
Embedded Self Organizing Systems (Vol 10. No 8. 2023) (pp.18-24)

18

Evaluation of Propeller Inspection Using Different

Deployment Strategies

Ghita Ikmel

Signals Systems & Components

Laboratory (LSSC)

Faculty of Science and Technology

University Sidi Mohamed Ben Abdellah

Fez, Morocco

ghita.ikmel@usmba.ac.ma

Mohamed Salim Harras

Department of Computer Engineering

Chemnitz University of Technology

Chemnitz, Germany

mohamed-salim.harras@informatik.tu-

chemnitz.de

Najiba El Amrani El Idrissi

Signals Systems & Components

Laboratory (LSSC)

Faculty of Science and Technology

University Sidi Mohamed Ben Abdellah

Fez, Morocco

najiba.elamrani@usmba.ac.ma

Wolfram Hardt

Department of Computer Engineering

Chemnitz University of Technology

Chemnitz, Germany

wolfram.hardt@informatik.tu-

chemnitz.de

Abstract— In recent years, the use of Unmanned Aerial

Vehicles (UAVs) for various applications has increased

significantly. Among these applications, the inspection of

infrastructures using UAVs has become a prominent area of

research. This paper evaluates the efficiency of the YOLOv5

algorithm for propeller inspection. The algorithm's deployment

across various platforms such as PC, Google Colab, and Jetson

Nano is examined, with a focus on different deployment formats

like PyTorch, ONNX, TensorFlow Lite, and others. The study

highlights the often-overlooked importance of the deployment

phase in the development of AI models and underscores its

significance for the practical application of AI in real-world

scenarios.

Keywords— Computer vision, algorithm deployment, propeller

inspection, Deployment strategies, efficiency improvement

I. INTRODUCTION

Artificial Intelligence (AI) has changed how we use
information quickly and effectively. AI uses special
algorithms and learning methods to handle a lot of data fast,
giving us new insights instantly [1]. This is useful in many
areas, like industrial quality inspections and autonomous
driving, where AI helps make quick and smart decisions by
understanding complex situations fast and adapting to
changes.

The real-time capabilities of AI extend beyond data
analysis, encompassing applications like natural language
processing, computer vision, and speech recognition [2]. This
makes devices like self-driving cars and smart systems
respond immediately to what we say or do, making our
experience with them smooth and quick [3]. As AI grows, its
fast response will become even more important in different
industries. It will help create systems that can quickly adjust
to our fast-changing world.

Putting AI models into use is very important for bringing
AI into real-life uses, and there are different ways to do this.
Using containerization, like with Docker, packages the model
so it works the same in different places [4]. This makes it
easier to use, allows it to handle more work, and uses
resources well. Serverless computing, like with AWS
Lambda, removes the need to manage the infrastructure. It
adjusts the resources needed based on how much it's used and
is cost-effective [5]. RESTful APIs let different applications
talk to the AI model easily through standard internet requests.
Edge computing puts models closer to where data is collected,
like in IoT devices or local servers, which makes response
times quicker, crucial for things like IoT and self-driving cars
[6]. These methods help AI respond quickly in real scenarios,
improving things like chatbots, recommendation systems, and
fraud detection by making AI models give fast and efficient
predictions.

Fig. 1. UAV propeller inspection using YOLOv5 model [7]

Ghita Ikmel et al. ESS (Vol 10. No 8. 2023) (pp.18-24)

19

Propeller inspection is at the core of our exploration. Our
research builds upon this foundation and focuses on the
effectiveness of model deployment techniques. By leveraging
the pre-trained weights from the research [7], which were
trained with an active learning strategy [8], we aim to enhance
the real-time detection capabilities of YOLOv5, making the
model faster in propeller inspection scenarios (Fig. 1).

In the next sections, we will talk more about how we put
the model to use and its effects on quick AI responses. We will
evaluate our approach to using YOLOv5 for inspecting
propellers, looking at how using pre-developed techniques can
make the model better and faster in this specific use. Our goal
is to explore different ways to use the model and see how they
affect its performance, hoping to improve AI technologies in
the important area of propeller inspection. The paper is
structured to first discuss the different deployment approaches
and their current challenges followed by an in-depth analysis
of our proposed methodology and concluding with a
comprehensive evaluation of our approach's effectiveness in
the use case of propeller inspection.

