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TOTAL DOMINATOR TOTAL COLORING OF A GRAPH

ADEL P. KAZEMI, FARSHAD KAZEMNEJAD, AND SOMAYEH MORADI

Abstract. Here, we initiate to study the total dominator total coloring
of a graph which is a total coloring of the graph such that each object of
the graph is adjacent or incident to every object of some color class. In
more detailes: In section 2 we present some tight lower and upper bounds
for the total dominator total chromatic number of a graphs in terms of
some parameters such as order, size, the total dominator chromatic and
total domination numbers of the graph and its line graph. In section 3
we restrict our attention to trees and present a Nordhaus-Gaddum-like
relation for them, and finally in last section we show that there exist
graphs that their total dominator total chromatic numbers are equal to
their orders.

1. Introduction

All graphs considered here are nonempty, finite, undirected and simple.
For standard graph theory terminology not given here we refer to [20]. Let
G = (V,E) be a graph with the vertex set V of order n(G) and the edge set E
of size m(G). The open neighborhood and the closed neighborhood of a vertex
v ∈ V are NG(v) = {u ∈ V | uv ∈ E} and NG[v] = NG(v)∪{v}, respectively.
The degree of a vertex v is also degG(v) = |NG(v)|. The minimum and
maximum degree of G are denoted by δ = δ(G) and ∆ = ∆(G), respectively.
If δ(G) = ∆(G) = k, then G is called k-regular. For two vertices u and v in a
connected graph G the distance between u and v is the minimum length of a
shortest (u, v)-path in G and is denoted by d(u, v). The maximum distance
among all pairs of vertices of G is the diameter of G, which is denoted by
diam(G). A Hamiltonian path in a graph G is a path which contains every
vertex of G. An independent set of G is a subset of vertices of G, no two of
which are adjacent. And a maximum independent set is an independent set
of the largest cardinality in G. This cardinality is called the independence
number of G, and is denoted by α(G). Also a mixed independent set of G is
a subset of V ∪ E, no two objects of which are adjacent or incident, and a
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maximum mixed independent set is a mixed independent set of the largest
cardinality in G. This cardinality is called the mixed independence number
of G, and is denoted by αmix(G). Two isomorphic graphs G and H are
shown by G ∼= H.

We write Kn, Cn and Pn for a complete graph, a cycle and a path of order
n, respectively, and Km,n is a a bipartite complete graph of order m + n
while G[S] denote the induced subgraph of G by a vertex set S. A complete
bipartite graph K1,n is called a star. The line graph L(G) of G is a graph
with the vertex set E(G) and two vertices of L(G) are adjacent when they
are incident in G. The total graph T (G) of a graph G = (V,E) is the
graph whose vertex set is V ∪ E and two vertices are adjacent whenever
they are either adjacent or incident in G [1]. It is obvious that if G has
order n and size m, then T (G) has order n +m and size 3m + |E(L(G))|,
and also T (G) contains both G and L(G) as two induced subgraphs and
it is the largest graph formed by adjacent and incidence relation between
graph elements. In this paper, by assumption V = {v1, v2, . . . , vn}, we use
the notations V (T (G)) = V ∪E where E = {eij | vivj ∈ E}, and E(T (G)) =
{vieij , vjeij | vivj ∈ E} ∪ E ∪ E(L(G)). obviously degT (G)(vi) = 2degG(vi)
and degT (G)(eij) = degG(vi) + degG(vj). So if G is k-regular, then T (G) is
2k-regular. Also we have αmix(G) = α(T (G)).

Here, we fix a notation for the vertex set and the edge set of a line
and total of a graph which we use thorough this paper. For a graph G =
(V,E) with the vertex set V = {vi| 1 ≤ i ≤ n}, we have V (L(G)) = E
and E(L(G)) = {eijeik | eij , eik ∈ E and j ̸= k}, V (T (G)) = V ∪ E and
E(T (G)) = E∪E(L(G))∪{eijvi, eijvj | eij ∈ E}, where E = {eij | vivj ∈ E}.
In Figure 1, a graph G and its total graph are shown for an example.

Figure 1. The illustration of G (left) and T (G) (right).

Domination: Domination in graphs is now well studied in graph theory
and the literature on this subject has been surveyed and detailed in the
two books by Haynes, Hedetniemi, and Slater [7, 8]. Also, recently two new
books [9, 10] are written on this topics by Haynes, Hedetniemi, and Henning.
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A famous type of domination is total domination, and the literature on this
subject has been surveyed and detailed in the recent book [11]. A total
dominating set, briefly TDS, S of a graph G = (V,E) is a subset of the
vertex set of G such that for each vertex v, NG(v) ∩ S ̸= ∅. The total
domination number γt(G) of G is the minimum cardinality of a TDS of G.
Similarly, a subset S ⊆ V ∪E of a graph G is called a total mixed dominating
set, briefly TMDS, of G if each object of V ∪E is either adjacent or incident
to an object of S, and the total mixed domination number γtm(G) of G is
the minimum cardinality of a TMDS [18]. A min-TDS/min-TMDS of G
denotes a TDS/TMDS of G with minimum cardinality. Also we agree that
a vertex v dominates an edge e or an edge e dominates a vertex v mean
v ∈ e. Similarly, we agree that an edge dominates another edge means they
have a common vertex. The next theorem can be easily proved.

Theorem 1.1 (Kazemnejad, Kazemi, and Moradi, [18]). For any graph G
without isolate vertex,

γtm(G) = γt(T (G)).

Graph Coloring: Graph coloring is used as a model for a vast number of
practical problems involving allocation of scarce resources (e.g., scheduling
problems), and has played a key role in the development of graph theory
and, more generally, discrete mathematics and combinatorial optimization.
Graph colorability is NP-complete in the general case, although the problem
is solvable in polynomial time for many classes [5]. A proper coloring of a
graph G is a function from the vertices of the graph to a set of colors such
that any two adjacent vertices have different colors, and the minimum num-
ber of colors needed in a proper coloring of a graph is called the chromatic
number χ(G) of G. In a simlar way, a total coloring of G assigns a color
to each vertex and to each edge so that colored objects have different col-
ors when they are adjacent or incident, and the minimum number of colors
needed in a total coloring of a graph is called the total chromatic number
χT (G) of G [20]. The Total Coloring Conjecture (Behzad, 1965) states that:

Behzad’s Conjecture. For every simple graph G, χT (G) ≤ ∆(G) + 2.

A color class in a coloring of a graph is a set consisting of all those
objects assigned the same color. For simply, if f is a coloring of G with
the color classes V1, V2, . . . , Vℓ, we write f = (V1, V2, . . . , Vℓ). Motivated by
the relation between coloring and total dominating, the concept of total
dominator coloring in graphs introduced in [14] by Kazemi, and extended in
[12, 13, 15, 16, 17]. The reader can study section 4 of Part I from the book
[10] for more information on this concept.

