\min _{S} \chi(T(\mathbb{T})[V \cup \mathcal{E}-S])
$$

where $S \subseteq V(T(\mathbb{T}))$ is a min-TDS of $T(\mathbb{T})$ by (1.1). Let $T(\mathbb{T})[V \cup \mathcal{E}-S]$ be the subgraph of $T(\mathbb{T})$ induced by $V \cup \mathcal{E}-S=\mathcal{E} \cup A_{0}$ where S is the min-TDS of $T(\mathbb{T})$ in the proof of Theorem 1.12. Then

$$
\begin{array}{llrl}
\chi(T(\mathbb{T})[V \cup \mathcal{E}-S]) & \leq \chi(T(\mathbb{T})[\mathcal{E}])+\chi\left(T(\mathbb{T})\left[A_{0}\right]\right) & & \\
& =\chi(L(\mathbb{T}))+1 & & \\
& =A_{0} \text { is independent) } \\
& =\Delta(\mathbb{T})+1 & & \\
\text { (König's Theorem) }
\end{array}
$$

On the other hand, since $\gamma_{t m}(\mathbb{T}) \leq\left\lfloor\frac{2 n}{3}\right\rfloor$ by Theorem 1.12, we have completed our proof.

The upper bound is tight for path P_{7} with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}$ and edge set $E=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq 6\right\}$. Let $f=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a TDC of $T\left(P_{7}\right)$ where $V\left(T\left(P_{7}\right)\right)=V \cup \mathcal{E}$ and $\mathcal{E}=\left\{e_{i(i+1)} \mid 1 \leq i \leq 6\right\}$. Let $v_{1} \succ_{t} V_{k}$ for some k. Then $V_{k}=\{w\}$ where $w \in\left\{v_{2}, e_{12}\right\}$, and so $w \succ_{t} V_{m}$ for some $m \neq k$ (because either $V_{m} \subseteq\left\{v_{1}, v_{3}, e_{12}, e_{23}\right\}$ if $w=v_{2}$ or $V_{m} \subseteq\left\{v_{1}, v_{2}, e_{23}\right\}$ if $w=e_{12}$). Since a similar result holds by consider v_{7} instead of v_{1}, we conclude that the number of V_{k} such that $v_{i} \succ_{t} V_{k}$ for some $v_{i} \in V-\left\{v_{4}\right\}$ is at least four, and that $V_{k} \mathrm{~s}$ do not contain vertices v_{4}, e_{34}, e_{45}. Since the subgraph of $T\left(P_{7}\right)$ induced by $\left\{v_{4}, e_{34}, e_{45}\right\}$ is a complete graph, we conclude $\ell \geq 7$. On the other hand, since $\left(\left\{v_{1}, v_{4}, v_{7}, e_{23}, e_{56}\right\},\left\{e_{12}, e_{34}, e_{67}\right\},\left\{e_{45}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{5}\right\},\left\{v_{6}\right\}\right)$ is a TDC of $T\left(P_{7}\right)$, we have $\chi_{d}^{t t}\left(P_{7}\right)=7$.

Theorem 3.2. For any nonempty tree \mathbb{T}, $\operatorname{diam}(\mathbb{T}) \leq 3$ if and only if

$$
\chi_{d}^{t t}(\mathbb{T})= \begin{cases}\Delta(\mathbb{T})+2 & \text { if } \operatorname{diam}(\mathbb{T})=1,3, \\ \Delta(\mathbb{T})+1 & \text { if } \operatorname{diam}(\mathbb{T})=2 .\end{cases}
$$

