
DALAT UNIVERSITY JOURNAL OF SCIENCE    Volume 14, Issue 3, 2024  3–11 

3 

CONDITIONS FOR GRAPHS ON n VERTICES WITH THE SUM 

OF DEGREES OF ANY TWO NONADJACENT VERTICES EQUAL 

TO n-2 TO BE A HAMILTONIAN GRAPH 

Do Nhu Ana*, Nguyen Quang Tuana 

aThe Faculty of Information Technology, Nha Trang University, Khanh Hoa, Vietnam 
*Corresponding author: Email: andn@ntu.edu.vn 

Article history 

Received: March 17th, 2022 

Received in revised form: June 11th, 2022 | Accepted: June 19th, 2022 

Available online: February 5th, 2024 

Abstract 

Let G  be an undirected simple graph on 3n   vertices with the degree sum of any two 

nonadjacent vertices in G  equal to 2n − . We determine the condition for G  to be a 

Hamiltonian graph. 

Keywords: Connected graph; Hamiltonian graph; Independent set; Regular graph; t-tough 

graph. 

 

 

 

 

 

 

 

 

 

DOI: https://doi.org/10.37569/DalatUniversity.14.3.1036(2024) 

Article type: (peer-reviewed) Full-length research article 

Copyright © 2024 The author(s).  

Licensing: This article is published under a CC BY-NC 4.0 license. 

mailto:andn@ntu.edu.vn
https://doi.org/10.37569/DalatUniversity.14.3.1036(2024)
https://creativecommons.org/licenses/by-nc/4.0/


DALAT UNIVERSITY JOURNAL OF SCIENCE [NATURAL SCIENCES AND TECHNOLOGY] 

4 

1. INTRODUCTION 

The concepts and symbols in this article are referenced from the Handbook of 

Combinatorics (Graham et al., 1995). Let ),( EVG =  be an undirected and single graph 

on n  vertices, where V or )(GV  is the vertex set and E  or )(GE  is the edge set of G . 

We use ||V  and || E  to denote the number of vertices and the number of edges of G . 

In G , the edge connecting two vertices u  and v  is denoted by ),( vu , the degree of 

vertex v  is denoted by )deg(v , and the minimum degree of the vertices is denoted by   or 

( )G . A graph on n  vertices is called complete and denoted by 
n

K  if its vertices have 

degree 1n − . A graph is called a k -regular graph if its vertices have degree k . A subset 

of the vertices in a graph is called independent if no two vertices in the set are adjacent. 

A maximum independent set is an independent set that is not a subset of any other 

independent set. The cardinality of a maximum independent set in G is denoted by )(G . 

A subset of the vertices in a graph is called a clique if any two of its vertices are adjacent. 

The graph ),( FWH =  is called a subgraph of ),( EVG =  if VW   and EF  . 

Let v  be a vertex of G ; we use vG −  to denote the subgraph obtained by deleting vertex 

v  and edges attached to v  from G . Likewise, if VB   then BG −  is a subgraph of 

G  obtained by deleting B  from G . A graph is connected if any two of its vertices are 

connected by a path. A component of G  is a maximal connected subgraph of G . The 

number of components of G  is denoted by )(G . In G , vertex v  is called a cut vertex 

if )()( vGG − , set VD   is called disconnecting if )()( DGG − , and the 

smallest size of a disconnecting set in G  is denoted by )(G . Graph G  is called 1-tough 

if ||)( BBG −  for every nonempty subset VB  . A path or circuit that includes every 

vertex of a graph is called a Hamiltonian path or circuit. A Hamiltonian graph is one that 

contains a Hamiltonian circuit. 

In the general case, recognizing whether a given graph is Hamiltonian or not is a 

difficult problem. Currently, several sufficient conditions are known for a graph to be 

Hamiltonian. Dirac (1952) has shown that if 2/)( nG  , then G  is a Hamiltonian graph. 