Definition 1.2 (Kazemi, [14]). A total dominator coloring, briefly TDC,
of a graph G with a positive minimum degree is a proper coloring of G in
which each vertex of the graph is adjacent to every vertex of some color
class. The total dominator chromatic number χt

d(G) of G is the minimum
number of color classes in a TDC of G.
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Here, we initiate to study a new type of coloring called total dominator
total coloring of a graph which is obtained from the concept of total dom-
inator coloring of a graph by replacing total coloring of a graph instead of
(vertex) coloring of it.

Definition 1.3. A total dominator total coloring, briefly TDTC, of a graph
G with a positive minimum degree is a total coloring of G in which each
object of the graph is adjacent or incident to every object of some color class.
The total dominator total chromatic number χtt

d (G) of G is the minimum
number of color classes in a TDTC of G.

Next theorem can be easily proved.

Theorem 1.4. For any graph G with no isolated vertex, χtt
d (G) = χt

d(T (G)).

For any TDC (TDTC) f = (V1, V2, . . . , Vℓ) of a graph G, a vertex (an
object) v is called a common neighbor of Vi or we say Vi totally dominates
v, and we write v ≻t Vi, if vertex (object) v is adjacent (adjacent or incident)
to every vertex (object) in Vi. Otherwise we write v ̸≻t Vi. Also v is called
a private neighbor of Vi with respect to f if v ≻t Vi and v ⊁t Vj for all
j ̸= i. The set of all common neighbors of Vi with respect to f is called
the common neighborhood of Vi in G and denoted by CNG,f (Vi) or simply
by CN(Vi). Also every TDC or TDTC of G with χt

d(G) or χtt
d (G) colors is

called respectively a min-TDC or a min-TDTC. For an examples see Figure
2.

Figure 2. A min-TDC of P4 (left), a min-TDTC of P4 (mid-
dle) and a min-TDC of T (P4) (right).

Goal: As we have mentioned before, here we initiate to study the total
dominator total coloring of a graph which is a total coloring of the graph
such that each object of the graph is adjacent or incident to every object
of some color class. In more detailes: In section 2 we present some tight
lower and upper bounds for the total dominator total chromatic number of a
graphs in terms of some parameters such as order, size, the total dominator
chromatic and total domination numbers of the graph and its line graph. In
section 3 we restrict our attention to trees and present a Nordhaus-Gaddum-
like relation for them, and finally in the last section we show that there exist
graphs that their total dominator total chromatic numbers are equal to their
orders. The following theorems are useful for our investigation.
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Theorem 1.5 (Kazemi, [14]). For any connected graph G of order n with
δ(G) ≥ 1,

max{χ(G), γt(G), 2} ≤ χt
d(G) ≤ n.

Furthermore, χt
d(G) = 2 if and only if G is a complete bipartite graph, or

χt
d(G) = n if and only if G is a complete graph.

Theorem 1.6 (Kazemi, [14]). For any connected graph G with δ(G) ≥ 1,

(1.1) χt
d(G) ≤ γt(G) + min

S
χ(G[V (G)− S]),

where S ⊆ V (G) is a min-TDS of G. And so χt
d(G) ≤ γt(G) + χ(G).

Theorem 1.7 (Harary, [6]). For any nonempty graph G,

∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Theorem 1.8 (König’s theorem, [3]). For any nonempty bipartite graph G,

χ′(G) = ∆(G).

Theorem 1.9 (Behzad, Chartrand, and Cooper, [2]). For any complete
graph Kn of order at least 2,

χT (Kn) = 2

⌈
n+ 1

2

⌉
− 1.

Theorem 1.10 (Kazemnejad, Kazemi, and Moradi, [18]). For any complete
graph Kn of order n ≥ 2,

γtm(Kn) =

⌈
5n

3

⌉
− n.

Theorem 1.11 (Kazemnejad, Kazemi, and Moradi, [18]). For any graph G
of order n ≥ 2 which has a Hamiltonian path, γtm(G) ≤ ⌈5n3 ⌉ − n.

Theorem 1.12 (Kazemnejad, Kazemi, and Moradi, [18]). For any tree T
of order n ≥ 3, γtm(T) ≤ ⌊2n3 ⌋.

Proof. Let T be a tree with the vertex set V . It is sufficient to prove
γt(T (T)) ≤ ⌊2n3 ⌋. Then V (T (T)) = V ∪ E . Choose a leaf v of T and
label each vertex of T with its distance from v to modolu 3. This parti-
tions V to the three independent sets A0, A1 and A2 where Ai = {u ∈
V | dT(u, v) ≡ i (mod 3)} for 0 ≤ i ≤ 2. Then by the pigeonhole principle
at least one of them, say A0, contains at least one third of the vertices of T,
and so |A1 ∪ A2| ≤ ⌊2n3 ⌋. We see that every nonleaf vertex and every leaf
vi ∈ V (T) − A1 ∪ A2 is adjacent to some vertex in A1 ∪ A2. If needed, we
replace every leaf vi ∈ A1 ∪ A2 by a vertex from NT (T)(vi) − A1 ∪ A2.
The given set S is a TDS of T (T). Because obviously N(vi) ∩ S ̸= ∅
for each vi ∈ V (T), and {vi, vj} ∩ S ̸= ∅ for each vivj ∈ E(T) (because
dT(v, vi) ̸≡ dT(v, vj) (mod 3)), and so every eij ∈ E is dominated by vi ∈ S
or vj ∈ S. So γt(T (T)) ≤ |S| ≤ ⌊2n3 ⌋. □
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2. Some bounds

Since the problem of finding total dominator chromatic number of a graph
is NP-complete [14], the problem of finding total dominator total chromatic
number of a graph is also NP-complete by Theorem 1.4. Also since for any
graph G with no isolated vertex of order n and size m, γt(G) ≤ χt

d(G) ≤ n,
by Theorem 1.5, and every TDTC is a total coloring, and also χtt

d (G) =
χt
d(T (G)) = n+m if and only if G ∼= K2, we have the next theorem.

Theorem 2.1. For any connected graph G of order n ≥ 3 and size m,

max{χT (G), γtm(G)} ≤ χtt
d (G) ≤ n+m− 1.

Also since for any graph G = G1 + G2 + · · · + Gω with (connected)
components G1, G2, . . ., Gω which has no isolated vertex,

max
1≤i≤ω

χt
d(Gi) + 2ω − 2 ≤ χt

d(G) ≤
ω∑

i=1

χt
d(Gi),

from [14], and since T (G) = T (G1)+T (G2)+ · · ·+T (Gω), we have the next
theorem.

Theorem 2.2. For any graph G with (connected) components G1, G2, . . . , Gω

which has no isolate vertex,

max
1≤i≤ω

χtt
d (Gi) + 2ω − 2 ≤ χtt

d (G) ≤
ω∑

i=1

χtt
d (Gi).

