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Abstract

The aim of this paper is to investigate the growth and constructions of meromorphic solutions
of the nonlinear differential-difference equation

fn(z) + h(z)∆cf
(k)(z) = A0(z) +A1(z)e

α1z
q

+ · · ·+Am(z)eαmzq

,

where n,m, q ∈ N+, α1, · · · , αm are distinct nonzero complex numbers, h(z) is a nonzero entire
function and Aj(z) (0 ≤ j ≤ m) are meromorphic functions. In particular, for A0(z) ≡ 0, we give
the exact form of meromorphic solutions of the above equation under certain conditions. In
addition, our results are shown to be sharp.
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1. Introduction and Main Results

Nevanlinna theory is an important tool in this paper, and we assume that the reader is familiar with its
standard notations and terms such as T (r, f), m(r, f), etc. (see, [5, 7]). The order ρ(f) and the convergence
exponent of zero-sequence λ(f) of meromorphic function f(z) are respectively defined by

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
, λ(f) = lim sup

r→∞

log+ N(r, 1
f )

log r
.

A meromorphic function α(z) on C is called a small function with respect to f if T (r, α) = S(r, f), where
S(r, f) = o(T (r, f)) as r → ∞ outside a possible exceptional set of r of finite linear measure.

One important aspect of the studies for complex differential equations is to investigate the properties
of their meromorphic solutions (see, e.g. [5, 7, 11, 14, 18]). In recent decades, the Tumura-Clunie type
differential equations have attracted much attention and various interesting results have been derived. Among
them are the following results.
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Theorem 1. ([19]) The differential equation 4f3(z) + 3f ′′(z) = − sin 3z has exactly three entire solutions

f1(z) = sin z, f2(z) = (
√
3 cos z)/2− (sin z)/2, f3(z) = −(

√
3 cos z)/2− (sin z)/2.

Theorem 2. ([8, Theorem 4]) Let a, p1, p2 and λ be nonzero constants. Then the differential equation

f3(z) + af ′′(z) = p1e
λz + p2e

−λz

has transcendental entire solutions if and only if p1p2 + (aλ2/27)3 = 0. Further, these entire solutions are

f(z) = αje
λz
3 −

(
aλ2

27αj

)
e

−λz
3 , j = 1, 2, 3,

where α3
j = p1.

Along this direction, researchers have extensively studied the properties of solutions to differential equa-
tions

fn(z) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z)

(see, e.g. [9, 10, 11, 14]), where Pd(z, f) is a polynomial in f and its derivatives with small coefficients, p1(z),
p2(z) are small functions of f , and α1(z), α2(z) are nonzero polynomials. With the help of the difference
version of Nevanlinna theory, many scholars also considered the difference analogue of the above equation,
and obtained some related results (see, e.g. [12, 13, 15, 17, 21]). Let f(z) be a nonconstant meromorphic
function and c be a nonzero constant. We define the difference operator as ∆cf(z) := f(z + c) − f(z). In
2014, Liu et al. [12] studied expression of entire solutions of the difference equation

fn(z) + q(z)∆1f(z) = p1e
α1z + p2e

α2z, (1)

where q(z) is a polynomial and p1, p2, α1, α2(̸= α1) are nonzero constants. We rewrite their result as follows:

Theorem 3. ([12]) Let n ≥ 4 be an integer. If there exists some finite order entire solution f of (1), then
q(z) is a constant, and one of the following relations holds:

(i) f(z) = c1e
α1z/n, and c1(e

α1/n − 1)q = p2, α1 = nα2,
(ii) f(z) = c2e

α2z/n, and c2(e
α2/n − 1)q = p1, α2 = nα1,

where c1, c2 are constants satisfying cn1 = p1, c
n
2 = p1.

Latreuch [13] and Zhang et al. [21] further studied the structure and growth of entire solutions of (1)
independently for n = 3, and obtained some similar results as in Theorem C. Recently, Li, Hao and Yi [16]
used Cartan’s version of the second main theorem to consider the growth of solutions to a difference equation

fn(z) + p(z)∆cf(z) = H1(z)e
α1z

q

+ · · ·+Hm(z)eαmzq

, (2)

and obtained the following result.

Theorem 4. ([16, Theorem 1.6]) Let m,n be two positive integers satisfying n ≥ m+ 2, p(z) be a nonzero
polynomial, c be a nonzero complex number such that ∆cf(z) ̸≡ 0, ω1, · · · , ωm be m distinct nonzero complex
numbers, and let Hj (1 ≤ j ≤ m) be either exponential polynomials of degree less than q, or polynomials in
z such that Hj ̸≡ 0 (1 ≤ j ≤ m). If (2) admits a nonconstant meromorphic solution, then m ≥ 2 and f
reduces to a transcendental entire function such that ρ(f) = ∞, or satisfies ρ(f) = q with m = 2, while f
can be expressed as either

f(z) = A1(z)e
ω1z

q

, with A1(z) =
H1f

p∆cf
and nω1 − ω2 = 0,

or

f(z) = A2(z)e
ω2z

q

, with A2(z) =
H2f

p∆cf
and nω2 − ω1 = 0,

where A1(z) and A2(z) are small entire functions with respect to f .
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We note that, in Theorem 4, the authors only considered the case when n ≥ m + 2 (m ∈ N+) and the
coefficients Hj(z) (1 ≤ j ≤ m) on the right side of (2) are entire functions. It is natural to pose the following
question: what can be said for meromorphic solutions of (2) when n ≤ m + 1 and the entire coefficients
Hj(z) (1 ≤ j ≤ m) are replaced by meromorphic functions of order less than q?

