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Introduction 
 

Parkinson's is the most common neuron deficiency disease after Alzheimer's (Solana-
Lavalle et al., 2020). The disease can occur in different ethnicities, genders, and ages, with a higher 
prevalence in the elderly and men. Data from 1990-2016 showed increased mortality and 
disability rates in people with Parkinson's (WHO, 2022; Schiess et al., 2022). Parkinson's affects 
only 1-2 people out of 1000 but will double by 2040 (Dorsey & Bloem, 2018). Developing 
countries have higher cases of Parkinson's because the services and treatment provided to 
patients are still inadequate (Lestari et al., 2022). Previous research by Wikandikta et al. (2020) 
shows that the poor treatment of Parkinson's is predicted to be correlated to the high prevalence 
of deaths due to Parkinson's in Indonesia, with the fifth highest prevalence in Asia. 

Parkinson's mainly occurs due to the progressive loss of cells in the substantia nigra, which 
is important in producing dopamine (Pyatha et al., 2022). The imbalance between dopamine and 
acetylcholine causes uncontrolled nerve activation. People with Parkinson's frequently complain 
about movement symptoms, such as resting tremors in which the limbs move uncontrollably 
(dyskinesia), postural instability, slowness of movement (bradykinesia), and muscle rigidity 
(Solana-Lavalle et al., 2020). Unfortunately, 60-80% of striatal dopamine neurons are lost when 
these motor symptoms are detected (Mantri et al., 2019). The degeneration of midbrain 

Parkinson's disease is the most common nervous system disease that affects all ethnicities, genders, and 
ages, with a higher prevalence in the elderly and men. Developing countries tend to have higher cases of 
Parkinson's. The prevalence of death due to Parkinson's in Indonesia reaches the fifth highest cases in 
Asia and 12th in the world. This neurodegenerative disease affects a person's ability to control 
movement. Currently, the diagnosis of Parkinson's disease is only based on observation of motor 
symptoms. Therefore, early detection of the disease cannot be done. His paper proposes an efficient way 
to detect Parkinson's disease symptoms by comparing the fundamental frequencies of patients' voices 
using the random forest method. Random forest is a Machine Learning method that applies the ensemble 
concept, which aims to improve the performance of the classification by combining several decision trees 
as a basis. Random forests have shown superior algorithm performance in numerous health studies. In 
this study, the dataset consisted of 20 patients with Parkinson's and 20 normal patients. Data for each 
patient was taken from 26 types of voice records, and thus, the total data was 1,040 observations. The 
obtained data is prepared by filtering and rescaling. Then, the data is split and modelled using the 
Random Forest Method. The random forest model obtained accuracy results of 72.50%, precision 
(normal) of 72.28%, precision (Parkinson's) of 72.73%, sensitivity (normal) of 73.00%, sensitivity 
(Parkinson's) of 72.00% and AUC is 80.70%. The built random forest model is quite good at Parkinson's 
disease detection. 
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mesencephalic dopamine neurons and the basal ganglia triggers cellular and synaptic alterations. 
These impulses are believed to be responsible for the motor symptoms of Parkinson's disease 
(Mallet et al., 2019). 

Over the past few decades, technological developments have encouraged the digital storage 
of information in databases and increased exponentially, doubling monthly (Pynam et al., 2018). 
Machine learning applies artificial intelligence and statistics to process information from the past 
without the need for programming for each case. Machine learning is very promising in the 
effectiveness of data processing by minimizing human work (Faid et al., 2019). An integrative 
approach to systems biology and medicine will likely be a central computational strategy for 
generating new knowledge in biology and medicine (Zitnik et al., 2019). RapidMiner is a popular 
data mining software that can analyze data to be applied in research, education, and training. This 
software was developed by Ralf Klinkenberg, Ingo Mierswa, and Simon Fischer (Pynam et al., 
2018). RapidMiner requires a shorter processing time than other machine learning software 
(Faid et al., 2019; László & Ghous, 2020). 