Proof. Let \mathbb{T} be a tree of order at least 2. Since $\operatorname{diam}(\mathbb{T})=1$ implies $\mathbb{T} \cong K_{2}$ and $T(\mathbb{T}) \cong K_{3}$, and so $\chi_{d}^{t t}(\mathbb{T})=\chi_{d}^{t}\left(K_{3}\right)=\chi\left(K_{3}\right)=3=\Delta(\mathbb{T})+2$, in the first step, we assume $\operatorname{diam}(\mathbb{T})=2$. Then $n \geq 3$ and $\mathbb{T} \cong K_{1, n-1}$. Let $V\left(K_{1, n-1}\right)=\left\{v_{i} \mid 0 \leq i \leq n-1\right\}$ in which $\operatorname{deg}\left(v_{0}\right)=n-1$. Since $T(\mathbb{T})\left[\left\{e_{0 i} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{0}\right\}\right] \cong K_{n}$ and the function f with the criterion $f\left(v_{0}\right)=0$ and $f\left(v_{i}\right) \equiv f\left(e_{0 i}\right)+1(\bmod n)$ when $1 \leq i \leq n-1$ and $1 \leq f\left(e_{0 i}\right) \leq n-1$ is a TDC of $T(\mathbb{T})$ with n colors, we have $\chi_{d}^{t t}(\mathbb{T})=$ $\chi_{d}^{t}(T(\mathbb{T}))=n=\Delta(\mathbb{T})+1$. Finally let $\operatorname{diam}(\mathbb{T})=3$. Then \mathbb{T} is a tree which is obtained by joining the central vertex v_{p+1} of tree $K_{1, p}$ with the central vertex v_{p+2} of tree $K_{1, q}$, where $V\left(K_{1, p}\right)=\left\{v_{i} \mid 1 \leq i \leq p+1\right\}$, $V\left(K_{1, q}\right)=\left\{v_{i} \mid p+2 \leq i \leq p+q+2\right\}, p \geq q$ and $p+q=n-2$. Hence $\Delta(\mathbb{T})=p+1$ and $V(T(\mathbb{T}))=V(\mathbb{T}) \cup \mathcal{E}$ where $\mathcal{E}=\left\{e_{i(p+1)} \mid 1 \leq i \leq\right.$ $p\} \cup\left\{e_{(p+2)(p+2+i)} \mid 1 \leq i \leq q\right\} \cup\left\{e_{(p+1)(p+2)}\right\}$. Let $f=\left(V_{1}, \ldots, V_{\ell}\right)$ be a TDC of $T(\mathbb{T})$. Since the subgraph of $T(\mathbb{T})$ induced by $A=\left\{e_{i(p+1)} \mid 1 \leq i \leq\right.$ $p\} \cup\left\{v_{p+1}, e_{(p+1)(p+2)}\right\}$ is a complete graph of order $p+2$, we conclude that $p+2$ colors, say $1,2, \ldots, p+2$, are needed to color the vertices in A, and so $\ell \geq p+2$. Also, by this fact that $v_{p+3} \succ_{t} V_{k}$ implies $V_{k}=\left\{e_{(p+2)(p+3)}\right\}$ or $V_{k}=\left\{v_{p+2}\right\}$, and since $v_{p+3} \nsucc_{t} V_{s}$ where $1 \leq s \leq p+2$, we conclude that
a new color is needed to color the vertex in V_{k}, and so $\ell \geq p+3$. Without loss of generality, we may assume that $f\left(e_{i(p+1)}\right)=i$ when $1 \leq i \leq p$, $f\left(v_{p+1}\right)=p+1$ and $f\left(e_{(p+1)(p+2)}\right)=p+2$. Since also the subgraph of $T(\mathbb{T})$ induced by $A^{\prime}=\left\{e_{(p+2)(p+2+i)} \mid 1 \leq i \leq q\right\} \cup\left\{v_{p+2}, e_{(p+1)(p+2)}\right\}$ is a complete graph of order $q+2$, we may assume that $f\left(v_{p+2}\right)=p+3$ and $f\left(e_{(p+2+i)(p+2)}\right)=i$ when $1 \leq i \leq q$. Now by assigning color 1 to all vertices $v_{2}, \ldots, v_{p}, v_{p+4}, \ldots, v_{p+q+2}$, and color 2 to the vertices v_{1} and v_{p+3}, we obtain a TDC of $T(\mathbb{T})$ with $p+3$ colors, which implies $\chi_{d}^{t t}(\mathbb{T})=\chi_{d}^{t}(T(\mathbb{T}))=p+3=$ $\Delta(\mathbb{T})+2$.

Now by assumption $\operatorname{diam}(\mathbb{T})=r \geq 4$ let $P_{r}: v_{1}, v_{2}, \ldots, v_{r}, v_{r+1}$ be a longest path of length r in \mathbb{T}. Then $\operatorname{deg}_{\mathbb{T}}\left(v_{i}\right)=\Delta(\mathbb{T})$ for some $v_{i} \in V(\mathbb{T}) \backslash$ $\left\{v_{1}, v_{r+1}\right\}$ (because in otherwise we have a cycle in the tree). Let $H_{v_{i}}$ be the subgraph of $T(\mathbb{T})$ induced by $\left\{v_{i}\right\} \cup\left\{e_{i j} \mid v_{j} \in N_{\mathbb{T}}\left(v_{i}\right)\right\}$ and let $f=$ $\left(V_{1}, \ldots, V_{\ell}\right)$ be a min-TDC of $T(\mathbb{T})$. Then, since $\operatorname{deg}_{\mathbb{T}}\left(v_{1}\right)=\operatorname{deg}_{\mathbb{T}}\left(v_{r+1}\right)=1$ and $r \geq 4, v_{1} \succ_{t} V_{k}$ and $v_{r+1} \succ_{t} V_{m}$ for some k and m, imply $k \neq m$ and $V_{k}=\{w\}$ and $V_{m}=\left\{w^{\prime}\right\}$ where $w \in\left\{v_{2}, e_{12}\right\}$ and $w^{\prime} \in\left\{v_{r}, e_{r(r+1)}\right\}$. Also there exist a color class V_{p} other than V_{k} and V_{m} such that $w^{\prime} \succ_{t} V_{p}$. Since $H_{v_{i}}$ is a complete graph of order $1+\operatorname{deg}_{\mathbb{T}}\left(v_{i}\right)$, we have to assign $\Delta(\mathbb{T})+1$ colors to the vertices of $H_{v_{i}}$. Since $v_{i}=v_{2}$ implies that the $\Delta(\mathbb{T})+1$ colors which are assigned to the vertices of $H_{v_{i}}$ are different of the colors of the vertices of $V_{m} \cup V_{p}$, and simliarly $v_{i}=v_{r}$ implies that the $\Delta(\mathbb{T})+1$ colors which are assigned to the vertices of $H_{v_{i}}$ are different of the colors of the vertices of $V_{k} \cup V_{p}$, we have $\ell \geq \Delta(\mathbb{T})+3$, as desired. So we assume $v_{i} \neq v_{2}, v_{r}$. In this case, similarly, the $\Delta(\mathbb{T})+1$ colors which are assigned to the vertices of $H_{v_{i}}$ are different of the colors of the vertices of $V_{k} \cup V_{m}$, and so $\ell \geq \Delta(\mathbb{T})+3$, as desired.