The aim of this paper is to answer the above questions. Besides that, we consider the properties of
meromorphic solutions to a more general nonlinear differential-difference equation

fn(z) + h(z)∆cf
(k)(z) = A0(z) +A1(z)e

α1z
q

+ · · ·+Am(z)eαmzq

, (3)

where n,m ∈ N+, k ∈ N, α1, · · · , αm are distinct nonzero complex numbers, h(z) is an entire function, and
Aj(z)(0 ≤ j ≤ m) are meromorphic functions. Our main results are as follows:

Theorem 5. Let n ≥ 2,m, k be positive integers, and let c be a constant such that ∆cf
(k)(z) ̸≡ 0. Suppose

that h(z) is a nonzero entire function with ρ(h) < q, and that A0(z), A1(z), · · · , Am(z) are meromorphic
functions with finitely many poles satisfying Ai(z) ̸≡ 0(1 ≤ i ≤ m) and ρ(Aj) < q(0 ≤ j ≤ m). If (3) admits
a meromorphic solution f such that N(r, f) = S(r, f), then ρ(f) = ∞, or ρ(f) = q and the following facts
hold:

(i) When A0(z) ≡ 0, we have two possibilities:
(1) m = 2 and f(z) = τ0(z)e

αtz
q/n, where τn0 (z) = At(z), αt = nαt′(t, t

′ ∈ {1, 2}, t ̸= t′).
(2) λ(f) = ρ(f) = q and n ≤ m+ 1.

(ii) When A0(z) ̸≡ 0, we have λ(f) = ρ(f) = q and n ≤ m+ 2.

We now give some examples such that the conditions in Theorem 5 hold.

Example 1. The meromorphic function f(z) = eiz/z satisfies the nonlinear differential-difference equation

f4(z) + z2(z + 4π)2(f ′(z + 4π)− f ′(z)) =
1

z4
e4iz + (−4πiz2 + 8πz − 16π2iz + 16π2)eiz.

Here n = m+ 2, τ0(z) = 1/z. Set A1(z) = 1/z4, then A1(z) = τ40 (z) and α1 = 4α2.

Example 2. The meromorphic function f(z) = eiz/z + z satisfies the equation

f2(z)− z2

2π
(f(z + 2π)− f(z)) =

1

z2
e2iz +

3z + 4π

z + 2π
eiz.

Here A0(z) ≡ 0, m = 2, n = 2 < m+ 1 and λ(f) = ρ(f) = 1.

Example 3. The meromorphic function f(z) = 1/z + e2πz satisfies the differential-difference equation

f3(z) + (z + i)2(f ′(z + i)− f ′(z)) =
2z2i− z + 1

z3
+

3

z2
e2πz +

3

z
e4πz + e6πz.

Here A0(z) = (2z2i− z + 1)/z3 ̸≡ 0, m = 3, n < m+ 2 and λ(f) = ρ(f) = 1.

The following corollary, which can be derived immediately from Theorem 5, is an extension of Theorem
4.

Corollary 1. Under the conditions of Theorem 5, let f be a finite order meromorphic solution of the
difference equation

fn(z) + h(z)∆cf(z) = A0(z) +A1(z)e
α1z

q

+ · · ·+Am(z)eαmzq

.

If N(r, f) = S(r, f), then ρ(f) = q and the following assertions hold.

(i) When A0(z) ≡ 0, we have two possibilities: (1) m = 2 and f(z) = τ0(z)e
αtz

q

n , where τn0 (z) = At(z),
αt = nαt′(t, t

′ ∈ {1, 2}, t ̸= t′); (2) λ(f) = ρ(f) = q and n ≤ m+ 1.
(ii) When A0(z) ̸≡ 0, we have λ(f) = ρ(f) = q and n ≤ m+ 2.
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Note that in Theorem 5 the entire function h(z) satisfies the condition ρ(h) < q. Next, we continue to
consider the case of ρ(h) ≥ q, and obtain the following result.

Theorem 6. Let n, q be positive integers, let A0(z), · · · , Am(z) be meromorphic functions of order less than
q such that Ai(z) ̸≡ 0(1 ≤ i ≤ m). Suppose that ∆cf

(k)(z) ̸≡ 0, and that h(z) is a nonzero entire function
satisfying ρ(h) ≥ q and λ(h) < ρ(h). Then for any finite order transcendental meromorphic function solution
f of (3) satisfying N(r, f) = S(r, f), we have

ρ(f) ≥ ρ(h).

In particular, we have ρ(f) = ρ(h) provided that n ≥ 2.

We will give two examples that the conditions of Theorem 6 hold.

Example 4. The differential-difference equation

fn(z) + ez∆cf
(k)(z) = enz + (ec − 1)e2z

has a solution f(z) = ez, where h(z) = ez and ρ(f) = ρ(h) = 1.

Example 5. The equation

f3(z) + ez(f(z + 2πi)− f(z)) =
1

z3
e3z + (

1

z + 2πi
− 1

z
)e2z

has a solution f(z) = ez/z, where h(z) = ez and ρ(f) = ρ(h) = 1.

By Theorem 6, we can also deduce the following corollary.

Corollary 2. Under the conditions of Theorem 6, let f be a finite order meromorphic solution of the
difference equation

fn(z) + h(z)∆cf(z) = A0(z) +A1(z)e
α1z

q

+ · · ·+Am(z)eαmzq

.

If N(r, f) = S(r, f), then we have ρ(f) ≥ ρ(h) ≥ q.

The remainder of this paper is organized as follows: in Section 2 we state several results that will be used
in our proofs. The details of the proofs of Theorems 5 and 6 are shown in Sections 3 and 4, respectively.

2. Auxiliary Lemmas

In the following, let E be a set of finite linear measure, respectively, not necessarily the same at each
occurrence.