One of the machine learning algorithms that shows superior performance in various 
research is the Random Forest proposed by Breiman (László & Ghous, 2020). This algorithm is a 
development of a decision tree (Hadiprakoso et al., 2022) that combines bootstrap aggregating 
(bagging) and random feature selection methods (Mantri et al., 2019). Within the random forest 
framework, multiple classifiers and regression trees are built using a randomly selected training 
dataset and a random subset of the predictor variables to model the results. The results from each 
tree are aggregated to predict each observation (Speiser et al., 2019).  

Random forest algorithms have been widely used to detect diseases. Previous research by 
Triyono et al. (2021) showed the advantages of the Random Forest algorithm with Information 
Gain, with low error rates and high accuracy in large training datasets. The research of Fauzi et 
al. (2020) on breast cancer detection obtained the highest accuracy value produced by the 
Random Forest algorithm of 79.3103% with an AUC value of 0.843. Similar results were also 
obtained in the predictions of diabetes (Astuti et al., 2022), Alzheimer’s (Akbar & Rahmaddeni, 
2022), and risk classifications of babies born with low body weight (Yuliati & Sihombing, 2021). 
In this paper, the Random Forest method is tested to detect Parkinson's symptoms of vocal 
disorder based on a comparison of voice frequency data of normal people and people with 
Parkinson's. The dataset used is from the University of California Machine Learning Repository. 
This dataset consists of various biomedical voice measurements from 31 people: 23 people with 
Parkinson's disease and eight normal people. 

 
Method 
 
Workflow Diagram 

 
Figure 1. Workflow Diagram 
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Research workflow is conducted in 6 stages, as illustrated in Figure 1 as follows: 
1. Input Data. The collection of voice data for people with Parkinson's disease is taken from 

the UCI Machine Learning Repository. 

2. Data Preparation. This stage is carried out by filtering incomplete data and rescaling it to 

produce compatible data. 

3. Descriptive Analysis.  

4. Building Models. Training data is used for modelling the Random Forest. Model selection is 

done by considering the GridSearch and OOB-error values. 

5. Trained Random Forest.   

6. Performance Evaluation. Test data is used to test the performance of a model with a series 

of measurements, such as accuracy, precision, sensitivity, and ROC. 

 

Data Source  
The dataset used in this paper is secondary data from 40 patients, i.e., 20 normal and 20 

patients with Parkinson's disease, respectively. Data were collected at the Department of 
Neurology, Cerrahpasa Medical Faculty, Istanbul University. The data was collected in different 
ways by recording each patient's voice, with 26 types found in 1,040 observations. The data has 
26 predictors that are used to determine the patient's Parkinson's status carried out by expert 
doctors (Sakar et al., 2013). The data can be accessed on the UCI Machine Learning Repository 
website via the link 
https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with++Multiple+Types+of
+Sound+Recordings. Table 1 describes the feature variables of Parkinson's disease in the dataset. 

 
Table 1. Parkinson’s Disease Dataset Description 

Variable Information Data Type 

X1 – X5  Jitter (local), Jitter (local, absolute), Jitter (rap), Jitter (ppq5), Jitter (ddp) Numeric 

X6 – X11 Shimmer (local), Shimmer (local, dB), Shimmer (apq3), Shimmer (apq5), 
Shimmer (apq11), Shimmer (dda) 

Numeric 

X12 – X14 AC, NTH, HTN Numeric 

X15 – X19 Median pitch, Mean pitch, Standard deviation, Minimum pitch, Maximum 
pitch 

Numeric 

X20 – X23 Number of pulses, Number of periods, Mean period, Standard deviation of 
period 

Numeric 

X24 – X26 Fraction of locally unvoiced frames, Number of voice breaks, Degree of voice 
breaks 

Numeric 

Y Parkinson Status Categoric 

 
Data Preparation 

Data preparation is carried out with the replace missing value operator, which can replace 
the loss of value with the maximum, minimum, or average value of the corresponding attribute 
so that the data is more compatible with the selected algorithm. In this stage, the data is filtered 
to remove data with incomplete information so that the data entered in the analysis process is 
only data that has complete information. In addition, rescaling was carried out so that the range 
of values in each variable was the same and variable selection was carried out using statistical t-
tests to see the relationship between response variables (binary categorization) and numerical 
predictors. 