Ore (1960) has proved a more general result. If in G  the degree sum of any two 

nonadjacent vertices is at least n , denoted by nG )(2 , then G  is a Hamiltonian graph. 

Jung (1978) has shown that, if G  is a 1-tough graph, 11n , and 4)(2 − nG , then G  

is a Hamiltonian graph. An (2008, 2019) has proved that, if 7n  is an odd number, 

1)(2 −= nG , and 2/)1()(2 − nG , then G  is a Hamiltonian graph.  

In this paper, we extend results to graphs G  on n  vertices satisfying the condition 

2)(2 −= nG . First, we add the following concepts and notation. In G , a vertex of 

degree ( 1−n ) is called a total vertex, and the set of total vertices in G  is denoted by 
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)(GT , and }2)(,|)(|:{)( 2 −=== nGnGVGnG   is the set of graphs G  on 3n  

vertices with 2)(2 −= nG . 

An (2021) has proved the following results about the structure of graphs G  in )(nG . 

Proposition 1. Let 3n  be an odd number and )(nGG . Then G  is a 

disconnected graph (Figure 1). 

 

Figure 1. Disconnected graphs corresponding to δ = 0, 1, 2  in G(7)  

Proposition 2. Let 4n  be an even number, )(nGG , and S be an independent 

set in G . 

a) If 3|| S , the vertices of S  have degree 2/)2( −n  in G . 

b) If G  is a disconnected graph, G  has exactly two components. 

Proposition 3. Let 4n  be an even number and )(nGG . Then, 

a) 2/)2(|)(|0 − nGT  . 

b) 2/)2()(2 + nG . 

c) 2/)2()( += nG    2/)2(|)(| −= nGT . 

d) 2/)( nG =    0|)(| =GT  and G  is an 2/)2( −n -regular graph. 

Proposition 4. Let 6n   be an even number and )(nGG . Then,  

a) 2)( =G  if and only if G  is a disconnected graph. 

b) If 2/)2()(3 + nG , G  is a connected graph that contains k  total vertices 

and kn −  vertices of degree 2/)2( −= n , where 2/)2(|)(|0 −= nGTk  (Figures 2 and 3). 
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Figure 2. Connected graphs for = 3  and |T(G)|= 1,2,3  in G(8)  

 

Figure 3. 3-regular graphs with α(G)= 3  and α(G)= 4  in G(8)  

The following results of Bondy and Chvátal (1976), Erdös and Hobbs (1978), and 

Nash and Williams (1971) can be used to prove the results of this paper. 

Corollary 1 (Bondy-Chvátal). If G  is not a 1-tough graph, then G  is a non-

Hamiltonian graph. 

Corollary 2 (Nash-Williams). If )()( GG   , 2)( G , and 3/)2()( + nG , 

then G  is Hamiltonian. 

Corollary 3 (Gordon-Erdös-Hobbs). If 4n , 2)( G , nV 2|| = , and G  is an 

)1( −n -regular graph, then G  is a Hamiltonian graph. 

2. RESULTS 

From Corollaries 1, 2, and 3 and Propositions 1, 2, 3, and 4, we get the following 

results. 

Proposition 5. Let 3n   be an odd number and )(nGG . Then G  is a non-

Hamiltonian graph. 
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Proof.  

For every odd number 3n  and by Proposition 1, G  is a disconnected graph, 

and therefore G  is a non-Hamiltonian graph. 

Theorem 1. Let 4n   be an even number and )(nGG . If 2)( =G  or 

2/)2()( += nG , then G  is a non-Hamiltonian graph. 

Proof.  