Lemma 1. [2] Let f(z) be a meromorphic function of finite order ρ, and let η be a fixed nonzero complex
number. Then, for each ε > 0, we have

m

(
r,
f(z + η)

f(z)

)
+m

(
r,

f(z)

f(z + η)

)
= O(rρ−1+ε),

T (r, f(z + η)) = T (r, f) +O(rρ−1+ε) +O(log r),

and
N(r, f(z + η)) = N(r, f) +O(rλ(1/f)−1+ε) +O(log r),

where the symbol λ(1/f) here represents the exponent of convergence of poles of f .
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Remark 1. By [3, Theorem 1.3.1′] and the lemma of the logarithmic derivative [7], we can also get

N

(
r,

1

f(z + η)

)
= N

(
r,

1

f

)
+ S(r, f) and m

(
r,
f (k)(z + η)

f(z)

)
= S(r, f),

as r → ∞ outside a possible exceptional set E.

Lemma 2. [17, Lemma 2.5] Let m, q ∈ N+, α1, · · · , αm be distinct nonzero complex numbers, and A0(z), · · · , Am(z)
be nonzero meromorphic functions of order less than q. Set φ(z) = A0(z) +

∑m
i=1 Ai(z)e

αiz
q

, then the fol-
lowing results hold.

1. There exist two positive numbers d1 < d2, such that

d1r
q ≤ T (r, φ) ≤ d2r

q, (r → ∞).

2. If A0 ̸≡ 0, then m(r, 1/φ) = o(rq) as r → ∞.

Lemma 3. Under the conditions of Theorem 5, if f is a finite order meromorphic solution of (3) satisfying
N(r, f) = S(r, f), then ρ(f) = q. Specially, if A0 ̸≡ 0, then

N

(
r,

1

f

)
= T (r, f) + S(r, f).

Proof. Applying Lemmas 2 to equation (3), one can deduce that

d1r
q ≤ T (r, fn(z) + h(z)(f (k)(z + c)− f (k)(z)))

≤ m(r, fn) +m(r, h(z)(f (k)(z + c)− f (k)(z))) +

m∑
j=0

N(r,Aj) +O(1)

≤ (n+ 1)m(r, f) +m(r, h) +m

(
r,
f (k)(z + c)− f (k)(z)

f(z)

)
+

m∑
j=0

N(r,Aj) +O(1),

where d1 is a positive constant. With Remark 1, ρ(h) < q and ρ(Aj) < q(0 ≤ j ≤ m), we have

d1r
q ≤ (n+ 1)T (r, f) + S(r, f) + o(rq), (4)

as r → ∞, r ̸∈ E. Now, we rewrite (3) as

fn(z) = A0(z) +

m∑
i=1

Ai(z)e
αiz

q

− h(z)f(z)
f (k)(z + c)− f (k)(z)

f(z)
.

By Lemma 2, there exist d2 > d1, such that for sufficiently large r,

(n− 1)m(r, f) ≤ m(r,A0) +m(r,

m∑
i=1

Ai(z)e
αiz

q

) +m(r, h(z)) + S(r, f)

≤ d2r
q + S(r, f) + o(rq). (5)

Note that n ≥ 2 and N(r, f) = S(r, f). It follows from (4) and (5) that

C1r
q ≤ T (r, f) ≤ C2r

q, (r → ∞, r /∈ E),

where C1, C2 are two positive numbers. This implies that ρ(f) = q.
If A0(z) ̸≡ 0, we can also rewrite (3) as follows:

1

A0(z) +
∑m

i=1 Ai(z)eαizq +
h(z)

A0(z) +
∑m

i=1 Ai(z)eαizq · ∆cf
(k)(z)

fn(z)
=

1

fn(z)
.

By the second conclusion of Lemma 2 and Remark 1, we get m (r, 1/f) = S(r, f). Together with this fact
and the first main theorem, we get N (r, 1/f) = T (r, f)+S(r, f). This completes the proof of Lemma 3.
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Lemma 4. [18] Let f(z) be a nonconstant meromorphic function, and k be a positive integer. Then, for
r → ∞, r ̸∈ E,

N

(
r,

1

f (k)(z)

)
≤ N

(
r,

1

f(z)

)
+ kN(r, f(z)) + S(r, f).

Furthermore, if f is a transcendental meromorphic function, we have

T (r, f (k)) = T (r, f) + kN(r, f) + S(r, f).

Let f(z) be a nonconstant meromorphic function and let p be a positive integer. We denote by np(r, 1/f)
the number of zeros of f in {z : |z| ≤ r}, counted in the following manner: a zero of f of multiplicity m
is counted exactly k = min{m, p} times, and its corresponding integrated counting function is denoted by
Np(r, 1/f).

Lemma 5. [1, 4] Let f1, f2, · · · , fp be linearly independent entire functions. Suppose that for each complex
number z, we have max {|f1(z)|, · · · , |fp(z)|} > 0. Set

T (r) =
1

2π

∫ 2π

0

u(reiθ)dθ − u(0), for r > 0,

where u(z) = sup1≤j≤p log |fj(z)|. Let fp+1 = f1 + · · ·+ fp. Then

T (r) ≤
p+1∑
j=1

Np−1

(
r,

1

fj

)
+ S(r) ≤ (p− 1)

p+1∑
j=1

N

(
r,

1

fj

)
+ S(r),

where S(r) is a quantity satisfying S(r) = O(log(rT (r))) as r → ∞, r ̸∈ E. Furthermore, for any j and m,
1 ≤ j ̸= m ≤ p+ 1, we have

T

(
r,

fj
fm

)
= T (r) +O(1) (r → ∞),

and

N

(
r,

1

fj

)
= T (r) +O(1) (r → ∞).

Remark 2. [1, 4] If at least one of the quotients fj/fm is a transcendental function, then S(r) = o(T (r)) (r →
∞, r ̸∈ E), while if all the quotients fj/fm are rational functions, then S(r) ≤ − 1

2p(p− 1) log r+O(1) (r →
∞, r ̸∈ E).

