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Abstract 

A definite integral that is difficult to solve analytically can be calculated using the numerical 

integration methods. The midpoint rule is a prominent rule for approximating definite integrals. 

This article discusses a version of the quartet midpoint rule that includes the derivative of the 

arithmetic mean (𝑀𝑞𝑎). The proposed rule increases precision over the previous rules. 

Furthermore, the error term is obtained by using the concept of precision between quadrature and 

exact values. Finally, the proposed rule is more effective than the present rule, according to 

numerical simulation results. 
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1. Introduction 

Numerical integration is used to determine the numerical value of a definite integral. This 

method is applied because many definite integrals are difficult to solve analytically, or the value of 

the integral can be computed analytically, but the solution process is exceedingly complicated and 

time-consuming. The quadrature rule is a prominent method for evaluating numerical integration, 

which is given by Germun [2]:  

∫ 𝑓(𝑥)𝑑𝑥 = ∑ 𝑣𝑖𝑓(𝑥𝑖)

𝑘

𝑖=0

𝑡

𝑠

+ 𝐸𝑛                                                                     (1) 

where weights 𝑣𝑖 and the nodes represented as 𝑥𝑖 ∈ [𝑠, 𝑡]  have to be calculated and 𝐸𝑛 represents the 

formula error. The formula is named by the closed Newton-Cotes method if the interval integration’s 

end points are included as node points, if not, it is commonly referred to as the open Newton-Cotes 

method. 

Deghan et al. [3] improved the closed Newton-Cotes method by introducing the end of interval 

integration as a new variable to be estimated. Furthermore, Ramachandran et al. [7] - [13] enhanced 

the closed Newton-Cotes method by including the derivative of the function evaluated at the 

centroidal mean, geometric mean, harmonic mean, heronian mean, root mean square, and contra-

harmonic mean. Ramachandran et al. conducted a comparison of their previously proposed methods 

in [14]. 

As with the closed newton-cotes method, the open Newton-Cote method is also modified to 

improve accuracy. Burg [1] modified open-newton cotes open-newton cotes using function 

examination at the interval's midpoint with odd derivatives at the endpoints. Ramachandran et al. [11] 

was also modified the midpoint rule by adding derivative evaluation.  In the meantime, Zafar et. al. 

[15] enhanced the modified midpoint rule by determining a linear combination of both the function 
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with the derivative of it values at the node points. Lately, we proposed double midpoint rule [4] and 

corrected closed Newton-Cotes [5] by adding arithmetic mean derivative in their endpoints. 

By changing 𝑛 = 2, the formula midpoint rule can be adjusted to acquire a quartet 

 midpoint rule (𝑀𝑞)[6]: 

𝑀𝑞(𝑓) =
𝑡 − 𝑠

3
[𝑓 (

5𝑠 + 𝑡

6
) + 𝑓 (

𝑠 + 𝑡

2
) + 𝑓 (

𝑠 + 5𝑡

6
)] +

𝑡 − 𝑠

216
𝑓′′(𝜉),    𝜉 ∈ [𝑠, 𝑡]               (2) 

The same technique as Ramachandran [8] was used by the author derive the quartet midpoint rule (2) 

by including a derivative that evaluates at the arithmetic mean of the nodes. The precison of the 

trapezoidal rule based on the geometric means generated by Ramachandran [8] is 2, but the resulting 

error is still quite large. According to Germun [2], the quartet midpoint rule is a more accurate rule 

than the trapezoidal rule because it divides the integration interval from 𝑎 to 𝑏 into four times at the 

midpoint of each interval. Therefore, in order to obtain a method that produces better accuracy in 

approximating the definite integral, the author derived the quartet midpoint rule. The proposed rule’s 

error analysis is then performed in the next section. The discussion is concluded with some numerical 

computation aimed at assessing the efficiency of the proposed rule. 