  
Descriptive Analysis 

Detection of anomalous or unusual variability of predictor data can be known through 
predictor dispersion analysis. Observation of standard deviation values is the most common and 
widely used analysis in determining the Degree of dispersal because it describes the spread of 
each unit of observation. 
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Building Models  
The data is divided into two parts, including training data and test data, with a proportion 

of 80% training data and 20% test data. The training data constitutes 80% of 840 data, comprising 
420 Parkinson's class data and 420 normal class data. The training data is used to build the model 
using the Random Forest method. The Random Forest method works by forming bootstrapped 
data that is randomly taken from a predetermined number of training data. Then, the 
bootstrapped data is used to build the classification trees that allow data classification through 
voting. However, the classification trees are built in a slightly different way from the classification 
trees in the community. In the Random Forest method, the classification tree is formed by only 
considering some randomly selected predictors. The Number of predictors selected randomly in 
building a classification tree can be set to obtain the best model. 

 
Model Performance Measurements 

The obtained random forest model was tested on test data by considering some 
measurement parameters, such as accuracy, precision, sensitivity, and ROC (Receiver Operating 
Curve) to measure the model's performance. Accuracy will show the accuracy of the Random 
Forest Algorithm in predicting instants. Precision is used to measure the correctness/accuracy of 
classifiers. The recall is used to measure the completeness or sensitivity of the classifier. At the 
same time, ROC is a representative of sensitivity and specificity, which measure the classification 
ability of Random Forest. 

 Following the approach of Zulfahmi et al. (2023), the evaluation of the model is performed 
by generating a Confusion Matrix table comprising the Number of True Positive (TP), True 
Negative (TN), False Positive (FP) and False Negative (FN) data. By analyzing the confusion matrix 
table, it is possible to calculate the recall and precision values. The Recall value represents the 
ability of the model to identify the true positive class, which can be calculated as shown in 

equation (1) 

Recall = 
TP

(TP+FN)
       (1) 

 
The Precision value measures the model’s correct positive predictive ability. The precision 

calculation is carried out using equation (2) 

Precision = 
TP

(TP+FP)
      (2) 

 

Accuracy can be calculated using equation (3) 

Accuracy = 
TP+FP

N
      (3) 

 
Results and Discussions 
 
Data Preparation Result 

Parkinson's disease data consists of 1.040 observations and 26 predictors. After a 
thorough check, it has been confirmed that there is no incomplete data. Therefore, the filtering 
process is unnecessary. Then, the variables in the Parkinson's disease data were transformed to 
ensure that the value range remained consistent. The feature selection process was carried out 
using T-test statistics to see the relationship between predictors and the response variable. 
Predictors that do not have a significant relationship with the response variable are disregarded, 
as it was assumed that the predictors did not contribute enough to separate data in the response 
variable. The performance is evaluated by comparing the conditions of the first research object 
with the conditions of the object in the second study. The following are the results of the T-test 
statistics from predictors with response variables in the data of Parkinson's disease: 
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Table 2. Feature Selection using t-statistic test (α = 0.05) 

Variable t-value p-value  Variable t-value p-value 

X1 -3.158 0.002  X14 -1.306 0.192 

X2 -5.457 0.000  X15 2.723 0.007 

X3 -3.603 0.000  X16 3.345 0.001 

X4 -3.596 0.000  X17 3.930 0.000 

X5 -3.603 0.000  X18 1.908 0.057 

X6 -0.292 0.770  X19 4.535 0.000 

X7 -0.876 0.381  X20 -1.323 0.186 

X8 0.585 0.559  X21 -1.519 0.129 

X9 0.728 0.467  X22 -2.643 0.008 

X10 -4.766 0.000  X23 1.897 0.058 

X11 0.585 0.559  X24 3.962 0.000 

X12 -2.621 0.009  X25 2.580 0.010 

X13 2.458 0.014  X26 4.097 0.000 

 
Based on Table 2, it can be seen that the predictors X6, X7, X8, X9, X11, X14, X18, X20, X21 and X23 

do not have a significant relationship with the variable response (Parkinson's status). Therefore, 
these predictors were excluded from the analysis. Consequently, the analysis was performed 
using the remaining 16 predictors. 
 