Lemma 6. [17, 18] Let f1, f2, · · · , fp be linearly independent meromorphic functions such that
∑p

j=1 fj = 1.
Then for 1 ≤ j ≤ p, we have

T (r, fj) ≤
p∑

k=1

N

(
r,

1

fk

)
+ (p− 1)

p∑
k=1

N(r, fk)−N

(
r,

1

D

)
+ o

(
max
1≤k≤p

{T (r, fk)}
)

as r → ∞ and r ̸∈ E, where D is the Wronskian determinant W (f1, f2, · · · , fp).

Lemma 7. [6, Theorem 2.4] Let c be a nonzero complex number, let f be a meromorphic function of finite
order such that ∆cf ̸≡ 0. Assume that q ≥ 2(∈ N+), and that a1(z), · · · , aq(z) are distinct meromorphic
periodic functions with period c such that T (r, ak) = S(r, f) for 1 ≤ k ≤ q. Then

m(r, f) +

q∑
k=1

m

(
r,

1

f − ak

)
≤ 2T (r, f)−Npair(r, f) + S(r, f),

where

Npair(r, f) := 2N(r, f)−N(r,∆cf) +N

(
r,

1

∆cf

)
and the exceptional set associated with S(r, f) is of at most finite logarithmic measure.
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Lemma 8. [18, Theorem 1.51] Let fi(z) (i = 1, 2, · · · , n(n ≥ 2)) be meromorphic functions, and gi(z) (i =
1, 2, · · · , n) be entire functions satisfying

(1)
∑n

i=1 fi(z)e
gi(z) ≡ 0;

(2)gj(z)− gm(z) are not constants for 1 ≤ j < m ≤ n;
(3)For 1 ≤ i ≤ n, 1 ≤ t < k ≤ n, T (r, fi) = o(T (r, egt−gk)) as r → ∞, r ̸∈ E.

Then fi(z) ≡ 0 for all i = 1, · · · , n.

Lemma 9. Let f(z) be a nonconstant meromorphic function of ρ(f) = q and N(r, f) = S(r, f). Then, for
r → ∞, r ̸∈ E,

N

(
r,

1

∆cf (k)(z)

)
≤ N(r,

1

f(z)
) + S(r, f).

Proof. Since ρ(f (k)) = ρ(f), it follows from N(r, f) = S(r, f) and Lemma 1 that

N(r, f (k)(z)) ≤ (k + 1)N(r, f(z)) = S(r, f) (6)

and

N(r,∆cf
(k)(z)) ≤ N(r, f (k)(z + c)) +N(r, f (k)(z))

= 2N(r, f (k)(z)) + S(r, f (k)) = S(r, f). (7)

Then by (6), (7) and Lemma 7, we have

T (r,f (k)) ≤ N(r, f (k)) +N

(
r,

1

f (k)

)
+N

(
r,

1

f (k) − 1

)
−N

(
r,

1

∆cf (k)

)
+N(r,∆cf

(k))− 2N(r, f (k)) + S(r, f (k)) (8)

≤ N

(
r,

1

f (k)

)
+N

(
r,

1

f (k) − 1

)
−N

(
r,

1

∆cf (k)

)
+ S(r, f).

In view of ρ(f) = q, (8) and Lemma 4, we obtain that

N

(
r,

1

∆cf (k)

)
≤ N

(
r,

1

f (k)

)
+N

(
r,

1

f (k) − 1

)
− T (r, f (k)) + S(r, f)

≤ N

(
r,

1

f

)
+ o(rq), (r → ∞, r /∈ E).

3. The proof of Theorem 5

Let f be a meromorphic solution of (3) satisfying N(r, f) = S(r, f). Suppose that ρ(f) < ∞. Then, it
follows from Lemma 3 that

ρ(f) = q and S(r, f) = o(rq). (9)

By Hadamard’s factorization theorem, there exists an entire function g1(z) such that f(z)g1(z) is an entire
function and

N

(
r,

1

g1

)
= N(r, f) = S(r, f).

Note that z0 is a pole of order l + k(≤ l(1 + k)) of f (k)(z) provided that z0 ∈ C is a pole of order l of f(z).
This implies that gk+1

1 (z)f (k)(z) is also an entire function.

80



Yezhou Li, Wenxiao Niu

Set g(z) = gn+k+1
1 (z)g2(z), where g2(z) consists of the poles of meromorphic functionsA0(z), A1(z), · · · , Am(z)

(The poles of A0(z), A1(z), · · · , Am(z) correspond to the zeros of g2(z)). Then

N

(
r,
1

g

)
≤ (n+ k + 1)N

(
r,

1

g1

)
+

m∑
j=0

N(r,Aj) = o(rq), (10)

and both h(z)∆cf
(k)(z)g(z) and h(z)f (k)(z + c)g(z) are entire functions.

Now we discuss the following two cases:

Case 1: A0(z) ≡ 0. By 1
fn(z) =

h(z)∆cf
(k)(z)

fn(z) · 1
h(z)∆cf(k)(z)

, ρ(h) < q and the first main theorem, we have

T

(
r,
h(z)∆cf

(k)(z)

fn(z)

)
≥ nT (r, f)− T (r,∆cf

(k)(z))− o(rq). (11)

Since h(z)∆cf
(k)(z)g(z) is entire, it follows from ρ(h) < q and (10) that

N
(
r,∆cf

(k)(z)
)
≤ N

(
r,

1

h(z)

)
+N

(
r,

1

g(z)

)
= o(rq). (12)

Then by (11), (12) and Remark 1, there exists a positive constant D1 such that

T

(
r,
h(z)∆cf

(k)(z)

fn(z)

)
≥ nT (r, f)−m

(
r,
f (k)(z + c)− f (k)(z)

f(z)
· f(z)

)
− o(rq)

≥ (n− 1)T (r, f)− o(rq) (13)

≥ D1r
q, (r → ∞, r /∈ E).