Therefore, it is sufficient to verify the total dominator total chromatic
number of connected graphs. Next theorem gives some bounds for the total
dominator total chromatic number of a connected graph in terms of the total
dominator chromatic numbers of the graph and its line graph.

Theorem 2.3. For any connected graph G of order at least 3 and with no
isolated vertex,

max{χt
d(G), χt

d(L(G))} ≤ χtt
d (G) ≤ χt

d(L(G)) + χt
d(G).

And the bounds are tight.

Proof. Let G = (V,E) be a connected graph of order n ≥ 3 with δ(G) ≥ 1
and the vertex set V = {v1, v2, . . . , vn}, and let E = {eij | vivj ∈ E}. Let also
f = (V1, . . . , Vℓ) be a min-TDTC of G. To prove χt

d(G) ≤ χtt
d (G), without

loss of generality, we may assume Vi ∩ V ̸= ∅ if and only if 1 ≤ i ≤ m for
some 1 ≤ m ≤ ℓ. For every 1 ≤ k ≤ m or every m < k ≤ ℓ such that for
every vertex vi ∈ V , vi ̸≻t Vk, we set Wk = Vk − E . Notice that if vi ≻t Vk

for some vi ∈ V and some m < k ≤ ℓ, then Vk = {eij | for some j ̸= i}, and
since Vk is a (mixed) independent set, we have Vk = {eij} for some j ̸= i.
On the other hand eij ≻t Vk′ for some k′ ̸= k implies Vk′ ⊆ {vi, ejℓ} for some
ℓ ̸= i (or similarly Vk′ ⊆ {vj , eiℓ} for some ℓ ̸= j). Then we set Wk = {vi}
and Wk′ = {vj}. Therefore the coloring function (W1, . . . ,Wℓ) is a TDC of
G, and so χt

d(G) ≤ ℓ = χtt
d (G).
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In a similar way, to prove χt
d(L(G)) ≤ χtt

d (G), without loss of generality,
we may assume Vi ∩ E ≠ ∅ if and only if 1 ≤ i ≤ m for some 1 ≤ m ≤ ℓ.
For every 1 ≤ k ≤ m or every m < k ≤ ℓ such that for every vertex eij ∈ E ,
eij ̸≻t Vk, we set Wk = Vk − V . Notice that if eij ≻t Vk for some eij ∈ E
and some m < k ≤ ℓ, then Vk ⊂ {vi, vj}, by eij = vivj ∈ E(G). So,
without loss of generality, we may assume Vk = {vi}. If degG(vi) ≥ 2, then
vivℓ ∈ E for some ℓ ̸= j, and in this case we set Wk = {eiℓ}. Otherwise,
since {eip | vp ∈ NG(vi)} = {eij}, we set Wk = {ejℓ} where vℓ ∈ NG(vj).
Then the function (W1, . . . ,Wℓ) is a TDC of L(G), and so χt

d(L(G)) ≤ ℓ =
χtt
d (G). Therefore we have proved max{χt

d(G), χt
d(L(G))} ≤ χtt

d (G). Since
χt
d(K3) = χt

d(L(K3)) = χtt
d (K3) = 3, the lower bound is tight for K3.

The upper bound is proved by considering this fact that for any min-
TDC (V1, . . . , Vp) of G and any min-TDC (V ′

1 , . . . , V
′
q ) of L(G), the coloring

function (V1, . . . , Vp, V
′
1 , . . . , V

′
q ) is a TDTC of G. The upper bound is tight

for the cycle C4, because of χ
t
d(C4) = χt

d(L(C4)) = 2 (because L(C4) ∼= C4),
and χtt

d (C4) = 4 (because for any min-TDTC f = (V1, V2, . . . , Vℓ) of C4,

8 = |V ∪ E| =
∑ℓ

i=1 |Vi| ≤ ℓ · αmix(C4) = 2ℓ implies ℓ ≥ 4, and the coloring
function ({e12, e34}, {e23, e14}, {v1, v3}, {v2, v4}) is a TDTC of C4). □

Next theorem gives an upper bound for the total dominator chromatic
number of a connected graph in terms of the total domination numbers of
the graph and its line graph.

Theorem 2.4. Let G be a connected graph with δ(G) ≥ 1. Then we have
the following tight bound

χtt
d (G) ≤ χ(T (G)− S1 ∪ S2) + γt(G) + γt(L(G)),

where S1 is a min-TDS of G and S2 is a min-TDS of L(G).

Proof. Let S1 be a min-TDS of G and S2 be a min-TDS of L(G). Color
T (G)−S1∪S2 with minimum colors, and assign |S1|+ |S2| new colors to the
|S1|+ |S2| vertices of S1 ∪ S2. Since S1 ∪ S2 is a TDS of T (G), this coloring
of T (G) is TDC, and so χtt

d (G) = χt
d(T (G)) ≤ χ(T (G)− S1 ∪ S2) + γt(G) +

γt(L(G)).

Let G be the graph given in Figure 3. Obviously S1 = {v1, v5} is a min-
TDS of G and S2 = {e12, e23, e56, e67} is a min-TDS of L(G). Since T (G)−
S1∪S2 can be easily colored by 4 colors and the subgraph of T (G)−S1∪S2

induced by {v4, e14, e24, e34} is isomorphic to K4, we have χ(T (G) − (S1 ∪
S2)) = 4, and so

(2.1) χtt
d (G) = χt

d(T (G)) ≤ χ(T (G)− (S1 ∪ S2)) + γt(G) + γt(L(G)) = 10.

Now let f = (V1, . . . , Vℓ) be a TDC of T (G). Since v0 ≻t Vk implies
Vk = {v1} or Vk = {e01}, and also v9 ≻t Vt implies Vt = {v5} or Vt =
{e59}, we assume Vk = {v1} and Vt = {v5}, and then we choose set
A = {e01, e12, e13, e14, e15, e56, e57, e58, e59} (notice: if Vk = {e01} or Vt =
{e59}, then we replace e01 by v1 or e59 by v5 in A, respectively). Since
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the subgraph of T (G) induced by A is in fact two copies of K5 which
have only e15 in common, we can color it by minimum 5 colors other than
the colors of v1 and v5. Let f(v1) = 1, f(v5) = 2, f(e12) = f(e56) = 3,
f(e13) = f(e57) = 4, f(e14) = f(e58) = 5, f(e01) = f(e59) = 6, f(e15) = 7.
Obviously eij ∈ E −A implies eij ⊁t Vk for every 1 ≤ k ≤ 7. Since the num-
ber of indices of the vertices in the set B = {e23, e24, e34} is three, we obtain
|{k | eij ≻t Vk, for every eij ∈ B}| ≥ 2, that means ℓ ≥ 9. On the other
hand, we have e67 ⊁t Vk for every 1 ≤ k ≤ 9, because N(e67) ∩N(eij) = ∅
for each eij ∈ B. So ℓ = 10 by (2.1). □

Figure 3. The illustration of G, L(G), T (G) and T (G) −
S1 ∪ S2.