Descriptive Analysis Result 

Analysis of the standard deviation data from each predictor was conducted to identify 
variability in specific symptoms associated with Parkinson's disease. A high standard deviation 
value indicates a wider distribution of data, which in turn suggests variation in Parkinson's 
disease symptoms. The following are the results of the descriptive analysis of Parkinson's 
disease predictors: 

 
Based on Table 3, a very high standard deviation is obtained for predictors x15, x16, x19, 

x20, and x21. This indicates a significant risk of deviation, suggesting variations in symptoms or 
health parameters in the population. Previous research by Suphinnapong et al. (2021) has 
identified several voice disorder symptoms in individuals with Parkinson's disease. These 
symptoms include fundamental frequency standard deviation, jitter, fundamental frequency 
variations, PPQ (pitch perturbation quotient), sPPQ (smooth pitch perturbation quotient), 
shimmer, DUV (Degree of voiceless), NHR (noise to harmonic ratio), VTI (sound turbulence 
index), SPI (soft phonation index), and others. However, the role of an individual's average voice 
pitch as an acoustic parameter in Parkinson's disease is limited. Gender is another factor that 
causes variation in voice pitch, with women generally having a higher pitch than men. Therefore, 
measurements on an absolute frequency scale in Hz can experience deviations as a marker of 
Parkinson's disease. 

 
Resulted in Random Forest Models 

The determination of the optimal value of hyperparameters can be evaluated with 
GridSearch by considering various indices such as Mean Square Error (MSE), Root Mean Square 
Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE) (Sakar 
et al., 2013). Grid search is applied to select the best parameters from the training sample for 
further testing. 

In the Random Forest method, there are two main parameters used to build models, 
including the Number of classification trees (Ntree) and the number of variables used to build 
randomly selected models (Mtry). To minimize errors in random forests and validate the optimal 
number of Ntree, the calculation of the OOB error value is performed. The process of determining 
the out-of-bag (OOB) error value involves generating probability predictions for each training 
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observation i (where i = 1, . . . . , n) that is not included in the bootstrap sample. Subsequently, 
these predictions are compared to the corresponding actual values by calculating performance 
measures. This methodology proves to be an effective means of assessing the accuracy of a model 
without requiring a separate validation set (Probst & Boulesteix, 2018). Here is an out-of-bag 
(OOB) value error from the random forest model with different Ntree and Mtry value 
combinations. 

 
Table 3. Descriptive Analysis of Parkinson’s Disease Variables 

Variable Range Mean Standard Deviation 

X1 0.19 -14.376 2.68 1.765 

X2 6.495e-06 - 0.000776606 0 0 

X3 0.062 – 8.016 1.247 0.979 

X4 0.081 – 13.542 1.348 1.139 

X5 0.185 – 24.048 3.741 2.938 

X6 1.185 – 41.137 12.918 5.452 

X7 0.103 – 2.721 1.195 0.42 

X8 0.496 – 25.82 5.7 3.015 

X9 0.708 – 72.86 7.984 4.841 

X10 0.517 – 44.764 12.215 6.016 

X11 1.488 – 77.459 17.099 9.046 

X12 0.539566 - 0.997904 0.846 0.086 

X13 0.002106 - 0.869277 0.231 0.151 

X14 0.695 – 28.418 10 4.291 

X15 81.46 - 468.618 163.368 56.022 

X16 82.363 - 470.456 168.728 55.97 

X17 0.533 - 293.877 27.548 36.673 

X18 67.957 – 452.083 134.538 47.058 

X19 85.541 – 597.974 234.876 121.541 

X20 0 – 1490 109.744 150.028 

X21 0 – 1489 105.969 149.417 

X22 0.002038552 – 0.012070196 0. 007 0.002 

X23 5.5347e-05 - 0.006371201 0.001 0.001 

X24 0 – 88.158 27.683 20.975 

X25 0 -12 1.135 1.615 

X26 0 – 69.117 12.37 15.162 

Y 1 – 55 13 15.895 

 
Table 4. Parameter Tuning with GridSearch (OOB Error) 

