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Abstract— In recent years, the use of Unmanned Aerial 

Vehicles (UAVs) for various applications has increased 

significantly. Among these applications, the inspection of 

infrastructures using UAVs has become a prominent area of 

research. This paper evaluates the efficiency of the YOLOv5 

algorithm for propeller inspection. The algorithm's deployment 

across various platforms such as PC, Google Colab, and Jetson 

Nano is examined, with a focus on different deployment formats 

like PyTorch, ONNX, TensorFlow Lite, and others. The study 

highlights the often-overlooked importance of the deployment 

phase in the development of AI models and underscores its 

significance for the practical application of AI in real-world 

scenarios. 

Keywords— Computer vision, algorithm deployment, propeller 

inspection, Deployment strategies, efficiency improvement 

I. INTRODUCTION 

Artificial Intelligence (AI) has changed how we use 
information quickly and effectively. AI uses special 
algorithms and learning methods to handle a lot of data fast, 
giving us new insights instantly [1]. This is useful in many 
areas, like industrial quality inspections and autonomous 
driving, where AI helps make quick and smart decisions by 
understanding complex situations fast and adapting to 
changes. 

The real-time capabilities of AI extend beyond data 
analysis, encompassing applications like natural language 
processing, computer vision, and speech recognition [2]. This 
makes devices like self-driving cars and smart systems 
respond immediately to what we say or do, making our 
experience with them smooth and quick [3]. As AI grows, its 
fast response will become even more important in different 
industries. It will help create systems that can quickly adjust 
to our fast-changing world. 

Putting AI models into use is very important for bringing 
AI into real-life uses, and there are different ways to do this. 
Using containerization, like with Docker, packages the model 
so it works the same in different places [4]. This makes it 
easier to use, allows it to handle more work, and uses 
resources well. Serverless computing, like with AWS 
Lambda, removes the need to manage the infrastructure. It 
adjusts the resources needed based on how much it's used and 
is cost-effective [5]. RESTful APIs let different applications 
talk to the AI model easily through standard internet requests. 
Edge computing puts models closer to where data is collected, 
like in IoT devices or local servers, which makes response 
times quicker, crucial for things like IoT and self-driving cars 
[6]. These methods help AI respond quickly in real scenarios, 
improving things like chatbots, recommendation systems, and 
fraud detection by making AI models give fast and efficient 
predictions. 

 

 

Fig. 1. UAV propeller inspection using YOLOv5 model [7] 
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Propeller inspection is at the core of our exploration. Our 
research builds upon this foundation and focuses on the 
effectiveness of model deployment techniques. By leveraging 
the pre-trained weights from the research [7], which were 
trained with an active learning strategy [8], we aim to enhance 
the real-time detection capabilities of YOLOv5, making the 
model faster in propeller inspection scenarios (Fig. 1). 

In the next sections, we will talk more about how we put 
the model to use and its effects on quick AI responses. We will 
evaluate our approach to using YOLOv5 for inspecting 
propellers, looking at how using pre-developed techniques can 
make the model better and faster in this specific use. Our goal 
is to explore different ways to use the model and see how they 
affect its performance, hoping to improve AI technologies in 
the important area of propeller inspection. The paper is 
structured to first discuss the different deployment approaches 
and their current challenges followed by an in-depth analysis 
of our proposed methodology and concluding with a 
comprehensive evaluation of our approach's effectiveness in 
the use case of propeller inspection. 

II. LITERATURE REVIEW 

Checking and monitoring propellers is very important for 
keeping airplanes and drones (Unmanned Aerial Vehicles or 
UAVs) safe and working well. In this part of our study, we 
look at two main areas of recent research. First, we discuss 
different methods used to inspect propellers. There are three 
types: methods based on data, sound, and vision. Next, we 
explore deployment strategies, especially in computer vision. 
This means looking at the latest developments and challenges. 
By studying these two parts, we want to understand how new 
technologies like machine learning and practical applications 
come together. This is important for making these inspections 
more effective and reliable, leading to safer and more 
dependable flying. 