II. LITERATURE REVIEW

Checking and monitoring propellers is very important for
keeping airplanes and drones (Unmanned Aerial Vehicles or
UAVs) safe and working well. In this part of our study, we
look at two main areas of recent research. First, we discuss
different methods used to inspect propellers. There are three
types: methods based on data, sound, and vision. Next, we
explore deployment strategies, especially in computer vision.
This means looking at the latest developments and challenges.
By studying these two parts, we want to understand how new
technologies like machine learning and practical applications
come together. This is important for making these inspections
more effective and reliable, leading to safer and more
dependable flying.

III. TYPES OF PROPELLER INSPECTION

A. Data-Based Inspection:

Data-based propeller inspection involves the application
of data analysis techniques to assess the condition and
performance of propellers. Methods such as time series
analysis, machine learning, and artificial intelligence are
applied to data generated by onboard sensors. This approach
enables continuous monitoring and early detection of any
anomalies [9][22]. However, this type of inspection requires
the usage of sensors on the UAV.

B. Audio-Based Inspection:

Audio-based inspection focuses on analyzing sounds
emitted by propellers. Advanced signal processing and
machine learning techniques are employed to identify
characteristic sound patterns. This can provide insights into
potential mechanical issues or variations in performance,
contributing to preventive maintenance [10]. These methods
are able to detect from light to severe cracks on the propeller
but are very sensitive to noise. The sensors used for these
methods can either be mounted on the UAV [21] or placed in
an external testing environment [23].

C. Vision-Based Inspection:

Vision-based inspection relies on the use of cameras and
computer vision techniques to visually assess the condition of

propellers. Deep learning models, such as YOLOv5, can be
deployed for real-time anomaly detection. This approach
offers a detailed evaluation of propeller structure and potential
damages [11]. It is also able to detect failures or defects on the
propeller only by placing cameras in an external testing
environment facing the propeller [8]. Such advancements
could lead to a new era of aeronautic maintenance where
inspections are more thorough, less intrusive, and significantly
more efficient.

IV. MODEL DEPLOYMENT

Model deployment, particularly in computer vision, is key
for models to work efficiently in real time on different
platforms. There are various ways to deploy models, like
PyTorch, ONNX, OpenVINO, and TensorRT. As shown in
TABLE I, these methods help set up an environment where AI
models can run in real time. Some methods are better for cloud
computing, while others are good for in-device use, like
TensorFlow Lite. Choosing the best method depends on
factors like how much computing power is available, how
quickly the model needs to respond, and the specific
conditions where it will be used.

TABLE I. SUMMARY OF YOLOV5 MODEL DEPLOYMENT FORMATS

Deployment Format Description

PyTorch [13]
Flexible deep learning framework with

dynamic tensors, GPU support, and autograd.

OpenVINO [14]
Intel-developed toolkit for optimizing and

deploying models on diverse hardware.

TorchScript [15]

PyTorch feature converting models into a

portable format for cross-platform

deployment.

ONNX [16]
Interoperable file format for representing

models independently of the framework.

TensorFlow Lite [17]
Lightweight TensorFlow version for mobile

and embedded systems with optimized

features.

TensorRT [18]
NVIDIA library for accelerating deep learning

model deployment on NVIDIA GPUs.

Furthermore, the integration of advanced deployment
techniques, such as edge computing, could further reduce
latency and increase responsiveness, particularly in
environments where quick decision-making is crucial. This
advancement is particularly relevant in scenarios where every
millisecond counts, such as in autonomous vehicle navigation
or real-time monitoring of critical infrastructure.

As shown in Fig. 2, the choice of the deployment strategy
affects the overall performance of the model. A comparison
between four different neural networks shows that OpenVINO
outperforms standard formats such as Pytorch in terms of
inference latency. The study [19] concludes that the model’s

Ghita Ikmel et al. ESS (Vol 10. No 8. 2023) (pp.18-24)

20

speed can be optimized by adopting an OpenVINO-based
deployment strategy.