Corollary 3.3. The Behzad's conjecture is true for any tree with diameter at most three.
3.2. A Nordhaus-Gaddum-like relation for trees. Finding a Nordhaus-Gaddum-like relation for any parameter in graph theory is one of a tradition work which is started after the following theorem by Nordhaus and Gaddum in 1956 [19].

Theorem 3.4 (Nordhaus and Gaddum, [19]). For any graph G of order n, $2 \sqrt{n} \leq \chi(G)+\chi(\bar{G}) \leq n+1$.

Here, we will find some Nordhaus-Gaddum-like relations for the total dominator total chromatic number of a tree. For this aim we will find some bounds for the total dominator chromatic number of the complement of a tree. First two lemmas.

Lemma 3.5 (Clark and Holton, [4]). For any complete graph K_{n} of order at least 2,

$$
\chi^{\prime}\left(K_{n}\right)= \begin{cases}n-1 & \text { if } n \text { is even }, \\ n & \text { if } n \text { is odd } .\end{cases}
$$

Lemma 3.6. For any tree \mathbb{T} of order $n \geq 3$,

$$
\chi^{\prime}(\overline{\mathbb{T}})= \begin{cases}n-2 & \text { if } \mathbb{T} \text { is } P_{4} \text { or is nonstar or is star with odd } n, \\ n-1 & \text { if } \mathbb{T} \text { is star with even } n .\end{cases}
$$

Proof. If \mathbb{T} is the star $K_{1, n-1}$, then $\overline{\mathbb{T}}$ up to isomorphism is the disjoint union of K_{n-1} and K_{1}, and so

$$
\chi^{\prime}(\overline{\mathbb{T}})= \begin{cases}n-2 & \text { if } n \text { is odd } \\ n-1 & \text { if } n \text { is even },\end{cases}
$$

by Lemma 3.5. If $\mathbb{T} \cong P_{4}$, then $\overline{\mathbb{T}} \cong P_{4}$, and obviously $\chi^{\prime}\left(P_{4}\right)=2=n-2$. Therefore, we assume $\mathbb{T}=(V, E)$ is a nonstar tree of order $n \geq 5$, which implies $\alpha(\mathbb{T})=\omega(\mathbb{T}) \leq n-2$ (recall that $\omega(G)$ is the clique number of a graph G, which is the number of vertices in a maximum clique of G). By assumption $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, we have $V(L(\overline{\mathbb{T}}))=\left\{e_{i j} \mid v_{i} v_{j} \notin E\right\}$. Since for any leaf v_{i} in \mathbb{T} the subgraph of $L(\overline{\mathbb{T}})$ induced by $\left\{e_{i j} \mid v_{j} \notin N_{\mathbb{T}}\left(v_{i}\right)\right\}$ is a complete graph of order $n-2$, we have $\chi(L(\mathbb{T})) \geq n-2$. On the other hand, Lemma 3.5 and this fact that every m-clique K_{m} in $\overline{\mathbb{T}}$ with the vertx set $\left\{v_{i} \mid i \in I\right\}$, for some index set I, makes m cliques in $L(\overline{\mathbb{T}})$ with the vertex sets $E_{i}=\left\{e_{i j} \mid j \in I-\{i\}\right\}$ of order $m-1$ such that $E_{i} \cap E_{j}=\left\{e_{i j}\right\}$ for each $i \neq j$, give us this possibility that we color the vertices of $L\left(K_{m}\right)$ by at most m colors. By a permutation on the used colors in each clique in $\overline{\mathbb{T}}$, if needed, we can color the vertices of $L(\overline{\mathbb{T}})$ by at most $n-2$ colors, that is, $\chi(L(\overline{\mathbb{T}})) \leq n-2$, which implies $\chi^{\prime}(\overline{\mathbb{T}})=\chi(L(\overline{\mathbb{T}}))=n-2$ by considering the previous inequality.
Theorem 3.7. For any nonstar tree \mathbb{T} of order $n \geq 5$ with ℓ leaves,