Now, we establish an upper bounds on the total dominator total chromatic
number of the complete graphs and then a family of graphs. First, a lemma.

Lemma 2.5. For any complete graph Kn of order n ≥ 2, αmix(Kn) = ⌈n2 ⌉.

Proof. LetKn be the complete graph with the vertex set V = {v1, v2, . . . , vn},
and let E = {eij | 1 ≤ i < j ≤ n}. Let S be a mixed independent set of Kn.
Since |S ∩ V | ≤ 1 and so {p, q} ∩ {r, k} = ∅ for every epq, erk ∈ S, we con-
clude |S| ≤ ⌈n2 ⌉. On the other hand, since the sets {e(2i−1)(2i) | 1 ≤ i ≤ ⌊n2 ⌋}
when n is even, and {vn, e(2i−1)(2i) | 1 ≤ i ≤ ⌊n2 ⌋} when n is odd, are two
independent sets with cardinality ⌈n2 ⌉, we obtain αmix(Kn) = ⌈n2 ⌉. □

Proposition 2.6. For any complete graph Kn of order n ≥ 2,

n+ ϵ ≤ χtt
d (Kn) ≤

⌈
5n

3

⌉
,
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where ϵ is 1 when n is even, and is zero otherwise.

Proof. LetKn be the complete graph with the vertex set V = {v1, v2, . . . , vn},
and let E = {eij | 1 ≤ i < j ≤ n}. We first prove the lower bound. Let

f = (V1, . . . , Vℓ) be a TDTC of Kn. Then, by the partition V ∪ E =
⋃ℓ

i=1 Vi

and Lemma 2.5, we have

n(n+ 1)

2
=

ℓ∑
i=1

|Vi|

≤ ℓ · αmix(Kn)

= ℓ
⌈n
2

⌉
,

which implies χtt
d (Kn) = χt

d(T (Kn)) ≥ n + ϵ in which ϵ = 1 for even n and
ϵ = 0 otherwise. For the upper bound, first we have

χtt
d (Kn) ≤

{
⌈5n3 ⌉ if n is odd,
⌈5n3 ⌉+ 1 if n is even,

by Theorems 1.6, 1.9, 1.10. So we may assume that n is even. Let f =

(V1, . . . , Vn+1) be a proper coloring of T (Kn) with minimum number of colors
such that vi ∈ Vi for 1 ≤ i ≤ n. Then |Vi| = n

2 for each 1 ≤ i ≤ n + 1 and
Vn+1 ⊆ E . From the proof of Theorem 1.10, we know that the sets

S0 = {e(3i+1)(3i+2), e(3i+2)(3i+3) | 0 ≤ i ≤ ⌊n3 ⌋ − 1} if n ≡ 0 (mod 6) ,
S1 = S0 ∪ {e(n−1)n} if n ≡ 4 (mod 6) ,
S2 = S0 ∪ {e(n−2)(n−1), e(n−1)n} if n ≡ 2 (mod 6) ,

are min-TDSs of T (Kn). Since the complete graph Kn is a subgraph of
T (Kn) − Si for each i, we have χ(T (Kn) − Si) ≥ n for each i. Let h =
(V ′

1 , . . . , V
′
ℓ ) be a proper coloring of T (Kn) − Si for each i. Then |V ′

j | ≤ n
2

for each j. Similar to the proof of Lemma 2.5, since every independent set
of T (Kn) − Si has cardinality at most ⌈n2 ⌉, and {ei(n/2+i) | 1 ≤ i ≤ n

2 } is
an independent set of T (Kn)− Si, we obtain α(T (Kn)− Si) = ⌈n2 ⌉. On the

other hand, by knowing |V (T (Kn) − Si)| = 3n2−n−2i
6 when n ≡ i (mod 3)

and 0 ≤ i ≤ 2, we have |V (T (Kn)− Si)| ≤ n⌈n2 ⌉ and so χ(T (Kn)− Si) = n
for 0 ≤ i ≤ 2. Therefore, by Theorem 1.6, χt

d(T (Kn)) ≤ χ(T (Kn) − S) +

γt(T (Kn)) = ⌈5n3 ⌉ in which S is a min-TDS of T (Kn), and this completes
our proof. □

Since every connected graph G of order n ≥ 2 is a subgraph of a complete
graph Kn, obviously χT (G) ≤ χT (Kn). Similar to the proof of Proposition
2.6, the following theorem can be proved.

Theorem 2.7. For any graph G of order n ≥ 2 and with the total mixed
domination number at most ⌈5n3 ⌉ − n, χtt

d (G) ≤ ⌈5n3 ⌉.

By Theorem 1.11, every graph which has a Hamiltonian path satisfies in
Theorem 2.7.
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3. Trees

3.1. Total dominator total chromatic number of a tree. Here, we
calculate the total dominator total chromatic number of a tree of order at
most 4 or diameter at most 3, and give tight lower and upper bounds for
the total dominator total chromatic number of a tree of order n ≥ 5.

Theorem 3.1. For any tree T of order n ≥ 2,

χtt
d (T) =

{
3 n = 2,
n n = 3, 4,

and if n ≥ 5, we have the tight bounds

5 ≤ χtt
d (T) ≤

⌊
2n

3

⌋
+∆(T) + 1.

Proof. Let f = (V1, V2, . . . , Vℓ) be a min-TDC of T (T) in which T = (V,E)
is a tree of order n ≥ 2, and so V (T (T)) = V ∪ E where E = {eij | vivj ∈
E(T)}. First consider 2 ≤ n ≤ 4. Then T ∈ {P2, P3, P4,K1,3}. Let T =
Pn : v1v2 · · · vn when 2 ≤ n ≤ 4. Then V (T (Pn)) = V ∪ E where E =
{ei(i+1)|1 ≤ i ≤ n − 1}. Since T (P2) is isomorphic to K3, and also K3 is
a subgraph of T (P3) and ({v1, e23}, {v3, e12}, {v2}) is a TDC of T (P3), we
have χtt

d (Pn) = χt
d(T (Pn)) = 3 for n = 2, 3. Since the subgraph of T (P4)

induced by {v1, v2, e12} is isomorphic to a complete graph of order 3, we
may assume f(v1) = 1, f(v2) = 2 and f(e12) = 3. Then, v4 ⊁t Vi for
1 ≤ i ≤ 3 implies ℓ ≥ 4. Now since ({v2}, {v3}, {v1, e23, v4}, {e12, e34}) is a
TDC of T (P4), we have χ

tt
d (P4) = 4. In the next step, let T = K1,3 = (V,E)

where V = {vi | 0 ≤ i ≤ 3} and E = {v0vi | 1 ≤ i ≤ 3}. Then on
one hand, this fact that the subgraph of T (K1,3) induced by {e0i | 1 ≤ i ≤
3}∪{v0} is a complete graph of order 4 implies ℓ ≥ 4, and on the other hand,
since ({v0}, {e01, v3}, {e02, v1}, {e03, v2}) is a TDC of T (K1,3), we obtain
χtt
d (K1,3) = 4. Therefore we continue our proof when n ≥ 5. For the lower

bound, since the subgraph Hvi of T (T) induced by {vi}∪{eij | vj ∈ NT(vi)}
is a complete graph of order 1 + degT(vi), we have done when ∆(T) ≥ 4.
Thus ∆(T) ≤ 3. If ∆(T) = degT(vi) = 3 for some vi, then Hvi