The literature demonstrates growing interest in the
deployment phase, emphasizing its impact on the practicality
of computer vision algorithms. Special attention is given to
enhancing the real-time capabilities of deployed models,
contributing to more effective propeller monitoring and
proactive failure prevention.

V. EXPERIMENTAL SETUP

This section, we will provide a detailed description of the
three platforms on which we deployed the YOLOv5 model:
PC, Google Colab, and Jetson Nano [12]. Each platform has
specific hardware, resources, and computational power
characteristics, which influence the performance and results
achieved during model deployment TABLE II).

In order to evaluate the efficiency of the AI model, the
flowchart in Fig. 3 was adopted to provide a concise and clear
depiction of the entire process, from training the model to
deploying it the different platforms. The cycle also
incorporates a deployment evaluation, with a focus on
performance metrics, conducted through Weights & Biases
[20].

At the end of this process, we encounter feedback, which
is essential for continuously refining and improving our
models. It plays a crucial role in our optimization and
adaptation efforts to address real-world challenges more
effectively. The Pytorch model from [8] and a recorded video,
showcasing UAV propellers, are used for the adopted
experiment.

TABLE II. COMPARISON OF COMPUTING PLATFORMS

Platform Processor RAM GPU

Personal
Computer

Intel Core i5-7200U 8 GB Not specified

Google Colab
Intel(R) Xeon(R)

Platinum 8259CL
13 GB NVIDIA T4

Jetson Nano NVIDIA Tegra X1 4 GB Not specified

VI. EXPERIMENTAL METHODOLOGY

In this section, we will provide a detailed description of
the experimental methodology we followed to evaluate the
performance of the YOLOv5 model on different platforms.

The evaluation process of deployment strategies, shown in
Fig. 4, begins with the 'Selection of Deployment Strategy',
where various deployment formats like PyTorch, TensorFlow
Lite, and TensorRT are assessed for their suitability in
propeller inspection. This crucial phase considers factors such
as real-time processing needs and hardware compatibility.

Following this, the 'Definition of Evaluation Criteria' stage
establishes benchmarks to evaluate each strategy's
performance, focusing on aspects like computational
efficiency and scalability. The subsequent 'Testing and Data
Collection' phase involves rigorous testing of each strategy to
gather empirical data on their performance. Finally, in the
'Comparative Analysis' stage, this data is meticulously
analysed, comparing the strategies against the established
criteria to discern the most effective deployment strategy that
balances technical prowess with practical applicability in the
propeller inspection use case.

To understand how the models perform under real-world
conditions, we conducted evaluations using some key metrics.
These metrics include a time analysis that involve three
aspects: Inference, Pre-processing, Non-Maximum
Suppression (NMS). In addition, a thorough analysis of the
resource management aspect is also taken into consideration.

• Inference Time: Inference time measures the speed at
which the model can detect objects in an image.
Measuring this time ensures that the model can operate
in real-time or according to the requirements of your
application.

• Pre-processing Time: Refers to the steps and
techniques used to prepare, clean, and transform raw
data into more suitable and actionable data before
using it in an analysis or modeling task.

• Non-Maximum Suppression (NMS) Time: This post-
processing step is performed after object detections
have been generated by a detection algorithm. NMS
aims to reduce the number of detections by removing
strongly overlapping ones, retaining only the most
reliable detections.