$$
\ell+n-2 \leq \chi_{d}^{t t}(\overline{\mathbb{T}}) \leq 2 n-4,
$$

and this bounds are same for any tree with diameter three.
Proof. Let $\mathbb{T}=(V, E)$ be a nonstar tree \mathbb{T} of order $n \geq 5$ with ℓ leaves which implies $\alpha(\mathbb{T})=\omega(\overline{\mathbb{T}}) \leq n-2$. By assumption $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, we have $V(T(\overline{\mathbb{T}}))=V \cup \mathcal{E}$ where $\mathcal{E}=\left\{e_{i j} \mid v_{i} v_{j} \notin E\right\}$ and $E(T(\overline{\mathbb{T}}))=$ $E(\overline{\mathbb{T}}) \cup\left\{e_{i j} v_{k} \mid e_{i j} \in \mathcal{E}\right.$ and $\left.k \notin\{i, j\}\right\} \cup\left\{e_{i j} e_{i^{\prime} j^{\prime}} \mid e_{i j}, e_{i^{\prime} j^{\prime}} \in \mathcal{E}\right.$ and $\{i, j\} \cap$ $\left.\left\{i^{\prime}, j^{\prime}\right\} \neq \emptyset\right\}$. For some index set I, let $\mathbb{L}=\left\{v_{i} \mid i \in I\right\}$ be the set of all leaves of \mathbb{T}, and let f be a proper vertex coloring of $T(\mathbb{T})$. By Lemma 3.6, we have $|f(V(L(\overline{\mathbb{T}})))|=|f(\mathcal{E})| \geq n-2$. On the other hand, since the induced subgraph $\overline{\mathbb{T}}[\mathbb{L}]$ is a complete graph of order ℓ and also for any $v_{i} \in \mathbb{L}$, since $\operatorname{deg}_{\overline{\mathbb{T}}}\left(v_{i}\right)=n-2$, each of the induced subgraphs $H_{v_{i}}=\overline{\mathbb{T}}\left[\left\{v_{i}\right\} \cup\left\{e_{i j} \mid v_{j} \in\right.\right.$ $\left.\left.N_{\overline{\mathbb{T}}}\left(v_{i}\right)\right\}\right]$ of $\overline{\mathbb{T}}$ is a complete graph of order $n-1$ such that $V\left(H_{v_{i}}\right) \cap V(\overline{\mathbb{T}}[\mathbb{L}])=$ $\left\{v_{i}\right\}$ and $V\left(H_{v_{i}}\right)-\left\{v_{i}\right\} \subset \mathcal{E}$, we conclude that $f(\mathbb{L}) \cap f(\mathcal{E})=\emptyset$, and so $\chi_{d}^{t t}(\overline{\mathbb{T}})=\chi_{d}^{t}(T(\overline{\mathbb{T}})) \geq \chi(T(\overline{\mathbb{T}})) \geq n+\ell-2$.

For the upper bound, first $\Delta(\mathbb{T}) \leq n-2$ implies $\operatorname{diam}(\mathbb{T}) \geq 3$, so there exist at least two nonleaf vertices, say v_{1} and v_{2}, such that v_{1} is adjacent to v_{2} in \mathbb{T} and so $\operatorname{deg}_{\overline{\mathbb{T}}}\left(v_{1}\right) \leq \operatorname{deg}_{\overline{\mathbb{T}}}\left(v_{2}\right) \leq n-3$. We will give a TDC f in $T(\overline{\mathbb{T}})$ with $2 n-4$ color classes. Since $\chi(L(\overline{\mathbb{T}}))=n-2$, by Lemma 3.6, we
can assign $n-2$ colors to the vertices in $V(L(\overline{\mathbb{T}}))=\mathcal{E}$. For $i=1,2$, since $N_{T(\overline{\mathbb{T}})}\left(v_{i}\right) \cap \mathcal{E}=\left\{e_{i j} \mid e_{i j} \in \mathcal{E}\right\}$, we define $f\left(v_{i}\right)=a_{i}$ for $i=1,2$ where $a_{i} \neq f\left(e_{i j}\right)$ for some $1 \leq a_{i} \leq n-2$. Finally we assign $n-2$ new colors to the $n-2$ vertices of $V-\left\{v_{1}, v_{2}\right\}$. We claim that f is a TDC of $T(\overline{\mathbb{T}})$. For this aim, we have to show that for any vertex $w \in T(\overline{\mathbb{T}})=V \cup \mathcal{E}$ there exists a color class V_{p} such that $w \succ_{t} V_{p}$. Since \mathbb{T} has always two leaves, say v_{k} and v_{q}, and so $d e g_{\overline{\mathbb{T}}}\left(v_{k}\right)=d e g_{\overline{\mathbb{T}}}\left(v_{q}\right)=n-2$, we have $v_{i} \succ_{t} V_{p}$ for any $v_{i} \in V$ when $V_{p}=\left\{v_{k}\right\}$ or $\left\{v_{q}\right\}$. Also $e_{i j} \succ_{t} V_{p}$ where $V_{p}=\left\{v_{i}\right\}$ or $\left\{v_{j}\right\}$ for any $e_{i j} \in \mathcal{E}$ because $e_{12} \notin \mathcal{E}$ and so $e_{i j} \neq e_{12}$.

This bounds are same for any tree with diameter three. Because every tree \mathbb{T} with diameter three is in fact a tree which is obtained by joining the central vertices of two star trees $K_{1, p}$ and $K_{1, q}$ in which $p+q=n-2$.

By Theorems 3.1 and 3.7 we have the following theorem.
Theorem 3.8. For any nonstar tree \mathbb{T} of order $n \geq 5$ with ℓ leaves,

$$
n+\ell+3 \leq \chi_{d}^{t t}(\mathbb{T})+\chi_{d}^{t t}(\overline{\mathbb{T}}) \leq\left\lfloor\frac{8 n}{3}\right\rfloor+\Delta(\mathbb{T})-3
$$

By Theorems 3.2 and 3.7, we see that while the lower bound in Theorem 3.8 is tight for any tree \mathbb{T} of order $n=5$ with diameter three, but $\chi_{d}^{t t}(\mathbb{T})+$ $\chi_{d}^{t t}(\overline{\mathbb{T}}) \leq 3 n-4<\left\lfloor\frac{8 n}{3}\right\rfloor+\Delta(\mathbb{T})-3$ when $\operatorname{diam}(\mathbb{T})=3$. So we ask the following question.
Question. Is the upper bound in Theorem 3.8 tight for any tree with order greater than or equal to 5 and diameter greater than or equal to 4 ?