 
Ntree 

10 25 50 100 250 500 

M
tr

y
 

3 0.4081 0.3923 0.3295 0.3534 0.3410 0.3367 

5 0.3924 0.3823 0.3532 0.3444 0.3337 0.3293 

7 0.3778 0.3726 0.3401 0.3469 0.3337 0.3192 

9 0.3725 0.3600 0.3476 0.3421 0.3337 0.3231 

11 0.3901 0.3684 0.3462 0.3409 0.3273 0.3224 

13 0.3854 0.3619 0.3535 0.3407 0.3394 0.3177 

15 0.4062 0.3576 0.3427 0.3396 0.3291 0.3180 

 
Based on Table 4, it can be seen that the random forest model with Ntree = 500 and Mtry = 

13 has the lowest out-of-bag error value. The model with the lowest OOB error value is selected 
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as the best data model to evaluate with some measure. 
Table 5 displays that the random forest model acquired an accuracy of 72.50%, with 

precision (normal) of 72.28%, precision (Parkinson's) of 72.73%, sensitivity (normal) of 73.00%, 
and sensitivity (Parkinson) of 72.00%. The accuracy value indicates that the Random Forest 
model is quite efficient and has accurately predicted 72.50% of the test data. Additionally, the 
performance of the random forest model can be evaluated based on the following AUC graph: 

 
Table 5. Confusion Matrix from Testing Data 

 
Reference 

Precision 
Normal Parkinson 

Prediction 
Normal 73 28 72.28% 

Parkinson 27 72 72.73% 

Recall/ 
Sensitivity 

73.00% 72.00% 
72.50% 

(Accuracy) 

 
Performance Evaluation 

The efficacy of the top-performing random forest model is evaluated by analyzing key 
performance indicators such as sensitivity, precision, and accuracy. The confusion matrix table 
below displays the evaluation results of the best model from test data: 

 

 
Figure 2. Receiver Operating Characteristic (ROC) Curve 

 
According to Figure 2, the AUC value of the random forest model obtained is 80.70%. Based 

on previous research, an AUC value of 80.7% is a good criterion for diagnostic tests in general 
(Dahlan, 2009; Hastuti, 2012; Maskoen, et al., 2017; Alhabib, 2022). According to Janssens & 
Martens (2020), the rounded ROC curve represents a similar effect on disease risk on the 
variables contained in the prediction model. This demonstrates that the random forest model is 
quite effective at classifying or predicting Parkinson's disease. However, when dealing with 
smaller datasets, there is always a possibility of inaccuracies in predictions. 

 
Conclusion 

This paper represents the Machine Learning method for detecting Parkinson's disease 
based on sound frequency data using the Random Forest method. The process of preparing data 
shows that predictors x6, x7, x8, x9, x11, x14, x18, x20, x21, and x23 do not have a significant 
impact on the variable response (Parkinson's status) and are excluded from the analysis. By 
using the 16 remaining predictors, Parkinson's data is modelled using the Random Forest 
method. The random forest model obtained accuracy results of 72.50%, precision (normal) of 
72.28%, precision (Parkinson's) of 72.73%, sensitivity (normal) of 73.00%, sensitivity 
(Parkinson's) of 72.00% and AUC of 80.70%. These results demonstrate that the random forest 
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model is quite effective at classifying Parkinson's disease based on sound frequency data. In 
future research, it is expected that different data preparation techniques and classification 
methods will be used to provide a clear picture of the Machine Learning method suitable for 
handling cases of disease classification based on sound frequency data, especially Parkinson's 
disease. 
 
Acknowledgements 

Hasanuddin University supported this work for its service and facilities. 
 

Conflicts of interest 
The authors declare that there are no conflicts of interest. 

 
References 
Akbar, F., & Rahmaddeni. (2022). Komparasi Algoritma Machine Learning Untuk Memprediksi 

Penyakit Alzheimer. Jurnal Komputer Terapan, 8(2), 236–245. 
Alhabib, I., Faqih, A., & Dikananda, F. (2022). Komparasi Metode Deep Learning, Naïve Bayes Dan 

Random Forest Untuk Prediksi Penyakit Jantung. INFORMATICS FOR EDUCATORS AND 
PROFESSIONAL: Journal of Informatics, 6(2), 176–185. 
https://doi.org/10.51211/itbi.v6i2.1881 

Astuti, Widya, L., Yulianti, E., & Dharmayanti, D. (2022). Feature Selection Menggunakan Binary 
Wheal Optimizaton Algorithm (Bwoa) Pada Klasifikasi Penyakit Diabetes. Jurnal Ilmiah 
Informatika Global, 13(1), 5–12. 