We consider each of the following cases. For 2)( =G  then by Proposition 4a, G  

is disconnected, and therefore G  is a non-Hamiltonian graph. For 2/)2()( += nG  then 

by Proposition 3c, 2/)2(|)(| −= nGT , and by Proposition 4b, the vertices of )(\ GTV  

have degree 2/)2( −= n  in G . In addition, each vertex of )(\ GTV  must be adjacent 

to 2/)2( −n  total vertices in G ; therefore, )(\ GTV  is a maximum independent set in 

G  and |)(\|)( GTVG = |)(||| GTV −= 2/)2( −−= nn 2/)2( += n . Now, we have 

))(( GTG − )(G= 2/)2( += n 2/)2( − n |)(| GT= . This shows that G  is not a 1-

tough graph, and by Corollary 1, G  is a non-Hamiltonian graph. Theorem 1 is proved. 

Theorem 2. Let 6n  be an even number, )(nGG , and 2/)( nG = , then G  

is an 2/)2( −n -regular Hamiltonian graph. 

Proof.  

By Proposition 3d and 2/)( nG = , G  is an 2/)2( −n -regular graph.             (1) 

Now we will prove that if G  is an 2/)2( −n -regular graph, then 2)( G .        (2) 

Indeed, suppose otherwise; let 1)( =G  and Vw  be a cut vertex of G . Then, 

wG −  is a disconnected graph by the same argument as in the proof of Proposition 3b, 

wG −  has two components 1G  and 2G , and is denoted by 21 GGwG =− , where 1G  

and 2G  are two disjoint subgraphs of G , and vertex w  must be adjacent to the vertices 

of 1G  and 2G  in G . Note that the number of vertices of graph wG −  is 1|)(| −=− nwGV , 

which is an odd number. Without loss of generality, we may suppose that 

|)(|2/|)(| 21 GVnGV  . However, each vertex in 1G  has degree no less than 1− , so 

|)(|2/)2( 1GVn =−  . It follows that 2/|)(|2/)2( 1 nGVn − , and so 

=−= 2/)2(|)(| 1 nGV , i.e., 1G  is a complete graph K  and all vertices in 1G  must be 

adjacent to w . But vertex w  must also be adjacent to the vertices of 2G , and so 

= |)(|)deg( 1GVw , which contradicts the fact that G  is an 2/)2( −n -regular graph, 

therefore 2)( G . We get (2). 
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From (1) and (2) it is shown that graph G  satisfies the condition of Corollary 3, 

and therefore G  is a Hamiltonian graph. Hence, Theorem 2 is proved. 

Theorem 3. Let 8n  be an even number, )(nGG , and 2/)2()(3 − nG . 

If 04mod n , then G  is a Hamiltonian graph. 

If 04mod =n , then G  is Hamiltonian if and only if G  does not contain 2/nK . 

Proof.  

Since 2/)2()(3 − nG , by Proposition 4b graph G  is connected, G  

contains k  total vertices, and the remaining ( kn − ) vertices have degree 2/)2( −= n , 

where 2/)2(|)(|0 −= nGTk . 

Since 2/)2( −= n  and 2/)2()(3 − nG , we have  )(G .                         (3) 

For 04mod n . 

First, if 10n , 3/)2(2/)2( +− nn  and so 3/)2( + n .                           (4) 

Note that n  is an even number and 04mod n ; hence 2/)2( −= n  is an even 

number, and the total vertex has degree 1−n , an odd number. Therefore, |)(| GTk =  must 

be an even number in G . We consider the following cases: 0|)(| =GT  and 2|)(| GT . 

Case where 0|)(| =GT . By Proposition 4b, G  is an −− 2/)2(n regular connected 

graph, and hence 2)( G  by (2). This shows that graph G  satisfies the condition of 

Corollary 3; therefore, G  is a Hamiltonian graph. 

Case where 2|)(| GT . 

Obviously, |)(|)( GTG   and so 2)( G . From (3) and (4), it follows that graph 

G  satisfies the condition of Corollary 2, and therefore G  is a Hamiltonian graph. 

Thus, Theorem 3a is proved. 

For 04mod =n . 

We will consider each of the following cases: 0|)(| =GT , 1|)(| =GT , and 2|)(| GT . 