2. Researchs Methods 

Ramachandran et.al [8] have modified the closed Newton-Cotes method, one of which is the 

trapezoidal rule. The general form of the trapezoidal rule is as follows: 

∫ 𝑓(𝑥)𝑑𝑥 =
(𝑡 − 𝑠)

2

𝑡

𝑠

[𝑓(𝑠) + 𝑓(𝑡)] −
(𝑡 − 𝑠)2

12
𝑓′′(𝜉),   𝜉 ∈ [𝑠, 𝑡] 

 This rule is modified by including the geometric mean's derived value, yielding  

∫ 𝑓(𝑥)𝑑𝑥 =
(𝑡 − 𝑠)

2

𝑡

𝑠

[𝑓(𝑠) + 𝑓(𝑡)] −
(𝑡 − 𝑠)2

12
𝑓′′(√𝑠𝑡) −

(𝑡 − 𝑠)3

24
(√𝑡 − √𝑠)

2
𝑓′′′(𝜉),   𝜉 ∈ [𝑠, 𝑡]. 

Similarly, the author would like to add the arithmetic mean derivative to the quartet midpoint rule in 

equation (2). 

3. Results and Discussion 

This section discusses the derivation of the quartet midpoint rule based on the arithmetic mean 

derivative (𝑀𝑞𝑎), including its precision, order, and error term. 

3.1 Arithmetic Mean Derivative-Based Quartet Midpoint Rule 

In this part, the error in equation (2) will be modified by adding the arithmetic mean to obtain. 

Teorema 1. If 𝑓 ∈ 𝐶2[𝑠, 𝑡] then the arithmetic mean derivative-based quartet midpoint rule to 

estimate ∫ 𝑓(𝑥)𝑑𝑥
𝑡

𝑠
 provided by 

𝑀𝑞𝑎(𝑓) =
𝑡 − 𝑠

3
[𝑓 (

5𝑠 + 𝑡

6
) + 𝑓 (

𝑠 + 𝑡

2
) + 𝑓 (

𝑠 + 5𝑡

6
)] +

𝑡 − 𝑠

216
𝑓′′ (

𝑠 + 𝑡

2
).                 (3) 

This rule has a degree of precision of 3. 

Proof. Equation (3) is verified with 𝑓(𝑥) = 𝑥3 which has the exact value  ∫ 𝑥3𝑑𝑥 =
1

4
(𝑡4 − 𝑠4)

𝑡

𝑠
  and 

hence we obtain 
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𝑀𝑞𝑎(𝑓) =
𝑡 − 𝑠

3
[(

5𝑠 + 𝑡

6
)

3

+ (
𝑠 + 𝑡

2
)

3

+ (
𝑠 + 5𝑡

6
)

3

] +
𝑡 − 𝑠

216
(6 (

𝑠 + 𝑡

2
)) 

    =  
17𝑡4 + 2𝑡3𝑠 − 2𝑡𝑠3 − 17𝑠4

72
+

𝑡4 − 2𝑡3𝑠 + 2𝑡𝑠3 − 1𝑠4

72
 

=
1

4
(𝑡4 − 𝑠4)                                                                                

This proved the theorem.∎ 

3.2 Error Analysis 

The error term of the Mqa is derived using the monomial quadrature formula 
𝑥𝑝+1

(𝑝+1)!
 and the exact 

value of 
1

(𝑝+1)!
∫ 𝑥𝑝+1𝑑𝑥 =

𝑡𝑝+2−𝑠𝑝+2

(𝑝+2)!

𝑡

𝑠
,  where p is the formula’s precision. 

Teorema 2. Let  𝑓[𝑠, 𝑡] ∈ ℝ → ℝ is a continuous function and has a continuous derivative. The 

quartet midpoint rule based on the arithmetic mean derivative has the error term 

𝐸𝑀𝑞𝑎(𝑓) =
83

466560
(𝑡 − 𝑠)5𝑓(4)(𝜉)  𝑤𝑖𝑡ℎ   𝜉 ∈ [𝑠, 𝑡].                                        (4) 

The accuracy of this rule is fifth order. 