∼= K4, and
by assumption f(V (Hvi)) = {1, 2, 3, 4}, n ≥ 5 implies that there exists a
vertex vj ̸∈ NT (T)(vi) which is not totally dominated by Vi when 1 ≤ i ≤ 4.
So ℓ ≥ 5, as desired. Finally, let ∆(T) = 2. Then T = Pn : v1v2 · · · vn is a
path of order n ≥ 5. Since v1 is totally dominated only by {v2} or {e12},
and vn is totally dominated only by {vn−1} or {e(n−1)n}, and since Hv3 is a
subgraph of T (T)− (Vk ∪ Vm), we have ℓ ≥ 5, as desired. The lower bound
is tight for T = P5. Because ({v2}, {v3}, {v4}, {v1, e23, e45}, {e12, e34, v5}) is
a TDC of T (P5).

To prove the upper bound, first

χtt
d (T) = χt

d(T (T)) ≤ γtm(T) + min
S

χ(T (T)[V ∪ E − S])
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where S ⊆ V (T (T)) is a min-TDS of T (T) by (1.1). Let T (T)[V ∪ E − S]
be the subgraph of T (T) induced by V ∪ E − S = E ∪ A0 where S is the
min-TDS of T (T) in the proof of Theorem 1.12. Then

χ(T (T)[V ∪ E − S]) ≤ χ(T (T)[E ]) + χ(T (T)[A0])
= χ(L(T)) + 1 (A0 is independent)

= χ
′
(T) + 1

= ∆(T) + 1. (König’s Theorem)

On the other hand, since γtm(T) ≤ ⌊2n3 ⌋ by Theorem 1.12, we have com-
pleted our proof.

The upper bound is tight for path P7 with vertex set V = {v1, v2, . . . , v7}
and edge set E = {vivi+1 | 1 ≤ i ≤ 6}. Let f = (V1, V2, . . . , Vℓ) be a
TDC of T (P7) where V (T (P7)) = V ∪ E and E = {ei(i+1)|1 ≤ i ≤ 6}.
Let v1 ≻t Vk for some k. Then Vk = {w} where w ∈ {v2, e12}, and
so w ≻t Vm for some m ̸= k (because either Vm ⊆ {v1, v3, e12, e23} if
w = v2 or Vm ⊆ {v1, v2, e23} if w = e12). Since a similar result holds
by consider v7 instead of v1, we conclude that the number of Vk such
that vi ≻t Vk for some vi ∈ V − {v4} is at least four, and that Vks do
not contain vertices v4, e34, e45. Since the subgraph of T (P7) induced
by {v4, e34, e45} is a complete graph, we conclude ℓ ≥ 7. On the other
hand, since ({v1, v4, v7, e23, e56}, {e12, e34, e67}, {e45}, {v2}, {v3}, {v5}, {v6})
is a TDC of T (P7), we have χtt

d (P7) = 7. □

Theorem 3.2. For any nonempty tree T, diam(T) ≤ 3 if and only if

χtt
d (T) =

{
∆(T) + 2 if diam(T) = 1, 3,
∆(T) + 1 if diam(T) = 2.

Proof. Let T be a tree of order at least 2. Since diam(T) = 1 implies
T ∼= K2 and T (T) ∼= K3, and so χtt

d (T) = χt
d(K3) = χ(K3) = 3 = ∆(T) + 2,

in the first step, we assume diam(T) = 2. Then n ≥ 3 and T ∼= K1,n−1.
Let V (K1,n−1) = {vi |0 ≤ i ≤ n − 1} in which deg(v0) = n − 1. Since
T (T)[{e0i | 1 ≤ i ≤ n − 1} ∪ {v0}] ∼= Kn and the function f with the
criterion f(v0) = 0 and f(vi) ≡ f(e0i) + 1 (mod n) when 1 ≤ i ≤ n − 1
and 1 ≤ f(e0i) ≤ n − 1 is a TDC of T (T) with n colors, we have χtt

d (T) =
χt
d(T (T)) = n = ∆(T) + 1. Finally let diam(T) = 3. Then T is a tree

which is obtained by joining the central vertex vp+1 of tree K1,p with the
central vertex vp+2 of tree K1,q, where V (K1,p) = {vi | 1 ≤ i ≤ p + 1},
V (K1,q) = {vi | p + 2 ≤ i ≤ p + q + 2}, p ≥ q and p + q = n − 2. Hence
∆(T) = p + 1 and V (T (T)) = V (T) ∪ E where E = {ei(p+1) | 1 ≤ i ≤
p} ∪ {e(p+2)(p+2+i) | 1 ≤ i ≤ q} ∪ {e(p+1)(p+2)}. Let f = (V1, . . . , Vℓ) be a
TDC of T (T). Since the subgraph of T (T) induced by A = {ei(p+1) | 1 ≤ i ≤
p} ∪ {vp+1, e(p+1)(p+2)} is a complete graph of order p+2, we conclude that
p + 2 colors, say 1, 2, . . ., p + 2, are needed to color the vertices in A, and
so ℓ ≥ p + 2. Also, by this fact that vp+3 ≻t Vk implies Vk = {e(p+2)(p+3)}
or Vk = {vp+2}, and since vp+3 ⊁t Vs where 1 ≤ s ≤ p+2, we conclude that
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a new color is needed to color the vertex in Vk, and so ℓ ≥ p + 3. Without
loss of generality, we may assume that f(ei(p+1)) = i when 1 ≤ i ≤ p,
f(vp+1) = p + 1 and f(e(p+1)(p+2)) = p + 2. Since also the subgraph of
T (T) induced by A′ = {e(p+2)(p+2+i) | 1 ≤ i ≤ q} ∪ {vp+2, e(p+1)(p+2)} is a
complete graph of order q + 2, we may assume that f(vp+2) = p + 3 and
f(e(p+2+i)(p+2)) = i when 1 ≤ i ≤ q. Now by assigning color 1 to all vertices
v2, . . . , vp, vp+4, . . . , vp+q+2, and color 2 to the vertices v1 and vp+3, we obtain
a TDC of T (T) with p+3 colors, which implies χtt