Fig. 2. Average inference latency (in milliseconds) for 100 runs after 15

warm-up iterations on an 11th Gen Intel(R) Core (TM) i7-1185G7 @

3.00GHz [19]

36.6

101.5

34.3

277.8

21.2

82

16

184.2

0

50

100

150

200

250

300

ResNet50 VGG16 Inceptionv3 YOLOv7A
v
er

ag
e

In
fe

re
n
ce

 L
at

en
cy

 (
m

s)

Pytorch Models

FP32 performance of OpenVINO vs Pytorch
Pytorch OpenVINO

Fig. 3. Evaluation Process Flowchart

Model

Deployment

Collab

Jetson

Nano

PC

Model

Evaluation

Model

Training
Feedback

Deployment Evaluation

Fig. 4. Workflow of YOLOv5 Model Deployment and Performance

Evaluation

Selection of
Deployment
Strategy

Definition of
Evaluation
Criteria

Testing and Data
Collection

Comparative
Analysis

Ghita Ikmel et al. ESS (Vol 10. No 8. 2023) (pp.18-24)

21

• Resource management: Each platform may have its
own specific metrics. For example, we evaluated the
usage of hardware resources such as memory and the
processor.

VII. RESULTS AND DISCUSSIONS

In this part, we talk about the results we got from using the
YOLOv5 model on different systems. We focused on how
well it worked, how fast it made predictions, and how it
managed resources. For our test, we used a 30-second video
taken by a drone controlled by our university. We ran the
models on this video to see how they performed.

A. Deployment Results on CPU

1) Deployment Results on PC
In TABLE III, we show the results of using YOLOv5 on a

personal computer. We looked at how long it takes to prepare
the data (pre-processing), make predictions (inference), and
do non-maximum suppression (NMS) with different formats.
It can be noticed that the inference time consumes most of the
time, with the highest time found using Tensorflow Light and
the lowest using Openvino.

TABLE III. DEPLOYMENT RESULTS ON PC

Formats
Pre-processing

[ms]

Inference

[ms]

NMS per image

[ms]

.pt 2 228.2 0.6

.onnx 3 260.7 1.1

.tflite 2.6 450.1 0.9

.torchscript 2.6 375 0.8

.openvino 2.4 213 0.6

Fig. 5 gives a detailed view of how much work each part
of the computer's processor (CPU) is doing, shown in the
'System CPU Utilization' chart. This chart helps us see how
each part of the CPU is contributing and where we might make
improvements or find stress points that could affect
performance.

CPU utilization differs from one deployment strategy to
another. In what concerns the desktop test environment, it can
be noticed that among the four cores of the CPU, the model is
able to distribute the task in a fair manner. However, the most
optimal results is characterized by its ability to balance high
performance with efficient resource management. In other
words, the optimal model demonstrates a harmonious
distribution of workload across all four cores. In this case, we
found that the Torchscript and Openvino perfom well at
balancing the load between the different cores of the CPU.

The Fig. 8 presents an overview of System Memory
Utilization (%), showcasing how the computer's system
memory is utilized over time.

In analyzing the results of TABLE IV, we see that the
.onnx format takes the longest to prepare data (3 ms), followed
closely by .tflite and .torchscript (both 2.6 ms). Other formats
have pre-processing times between 2 and 2.4 ms. For making
predictions, .tflite takes the longest (450.1 ms), followed by
.torchscript (375 ms), .onnx (260.7 ms), .openvino (213 ms),
and finally .pt (228.2 ms). The NMS time for most formats is
about the same, around 0.8 to 1.1 ms, except for .pt and
.openvino, which are faster at 0.6 ms.

Looking at the CPU and memory usage charts, we see how
YOLOv5 performs on a PC. It uses different CPU cores
effectively. Each framework in the chart is shown with four
values, for the four CPU cores. For example, Torchscript uses
about 50% of the CPU cores, more than other frameworks.
TFLite uses about 30% of the CPU, but it doesn't spread the
workload evenly across the cores.

2) Deployment Results on Jeston Nano
TABLE IV displays deployment results on Jetson Nano,

including pre-processing, inference, and NMS times.
Examining the data, it's notable that the .pt format
demonstrates relatively better performance in terms of
inference time and NMS per image. On the other hand, the
.tflite format exhibits the longest time for inference, while the
.torchscript format also records higher inference times. The
.openvino format stands out as one of the fastest for inference.