• First, we consider the case of n ≥ m+ 2.
Subcase 1.1. Assume h(z)f (k)(z+c), h(z)f (k)(z), A1(z)e

α1z
q

, · · · , Am(z)eαmzq

are linearly independent.
Then ∆cf

(k)(z) ̸≡ 0 and
h(z)∆cf

(k)(z), A1(z)e
α1z

q

, · · · , Am(z)eαmzq

are m+ 1 linearly independent meromorphic functions.
By the definition of g(z), we know fn(z)g(z), h(z)∆cf

(k)(z)g(z), A1(z)g(z), · · · , Am(z)g(z) are entire func-
tions.

Let {a1,k}uk=1 be the common zeros of A1(z)g(z), · · · , Am(z)g(z), fn(z)g(z), h(z)∆cf
(k)(z)g(z), and

H1(z) =
∏u

k=1(z− a1,k)
vk , where vk is the minimum of all the multiplicities of a1,k as the zero of fn(z)g(z),

h(z)∆cf
(k)(z)g(z), A1(z)g(z), · · · , Am(z)g(z), u = ∞ or finite integer. (If fn(z)g(z), h(z)∆cf

(k)(z)g(z),
A1(z)g(z), · · · , Am(z)g(z) have no common zeros, we set H1(z) is a nonzero constant.)

By ρ(A1) < q and (10), we obtain

N

(
r,

1

H1(z)

)
≤ N

(
r,

1

A1(z)g(z)

)
= o(rq). (14)

Rewrite (3) in the form

fn(z)g(z)

H1(z)
=

m∑
i=1

Ai(z)e
αiz

q

g(z)

H1(z)
− h(z)∆cf

(k)(z)g(z)

H1(z)
, (15)

where fn(z)g(z)
H1(z)

, h(z)∆cf
(k)(z)g(z)

H1(z)
, A1(z)e

α1zq g(z)
H1(z)

, · · · , Am(z)eαmzq g(z)
H1(z)

are entire functions without common ze-
ros.

Since n ≥ m + 2, it follows from (13) that h(z)∆cf
(k)(z)g(z)

H1(z)
/ fn(z)g(z)

H1(z)
is transcendental. Then by (14),

(15), Lemma 5 and Remark 2, we have
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nN

(
r,

1

f(z)

)
≤ N

(
r,

H1(z)

fn(z)g(z)

)
+N

(
r,

g(z)

H1(z)

)
= T1(r) + o(rq)

≤
m∑
i=1

Nm

(
r,

H1(z)

Ai(z)eαizqg(z)

)
+Nm

(
r,

H1(z)

h(z)∆cf (k)(z)g(z)

)
+Nm

(
r,

H1(z)

fn(z)g(z)

)
+ o(T1(r)) + o(rq) (16)

≤ N

(
r,

1

∆cf (k)(z)

)
+mN

(
r,

1

f(z)

)
+ o(T1(r)) + o(rq),

as r → ∞, r ̸∈ E, where T1(r) =
1
2π

∫ 2π

0
u1(re

iθ)dθ − u1(0) with

u1(z) = sup

{
log

∣∣∣∣h(z)∆cf
(k)(z)g(z)

H1(z)

∣∣∣∣ , log ∣∣∣∣Ai(z)e
αiz

q

g(z)

H1(z)

∣∣∣∣ : 1 ≤ i ≤ m

}
.

By Lemma 9 and (16), we get

(n−m− 1)N

(
r,

1

f(z)

)
≤ o(T1(r)) + o(rq)

and

T1(r) ≤ (m+ 1)N

(
r,

1

f(z)

)
+ o(T1(r)) + o(rq)

≤ (m+ 1)T (r, f(z) + o(T1(r)) + o(rq),

as r → ∞, r /∈ E. By (9) and the assumption that n ≥ m+ 2, one deduce

N

(
r,

1

f(z)

)
= o(rq), (r → ∞, r /∈ E). (17)

By dividing fn(z) on both sides of (3), we obtain

m∑
i=1

Ai(z)e
αiz

q

fn(z)
− h(z)∆cf

(k)(z)

fn(z)
= 1.

Set Ai(z)e
αiz

q

fn(z) = f1,i (1 ≤ i ≤ m) and h(z)∆cf
(k)(z)

−fn(z) = f1,m+1. Applying Lemma 6 to above equation, we have

for 1 ≤ j ≤ m+ 1

T (r, fj) ≤
m∑
i=1

N

(
r,

1

f1,i

)
+N

(
r,

1

f1,m+1

)
+m

m∑
i=1

N (r, f1,i)

+mN (r, f1,m+1) + o

(
max

1≤i≤m+1
{T (r, f1,i)}

)
(18)

as r → ∞, r ̸∈ E. Let j = i and Tf (r) = max {T (r, f1,i) : 1 ≤ i ≤ m+ 1}. By (9), (17), (18), Lemma 9 and
the assumption that N(r, f) = S(r, f), we deduce that

(1− o(1))Tf (r) = o(rq), (r → ∞, r /∈ E).

It follows that

T

(
r,
h(z)∆cf

(k)(z)

fn(z)

)
= o(rq), (r → ∞, r /∈ E),
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which contradicts (13).

Subcase 1.2. Suppose that

h(z)f (k)(z + c), h(z)f (k)(z), A1(z)e
α1z

q

, · · · , Am(z)eαmzq

are linearly dependent. From the fact that A1(z)e
α1z

q

, · · · , Am(z)eαmzq

are linearly independent, we consider
the following two subcases:

Subcase 1.2.1. Suppose that h(z)f (k)(z) and A1(z)e
α1z

q

, · · · , Am(z)eαmzq

are linearly dependent. This
means that there exist m complex constants l1,i, (1 ≤ i ≤ m), at least one of them is not zero, such that

h(z)f (k)(z) =

m∑
i=1

l1,iAi(z)e
αiz

q

. (19)

Substituting (19) into (3), we get

fn(z) = −h(z)f (k)(z + c) +

m∑
i=1

(1 + l1,i)Ai(z)e
αiz

q

. (20)

Next, on basis of (19) and (20), we consider the following two situations:
⋄ If−h(z)f (k)(z+c), (1+l1,i)Ai(z)e

αiz
q

(1 ≤ i ≤ m) are linearly independent. By the definition of g(z) and

(20), one knows that h(z)f (k)(z+c)g(z) is an entire function. Notice that 1
fn(z) =

h(z)f(k)(z+c)
fn(z) · 1

h(z)f(k)(z+c)
.