III. TYPES OF PROPELLER INSPECTION 

A. Data-Based Inspection: 

Data-based propeller inspection involves the application 
of data analysis techniques to assess the condition and 
performance of propellers. Methods such as time series 
analysis, machine learning, and artificial intelligence are 
applied to data generated by onboard sensors. This approach 
enables continuous monitoring and early detection of any 
anomalies [9][22]. However, this type of inspection requires 
the usage of sensors on the UAV. 

B. Audio-Based Inspection: 

Audio-based inspection focuses on analyzing sounds 
emitted by propellers. Advanced signal processing and 
machine learning techniques are employed to identify 
characteristic sound patterns. This can provide insights into 
potential mechanical issues or variations in performance, 
contributing to preventive maintenance [10]. These methods 
are able to detect from light to severe cracks on the propeller 
but are very sensitive to noise. The sensors used for these 
methods can either be mounted on the UAV [21] or placed in 
an external testing environment [23]. 

C. Vision-Based Inspection: 

Vision-based inspection relies on the use of cameras and 
computer vision techniques to visually assess the condition of 

propellers. Deep learning models, such as YOLOv5, can be 
deployed for real-time anomaly detection. This approach 
offers a detailed evaluation of propeller structure and potential 
damages [11]. It is also able to detect failures or defects on the 
propeller only by placing cameras in an external testing 
environment facing the propeller [8]. Such advancements 
could lead to a new era of aeronautic maintenance where 
inspections are more thorough, less intrusive, and significantly 
more efficient. 

IV. MODEL DEPLOYMENT  

Model deployment, particularly in computer vision, is key 
for models to work efficiently in real time on different 
platforms. There are various ways to deploy models, like 
PyTorch, ONNX, OpenVINO, and TensorRT. As shown in 
TABLE I, these methods help set up an environment where AI 
models can run in real time. Some methods are better for cloud 
computing, while others are good for in-device use, like 
TensorFlow Lite. Choosing the best method depends on 
factors like how much computing power is available, how 
quickly the model needs to respond, and the specific 
conditions where it will be used. 

TABLE I.  SUMMARY OF YOLOV5 MODEL DEPLOYMENT FORMATS 

Deployment Format Description 

PyTorch [13] 
Flexible deep learning framework with 

dynamic tensors, GPU support, and autograd. 

OpenVINO [14] 
Intel-developed toolkit for optimizing and 

deploying models on diverse hardware. 

TorchScript [15] 

PyTorch feature converting models into a 

portable format for cross-platform 

deployment. 

ONNX [16] 
Interoperable file format for representing 

models independently of the framework. 

TensorFlow Lite [17] 
Lightweight TensorFlow version for mobile 

and embedded systems with optimized 

features. 

TensorRT [18] 
NVIDIA library for accelerating deep learning 

model deployment on NVIDIA GPUs. 

 

Furthermore, the integration of advanced deployment 
techniques, such as edge computing, could further reduce 
latency and increase responsiveness, particularly in 
environments where quick decision-making is crucial. This 
advancement is particularly relevant in scenarios where every 
millisecond counts, such as in autonomous vehicle navigation 
or real-time monitoring of critical infrastructure. 

As shown in Fig. 2, the choice of the deployment strategy 
affects the overall performance of the model. A comparison 
between four different neural networks shows that OpenVINO 
outperforms standard formats such as Pytorch in terms of 
inference latency. The study [19] concludes that the model’s 
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speed can be optimized by adopting an OpenVINO-based 
deployment strategy.  

The literature demonstrates growing interest in the 
deployment phase, emphasizing its impact on the practicality 
of computer vision algorithms. Special attention is given to 
enhancing the real-time capabilities of deployed models, 
contributing to more effective propeller monitoring and 
proactive failure prevention.  