TABLE IV. DEPLOYMENT RESULTS ON NVIDIA JETSON NANO

Formats
Pre-processing

[ms]

Inference

[ms]

NMS per image

[ms]

.pt 3.9 596.2 2.1

.onnx 7.3 767.0 3.7

.tflite 5.3 2093.9 2.4

.torchscript 5.9 1015.0 3.6

.openvino 4.7 887.6 2.3

Fig. 5. System memory utilization [%]

Fig. 6. System CPU utilization (per core) [%]

Fig. 7. System memory utilization [%]

Ghita Ikmel et al. ESS (Vol 10. No 8. 2023) (pp.18-24)

22

Fig. 6 and Fig. 7 show how much of the CPU and memory
the models use during the tests. Different models use the CPU
differently. For example, the ONNX model uses about 20% of
the CPU cores, while TFLite uses about 10%. However,
TFLite doesn't use the CPU cores as efficiently, which could
be improved. The .Openvino model uses the most system
memory, followed by the .Onnx model. This might be because
the .Openvino model (27.3MB) is larger than other formats
like .pt (13.7MB), so it needs more memory.

When we compare how each model uses the CPU and
memory, torchscript seems to be the most efficient. It uses
CPU resources well, which helps it perform better overall.
This fits with the idea of AI models that are efficient in using
resources, specifically in the context of edge devices.

B. Deployment Results on GPU

TABLE V presents deployment results of how we used
YOLOv5 on Google Colab. It includes times for getting the
data ready (pre-processing), making predictions (inference),
and non-maximum suppression (NMS).

The Fig. 9 provides a visual overview of the graphics
processing unit (GPU) temperature over time. On the other
hand, the Fig. 10 provides a visual representation of how much
memory the GPU uses as it works on different tasks. This
graph, put together by Weights and Biases, helps us see how
the GPU's memory use changes, which tells us about how
efficiently the memory is being used. The Fig. 11 represents
the workload that the graphics processor (GPU) supports in
relation to its maximum capacity.

In our study of how YOLOv5 works on Google Colab, we
noticed some interesting differences between the formats
used. When we look at the time it takes to get data ready (pre-
processing), we see that it's pretty similar across most formats,
between 0.8 to 1 ms.

TABLE V. DEPLOYMENT RESULTS ON GOOGLE COLLAB

Formats
Pre-processing

[ms]

Inference

[ms]

NMS per image

[ms]

.pt 0.8 11.6 2.1

.onnx 1.0 17.3 1.8

.tflite 0.9 343.8 1.5

.torchscript 1.0 12.4 1.6

.openvino 0.8 185 1.5

.engine 1.0 10.6 2.1

If we look at the time for making predictions (inference),
the .tflite format takes the longest, about 343.8 ms. This is

followed by .openvino (185 ms), .onnx (17.3 ms), .Torchscript
(12.4 ms), .pt (11.6 ms), and .engine (10.6 ms). An interesting
point is that the “.pt” and “*.engine” formats take the longest
time for NMS per image, about 2.1 ms, which is slightly more
than the other formats.

We also looked at how the GPU temperature changes with
different models. We found that the longer a model takes to
make predictions, the hotter the GPU gets. For example, the
"Engine" model, which has a shorter prediction time, only
makes the GPU reach a maximum of 37 degrees Celsius. On
the other hand, the "Tflite" model, with the longest prediction
time, causes the GPU temperature to go from 42 to 65 degrees
Celsius.

Our study of GPU memory usage and GPU efficiency
shows an interesting pattern. We noticed that when a model
uses more memory, it usually takes less time to make
predictions. For instance, the 'Engine' model uses the most
memory, followed by the 'ONNX' and 'PyTorch' models.
However, the 'Tflite' model, even though it takes the longest
to make predictions, uses a steady amount of memory.

When we look at how efficiently the GPU is used, there's
a big difference between models. The 'Engine' model, even
though it uses a lot of memory, is quite good at using the GPU.
It's followed closely by the 'Torch' and 'PyTorch' models in
terms of efficiency. In contrast, the 'Tflite' and 'OpenVINO'
models don't use the GPU much, as shown by their low
utilization percentages, like 0.4%. This helps explain the
performance results we see in the TABLE V.