Then we can obtain

T

(
r,
h(z)f (k)(z + c)

fn(z)

)
≥ nT (r, f)−m

(
r,
f (k)(z + c)

f(z)
· f(z)

)
− o(rq)

≥ (n− 1)T (r, f)− o(rq) (21)

≥ D2r
q,

as r → ∞, r /∈ E, where D2 is a positive constant. Now, we rewrite (20) in the form

fn(z)g(z)

H2(z)
=

−h(z)f (k)(z + c)g(z)

H2(z)
+

m∑
i=1

(1 + l1,i)Ai(z)e
αiz

q

g(z)

H2(z)
, (22)

where H2(z) is defined as H1(z) such that −h(z)f(k)(z+c)g(z)
H2(z)

,
(1+l1,i)Ai(z)e

αiz
q
g(z)

H2(z)
, fn(z)g(z)

H2(z)
are all entire

functions without common zeros, and

N

(
r,

1

H2(z)

)
≤ N

(
r,

1

A1(z)g(z)

)
= o(rq). (23)

By Remark 1, Lemma 4 and N(r, f) = S(r, f), we have N
(
r, 1

f(k)(z+c)

)
≤ N

(
r, 1

f(z)

)
+ S(r, f). Then

using the similar manner as (15)-(17) to (22), we deduce

N

(
r,

1

f

)
= o(rq) (r → ∞, r /∈ E). (24)

Next, we rewrite (20) as

−h(z)f (k)(z + c)

fn(z)
+

m∑
i=1

(1 + l1,i)Ai(z)e
αiz

q

fn(z)
= 1.

By Lemma 6 we can get an inequality similar to (18), it follows from (24), Lemma 4 and Remark 1 that

T

(
r,
h(z)f (k)(z + c)

fn(z)

)
= o(rq),
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as r(/∈ E) → ∞, which contradicts to (21).
⋄ If −h(z)f (k)(z + c), (1 + l1,i)Ai(z)e

αiz
q

are linearly dependent, there exists a finite nonzero constant
k1,i such that

−h(z)f (k)(z + c) =

m∑
i=1

k1,i(1 + l1,i)Ai(z)e
αiz

q

. (25)

Substituting the above equation into (20), we get

fn(z) =

m∑
i=1

(1 + k1,i)(1 + l1,i)Ai(z)e
αiz

q

. (26)

Next, on basis of (19), (25) and (26), we will prove the following fact:
Claim (a) There exists only one nonzero element among each set {k1,1(1 + l1,1), · · · , k1,m(1 + l1,m)},
{(1 + k1,1)(1 + l1,1), · · · , (1 + k1,m)(1 + l1,m)} and {l1,1, · · · , l1,m}.

Proof. If at least two nonzero elements exist among the set {(1 + k1,1)(1 + l1,1), · · · , (1 + k1,m)(1 + l1,m)},
without loss of generality, we assume that (1+k1,1)(1+ l1,1) ̸= 0. From this, we can rewrite (26) as the form

fn(z)e−α1z
q

= (1 + k1,1)(1 + l1,1)A1(z) +

s∑
i=2

(1 + k1,i)(1 + l1,i)Ai(z)e
(αi−α1)z

q

, (27)

where 2 ≤ s ≤ m. By (27) and Lemma 2, there exists a positive constant d1, such that for sufficiently large
r,

N

(
r,

1

fn(z)

)
≥ d1r

q. (28)

On the other hand, rewrite (26) in the form

fn(z)g(z)

H3(z)
=

s∑
i=1

(1 + k1,i)(1 + l1,i)Ai(z)g(z)e
αiz

q

H3(z)
, (29)

where H3(z) is defined similarly to H1(z), such that there are no common zeros for each term in the above
equation, and N (r, 1/H3(z)) = o(rq) (r → ∞). Then using the similar manner as (15) and (16) to (29), we
have

(n− s+ 1)N

(
r,

1

f

)
≤ S3(r) + o(rq) = O(log T3(r)) + o(rq)

and
T3(r) ≤ (s− 1)T (r, f(z)) +O(log T3(r)) + o(rq),

where T3(r) = (
∫ 2π

0
u3(re

iθ)dθ − u3(0))/(2π) with

u3(z) = sup

{
log

∣∣∣∣ (1 + k1,i)(1 + l1,i)Ai(z)g(z)e
αiz

q

H3(z)

∣∣∣∣ , 1 ≤ i ≤ s

}
.

By the above facts and (9), one can deduce that N (r, 1/f(z)) = o(rq), which contradicts (28). Thus the set
{(1 + k1,1)(1 + l1,1), · · · , (1 + k1,m)(1 + l1,m)} has only one nonzero element. In what follows, without loss
of generality, we let (1 + k1,1)(1 + l1,1) ̸= 0, i.e.,

fn(z) = (1 + k1,1)(1 + l1,1)A1(z)e
α1z

q

. (30)

Suppose at least two elements exist among the set {l1,1, · · · , l1,m}. By (19) and (26), using the same
argument as (27), we can also obtain a positive constant d2, such that for sufficiently large r,

N

(
r,

1

h(z)f (k)(z)

)
≥ d2r

q. (31)
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Next, by Lemma 4, (30), ρ(h) < q, and N(r, f) = S(r, f), we have

N

(
r,

1

h(z)f (k)(z)

)
= o(rq). (32)

We get a contraction, and hence the set {l1,1, · · · , l1,m} has only one nonzero element.
If at least two elements exist among the set {k1,1(1 + l1,1), · · · , k1,m(1 + l1,m)}, then by (19) and (25),

using the same argument as in above, we can also obtain a contradiction. Here, we omit the details for the
proof.

