The Jackson Laboratory

The Mouseion at the JAXlibrary

Faculty Research 2023

Faculty & Staff Research

12-1-2023

Generation of four gene-edited human induced pluripotent stem cell lines with mutations in the ATM gene to model Ataxia-Telangiectasia.

Wasifa Nurieva

Elena Ivanova

Sanabel Chehab

Parth Singh

Marina Reichlmeir

See next page for additional authors

Follow this and additional works at: https://mouseion.jax.org/stfb2023

Original Citation

Nurieva W, Ivanova E, Chehab S, Singh P, Reichlmeir M, Szuhai K, Auburger G, Skarnes W, Ivics Z. Generation of four gene-edited human induced pluripotent stem cell lines with mutations in the ATM gene to model Ataxia-Telangiectasia. Stem Cell Res. 2023;73:103247

This Article is brought to you for free and open access by the Faculty & Staff Research at The Mouseion at the JAXlibrary. It has been accepted for inclusion in Faculty Research 2023 by an authorized administrator of The Mouseion at the JAXlibrary. For more information, please contact library@jax.org.

Authors

Wasifa Nurieva, Elena Ivanova, Sanabel Chehab, Parth Singh, Marina Reichlmeir, Karoly Szuhai, Georg W J Auburger, William C Skarnes, and Zoltán Ivics

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Genetically-Modified Multiple Cell Lines

Generation of four gene-edited human induced pluripotent stem cell lines with mutations in the *ATM* gene to model Ataxia-Telangiectasia

Wasifa Nurieva^a, Elena Ivanova^a, Sanabel Chehab^a, Parth Singh^a, Marina Reichlmeir^b, Karoly Szuhai^c, Georg W.J. Auburger^b, William C. Skarnes^d, Zoltán Ivics^{a,*}

^a Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institut, Langen, Germany

^b Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Frankfurt am Main, Germany

^c Department of Cell and Chemical Biology, Leiden University Medical Center, Netherlands

^d The Jackson Laboratory for Genomic Medicine, Farmington, USA

ABSTRACT

Ataxia-Telangiectasia (A-T) is an autosomal recessive multi-system disorder caused by mutations in the ataxia-telangiectasia mutated (*ATM*) gene, resulting, among other symptoms, in neurological dysfunction. ATM is known to be a master controller of signal transduction for DNA damage response, with additional functions that are poorly understood. CRISPR/Cas9 technology was used to introduce biallelic mutations at selected sites of the *ATM* gene in human induced pluripotent stem cells (hiPSCs). This panel of hiPSCs with nonsense and missense mutations in ATM can help understand the molecular basis of A-T.

Resource Table:		(continued)	
Unique stem cell line identifier	Cell line 1: PEIi019-A-13 https://hpscreg.eu/cell-line/PEI	Evidence of the reprogramming transgene loss (including genomic copy if applicable)	N/A
	Cell line 2: PEIi019-A-14 https://hpscreg.eu/cell-line/PEI	The cell culture system used	Feeder-free when banked and since then also kept in feeder-free culture StemFlex™ Medium
	Cell line 3: PEIi019-A-15 https://hpscreg.eu/cell-line/PEI i019-A-15 Cell line 4: PEIi019-A-16 https://hpscreg.eu/cell-line/PEI	Type of the Genetic Modification	Cell line 1_PEIi019-A-13: Homozygous point mutation C->T in exon 3 at R35 in the <i>ATM</i> gene. Introduction of R35* stop codon
Alternative name(s) of stem cell line	i019-A-16 Cell line 1: KOLF2-C1 ATM R35* Cell line 2: KOLF2-C1 ATM K3016Q Cell line 3: KOLF2-C1 ATM L1465P		point mutation A->C in exon 63 at K3016 in the <i>ATM</i> gene. Introduction of K3016Q
Institution Contact information of the reported cell line distributor	Cell line 4: KOLF2-C1 ATM A3054V Paul-Ehrlich-Institut, Langen Wasifa Nurieva: wasifa.nurieva@pei.de Zoltán lvics: zoltan.ivics@pei.de		Cell line 3_PEIi019-A-15: Homozygous point mutation T->C in exon 29 at L1465 in the <i>ATM</i> gene. Introduction of L1465P
Type of cell line Origin Additional origin info (applicable for human FSC or iPSC)	PSC human Age: 55–59 Sey: male		Cell line 4_PEIi019-A-16: Homozygous point mutation C->T in exon 63 at A3054 in the <i>ATM</i> gene. Introduction of A3054V
Cell Source	Ethnicity: European - White British Fibroblasts	Associated disease	Ataxia-Telangiectasia (A-T)
Method of reprogramming	Non-integrating Sendai virus reprogramming system	Gene/locus	ATM gene/11q22.3
Clonality	Clonal		(continued on next page)

* Corresponding author.