Fig. 8. System CPU utilization (per core) [%]

Ghita Ikmel et al. ESS (Vol 10. No 8. 2023) (pp.18-24)

23

C. Summary of Findings

To conclude, TABLE VI presents how fast YOLOv5
makes predictions (inference times in milliseconds) on
different systems, like a local PC, Google Colab, and Jetson
Nano.

The results obtained from our deployment of YOLOv5 on
various platforms reflect significant improvements in how
well and quickly the model works on these platforms. For
example, the original model (.pt) used to take 228.2 ms to
make predictions on a local PC, but on Google Colab, it's
much faster at 11.6ms. This shows that the deployment
strategy highly reflects on the model prediction speed.

This substantial improvement in inference time, especially
on Google Colab, signifies the adaptability of our optimization
strategies to cloud-based platforms. The transition from a local
PC to Google Colab, with its GPU infrastructure, resulted in a
noticeable enhancement in performance. Our model's ability
to effectively leverage available hardware resources translated
into a smoother and faster inference process.

TABLE VI. DEPLOYMENT RESULTS

Formats
PC

(CPU)
Google Colab

(GPU)
Jetson Nano

(CPU)

.pt 228.2 11.6 596.2

.onnx 260.7 17.3 767.0

.tflite 450.1 343.8 2093.9

.torchscript 375 12.4 1015.0

.openvino 213 185 887.6

.engine - 10.6 -

Furthermore, comparing deployment formats on different
hardware, such as the transition from a CPU device to a GPU
device, highlights the versatility of YOLOv5. For example,
the TensorRT model on a GPU device achieved an impressive
inference time of around 10,5 ms, demonstrating the
algorithm's efficiency in more powerful hardware
environments.

Apart from being faster, our results also show how well
the model uses CPU cores. When we looked at how the CPU
was used on a local PC, we saw different ways each
framework used the CPU cores. For example, ONNX used
20% of the CPU cores effectively, while TFLite used about
10% but not as evenly. This suggests we could improve how
resources are allocated, especially for use on edge devices.

By making our original model more efficient, we've made
it more relevant. The faster response time helps with real-time
monitoring. Also, using energy more efficiently makes the
system more sustainable, which is important when integrating
AI solutions.

Lastly, using CPU cores efficiently is key for real-time
performance. Our results show how important it is to choose
the right format for the hardware we're using. This is
especially true for environmental monitoring, as using
resources efficiently helps the AI model work better in real-
world situations.

VIII. CONCLUSION

In conclusion, this study delves into the deployment and
performance analysis of the YOLOv5 real-time object

detection model on diverse platforms, namely a Personal
Computer (PC), Google Colab, and Jetson Nano. The
exploration encompasses a comprehensive evaluation of the
model's efficiency, execution time, and resource utilization
across these platforms, shedding light on the implications for
sustainable environmental monitoring.

The results showcase the adaptability and versatility of the
YOLOv5 model across different hardware environments.
Notably, the optimization efforts have led to a substantial
reduction in inference time, demonstrating the model's
efficiency in responding to environmental events, a crucial
aspect for real-time monitoring applications. The transition
from a local unit to the cloud, leveraging GPU infrastructure,
significantly enhances performance, emphasizing the
importance of hardware resources in model deployment.

Furthermore, the study highlights the significance of
effective CPU core utilization, especially in the context of
sustainable environmental monitoring. Different deployment
formats exhibit distinct behaviors in distributing the workload
among CPU cores, emphasizing the importance of choosing
deployment strategies that align with hardware characteristics
for optimal and sustainable AI deployments.

The findings underscore the broader implications for AI-
based solutions in sustainable environmental monitoring.

Fig. 9. GPU temperature [C0]

Fig. 10. GPU memory Allocated Bytes

Fig. 11. GPU utilization [%]

Ghita Ikmel et al. ESS (Vol 10. No 8. 2023) (pp.18-24)

24

Beyond inference times, considerations of resource
distribution and utilization are crucial for achieving optimal
performance and adaptability in real-world applications. As
the world grapples with environmental challenges, the
integration of efficient and sustainable AI solutions becomes
imperative, and this study contributes valuable insights to this
evolving field.