By Claim (a), without loss of generality, we assume that l1,t1 ̸= 0, k1,t2(1 + l1,t2) ̸= 0, (1 ≤ t1, t2 ≤ m).
It follows from (19) and (25) that

h(z)f (k)(z) = l1,t1At1(z)e
αt1

zq

(33)

and
−h(z)f (k)(z + c) = k1,t2(1 + l1,t2)At2(z)e

αt2
zq

. (34)

Obviously, 1 + k1,1 ̸= 0. If 1 + k1,1 = 0, it follows that f(z) ≡ 0. This is impossible. By (30), we get

f(z) = τ̃0(z)e
α1zq

n , f (k)(z) = τ̃k(z)e
α1zq

n , (35)

where τ̃0(z), τ̃k(z) satisfy τ̃n0 (z) = (1 + k1,1)(1 + l1,1)A1(z) and τ̃i(z) = τ̃ ′i−1(z) + (α1qz
q−1)τ̃i−1(z)/n (1 ≤

i ≤ k). Together with (33), (34) and (35), we obtain

h(z)f (k)(z) = h(z)τ̃k(z)e
α1zq

n = l1,t1At1(z)e
αt1

zq

and

−h(z)f (k)(z + c) = h(z)τ̃k(z + c)e
α1(z+c)q

n = k1,t2(1 + l1,t2)At2(z)e
αt2

zq

.

Since the order of h(z), τ̃k(z), Ati(z) are less than q, it follows that ti ̸= 1, α1 = nαti . According to (3),
(30), (33) and (34), we get

m = 2, t1 = t2 = 2, l1,1 = 0, k1,1 = 0, k1,2 = −1, l1,2 ̸= −1, 0.

So we have

h(z)f (k)(z) = h(z)τ̃k(z)e
α1zq

n = l1,2A2(z)e
α2z

q

,

h(z)f (k)(z + c) = h(z)τ̃k(z + c)e
α1(z+c)q

n = (1 + l1,2)A2(z)e
α2z

q

,

then
1 + l1,2
l1,2

=
τ̃k(z + c)

τ̃k(z)
eα2((z+c)q−zq).

Obviously, q > 1 is impossible, now we consider q = 1. This means that

τ̃k(z + c)

τ̃k(z)
= b,

where b is a nonzero constant and (1 + l1,2)/l1,2 = beα2c. Then,

m = 2, q = 1, f(z) = τ̃0(z)e
α2z, α1 = nα2, τ̃

n
0 (z) = A1(z). (36)

Subcase 1.2.2. Suppose that h(z)f (k)(z) and A1(z)e
α1z

q

, · · · , Am(z)eαmzq

are linearly independent.
Then, by the assumption of Subcase 1.2, we can see that −h(z)f (k)(z + c) can be linearly expressed by
h(z)f (k)(z), A1(z)e

α1z
q

, · · · , Am(z)eαmzq

. This means that there exist m + 1 finite complex constants
l2,i, (0 ≤ i ≤ m), at least one of them is not zero, such that

−h(z)f (k)(z + c) = l2,0h(z)f
(k)(z) +

m∑
i=1

l2,iAi(z)e
αiz

q

.
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Substituting the above equality into (3), we get

fn(z) = (1 + l2,0)h(z)f
(k)(z) +

m∑
i=1

(1 + l2,i)Ai(z)e
αiz

q

. (37)

In view of (37), we consider the following situations.
Subcase 1.2.2.1. If 1 + l2,0 = 0, (37) can be rewritten as

fn(z) =

m∑
i=1

(1 + l2,i)Ai(z)e
αiz

q

. (38)

It follows from (3) that

−h(z)∆cf
(k)(z) = h(z)f (k)(z)− h(z)f (k)(z + c) =

m∑
i=1

l2,iAi(z)e
αiz

q

. (39)

On basis of (38), (39) and Lemma 9, using the same manner as Claim(a), we also have the following fact:
The set {1 + l2,1, · · · , 1 + l2,m} has only one nonzero element, and the set {l2,1, · · · , l2,m} has also only one
nonzero element.

Without loss of generality, we set

fn(z) = (1 + l2,1)A1(z)e
α1z

q

and h(z)∆cf
(k)(z) = −l2,t3At3(z)e

αt3
zq

, (40)

where 1 + l2,1 ̸= 0 and l2,t3 ̸= 0, (1 ≤ t3 ≤ m).

In view of (3) and (40), we only need to consider m = 1 or 2.
⋄ Suppose that m = 1, then it follows from (3) and (40) that t3 = 1 and

fn(z) = − (1 + l2,1)

l2,1
h(z)∆cf

(k)(z).

By the above equality, (9) and Remark 1, we get

nm(r, f(z)) = m(r, fn(z)) = m

(
r,
(1 + l2,1)

l2,1
h(z)∆cf

(k)(z)

)
≤ m(r, h(z)) +m

(
r,
f (k)(z + c)− f (k)(z)

f(z)
f(z)

)
+O(1) (41)

= m(r, f(z)) + o(rq), (r → ∞, r ̸∈ E).

Therefore, according to (41) and N(r, f) = S(r, f), we get

T (r, f) = o(rq),

which contradicts the fact that ρ(f) = q.
⋄ Suppose that m = 2. By the first equality of (40), and Hadamard’s factorization theorem, we get

f(z) = τ0(z)e
α1zq

n , f (k)(z) = τk(z)e
α1zq

n (42)

where τn0 (z) = (1 + l2,1)A1(z), and τi(z) = τ ′i−1(z) + (α1qz
q−1)τi−1(z)/n (1 ≤ i ≤ k). Substituting (42) into

the second equality of (40), we get

h(z)∆cf
(k)(z) = h(z)(τk(z + c)e

α1(z+c)q

n − τk(z)e
α1zq

n )

= −l2,t3At3(z)e
αt3z

q

.
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Since the order of h(z) and τk(z) are less than q, we obtain t3 ̸= 1, α1 = nαt3 . By (3) and (40), one can
obtain

m = 2, t3 = 2, l2,1 = 0, l2,t3 = l2,2 = −1.