First, similar to the case 04mod n , we can easily prove that if 04mod =n  and 

0|)(| =GT , then 2/)2( −n -regular graph G  satisfies the condition of Corollary 3. If 
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04mod =n  and 2|)(| GT , then graph G  satisfies the condition of Corollary 2. In both 

cases above, we also get the result that G  is a Hamiltonian graph. 

Now, we are interested in the last case 1|)(| =GT  and suppose }{)( tGT = . 

By Proposition 4b and 1|)(| =GT , G  contains a total vertex t  and ( 1−n ) vertices 

of degree 2/)2( −= n . The two possibilities for the graph are 1)( =G  and 2)( G . 

• For 2)( G , and by (3) and (4), it follows that graph G  satisfies the 

condition of Corollary 2, and therefore G  is a Hamiltonian graph. 

• For 1)( =G , the total vertex t  is a cut vertex of G , and so G  is not a  

1-tough graph, and by Corollary 1, G  is a non-Hamiltonian graph.  

Finally, to complete the proof of Theorem 3b, we will show that for 04mod =n  

and 1|)(| =GT , 1)( =G  if and only if G  contains 2/nK . 

Suppose that 1)( =G . Then, the unique total vertex t  is a cut vertex in G , and 

tG −  is a )1( − -regular and disconnected graph. By Proposition 2b, tG −  has two 

components, 21 GGtG =− , where 1G  and 2G  are two disjoint subgraphs of G . 

Moreover, since 1|)(| −=− ntGV  is an odd number, without loss of generality, we may 

assume that |)(|2/|)(| 21 GVnGV  . However, the vertices of 1G  have degree )1( −  in 

tG − , so |)(| 1GV 2/)2( −= n . Hence, we get − 2/)2(n 2/|)(| 1 nGV   or 

2/)2(|)(| 1 −= nGV . This shows that each pair of vertices in 1G  must be adjacent. In other 

words, 1G  is a complete graph K  in tG − , and therefore G  contains 1+K  (or 2/nK ). 

Conversely, suppose that G  contains 1+K ; we will prove that 1)( =G . 

By G  contains 1+K , the total vertex t  must be a vertex of 1+K . Let 2G  be a 

subgraph of G  obtained from the vertices of )(\)( 1+KVGV  in G . Obviously, tG −  is 

a )1( − -regular graph and tG −  contains K . It follows that the vertices of K  are not 

adjacent to the vertices of 2G  in G ; therefore, tG −  is a disconnected graph and 

2GKtG =−  . This implies that 1)( =G  where the total vertex t  is a cut vertex of G . 
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Figure 4. A non-Hamiltonian graph G G(8)  for |T(G)|= 1  and κ(G)= 1  

This completes the proof of Theorem 3. 

Note that it is not difficult to show that 1)( =G  for 04mod =n . Theorem 3b is 

also true when 8=n . Figure 4 illustrates a non-Hamiltonian graph )8(GG  for 

1|)(| =GT  and 1)( =G . 

3. CONCLUSION 

From Proposition 5 and Theorems 1, 2, and 3, we have shown the condition that 

a simple graph on 3n  vertices with the degree sum of any two nonadjacent vertices in 

G  equal to an 2−n  graph is a Hamiltonian graph. 

For }2)(,|)(|:{)( 2 −=== nGnGVGnG   and )(nGG , if 3n  is an odd 

number, then G  is a family of disconnected non-Hamiltonian graphs 1+K  −−1nK , 

2/)3(...,,2,1,0 −= n . If 4n  is an even number and 2)( =G  or 2/)2()( += nG , 

G  is a non-Hamiltonian graph. Otherwise, if 6n  is an even number and 2/)( nG = , 

then G  is a Hamiltonian graph. If 8n  is an even number and  )(3 G  2/)2( −n , 

then G  is a Hamiltonian graph for; otherwise, graph G  is Hamiltonian if and only if G  

does not contain the complete graph 2/nK .  
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