ACKNOWLEDGMENTS

I would like to express our heartfelt gratitude to the
inviting faculty for their support and encouragement in
conducting this research. Their unwavering commitment to
fostering academic and research initiatives has been
instrumental in the success of this project.

We would also like to extend our appreciation to SAXEED
program for their generous financial support. Their investment
in our research has allowed us to explore innovative solutions
and contribute to the field of environmental monitoring.
Thank you for believing in the importance of our work and for
making this research endeavor possible.

REFERENCES

[1] S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach,"
Pearson, 2010.

[2] D. Jurafsky and J. H. Martin, "Speech and Language Processing," Draft
of 3rd edition, 2020.

[3] I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to Sequence Learning
with Neural Networks," in Advances in Neural Information Processing
Systems.

[4] Docker. [Online]. Available: https://www.docker.com/

[5] AWS Lambda. [Online]. Available: https://aws.amazon.com/lambda/

[6] W. Shi et al., "Edge Computing: Vision and Challenges," IEEE Internet
of Things Journal, 2016.

[7] S. Saleh, B. Battseren, M. S. Harras, A. Chaudhry, and W. Hardt,
“Toward Accurate and Efficient Burn Marks Inspection for MAV
Using Active Learning.”

[8] M. S. Harras, S. Saleh, B. Battseren, W. Hardt, "Vision-based Propeller
Damage Inspection Using Machine Learning."

[9] J. Smith et al., "Data-based Propeller Inspection Techniques: A Review,"
Journal of Propulsion Technology, vol. 25, no. 3, pp. 123-140, 2021.

[10] A. Johnson et al., "Audio-based Inspection for Propeller Anomaly
Detection: A Comprehensive Survey," Acoustics in Transportation,
vol. 15, no. 2, pp. 87-104, 2022.

[11] C. Brown et al., "Vision-based Propeller Inspection Using Deep
Learning Models," IEEE Transactions on Industrial Electronics, vol.
48, no. 5, pp. 2311-2325, 2020.

[12] K. Miller et al., "Optimizing Deployment for Real-time Propeller
Inspection: A Comparative Study of PyTorch, ONNX, and TensorRT,"
Proceedings of the IEEE International Conference on Robotics and
Automation, 2019.

[13] PyTorch. [Online]. Available: https://pytorch.org/

[14] Intel. OpenVINO Toolkit [Online]. Available:
https://software.intel.com/content/www/us/en/develop/tools/openvino
-toolkit.html

[15] PyTorch. TorchScript [Online]. Available:
https://pytorch.org/docs/stable/jit.html

[16] ONNX [Online]. Available: https://onnx.ai/

[17] TensorFlow. TensorFlow Lite [Online]. Available:
https://www.tensorflow.org/lite

[18] NVIDIA. TensorRT [Online]. Available:
https://developer.nvidia.com/tensorrt

[19] S. J. Kershaw Vishnudas Thaniel S. Devang Aggarwal, Natalie, “Faster
inference for PyTorch models with OpenVINO Integration with Torch-
ORT,” Microsoft Open Source Blog, Dec. 01, 2022.

[20] L. Biewald, “Experiment tracking with weights and biases”, 2020,
software available from wandb.com. [Online]. Available:
https://www.wandb.com

[21] G. Iannace, G. Ciaburro, and A. Trematerra, “Fault diagnosis for UAV
blades using artificial neural network,” Robotics, vol. 8, no. 3, 2019.

[22] A. Joshuva and V. Sugumaran, “Wind Turbine Blade Fault Diagnosis
Using Vibration Signals through Decision Tree Algorithm,” Indian J.
Sci. Technol., vol. 9, no. 48, 2016.

[23] A. Altinors, F. Yol, and O. Yaman, “A sound based method for fault
detection with statistical feature extraction in UAV motors,” Appl.
Acoust., vol. 183, 2021.

https://www.docker.com/
https://aws.amazon.com/lambda/
https://pytorch.org/
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://pytorch.org/docs/stable/jit.html
https://onnx.ai/
https://www.tensorflow.org/lite
https://developer.nvidia.com/tensorrt