4. GRAPHS WHICH THEIR TOTAL DOMINATOR TOTAL CHROMATIC NUMBERS ARE EQUALE TO THEIR ORDERS

One of the usual questions in graph theory is the following question.
Question. Let \mathcal{P} be a property defind on a set \mathcal{S} of graphs. Is there any graph in \mathcal{S} of order n with $\mathcal{P}=k$?

Next two propositions give positive answer to this question when \mathcal{P} is the total dominator total chromatic number of the double star trees and the corona graphs $G \circ P_{1}$ and $G \circ P_{2}$. We recall that the double star tree $S_{1, n, n}$ is a subdivition graph of $K_{1, n}$ by replacing every edge by a path with lengh 2 , and the m-corona graph $G \circ P_{m}$ of a graph G is the graph obtained from G by adding a path of order m to each vertex of G. First three lemmas.

Lemma 4.1. For any $n \geq 1, \gamma_{t m}\left(S_{1, n, n}\right)=n+1$.
Proof. Let $S_{1, n, n}$ be a double star with vertex set $V=\left\{v_{i} \mid 0 \leq i \leq 2 n\right\}$ and edge set $E=\left\{v_{0} v_{i}, v_{i} v_{n+i} \mid 1 \leq i \leq n\right\}$. Let S be a TDS of $T\left(S_{1, n, n}\right)$, the total of $S_{1, n, n}$, which its vertex set is

$$
V\left(T\left(S_{1, n, n}\right)\right)=V \cup\left\{e_{0 i}, e_{i(n+i)} \mid 1 \leq i \leq n\right\} .
$$

Since $N_{T\left(S_{1, n, n}\right)}\left(v_{n+i}\right)=\left\{v_{i}, e_{i(n+i)}\right\}$ for $1 \leq i \leq n$ and $N_{T\left(S_{1, n, n)}\right)}\left(v_{n+i}\right) \cap S \neq$ \emptyset, we have $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \subseteq S$ where $w_{i} \in\left\{v_{i}, e_{i(n+i)}\right\}$ for $1 \leq i \leq n$. On the other hand, since $N_{T\left(S_{1, n, n)}\right.}\left(w_{i}\right) \cap S \neq \emptyset$ for $1 \leq i \leq n$, we have $|S| \geq n+1$. Now since the set $\left\{v_{i} \mid 0 \leq i \leq n\right\}$ is a TDS of $T\left(S_{1, n, n}\right)$, we have $\gamma_{t m}\left(S_{1, n, n}\right)=\gamma_{t}\left(T\left(S_{1, n, n}\right)\right)=n+1$.

Lemma 4.2. For any connected graph G of order $n \geq 2$ and any $1 \leq m \leq 2$, $\gamma_{t m}\left(G \circ P_{m}\right)=m n$.

Proof. Let $G=(V, E)$ be a connected graph of order $n \geq 2$ when $V=$ $\left\{v_{i} \mid 1 \leq i \leq n\right\}$.
CASE 1: $m=1$.
Then $V\left(G \circ P_{1}\right)=V \cup\left\{v_{n+i} \mid 1 \leq i \leq n\right\}$ and

$$
E\left(G \circ P_{1}\right)=\left\{v_{i} v_{n+i} \mid 1 \leq i \leq n\right\} \cup E .
$$

Let S be a min-TDS of $T\left(G \circ P_{1}\right)$, the total of $G \circ P_{1}$, in which
$V\left(T\left(G \circ P_{1}\right)\right)=\left\{v_{i} \mid 1 \leq i \leq 2 n\right\} \cup\left\{e_{i j} \mid v_{i} v_{j} \in E\right\} \cup\left\{e_{i(n+i)} \mid 1 \leq i \leq n\right\}$ and

$$
\begin{aligned}
E\left(T\left(G \circ P_{1}\right)\right) & =E\left(G \circ P_{1}\right) \\
& \cup\left\{e_{i(n+i)} v_{i}, e_{i(n+i)} v_{n+i} \mid 1 \leq i \leq n\right\} \\
& \cup\left\{e_{i(n+i)} e_{i k} \mid 1 \leq i \leq n, v_{i} v_{k} \in E\right\} .
\end{aligned}
$$

Since $N_{T\left(G \circ P_{1}\right)}\left(v_{n+i}\right)=\left\{v_{i}, e_{i(n+i)}\right\}$ and $N_{T\left(G \circ P_{1}\right)}\left(v_{n+i}\right) \cap S \neq \emptyset$ for each $1 \leq i \leq n$, we have $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \subseteq S$ where $w_{i} \in\left\{v_{i}, e_{i(n+i)}\right\}$, which implies $|S| \geq n$. Now since $\left\{v_{i} \mid 1 \leq i \leq n\right\}$ is a TDS of $T\left(G \circ P_{1}\right)$, we have $\gamma_{t m}\left(G \circ P_{1}\right)=\gamma_{t}\left(T\left(G \circ P_{1}\right)\right)=n$.
CASE 2: $m=2$.
Then $V\left(G \circ P_{2}\right)=\left\{v_{i} \mid 1 \leq i \leq 3 n\right\}$ and

$$
E\left(G \circ P_{2}\right)=\left\{e_{i(n+i)}, e_{(n+i)(2 n+i)} \mid 1 \leq i \leq n\right\} \cup E .
$$