Proof. Let that 𝑓(𝑥) in equation (4) is verified by 𝑓(𝑥) =
𝑥4

4!
, with the exact solution being 

∫
𝑥4

4!
𝑑𝑥 =

1

120
(𝑡5 − 𝑠5)

𝑡

𝑠
. Furthermore, using the Mqa formula (3) obtained 

𝑀𝑞𝑎(𝑓) = (
1

4!
)

𝑡 − 𝑠

3
[(

5𝑠 + 𝑡

6
)

4

+ (
𝑠 + 𝑡

2
)

4

+ (
𝑠 + 5𝑡

6
)

4

] +
𝑡 − 𝑠

216
(

1

2
) (

𝑠 + 𝑡

2
)

2

 

𝑀𝑞𝑎(𝑓) =
3805𝑏5 + 415𝑏4𝑎 − 830𝑏3𝑎2 + 830𝑏3𝑎2 − 415𝑏𝑎4 − 3805𝑎5

466560
       

the error term is obtained 

𝐸𝑛[𝑓] = exact value − 𝑀𝑞𝑎(𝑓) =
83

466560
(𝑡 − 𝑠)5𝑓(4)(𝜉), with 𝜉 ∈ [𝑠, 𝑡]. ∎ 

Table 1 shows the precision, ordering, and error terms for the quartet midpoint rule (Mq) [6], 

double midpoint rule based on the arithmetic mean derivative (Mda) [4], midpoint rule based on the 

arithmetic mean derivative (Mm) [14], Simpson’s 
1

3

𝑟𝑑
rule [11], and the suggested rule Mqa.  

Tabel 1. Comparison of error terms 

Rules Precision Order Error terms 

Mq 1 3 
1

216
(𝑡 − 𝑠)3𝑓′′(𝜉) 

Mda 3 5 
11

30720
(𝑡 − 𝑠)5𝑓(4)(𝜉) 

S 3 5 
1

1920
(𝑡 − 𝑠)5𝑓(4)(𝜉) 

Mm 3 5 
1

2880
(𝑡 − 𝑠)5𝑓(4)(𝜉) 

Mqa 3 5 
83

466560
(𝑡 − 𝑠)5𝑓(4)(𝜉) 
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3.3 Numerical Example 

Table 2 shows the values of ∫ 𝑒𝑥𝑑𝑥
1

0
, ∫ 𝑠𝑖𝑛4𝑥

𝜋

4
0

 𝑑𝑥, dan ∫ (1 + 𝑥7)𝑑𝑥
1

0
 are approximated 

4 by Mq[6], Mda [4], S [11], Mm [14], and Mqa. The results of this simulation were obtained using Octave 

software 

Table 2. Comparison of Mq, Mda, S, Mm, and Mqa 

Rules 
∫ 𝑒𝑥𝑑𝑥

1

0

 ∫ 𝑠𝑖𝑛4𝑥

𝜋
4

0

 𝑑𝑥 ∫ (1 + 𝑥7)𝑑𝑥
1

0

 

error error error 

Mq 0.00792930350 0.00287878998 0.02936742700 

Mda 0.00059493209 0.00059392417 0.04455566400 

S 0.00057932440 0.00056996938 0.04687500000 

Mm 0.00086383700 0.00086766600 0.06250000000 

Mqa 0.00029633450 0.00029319331 0.02329103800 

The computational results shown in Table 2 show that the error Mqa is smaller for the 

three examples than the comparison rules. For example, for ∫ 𝑒𝑥𝑑𝑥
1

0
, error that are resulted by 

Mq and Mm is about fourfold that of Mqa, whereas Mda and S are double than eror’s Mqa. 

The remaining two examples likewise fit this description. This demonstrates that Mqa is more 

accurate than previous methods 

4. Conclusions  

The quartet midpoint rule based on the arithmetic mean derivative is obtained by modifying the 

quartet midpoint rule by adding the arithmetic mean derivative to the error. This rule has higher 

accuracy than the quartet midpoint rule. The precision of the rule increase  two precisions. Resulting 

from numerical computation shows that the proposed rule more accurate than the  previous rules. In 

conclusion, Arithmetic mean derived-based quartet midpoint rule can be one of the alternative rules 

to determine definite integral. This work focuses solely on the arithmetic mean derivative-based 

adaptation of the quartet midpoint rule. Future study can be conducted by adjusting other numerical 

integration methods and employing other average variations. 
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