V. EXPERIMENTAL SETUP 

This section, we will provide a detailed description of the 
three platforms on which we deployed the YOLOv5 model: 
PC, Google Colab, and Jetson Nano [12]. Each platform has 
specific hardware, resources, and computational power 
characteristics, which influence the performance and results 
achieved during model deployment TABLE II). 

In order to evaluate the efficiency of the AI model, the 
flowchart in Fig. 3 was adopted to provide a concise and clear 
depiction of the entire process, from training the model to 
deploying it the different platforms. The cycle also 
incorporates a deployment evaluation, with a focus on 
performance metrics, conducted through Weights & Biases 
[20]. 

At the end of this process, we encounter feedback, which 
is essential for continuously refining and improving our 
models. It plays a crucial role in our optimization and 
adaptation efforts to address real-world challenges more 
effectively. The Pytorch model from [8] and a recorded video, 
showcasing UAV propellers, are used for the adopted 
experiment. 

TABLE II.  COMPARISON OF COMPUTING PLATFORMS 

Platform Processor RAM GPU 

Personal 
Computer 

Intel Core i5-7200U 8 GB Not specified 

Google Colab 
Intel(R) Xeon(R) 

Platinum 8259CL 
13 GB NVIDIA T4 

Jetson Nano NVIDIA Tegra X1 4 GB Not specified 

VI. EXPERIMENTAL METHODOLOGY 

In this section, we will provide a detailed description of 
the experimental methodology we followed to evaluate the 
performance of the YOLOv5 model on different platforms. 

The evaluation process of deployment strategies, shown in 
Fig. 4, begins with the 'Selection of Deployment Strategy', 
where various deployment formats like PyTorch, TensorFlow 
Lite, and TensorRT are assessed for their suitability in 
propeller inspection. This crucial phase considers factors such 
as real-time processing needs and hardware compatibility. 

Following this, the 'Definition of Evaluation Criteria' stage 
establishes benchmarks to evaluate each strategy's 
performance, focusing on aspects like computational 
efficiency and scalability. The subsequent 'Testing and Data 
Collection' phase involves rigorous testing of each strategy to 
gather empirical data on their performance. Finally, in the 
'Comparative Analysis' stage, this data is meticulously 
analysed, comparing the strategies against the established 
criteria to discern the most effective deployment strategy that 
balances technical prowess with practical applicability in the 
propeller inspection use case. 

To understand how the models perform under real-world 
conditions, we conducted evaluations using some key metrics. 
These metrics include a time analysis that involve three 
aspects: Inference, Pre-processing, Non-Maximum 
Suppression (NMS). In addition, a thorough analysis of the 
resource management aspect is also taken into consideration. 

• Inference Time: Inference time measures the speed at 
which the model can detect objects in an image. 
Measuring this time ensures that the model can operate 
in real-time or according to the requirements of your 
application. 

• Pre-processing Time: Refers to the steps and 
techniques used to prepare, clean, and transform raw 
data into more suitable and actionable data before 
using it in an analysis or modeling task. 

• Non-Maximum Suppression (NMS) Time: This post-
processing step is performed after object detections 
have been generated by a detection algorithm. NMS 
aims to reduce the number of detections by removing 
strongly overlapping ones, retaining only the most 
reliable detections. 

 

Fig. 2. Average inference latency (in milliseconds) for 100 runs after 15 

warm-up iterations on an 11th Gen Intel(R) Core (TM) i7-1185G7 @ 

3.00GHz [19] 
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Fig. 3. Evaluation Process Flowchart 
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• Resource management: Each platform may have its 
own specific metrics. For example, we evaluated the 
usage of hardware resources such as memory and the 
processor. 

VII. RESULTS AND DISCUSSIONS 

In this part, we talk about the results we got from using the 
YOLOv5 model on different systems. We focused on how 
well it worked, how fast it made predictions, and how it 
managed resources. For our test, we used a 30-second video 
taken by a drone controlled by our university. We ran the 
models on this video to see how they performed. 