d (T) = χt
d(T (T)) = p+3 =

∆(T) + 2.
Now by assumption diam(T) = r ≥ 4 let Pr : v1, v2, . . . , vr, vr+1 be a

longest path of length r in T. Then degT(vi) = ∆(T) for some vi ∈ V (T) \
{v1, vr+1} (because in otherwise we have a cycle in the tree). Let Hvi be
the subgraph of T (T) induced by {vi} ∪ {eij | vj ∈ NT(vi)} and let f =
(V1, . . . , Vℓ) be a min-TDC of T (T). Then, since degT(v1) = degT(vr+1) = 1
and r ≥ 4, v1 ≻t Vk and vr+1 ≻t Vm for some k and m, imply k ̸= m and
Vk = {w} and Vm = {w′} where w ∈ {v2, e12} and w′ ∈ {vr, er(r+1)}. Also
there exist a color class Vp other than Vk and Vm such that w′ ≻t Vp. Since
Hvi is a complete graph of order 1 + degT(vi), we have to assign ∆(T) + 1
colors to the vertices of Hvi . Since vi = v2 implies that the ∆(T) + 1
colors which are assigned to the vertices of Hvi are different of the colors
of the vertices of Vm ∪ Vp, and simliarly vi = vr implies that the ∆(T) + 1
colors which are assigned to the vertices of Hvi are different of the colors of
the vertices of Vk ∪ Vp, we have ℓ ≥ ∆(T) + 3, as desired. So we assume
vi ̸= v2, vr. In this case, similarly, the ∆(T)+ 1 colors which are assigned to
the vertices of Hvi are different of the colors of the vertices of Vk ∪ Vm, and
so ℓ ≥ ∆(T) + 3, as desired. □

Corollary 3.3. The Behzad’s conjecture is true for any tree with diameter
at most three.

3.2. A Nordhaus-Gaddum-like relation for trees. Finding a Nordhaus-
Gaddum-like relation for any parameter in graph theory is one of a tradition
work which is started after the following theorem by Nordhaus and Gaddum
in 1956 [19].

Theorem 3.4 (Nordhaus and Gaddum, [19]). For any graph G of order n,
2
√
n ≤ χ(G) + χ(G) ≤ n+ 1.

Here, we will find some Nordhaus-Gaddum-like relations for the total
dominator total chromatic number of a tree. For this aim we will find some
bounds for the total dominator chromatic number of the complement of a
tree. First two lemmas.

Lemma 3.5 (Clark and Holton, [4]). For any complete graph Kn of order
at least 2,

χ′(Kn) =

{
n− 1 if n is even,
n if n is odd.
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Lemma 3.6. For any tree T of order n ≥ 3,

χ′(T) =
{

n− 2 if T is P4 or is nonstar or is star with odd n,
n− 1 if T is star with even n.

Proof. If T is the star K1,n−1, then T up to isomorphism is the disjoint union
of Kn−1 and K1, and so

χ′(T) =
{

n− 2 if n is odd,
n− 1 if n is even,

by Lemma 3.5. If T ∼= P4, then T ∼= P4, and obviously χ′(P4) = 2 = n− 2.
Therefore, we assume T = (V,E) is a nonstar tree of order n ≥ 5, which
implies α(T) = ω(T) ≤ n − 2 (recall that ω(G) is the clique number of a
graph G, which is the number of vertices in a maximum clique of G). By
assumption V = {v1, v2, . . . , vn}, we have V (L(T)) = {eij | vivj ̸∈ E}. Since
for any leaf vi in T the subgraph of L(T) induced by {eij | vj ̸∈ NT(vi)} is

a complete graph of order n − 2, we have χ(L(T)) ≥ n − 2. On the other
hand, Lemma 3.5 and this fact that every m-clique Km in T with the vertx
set {vi | i ∈ I}, for some index set I, makes m cliques in L(T) with the
vertex sets Ei = {eij | j ∈ I −{i}} of order m− 1 such that Ei ∩Ej = {eij}
for each i ̸= j, give us this possibility that we color the vertices of L(Km)
by at most m colors. By a permutation on the used colors in each clique in
T, if needed, we can color the vertices of L(T) by at most n− 2 colors, that
is, χ(L(T)) ≤ n− 2, which implies χ′(T) = χ(L(T)) = n− 2 by considering
the previous inequality. □

Theorem 3.7. For any nonstar tree T of order n ≥ 5 with ℓ leaves,

ℓ+ n− 2 ≤ χtt
d (T) ≤ 2n− 4,

and this bounds are same for any tree with diameter three.

Proof. Let T = (V,E) be a nonstar tree T of order n ≥ 5 with ℓ leaves
which implies α(T) = ω(T) ≤ n − 2. By assumption V = {v1, v2, . . . , vn},
we have V (T (T)) = V ∪ E where E = {eij | vivj ̸∈ E} and E(T (T)) =

E(T) ∪ {eijvk | eij ∈ E and k ̸∈ {i, j}} ∪ {eijei′j′ | eij , ei′j′ ∈ E and {i, j} ∩
{i′, j′} ≠ ∅}. For some index set I, let L = {vi | i ∈ I} be the set of all
leaves of T, and let f be a proper vertex coloring of T (T). By Lemma 3.6, we
have |f(V (L(T)))| = |f(E)| ≥ n − 2. On the other hand, since the induced
subgraph T[L] is a complete graph of order ℓ and also for any vi ∈ L, since
degT(vi) = n − 2, each of the induced subgraphs Hvi = T[{vi} ∪ {eij | vj ∈
NT(vi)}] of T is a complete graph of order n−1 such that V (Hvi)∩V (T[L]) =
{vi} and V (Hvi) − {vi} ⊂ E , we conclude that f(L) ∩ f(E) = ∅, and so
χtt
d (T) = χt

d(T (T)) ≥ χ(T (T)) ≥ n+ ℓ− 2.
For the upper bound, first ∆(T) ≤ n − 2 implies diam(T) ≥ 3, so there

exist at least two nonleaf vertices, say v1 and v2, such that v1 is adjacent
to v2 in T and so degT(v1) ≤ degT(v2) ≤ n − 3. We will give a TDC f in

T (T) with 2n − 4 color classes. Since χ(L(T)) = n − 2, by Lemma 3.6, we



14 ADEL P. KAZEMI, FARSHAD KAZEMNEJAD, AND SOMAYEH MORADI

can assign n − 2 colors to the vertices in V (L(T)) = E . For i = 1, 2, since
NT (T)(vi) ∩ E = {eij | eij ∈ E}, we define f(vi) = ai for i = 1, 2 where

ai ̸= f(eij) for some 1 ≤ ai ≤ n − 2. Finally we assign n − 2 new colors

to the n − 2 vertices of V − {v1, v2}. We claim that f is a TDC of T (T).
For this aim, we have to show that for any vertex w ∈ T (T) = V ∪ E there
exists a color class Vp such that w ≻t Vp. Since T has always two leaves, say
vk and vq, and so degT(vk) = degT(vq) = n − 2, we have vi ≻t Vp for any
vi ∈ V when Vp = {vk} or {vq}. Also eij ≻t Vp where Vp = {vi} or {vj} for
any eij ∈ E because e12 /∈ E and so eij ̸= e12.