So we have

m = 2, f(z) = τ0(z)e
α1zq

n , τn0 (z) = A1(z), α1 = nα2. (43)

Subcase 1.2.2.2. Suppose that 1+ l2,0 ̸= 0. If 1+ l2,i(1 ≤ i ≤ m) are not all 0, then by the assumption
of Subcase 1.2.2, we can see that h(z)f (k)(z), A1(z)e

α1z
q

, · · · , Am(z)eαmzq

are linearly independent. Next,
we can get a contradiction in the same manner as in Subcase 1.1. If 1 + l2,i = 0(1 ≤ i ≤ m), we can use the
similar manner as (41) to get a contradiction.

• Now we consider the case of 2 ≤ n ≤ m+ 1.
By the definition of λ(f) and (9), we have λ(f) ≤ ρ(f) = q. If λ(f) < ρ(f) = q, we can get

N

(
r,

1

f

)
= o(rq).

Now, we consider the two cases: h(z)f (k)(z + c), h(z)f (k)(z), A1(z)e
α1z

q

, · · · , Am(z)eαmzq

are linearly
independent or not. Using the similar argument as in Subcases 1.1 and 1.2, we can also obtain (36) and
(43). Thus, the result (i) of Theorem 5 is proved.

Case 2: A0(z) ̸≡ 0. By Lemma 3, we have

N

(
r,

1

f

)
= T (r, f) + o(T (r, f)), λ(f) = ρ(f) = q (44)

as r → ∞, r ̸∈ E. Assume that n ≥ m + 3, and use the similar approach to Case 1 to consider whether
h(z)f (k)(z + c), h(z)f (k)(z), A0(z), A1(z)e

α1z
q

, · · · , Am(z)eαmzq

are linearly dependent or not, then we
have N (r, 1/f) = o(rq). From this and (44), we get T (r, f) = o(rq). This is impossible. So we have
λ(f) = ρ(f) = q and n ≤ m+ 2. The result (ii) is proved. Then we complete the proof of Theorem 5.

4. The proof of Theorem 6

Let f be a finite order meromorphic solution of (3) satisfying N(r, f) = S(r, f). We rewrite (3) in the form

fn(z)−A0(z)−
∑m

i=1 Ai(z)e
αiz

q

∆cf (k)(z)
= −h(z). (45)

By the fact that N(r, f) = S(r, f) and Lemmas 1, 4, we obtain

T (r,∆cf
(k)(z)) ≤ T (r, f (k)(z + c)) + T (r, f (k)(z))

≤ T (r, f(z + c)) + T (r, f) + 2kN(r, f) + S(r, f) (46)

≤ 2T (r, f) + S(r, f).

On basis of (45) and (46), one can deduce that

ρ(h) ≤ max{ρ(f), ρ(∆cf
(k)), q} = max{ρ(f), q}. (47)

If ρ(f) ≥ q, it follows from the above equality that ρ(f) ≥ ρ(h) ≥ q. Now, we consider the case of
ρ(f) < q. From (47) and the condition that ρ(h) ≥ q, we get ρ(h) = q. Note that h(z) is an entire function
and λ(h) < ρ(h). Then, by Hadamard’s factorization theorem, we have

h(z) = p(z)eQ(z), (48)
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where p(z) is an entire function and Q(z) is a polynomial such that ρ(p) < q, deg(Q(z)) = q.
Set Q(z) = aqz

q + · · ·+ a1z+ a0, where aq ∈ C\{0} and aq−1, · · · , a0 ∈ C. Substituting (48) into (3), we
obtain

A0(z) +

m∑
i=1

Ai(z)e
αiz

q

− p(z)∆cf
(k)(z)eaqz

q+···+a1z+a0 − fn(z) = 0, (49)

where ρ(p∆cf
(k)(z)) < q and ρ(fn) < q since ρ(f) < q.

In view of (49), we consider the following situations:
⋄ Suppose that aq ̸= αi, 1 ≤ i ≤ m. Since α1, α2, · · · , αm are distinct nonzero complex numbers, it

follows from (49) and Lemma 8 that Ai(z) ≡ 0, 1 ≤ i ≤ m. A contradiction.
⋄ If aq = αi, 1 ≤ i ≤ m, then (49) can be rewritten as

m∑
j ̸=i,j=1

Aj(z)e
αjz

q

+
(
Ai(z)−Q1(z)∆cf

(k)(z)
)
eαiz

q

+A0(z)− fn(z) = 0,

where Q1(z) = p(z)eaq−1z
q−1+···+a1z+a0 . Applying Lemma 8 to the above equation, we can also obtain

Aj(z) ≡ 0, (1 ≤ j ≤ m, j ̸= i),

which is a contradiction. Therefore, we prove that ρ(f) ≥ ρ(h) ≥ q.

Next, when n ≥ 2, applying Remark 1 to (3), we obtain

nT (r, f) = nm(r, f) + nN(r, f)

= m

(
r,A0(z) +

m∑
i=1

Ai(z)e
αiz

q

− h(z)∆cf
(k)(z)

)
+ S(r, f)

≤ O(rq) +m(r, h) +m(r, f) + S(r, f)

≤ T (r, f) + T (r, h) +O(rq) + S(r, f).

Then, we get
(n− 1)T (r, f) ≤ T (r, h) +O(rq) + S(r, f).

Since n ≥ 2 and ρ(h) ≥ q, it follows that ρ(f) ≤ ρ(h). By the fact that ρ(f) ≥ ρ(h) ≥ q, one can deduce
ρ(f) = ρ(h). Then we complete the proof of Theorem 6.
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