A. Deployment Results on CPU 

1) Deployment Results on PC 
In TABLE III, we show the results of using YOLOv5 on a 

personal computer. We looked at how long it takes to prepare 
the data (pre-processing), make predictions (inference), and 
do non-maximum suppression (NMS) with different formats. 
It can be noticed that the inference time consumes most of the 
time, with the highest time found using Tensorflow Light and 
the lowest using Openvino. 

TABLE III. DEPLOYMENT RESULTS ON PC 

Formats 
Pre-processing 

[ms] 

Inference 

[ms] 

NMS per image 

[ms] 

.pt 2 228.2 0.6 

.onnx 3 260.7 1.1 

.tflite 2.6 450.1 0.9 

.torchscript 2.6 375 0.8 

.openvino 2.4 213 0.6 

Fig. 5 gives a detailed view of how much work each part 
of the computer's processor (CPU) is doing, shown in the 
'System CPU Utilization' chart. This chart helps us see how 
each part of the CPU is contributing and where we might make 
improvements or find stress points that could affect 
performance.  

CPU utilization differs from one deployment strategy to 
another. In what concerns the desktop test environment, it can 
be noticed that among the four cores of the CPU, the model is 
able to distribute the task in a fair manner. However, the most 
optimal results is characterized by its ability to balance high 
performance with efficient resource management. In other 
words, the optimal model demonstrates a harmonious 
distribution of workload across all four cores. In this case, we 
found that the Torchscript and Openvino perfom well at 
balancing the load between the different cores of the CPU. 

The Fig. 8 presents an overview of System Memory 
Utilization (%), showcasing how the computer's system 
memory is utilized over time. 

In analyzing the results of TABLE IV, we see that the 
.onnx format takes the longest to prepare data (3 ms), followed 
closely by .tflite and .torchscript (both 2.6 ms). Other formats 
have pre-processing times between 2 and 2.4 ms. For making 
predictions, .tflite takes the longest (450.1 ms), followed by 
.torchscript (375 ms), .onnx (260.7 ms), .openvino (213 ms), 
and finally .pt (228.2 ms). The NMS time for most formats is 
about the same, around 0.8 to 1.1 ms, except for .pt and 
.openvino, which are faster at 0.6 ms. 

Looking at the CPU and memory usage charts, we see how 
YOLOv5 performs on a PC. It uses different CPU cores 
effectively. Each framework in the chart is shown with four 
values, for the four CPU cores. For example, Torchscript uses 
about 50% of the CPU cores, more than other frameworks. 
TFLite uses about 30% of the CPU, but it doesn't spread the 
workload evenly across the cores. 

2) Deployment Results on Jeston Nano 
TABLE IV displays deployment results on Jetson Nano, 

including pre-processing, inference, and NMS times. 
Examining the data, it's notable that the .pt format 
demonstrates relatively better performance in terms of 
inference time and NMS per image. On the other hand, the 
.tflite format exhibits the longest time for inference, while the 
.torchscript format also records higher inference times. The 
.openvino format stands out as one of the fastest for inference. 

TABLE IV. DEPLOYMENT RESULTS ON NVIDIA JETSON NANO 

Formats 
Pre-processing 

[ms] 

Inference 

[ms] 

NMS per image 

[ms] 

.pt 3.9 596.2 2.1 

.onnx 7.3 767.0 3.7 

.tflite 5.3 2093.9 2.4 

.torchscript 5.9 1015.0 3.6 

.openvino 4.7 887.6 2.3 

 

 

Fig. 5. System memory utilization [%] 

 

Fig. 6. System CPU utilization (per core) [%] 

 

Fig. 7. System memory utilization [%] 
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Fig. 6 and Fig. 7 show how much of the CPU and memory 
the models use during the tests. Different models use the CPU 
differently. For example, the ONNX model uses about 20% of 
the CPU cores, while TFLite uses about 10%. However, 
TFLite doesn't use the CPU cores as efficiently, which could 
be improved. The .Openvino model uses the most system 
memory, followed by the .Onnx model. This might be because 
the .Openvino model (27.3MB) is larger than other formats 
like .pt (13.7MB), so it needs more memory. 