This bounds are same for any tree with diameter three. Because every
tree T with diameter three is in fact a tree which is obtained by joining the
central vertices of two star trees K1,p and K1,q in which p+ q = n− 2. □

By Theorems 3.1 and 3.7 we have the following theorem.

Theorem 3.8. For any nonstar tree T of order n ≥ 5 with ℓ leaves,

n+ ℓ+ 3 ≤ χtt
d (T) + χtt

d (T) ≤
⌊
8n

3

⌋
+∆(T)− 3.

By Theorems 3.2 and 3.7, we see that while the lower bound in Theorem
3.8 is tight for any tree T of order n = 5 with diameter three, but χtt

d (T) +
χtt
d (T) ≤ 3n − 4 < ⌊8n3 ⌋ + ∆(T) − 3 when diam(T) = 3. So we ask the

following question.

Question. Is the upper bound in Theorem 3.8 tight for any tree with order
greater than or equal to 5 and diameter greater than or equal to 4?

4. Graphs which their total dominator total chromatic
numbers are equale to their orders

One of the usual questions in graph theory is the following question.

Question. Let P be a property defind on a set S of graphs. Is there any
graph in S of order n with P = k?

Next two propositions give positive answer to this question when P is the
total dominator total chromatic number of the double star trees and the
corona graphs G ◦ P1 and G ◦ P2. We recall that the double star tree S1,n,n

is a subdivition graph of K1,n by replacing every edge by a path with lengh
2, and the m-corona graph G ◦Pm of a graph G is the graph obtained from
G by adding a path of order m to each vertex of G. First three lemmas.

Lemma 4.1. For any n ≥ 1, γtm(S1,n,n) = n+ 1.

Proof. Let S1,n,n be a double star with vertex set V = {vi | 0 ≤ i ≤ 2n} and
edge set E = {v0vi, vivn+i | 1 ≤ i ≤ n}. Let S be a TDS of T (S1,n,n), the
total of S1,n,n, which its vertex set is

V (T (S1,n,n)) = V ∪ {e0i, ei(n+i) | 1 ≤ i ≤ n}.
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Since NT (S1,n,n)(vn+i) = {vi, ei(n+i)} for 1 ≤ i ≤ n and NT (S1,n,n)(vn+i)∩S ̸=
∅, we have {w1, w2, . . . , wn} ⊆ S where wi ∈ {vi, ei(n+i)} for 1 ≤ i ≤ n.
On the other hand, since NT (S1,n,n)(wi) ∩ S ̸= ∅ for 1 ≤ i ≤ n, we have

|S| ≥ n + 1. Now since the set {vi | 0 ≤ i ≤ n} is a TDS of T (S1,n,n), we
have γtm(S1,n,n) = γt(T (S1,n,n)) = n+ 1. □

Lemma 4.2. For any connected graph G of order n ≥ 2 and any 1 ≤ m ≤ 2,
γtm(G ◦ Pm) = mn.

Proof. Let G = (V,E) be a connected graph of order n ≥ 2 when V =
{vi | 1 ≤ i ≤ n}.
Case 1: m = 1.

Then V (G ◦ P1) = V ∪ {vn+i | 1 ≤ i ≤ n} and

E(G ◦ P1) = {vivn+i | 1 ≤ i ≤ n} ∪ E.

Let S be a min-TDS of T (G ◦ P1), the total of G ◦ P1, in which

V (T (G ◦ P1)) = {vi | 1 ≤ i ≤ 2n} ∪ {eij | vivj ∈ E} ∪ {ei(n+i) | 1 ≤ i ≤ n}
and

E(T (G ◦ P1)) = E(G ◦ P1)
∪ {ei(n+i)vi, ei(n+i)vn+i | 1 ≤ i ≤ n}
∪ {ei(n+i)eik | 1 ≤ i ≤ n, vivk ∈ E}.

Since NT (G◦P1)(vn+i) = {vi, ei(n+i)} and NT (G◦P1)(vn+i)∩S ̸= ∅ for each
1 ≤ i ≤ n, we have {w1, w2, . . . , wn} ⊆ S where wi ∈ {vi, ei(n+i)}, which
implies |S| ≥ n. Now since {vi | 1 ≤ i ≤ n} is a TDS of T (G ◦ P1), we
have γtm(G ◦ P1) = γt(T (G ◦ P1)) = n.

Case 2: m = 2.
Then V (G ◦ P2) = {vi | 1 ≤ i ≤ 3n} and

E(G ◦ P2) = {ei(n+i), e(n+i)(2n+i) | 1 ≤ i ≤ n} ∪ E.

Let S be a min-TDS of T (G ◦ P2), the total of G ◦ P2, in which

V (T (G ◦ P2)) = {vi | 1 ≤ i ≤ 3n} ∪ {eij | vivj ∈ E}
∪ {ei(n+i), e(n+i)(2n+i) | 1 ≤ i ≤ n}

and

E(T (G ◦ P2)) = E(G ◦ P2)
∪ {ei(n+i)vi, ei(n+i)vn+i | 1 ≤ i ≤ n}
∪ {ei(n+i)eik | 1 ≤ i ≤ n, vivk ∈ E}
∪ {e(n+i)(2n+i)v(n+i), e(n+i)(2n+i)v(2n+i),

e(n+i)(2n+i)ei(n+i) | 1 ≤ i ≤ n}.
Since for each 1 ≤ i ≤ n, NT (G◦P2)(v2n+i) = {vn+i, e(n+i)(2n+i)} and
NT (G◦P2)(v2n+i) ∩S ̸= ∅, we have {w1, w2, . . . , wn} ⊆ S where wi ∈
{vn+i, e(n+i)(2n+i)}. Since also every wi must be dominated by an element
w′
i ∈ NT (G◦P2)(wi)∩S, and all of the elements wi and w′

i are distinct, we
conclude that S includes the set {wi, w

′
i | 1 ≤ i ≤ n} of cardinality 2n,
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and so γt(T (G◦P2)) ≥ 2n. On the other hand, since {vi, vn+i | 1 ≤ i ≤ n}
is a TDS of T (G ◦P2), we have γtm(G ◦P2) = γt(T (G ◦P2)) ≤ 2n, which
completes our proof.

□

Lemma 4.3. For any connected graph G with no isolated vertex,

χtt
d (G ◦ Pm) ≤ n(m+ 1)

when m = 1, 2.

Proof. Let G = (V,E) be a connected graph with no isolated vertex of
order n ≥ 2. We continue our proof in the following two cases by using the
notations in the proof of Lemma 4.2.
Case 1: m = 1.