Dahlan, M. S. (2009). Penelitian Diagnostik. Jakarta: Salemba Medika. 
Dorsey, E. R., & Bloem, B. R. (2018). The Parkinson Pandemic—A Call to Action. JAMA Neurology, 

75(1), 9–10. https://doi.org/10.1001/jamaneurol.2017.3299 
Faid, M., Jasri, M., & Rahmawati, T. (2019). Perbandingan Kinerja Tool Data Mining Weka dan 

Rapidminer Dalam Algoritma Klasifikasi. Teknika, 8(1), 11-16. 
https://doi.org/10.34148/teknika.v8i1.95 

Fauzi, A., Supriyadi, R., & Maulidah, N. (2020). Deteksi Penyakit Kanker Payudara dengan Seleksi 
Fitur berbasis Principal Component Analysis dan Random Forest. Jurnal Infortech, 2(1), 
96-101. https://doi.org/10.31294/infortech.v2i1.8079 

Hadiprakoso, R. B., Aditya, W. R., & Pramitha, F. N. (2022). Analisis Statis Deteksi Malware Android 
Menggunakan Algoritma Supervised Machine Learning. Cyber Security Dan Forensik 
Digital, 5(1), 1-5. https://doi.org/10.14421/csecurity.2022.5.1.3116 

Hastuti, K. (2012). Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi 
Mahasiswa Non Aktif. Semantik, 2(1), 241-249. 

Janssens, A. C. J. W., & Martens, F. K. (2020). Reflection on modern methods: Revisiting the area 
under the ROC Curve. International Journal of Epidemiology, 49(4), 1397–1403. 
https://doi.org/10.1093/ije/dyz274 

László, K., & Ghous, H. (2020). Efficiency comparison of Python and RapidMiner. 
Multidiszciplináris Tudományok, 10(3), 212-220. 
https://doi.org/10.35925/j.multi.2020.3.26 

Lestari, D. T., Harahap, H. S., Sahidu, M. G., Putri, S. A., Gunawan, S. E., Susilowati, N. A., & Hunaifi, 
I. (2022). Edukasi Deteksi Dini Penyakit Parkinson Pada Kader Puskesmas Dalam Rangka 
Hari Parkinson Sedunia. Jurnal Abdi Insani, 9(3), 1012-1018. 
https://doi.org/10.29303/abdiinsani.v9i3.714 

Mallet, N., Delgado, L., Chazalon, M., Miguelez, C., & Baufreton, J. (2019). Cellular and Synaptic 
Dysfunctions in Parkinson’s Disease: Stepping Out of the Striatum. Cells, 8(9), 1-29. 
https://doi.org/10.3390/cells8091005 

Mantri, S., Morley, J. F., & Siderowf, A. D. (2019). The importance of preclinical diagnostics in 
Parkinson disease. Parkinsonism & Related Disorders, 64, 20–28. 
https://doi.org/10.1016/j.parkreldis.2018.09.011 

Maskoen, T. T., Masthura, A., & Suwarman. (2017). Nilai Area Under Curve dan Akurasi Neutrophil 
Gelatinase Associated Lipocalin untuk Diagnosis Acute Kidney Injury pada Pasien 



J. Nat. Scien.  & Math. Res. Vol. 9, No. 1, 30-38 
Fahira, et. al. (2023) 

  

38  

Politrauma di Instalasi Gawat Darurat RSUP dr. Hasan Sadikin Bandung. Anestesia dan 
Critical Care,  35(3), 158-164. 

Probst, P., & Boulesteix, A.-L. (2018). To Tune or Not to Tune the Number of Trees in Random 
Forest. Journal of Machine Learning Research, 18, 1–18. 