When we compare how each model uses the CPU and 
memory, torchscript seems to be the most efficient. It uses 
CPU resources well, which helps it perform better overall. 
This fits with the idea of AI models that are efficient in using 
resources, specifically in the context of edge devices. 

B. Deployment Results on GPU 

TABLE V presents deployment results of how we used 
YOLOv5 on Google Colab. It includes times for getting the 
data ready (pre-processing), making predictions (inference), 
and non-maximum suppression (NMS). 

The Fig. 9 provides a visual overview of the graphics 
processing unit (GPU) temperature over time. On the other 
hand, the Fig. 10 provides a visual representation of how much 
memory the GPU uses as it works on different tasks. This 
graph, put together by Weights and Biases, helps us see how 
the GPU's memory use changes, which tells us about how 
efficiently the memory is being used. The Fig. 11 represents 
the workload that the graphics processor (GPU) supports in 
relation to its maximum capacity. 

In our study of how YOLOv5 works on Google Colab, we 
noticed some interesting differences between the formats 
used. When we look at the time it takes to get data ready (pre-
processing), we see that it's pretty similar across most formats, 
between 0.8 to 1 ms. 

TABLE V. DEPLOYMENT RESULTS ON GOOGLE COLLAB 

Formats 
Pre-processing 

[ms] 

Inference 

[ms] 

NMS per image 

[ms] 

.pt 0.8 11.6 2.1 

.onnx 1.0 17.3 1.8 

.tflite 0.9 343.8 1.5 

.torchscript 1.0 12.4 1.6 

.openvino 0.8 185 1.5 

.engine 1.0 10.6 2.1 

 

If we look at the time for making predictions (inference), 
the .tflite format takes the longest, about 343.8 ms. This is 

followed by .openvino (185 ms), .onnx (17.3 ms), .Torchscript 
(12.4 ms), .pt (11.6 ms), and .engine (10.6 ms). An interesting 
point is that the “.pt” and “*.engine” formats take the longest 
time for NMS per image, about 2.1 ms, which is slightly more 
than the other formats. 

We also looked at how the GPU temperature changes with 
different models. We found that the longer a model takes to 
make predictions, the hotter the GPU gets. For example, the 
"Engine" model, which has a shorter prediction time, only 
makes the GPU reach a maximum of 37 degrees Celsius. On 
the other hand, the "Tflite" model, with the longest prediction 
time, causes the GPU temperature to go from 42 to 65 degrees 
Celsius. 

Our study of GPU memory usage and GPU efficiency 
shows an interesting pattern. We noticed that when a model 
uses more memory, it usually takes less time to make 
predictions. For instance, the 'Engine' model uses the most 
memory, followed by the 'ONNX' and 'PyTorch' models. 
However, the 'Tflite' model, even though it takes the longest 
to make predictions, uses a steady amount of memory. 

When we look at how efficiently the GPU is used, there's 
a big difference between models. The 'Engine' model, even 
though it uses a lot of memory, is quite good at using the GPU. 
It's followed closely by the 'Torch' and 'PyTorch' models in 
terms of efficiency. In contrast, the 'Tflite' and 'OpenVINO' 
models don't use the GPU much, as shown by their low 
utilization percentages, like 0.4%. This helps explain the 
performance results we see in the TABLE V. 

 

Fig. 8. System CPU utilization (per core) [%] 



Ghita Ikmel et al.  ESS (Vol 10. No 8. 2023) (pp.18-24) 

 

 

23 

 

 

C. Summary of Findings 

To conclude, TABLE VI presents how fast YOLOv5 
makes predictions (inference times in milliseconds) on 
different systems, like a local PC, Google Colab, and Jetson 
Nano. 