E-mail addresses: wasifa.nurieva@pei.de (W. Nurieva), zoltan.ivics@pei.de (Z. Ivics).

https://doi.org/10.1016/j.scr.2023.103247

Received 18 September 2023; Received in revised form 2 November 2023; Accepted 4 November 2023 Available online 7 November 2023 1873-5061/@ 2023 The Authors Published by Elsevier B V. This is an open access article under the CC BV-N

1873-5061/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Table 1

_

Characterization and validation.

Classification	Test	Result	Data
Morphology Pluripotency status evidence for the described cell line	Photography bright field, 10x magnification Qualitative analysis (i.e. immunocytochemistry, Western blotting)	Normal Positive staining of pluripotency markers: NANOG & TRA-1–60	Fig. 1 Panel B Fig. 1 Panel F
Karyotype	Quantitative analysis flow cytometry Karyotype (G-banding)	SSEA3 & TRA 1–60 positive cells: >99 % 46XY,	Fig. 1 Panel H Fig. 1 Panel E
Genotyping for the desired genomic alteration/allelic status of the gene of interest	PCR across the edited site or targeted allele- specific PCR	PCR + Sanger sequencing	Fig. 1 Panel C
	Evaluation of the - (homo-/hetero-/hemi-) zygous status of introduced genomic alteration(s)	SNP Sanger sequencing	Supplementary Fig. S1
	Transgene-specific PCR (when applicable)	N/A	N/A
Verification of the absence of random plasmid integration events	PCR/Southern	N/A	N/A
Parental and modified cell line genetic identity evidence	STR analysis	Short tandem repeat (STR) analysis of 16 allele loci showed identical results in parental cell line and newly generated hiPS cells. 16 independent PCR systems D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338,AMEL, D5S818, FGA, D19S433, vWA, TPOX and D18S51 were investigated (Thermo Fisher, AmpFISTR® Identifiler® Plus PCR Amplification Kit). In parallel, positive and negative controls were carried out vielding correct results.	Supplementary Files
Mutagenesis / genetic modification outcome analysis	Sequencing (genomic DNA PCR or RT-PCR product)	Homozygous mutations	Fig. 1, Panel C
•	PCR-based analyses	N/A	N/A
	Southern Blot or WGS; western blotting (for knock-outs, KOs)	N/A	N/A
Specific pathogen-free status	Mycoplasma	Negative	Supplementary Fig. S2
Off-target nuclease activity analysis	PCR across top 5/10 predicted top likely off- target sites, whole genome/exome sequencing [Optional but highly-recommended if Cas editing is used]	N/A	N/A
Multilineage differentiation potential	Directed trilineage differentiation	Trilineage differentiated cells showed expression of lineage- specific markers in all four cell lines.	Fig. 1, Panel D
Donor screening (OPTIONAL)	HIV 1 + 2, Hepatitis B, Hepatitis C	N/A	N/A
Genotype - additional	Blood group genotyping	N/A	N/A
histocompatibility info (OPTIONAL)	HLA tissue typing	N/A	N/A

(continued)

Method of modification / user-	CRISPR/Cas9	
customisable nuclease (UCN) used, the	Alt-R® S.p. HiFi Cas9 Nuclease V3, (IDT)	
resource used for design optimisation	Integrated DNA Technologies #1081061	
User-customisable nuclease (UCN)	RNP, nucleofection with Amaxa 4D	
delivery method	Nucleofector (Lonza)	
All double-stranded DNA genetic	Single-stranded HDR donor template	
material molecules introduced into		
the cells		
Analysis of the nuclease-targeted allele	Sanger sequencing	
status		
Method of the off-target nuclease	N/A	
activity prediction and surveillance		
Descriptive name of the transgene	N/A	-
Eukaryotic selective agent resistance	N/A	
cassettes (including inducible, gene/		
cell type-specific)		
Inducible/constitutive expression	N/A	
system details		
Date archived/stock creation date	Cell line 1: PEIi019-A-13 – 25.07.2021	
	Cell line 2: PEIi019-A-14 – 07.02.2022	1
	Cell line 3: PEIi019-A-15 – 31.01.2022	1
	Cell line 4: PEIi019-A-16 – 13.04.2022	1
Cell line repository/bank	Cell line 1: PEIi019-A-13	1
	https://hpscreg.eu/cell-line/PEI	1
	i019-A-13	
	Cell line 2: PEIi019-A-14	
	https://hpscreg.eu/cell-line/PEI	
	i019-A-14	
	Cell line 3: PEIi019-A-15	

https://hpscreg.eu/cell-line/PEI

(continued on next column)

(continued)

Ethical/GMO work approvals	i019-A-15 Cell line 4: PEIi019-A-16 https://hpscreg.eu/cell-line/PEI i019-A-16 Paternal cell line WTSIi018-B obtained from HipSci (HUMAN INDUCED PLURIPOTENT STEM CELL INITIATIVE) https://hpscreg.eu/cell-line/WTS i018-B-1
Addgene/public access repository recombinant DNA sources' disclaimers (if applicable)	N/A

1. Resource utility

Understanding the molecular basis of A-T has been hampered by the lack of appropriate animal and cell culture models that accurately reflect the disease phenotypes. *In vitro* generation of neurons can provide valuable insights into mechanisms of A-T-associated neurodegeneration, which may provide novel targets for future therapies.