Pyatha, S., Kim, H., Lee, D., & Kim, K. (2022). Association between Heavy Metal Exposure and 
Parkinson’s Disease: A Review of the Mechanisms Related to Oxidative Stress. 
Antioxidants, 11(2467), 1-18  

Pynam, V., Spanadna, R., & Srikanth, K. (2018). An Extensive Study of Data Analysis Tools (Rapid 
Miner, Weka, R Tool, Knime, Orange). International Journal of Computer Science and 
Engineering, 5(9), 4–11. https://doi.org/10.14445/23488387/IJCSE-V5I9P102 

Sakar, B. E., Issenkul, M. E., Sakar, C. O., Sertbas, A., Gurgen, F., Delil, S., Apaydin, H., & Kursun, O. 
(2013). Collection and Analysis of a Parkinson Speech Dataset with Multiple Types of 
Sound Recordings. IEEE Journal of Biomedical and Health Informatics, 17(4), 828–834. 
https://doi.org/10.1109/JBHI.2013.2245674 

Schiess, N., Cataldi, R., Okun, M. S., Fothergill-Misbah, N., Dorsey, E. R., Bloem, B. R., Barretto, M., 
Bhidayasiri, R., Brown, R., Chishimba, L., Chowdhary, N., Coslov, M., Cubo, E., Di Rocco, A., 
Dolhun, R., Dowrick, C., Fung, V. S. C., Gershanik, O. S., Gifford, L., … Dua, T. (2022). Six 
Action Steps to Address Global Disparities in Parkinson Disease: A World Health 
Organization Priority. JAMA Neurology, 79(9), 929–936. 
https://doi.org/10.1001/jamaneurol.2022.1783 

Solana-Lavalle, G., Galán-Hernández, J.-C., & Rosas-Romero, R. (2020). Automatic Parkinson 
disease detection at early stages as a pre-diagnosis tool by using classifiers and a small 
set of vocal features. Biocybernetics and Biomedical Engineering, 40(1), 505–516. 
https://doi.org/10.1016/j.bbe.2020.01.003 

Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019). A comparison of random forest variable 
selection methods for classification prediction modeling. Expert Systems with 
Applications, 134, 93–101. https://doi.org/10.1016/j.eswa.2019.05.028 

Suphinnapong, P., Phokaewvarangkul, O., Thubthong, N., Teeramongkonrasmee, A., 
Mahattanasakul, P., Lorwattanapongsa, P., & Bhidayasiri, R. (2021). Objective vowel 
sound characteristics and their relationship with motor dysfunction in Asian Parkinson’s 
disease patients. Journal of the Neurological Sciences, 426, 1-8.. 
https://doi.org/10.1016/j.jns.2021.117487 

Triyono, A., Trianto, R. B., & Arum, D. M. P. (2021). Early Detection Of Diabetes Mellitus Using 
Random Forest Algorithm. Julia: Jurnal Ilmu Komputer An Nuur, 1(1), 25–31. 

Wikandikta, I. P. G., Samatra, D. P. G. P., & Meidiary, A. A. A. (2020). Prevalensi gangguan tidur 
pada penderita parkinson di Poli Saraf RSUD Wangaya Denpasar tahun 2017. Intisari 
Sains Medis, 11(3), 1085-1090. https://doi.org/10.15562/ism.v11i3.232 

WHO. (2022). Parkinson disease: a public health approach: technical brief. 
Yuliati, I. F., & Sihombing, P. R. (2021). Penerapan Metode Machine Learning dalam Klasifikasi 

Risiko Kejadian Berat Badan Lahir Rendah di Indonesia. MATRIK : Jurnal Manajemen, 
Teknik Informatika Dan Rekayasa Komputer, 20(2), 417–426. 
https://doi.org/10.30812/matrik.v20i2.1174 

Zitnik, M., Nguyen, F., Wang, B., Leskovec, J., Goldenberg, A., & Hoffman, M. M. (2019). Machine 
learning for integrating data in biology and medicine: Principles, practice, and 
opportunities. Information Fusion, 50, 71–91. 
https://doi.org/10.1016/j.inffus.2018.09.012 

Zulfahmi, I., Syahputra, H., Naibaho, S. I., Maulana, M. A., & Sinaga, E. P. (2023). Perbandingan 
Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat 
Depresi Mahasiswa. BINA INSANI ICT JOURNAL, 10(1), 238-247. 
https://doi.org/10.51211/biict.v10i1.2304 

 