Since V is a min-TDS of T (G◦P1)) (by Lemma 4.2), Theorem 1.6 implies
χt
d(T (G◦P1)) ≤ n+χ(T (G◦P1)−V ). By showing χ(H) ≤ n our proof will

be completed in which H = T (G ◦ P1)− V . Since χ(L(G)) = χ′(G) ≤ n
(by Theorem 1.7), we have |NT (G◦P1)(ei(n+i)) ∩ E| = degG(vi) ≤ n − 1
for each 1 ≤ i ≤ n in which E = {eij | vivj ∈ E} ∪ {ei(n+i) | 1 ≤
i ≤ n}. Thus each of the subgraphs induced by Ei = {eij | 1 ≤ j ≤
n and j ̸= i} ∪ {ei(n+i)} is a complete graph of order at most n, and so
each of them can be colored by a set Xi of colors which has cardinality
at most n. If need, we can color each of them in this way that the
common vertices in different induced subgraphs have same colors, and
so |X1 ∪ · · · ∪Xn| ≤ n. Now since NH(vn+i) = {ei(n+i)}, we can assign
a color from X1 ∪ · · · ∪Xn to the vertices in {vn+i | 1 ≤ i ≤ n}, which
implies χ(H) ≤ n, as desired.

Case 2: m = 2.
Since S = {vi, vn+i | 1 ≤ i ≤ n} is a min-TDS of T (G ◦ P2)) (by Lemma
4.2), Theorem 1.6 implies χt

d(T (G◦P2)) ≤ 2n+χ(T (G◦P2)−S). Since,
similar to the case m = 1, it can be shown that χ(T (G ◦ P2) − S) ≤ n,
our proof is completed.

□

Proposition 4.4. For any integer n ≥ 1, χtt
d (S1,n,n) = 2n+ 1.

Proof. Let S1,n,n be a double star with vertex set V = {vi | 0 ≤ i ≤ 2n}
and edge set E = {v0vi, vivn+i | 1 ≤ i ≤ n}. Let f = (V1, V2, . . . , Vℓ)
be a TDC of T (S1,n,n), the total of S1,n,n, which its vertex set is V ∪
{e0i, ei(n+i) | 1 ≤ i ≤ n}. Since the subgraph of T (S1,n,n) induced by
{e0i | 1 ≤ i ≤ n} ∪ {v0} is isomorphic to a complete graph of order n + 1,
we have χt

d(T (S1,n,n)) ≥ n + 1, and so we may assume e0i ∈ Vi for each
1 ≤ i ≤ n and v0 ∈ Vn+1. Since for each 1 ≤ i ≤ n, vn+i ≻t Vk im-
plies Vk = {ei(n+i)} or {vi} and Vk ∩ (V1 ∪ · · · ∪ Vn ∪ Vn+1) = ∅, we have

χt
d(T (S1,n,n)) ≥ 2n+ 1. On the other hand, since S′ = {vi | 0 ≤ i ≤ n} is a

min-TDS of T (S1,n,n) by Lemma 4.1, Theorem 1.6 implies χt
d(T (S1,n,n)) ≤

2n + 1, and so χtt
d (S1,n,n) = χt

d(T (S1,n,n)) = 2n + 1. Figure 4 shows the
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min-TDC ({v0}, {v1}, {v2}, {v3}, {e01, e36}, {e02, v4, v5, v6}, {e03, e14, v25}) of
T (S1,3,3) for an example. □

Figure 4. A min-TDC of T (S1,3,3).

Proposition 4.5. For any integers n ≥ 2 and 1 ≤ m ≤ 2, χtt
d (Kn ◦ Pm) =

n(m+ 1).

Proof. Let Kn = (V,E) be a complete graph of order n ≥ 2 with the vertex
set V = {v1, v2, . . . , vn} and let f = (V1, . . . , Vℓ) be an arbitrary TDC of
T (Kn ◦ Pm). By Lemma 4.3 and using the notations in its proof, it is
sufficient to prove ℓ ≥ n(m+ 1).
Case 1: m = 1.

Since for each 1 ≤ i ≤ n, vn+i ≻t Vk implies Vk ⊂ {vi, ei(n+i)}, we
may assume Vk = {wi} and {vi, ei(n+i)} − {wi} = {w′

i}. Since we have
to assign one color to each vertex wi for 1 ≤ i ≤ n, and we need n
new colors to assign to the vertices of the complete subgraph induced by
Ei = {eij | 1 ≤ j ≤ n, j ̸= i} ∪ {w′

i}, for 1 ≤ i ≤ n, we have ℓ ≥ 2n, as
desired.

Case 2: m = 2.
Since v2n+i ≻t Vk2n+i

implies Vk2n+i
⊂ {vn+i, e(n+i)(2n+i)} for each 1 ≤

i ≤ n, we have

ℓ ≥ |{f(wi) | Vk2n+i
= {wi}, 1 ≤ i ≤ n}| = n.

Also since wi ≻t Vkwi
implies

Vkwi
⊂ Wi = {vi, vn+i, v2n+i, ti(n+i), t(n+i)(2n+i)} − {f(wi)}

for each 1 ≤ i ≤ n, and Wi ∩ Wj = ∅ when i ̸= j, we have ℓ ≥ 2n.
Finally since at least one of the complete graphs of order n induced by
{vi} ∪ {tij | 1 ≤ i < j ≤ n} or by {ti(n+i)} ∪ {tij | 1 ≤ i < j ≤ n} has
no vertex in-common with Vk2n+i

∪ Vkwi
, we need n new colors, which

implies ℓ ≥ 3n, as desired.
□
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5. Problems

In this introductory paper on total dominator total coloring of a graph,
we present some bounds on the parameter and some fundamental properties
of the parameter and determine the total dominator total coloring of special
classes of graphs. We close with a list of open problems.

Problem 5.1. Study the total dominator total chromatic number on vari-
ous graph products, including, among others, the Cartesian product, lexico-
graphic product, direct product.

Problem 5.2. Study the the total dominator total chromatic number in cer-
tain classes of graphs, including, among others, chordal graphs, split graphs,
block graphs, proper interval graphs, Cayley graphs, Mycieleskian graphs,
and Kneser graphs.

Problem 5.3. Find a family of connected graphs G satisfy

• χtt
d (G) = χt

d(L(G)) + χt
d(G), or

• χtt
d (G) = χ(T (G) − (S1 ∪ S2)) + γt(G) + γt(L(G)) where S1 is a

min-TDS of G and S2 is a min-TDS of L(G).

Problem 5.4. Characterize trees T of order n ≥ 5 satisfy

χtt
d (T) =

⌊
2n

3

⌋
+∆(T) + 1.

Problem 5.5. Whether for any connected graph G of order n ≥ 3,

χtt
d (G) ≤

⌈
5n

3

⌉
?
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