Let S be a min-TDS of $T\left(G \circ P_{2}\right)$, the total of $G \circ P_{2}$, in which

$$
\begin{aligned}
V\left(T\left(G \circ P_{2}\right)\right) & =\left\{v_{i} \mid 1 \leq i \leq 3 n\right\} \cup\left\{e_{i j} \mid v_{i} v_{j} \in E\right\} \\
& \cup\left\{e_{i(n+i)}, e_{(n+i)(2 n+i)} \mid 1 \leq i \leq n\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& E\left(T\left(G \circ P_{2}\right)\right)= E\left(G \circ P_{2}\right) \\
& \cup\left\{e_{i(n+i)} v_{i}, e_{i(n+i)} v_{n+i} \mid 1 \leq i \leq n\right\} \\
& \cup\left\{e_{i(n+i)} e_{i k} \mid 1 \leq i \leq n, v_{i} v_{k} \in E\right\} \\
& \cup\left\{e_{(n+i)(2 n+i)} v_{(n+i)}, e_{(n+i)(2 n+i)} v_{(2 n+i)},\right. \\
&\left.e_{(n+i)(2 n+i)} e_{i(n+i)} \mid 1 \leq i \leq n\right\} .
\end{aligned}
$$

Since for each $1 \leq i \leq n, N_{T\left(G \circ P_{2}\right)}\left(v_{2 n+i}\right)=\left\{v_{n+i}, e_{(n+i)(2 n+i)}\right\}$ and $N_{T\left(G \circ P_{2}\right)}\left(v_{2 n+i}\right) \cap S \neq \emptyset$, we have $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \subseteq S$ where $w_{i} \in$ $\left\{v_{n+i}, e_{(n+i)(2 n+i)}\right\}$. Since also every w_{i} must be dominated by an element $w_{i}^{\prime} \in N_{T\left(G \circ P_{2}\right)}\left(w_{i}\right) \cap S$, and all of the elements w_{i} and w_{i}^{\prime} are distinct, we conclude that S includes the set $\left\{w_{i}, w_{i}^{\prime} \mid 1 \leq i \leq n\right\}$ of cardinality $2 n$,
and so $\gamma_{t}\left(T\left(G \circ P_{2}\right)\right) \geq 2 n$. On the other hand, since $\left\{v_{i}, v_{n+i} \mid 1 \leq i \leq n\right\}$ is a TDS of $T\left(G \circ P_{2}\right)$, we have $\gamma_{t m}\left(G \circ P_{2}\right)=\gamma_{t}\left(T\left(G \circ P_{2}\right)\right) \leq 2 n$, which completes our proof.

Lemma 4.3. For any connected graph G with no isolated vertex,

$$
\chi_{d}^{t t}\left(G \circ P_{m}\right) \leq n(m+1)
$$

when $m=1,2$.
Proof. Let $G=(V, E)$ be a connected graph with no isolated vertex of order $n \geq 2$. We continue our proof in the following two cases by using the notations in the proof of Lemma 4.2.
CASE 1: $m=1$.
Since V is a min-TDS of $T\left(G \circ P_{1}\right)$) (by Lemma 4.2), Theorem 1.6 implies $\chi_{d}^{t}\left(T\left(G \circ P_{1}\right)\right) \leq n+\chi\left(T\left(G \circ P_{1}\right)-V\right)$. By showing $\chi(H) \leq n$ our proof will be completed in which $H=T\left(G \circ P_{1}\right)-V$. Since $\chi(L(G))=\chi^{\prime}(G) \leq n$ (by Theorem 1.7), we have $\left|N_{T\left(G \circ P_{1}\right)}\left(e_{i(n+i)}\right) \cap \mathcal{E}\right|=\operatorname{deg}_{G}\left(v_{i}\right) \leq n-1$ for each $1 \leq i \leq n$ in which $\mathcal{E}=\left\{e_{i j} \mid v_{i} v_{j} \in E\right\} \cup\left\{e_{i(n+i)} \mid 1 \leq\right.$ $i \leq n\}$. Thus each of the subgraphs induced by $\mathcal{E}_{i}=\left\{e_{i j} \mid 1 \leq j \leq\right.$ n and $j \neq i\} \cup\left\{e_{i(n+i)}\right\}$ is a complete graph of order at most n, and so each of them can be colored by a set X_{i} of colors which has cardinality at most n. If need, we can color each of them in this way that the common vertices in different induced subgraphs have same colors, and so $\left|X_{1} \cup \cdots \cup X_{n}\right| \leq n$. Now since $N_{H}\left(v_{n+i}\right)=\left\{e_{i(n+i)}\right\}$, we can assign a color from $X_{1} \cup \cdots \cup X_{n}$ to the vertices in $\left\{v_{n+i} \mid 1 \leq i \leq n\right\}$, which implies $\chi(H) \leq n$, as desired.
CASE 2: $m=2$.
Since $S=\left\{v_{i}, v_{n+i} \mid 1 \leq i \leq n\right\}$ is a min-TDS of $T\left(G \circ P_{2}\right)$) (by Lemma 4.2), Theorem 1.6 implies $\bar{\chi}_{d}^{t}\left(T\left(G \circ P_{2}\right)\right) \leq 2 n+\chi\left(T\left(G \circ P_{2}\right)-S\right)$. Since, similar to the case $m=1$, it can be shown that $\chi\left(T\left(G \circ P_{2}\right)-S\right) \leq n$, our proof is completed.