The results obtained from our deployment of YOLOv5 on 
various platforms reflect significant improvements in how 
well and quickly the model works on these platforms. For 
example, the original model (.pt) used to take 228.2 ms to 
make predictions on a local PC, but on Google Colab, it's 
much faster at 11.6ms. This shows that the deployment 
strategy highly reflects on the model prediction speed. 

This substantial improvement in inference time, especially 
on Google Colab, signifies the adaptability of our optimization 
strategies to cloud-based platforms. The transition from a local 
PC to Google Colab, with its GPU infrastructure, resulted in a 
noticeable enhancement in performance. Our model's ability 
to effectively leverage available hardware resources translated 
into a smoother and faster inference process. 

TABLE VI. DEPLOYMENT RESULTS 

Formats 
PC 

(CPU) 
Google Colab 

(GPU) 
Jetson Nano 

(CPU) 

.pt 228.2 11.6 596.2 

.onnx 260.7 17.3 767.0 

.tflite 450.1 343.8 2093.9 

.torchscript 375 12.4 1015.0 

.openvino 213 185 887.6 

.engine - 10.6 - 

 

Furthermore, comparing deployment formats on different 
hardware, such as the transition from a CPU device to a GPU 
device, highlights the versatility of YOLOv5. For example, 
the TensorRT model on a GPU device achieved an impressive 
inference time of around 10,5 ms, demonstrating the 
algorithm's efficiency in more powerful hardware 
environments. 

Apart from being faster, our results also show how well 
the model uses CPU cores. When we looked at how the CPU 
was used on a local PC, we saw different ways each 
framework used the CPU cores. For example, ONNX used 
20% of the CPU cores effectively, while TFLite used about 
10% but not as evenly. This suggests we could improve how 
resources are allocated, especially for use on edge devices. 

By making our original model more efficient, we've made 
it more relevant. The faster response time helps with real-time 
monitoring. Also, using energy more efficiently makes the 
system more sustainable, which is important when integrating 
AI solutions. 

Lastly, using CPU cores efficiently is key for real-time 
performance. Our results show how important it is to choose 
the right format for the hardware we're using. This is 
especially true for environmental monitoring, as using 
resources efficiently helps the AI model work better in real-
world situations. 

VIII. CONCLUSION 

In conclusion, this study delves into the deployment and 
performance analysis of the YOLOv5 real-time object 

detection model on diverse platforms, namely a Personal 
Computer (PC), Google Colab, and Jetson Nano. The 
exploration encompasses a comprehensive evaluation of the 
model's efficiency, execution time, and resource utilization 
across these platforms, shedding light on the implications for 
sustainable environmental monitoring. 

The results showcase the adaptability and versatility of the 
YOLOv5 model across different hardware environments. 
Notably, the optimization efforts have led to a substantial 
reduction in inference time, demonstrating the model's 
efficiency in responding to environmental events, a crucial 
aspect for real-time monitoring applications. The transition 
from a local unit to the cloud, leveraging GPU infrastructure, 
significantly enhances performance, emphasizing the 
importance of hardware resources in model deployment.  

Furthermore, the study highlights the significance of 
effective CPU core utilization, especially in the context of 
sustainable environmental monitoring. Different deployment 
formats exhibit distinct behaviors in distributing the workload 
among CPU cores, emphasizing the importance of choosing 
deployment strategies that align with hardware characteristics 
for optimal and sustainable AI deployments. 

The findings underscore the broader implications for AI-
based solutions in sustainable environmental monitoring. 

 

Fig. 9. GPU temperature [C0] 

 

Fig. 10. GPU memory Allocated Bytes 

 

Fig. 11. GPU utilization [%] 
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Beyond inference times, considerations of resource 
distribution and utilization are crucial for achieving optimal 
performance and adaptability in real-world applications. As 
the world grapples with environmental challenges, the 
integration of efficient and sustainable AI solutions becomes 
imperative, and this study contributes valuable insights to this 
evolving field. 
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