Proposition 4.4. For any integer $n \geq 1$, $\chi_{d}^{t t}\left(S_{1, n, n}\right)=2 n+1$.
Proof. Let $S_{1, n, n}$ be a double star with vertex set $V=\left\{v_{i} \mid 0 \leq i \leq 2 n\right\}$ and edge set $E=\left\{v_{0} v_{i}, v_{i} v_{n+i} \mid 1 \leq i \leq n\right\}$. Let $f=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a TDC of $T\left(S_{1, n, n}\right)$, the total of $S_{1, n, n}$, which its vertex set is $V \cup$ $\left\{e_{0 i}, e_{i(n+i)} \mid 1 \leq i \leq n\right\}$. Since the subgraph of $T\left(S_{1, n, n}\right)$ induced by $\left\{e_{0 i} \mid 1 \leq i \leq n\right\} \cup\left\{v_{0}\right\}$ is isomorphic to a complete graph of order $n+1$, we have $\chi_{d}^{t}\left(T\left(S_{1, n, n}\right)\right) \geq n+1$, and so we may assume $e_{0 i} \in V_{i}$ for each $1 \leq i \leq n$ and $v_{0} \in V_{n+1}$. Since for each $1 \leq i \leq n, v_{n+i} \succ_{t} V_{k}$ implies $V_{k}=\left\{e_{i(n+i)}\right\}$ or $\left\{v_{i}\right\}$ and $V_{k} \cap\left(V_{1} \cup \cdots \cup V_{n} \cup V_{n+1}\right)=\emptyset$, we have $\chi_{d}^{t}\left(T\left(S_{1, n, n}\right)\right) \geq 2 n+1$. On the other hand, since $S^{\prime}=\left\{v_{i} \mid 0 \leq i \leq n\right\}$ is a min-TDS of $T\left(S_{1, n, n}\right)$ by Lemma 4.1, Theorem 1.6 implies $\chi_{d}^{t}\left(T\left(S_{1, n, n}\right)\right) \leq$ $2 n+1$, and so $\chi_{d}^{t t}\left(S_{1, n, n}\right)=\chi_{d}^{t}\left(T\left(S_{1, n, n}\right)\right)=2 n+1$. Figure 4 shows the
$\min -\operatorname{TDC}\left(\left\{v_{0}\right\},\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{e_{01}, e_{36}\right\},\left\{e_{02}, v_{4}, v_{5}, v_{6}\right\},\left\{e_{03}, e_{14}, v_{25}\right\}\right)$ of $T\left(S_{1,3,3}\right)$ for an example.

Figure 4. A min-TDC of $T\left(S_{1,3,3}\right)$.

Proposition 4.5. For any integers $n \geq 2$ and $1 \leq m \leq 2, \chi_{d}^{t t}\left(K_{n} \circ P_{m}\right)=$ $n(m+1)$.
Proof. Let $K_{n}=(V, E)$ be a complete graph of order $n \geq 2$ with the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $f=\left(V_{1}, \ldots, V_{\ell}\right)$ be an arbitrary TDC of $T\left(K_{n} \circ P_{m}\right)$. By Lemma 4.3 and using the notations in its proof, it is sufficient to prove $\ell \geq n(m+1)$.
Case 1: $m=1$.
Since for each $1 \leq i \leq n, v_{n+i} \succ_{t} V_{k}$ implies $V_{k} \subset\left\{v_{i}, e_{i(n+i)}\right\}$, we may assume $V_{k}=\left\{w_{i}\right\}$ and $\left\{v_{i}, e_{i(n+i)}\right\}-\left\{w_{i}\right\}=\left\{w_{i}^{\prime}\right\}$. Since we have to assign one color to each vertex w_{i} for $1 \leq i \leq n$, and we need n new colors to assign to the vertices of the complete subgraph induced by $\mathcal{E}_{i}=\left\{e_{i j} \mid 1 \leq j \leq n, j \neq i\right\} \cup\left\{w_{i}^{\prime}\right\}$, for $1 \leq i \leq n$, we have $\ell \geq 2 n$, as desired.
Case 2: $m=2$.
Since $v_{2 n+i} \succ_{t} V_{k_{2 n+i}}$ implies $V_{k_{2 n+i}} \subset\left\{v_{n+i}, e_{(n+i)(2 n+i)}\right\}$ for each $1 \leq$ $i \leq n$, we have

$$
\ell \geq\left|\left\{f\left(w_{i}\right) \mid V_{k_{2 n+i}}=\left\{w_{i}\right\}, 1 \leq i \leq n\right\}\right|=n .
$$

Also since $w_{i} \succ_{t} V_{k_{w_{i}}}$ implies

$$
V_{k_{w_{i}}} \subset W_{i}=\left\{v_{i}, v_{n+i}, v_{2 n+i}, t_{i(n+i)}, t_{(n+i)(2 n+i)}\right\}-\left\{f\left(w_{i}\right)\right\}
$$

for each $1 \leq i \leq n$, and $W_{i} \cap W_{j}=\emptyset$ when $i \neq j$, we have $\ell \geq 2 n$. Finally since at least one of the complete graphs of order n induced by $\left\{v_{i}\right\} \cup\left\{t_{i j} \mid 1 \leq i<j \leq n\right\}$ or by $\left\{t_{i(n+i)}\right\} \cup\left\{t_{i j} \mid 1 \leq i<j \leq n\right\}$ has no vertex in-common with $V_{k_{2 n+i}} \cup V_{k_{w_{i}}}$, we need n new colors, which implies $\ell \geq 3 n$, as desired.

5. Problems

In this introductory paper on total dominator total coloring of a graph, we present some bounds on the parameter and some fundamental properties of the parameter and determine the total dominator total coloring of special classes of graphs. We close with a list of open problems.

Problem 5.1. Study the total dominator total chromatic number on various graph products, including, among others, the Cartesian product, lexicographic product, direct product.

Problem 5.2. Study the the total dominator total chromatic number in certain classes of graphs, including, among others, chordal graphs, split graphs, block graphs, proper interval graphs, Cayley graphs, Mycieleskian graphs, and Kneser graphs.

Problem 5.3. Find a family of connected graphs G satisfy

- $\chi_{d}^{t t}(G)=\chi_{d}^{t}(L(G))+\chi_{d}^{t}(G)$, or
- $\chi_{d}^{t t}(G)=\chi\left(T(G)-\left(S_{1} \cup S_{2}\right)\right)+\gamma_{t}(G)+\gamma_{t}(L(G))$ where S_{1} is a min-TDS of G and S_{2} is a min-TDS of $L(G)$.

Problem 5.4. Characterize trees \mathbb{T} of order $n \geq 5$ satisfy

$$
\chi_{d}^{t t}(\mathbb{T})=\left\lfloor\frac{2 n}{3}\right\rfloor+\Delta(\mathbb{T})+1
$$

Problem 5.5. Whether for any connected graph G of order $n \geq 3$,

$$
\chi_{d}^{t t}(G) \leq\left\lceil\frac{5 n}{3}\right\rceil ?
$$

References

[1] M. Behzad, A criterion for the planarity of a total graph, Proc. Cambridge Philos. Soc., 63 (1967) 679-681.
[2] M. Behzad, and G. Chartrand, J. K. Cooper, Jr., The colour numbers of complete graphs, J. London Math. Soc. 42 (1967) 225-228.
[3] G. Chartrand, and P. Zhang, Chromatic Graph Theory, CRC Press, Western Michigan University Kalamazoo, MI, USA, 2020.
[4] J. Clark, and D. A. Holton, A First Look At Graph Theory, Allied Pub., India, 1991.
[5] M. R. Garey, and D. S. Johnson, Computers and Intractability, W. H. Freeman and Co., 1978.
[6] F. Harary, Graph Theory, Adisson Wesely Publishing Company Inc, 1994.
[7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds). Fundamentals Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[8] , Domination in Graphs: Advanced Topics, Marcel Dekker, Inc. New York, 1998.
[9] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning (eds), Topics in Domination in Graphs, Springer Nature Switzerland, 2020.
[10] \longrightarrow, Structures of Domination in Graphs, Springer Nature Switzerland, 2021.
[11] M. A. Henning, and A. Yeo, Total domination in graphs (Springer Monographs in Mathematics) ISBN: 978-1-4614-6524-9 (Print) 978-1-4614-6525-6 (Online), 2013.
[12] M. A. Henning, Total dominator colorings and total domination in graphs, Graphs and Combinatorics, 31 (2015) 953-974.
[13] P. Jalilolghadr, A. P. Kazemi, and A. Khodkar, Total dominator coloring of the circulant graphs $C_{n}(a, b)$, Utilitas Mathematica, accepted, arXiv:1905.00211v1.
[14] A. P. Kazemi, Total dominator chromatic number of a graph, Transactions on Combinatorics, 4(2) (2015) 57-68.
[15] - , Total dominator coloring in product graphs, Utilitas Mathematica, 94 (2014) 329-345.
[16] , Total dominator chromatic number of Mycieleskian graphs, Utilatas Mathematica, 103 (2017) 129-137.
[17] F. Kazemnejad, and A. P. Kazemi, Total dominator coloring of central graphs, Ars Combinatoria, accepted, arXiv:1801.05137v3.
[18] F. Kazemnejad, A. P. Kazemi, and S. Moradi, Total mixed domination in graphs, manuscript, arXiv:1810.08773v1.
[19] E. A. Nordhaus, and J. W. Gaddum, On compelementary graphs, Amer. Math. Monthly, 63 (1956) 175-177.
[20] D. B. West, Introduction to Graph Theory, 2nd ed, prentice hall, USA, 2001.
Department of Mathematics, University of Mohaghegh Ardabili
E-mail address: adelpkazemi@yahoo.com
Department of Mathematics, School of Sciences, Ilam University
E-mail address: kazemnejad.farshad@gmail.com
Department of Mathematics, School of Sciences, Ilam University
E-mail address: somayeh.moradi1@gmail.com