2. Resource details

The *ATM* gene encodes a serine-threonine protein kinase that is responsible for detecting and signaling the presence of genomic DNA double-strand breaks (DSBs). When DNA damage occurs, the ATM

ω

Reagents details.

Antibodies and stains used for immunocytochemistry/flow-cytometry/western blot

	Antibody	Dilution	Company Cat # and RRID
Pluripotency markers	Mouse anti-Tra1-60	1:100	Thermo Fisher Scientific Cat# 41-1000, RRID: AB_2533494
	Rat SSEA3	1:100	Developmental Studies Hybridoma Bank Cat# MC-631, RRID: AB 528476
	Rabbit anti-NANOG	1:800	Cell Signaling Technology Cat# 3580, RRID:AB 2150399
Western blot	Rabbit anti-ATM	1:1000	Cell Signaling Technology Cat# 2873, RRID:AB 2062659
	Anti-GAPDH Mouse	1:1000	Millipore Cat# CB1001, RRID:AB 2107426
Differentiation markers	Rabbit anti-Nestin	1:200	Abcam Cat# ab105389, RRID:AB 10859398
	Rabbit anti-Brachvury	1:1000	Abcam Cat# ab209665, RRID:AB 2750925
	Rabbit anti-Sox17	1:1000	Abcam Cat# ab92494. RRID:AB 10585428
Secondary antibodies	Goat anti-Rat IgG (H + L) Cross- Adsorbed Secondary Antibody, Alexa Fluor™ 488	4 μg/mL	Thermo Fisher Scientific Cat# A-11006, RRID: AB_2534074
	F(ab`)2-Goat anti-Mouse IgG (H + L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 594	4 μg/mL	Thermo Fisher Scientific Cat# A-11020, RRID: AB_2534087
	Mouse anti-Rabbit IgG (H + L) Cross-	1:10.000	Thermo Fisher Scientific Cat# 31464,
	Adsorbed Secondary Antibody, HRP		RRID: AB_228378
	Goat anti-Mouse IgG F(ab')2 Secondary Antibody, HRP	1:10.000	Thermo Fisher Scientific Cat# 31436, RRID:AB_228313
Nuclear stain	DAPI	2 µg∕mL	Invitrogen Cat #D1306
Site-specific nuclease			
Nuclease information	Alt-R [®] S.p. HiFi Cas9 Nuclease V3	IDT SpCas	9 Hi-Fi v.3, 1081061
Delivery method	Nucleofection	Lonza; 4D-	NucleofectorTM core Unit + X Unit
		P3 Primar	y Cell 4D-Nucleofector™ X Kit L
		Pulse code	:: CA-137
Selection/enrichment strategy	Single cell-derived colonies	Analyzed l	by Sanger sequencing
Primers and Oligonucleotides used in thi	is study		
	Target	Forward/	Reverse primer (5'-3')
	Mycoplasma detection	GPO-3 Prin	mer: 5' - GGGAGCAAACAGGATTAGATACCCT - 3'
		MGSO Prii	mer: 5' - TGCACCATCIGICACICIGITAACCIC – 3'
Genotyping (desired allele/transgene	PCR specific for the targeted R35 locus	Forward p	rimer: $5' - TCCTGCTACTACTGCAAGCAA - 3'$
presence detection)		Reverse pr	imer: 5 – GCATCAACCCTGTTTGCCAC – 3
	DCD amonifies for the terrested V2016	Annealing Formulard	rimon E' CACCAACAATTCCCCCCTACA 2'
	PCR specific for the targeted K5016	Forward p	filler: 5 - GAGGAAGAATIGGGGGGGAAA-5
	locus	Appeoling	temperature 64 °C
	PCP specific for the targeted L1465 locus	Forward p	rimer: 5' ATCACAACACAATCTTCTCACACT 3'
	For specific for the targeted L1405 locus	Reverse pr	imer 5' _ TGTTTCCCAGGCAAGTAGCG_ 3'
		Annealing	temperature 64 °C
	PCB specific for the targeted A3054	Forward p	rimer: 5' – GAGGAAGAATTGGGCCCTACA– 3'
	locus	Reverse pr	imer: 5' – GAAAGCAGAGATGTTCCTTAAGAC– 3'
		Annealing	temperature 64 °C
	PCR specific for the targeted SNP	Forward p	rimer: $5' - ACTACAAGAGCACACTACCAC - 3'$
	rs186556743 locus	Reverse pr	imer: 5' – TGGGAGGATCACAAGGTCAG – 3'
		Annealing	temperature 65 °C
	PCR specific for the targeted SNP	Forward p	rimer: 5' – AGCGAGACCCTATCTCATAAAC – 3'
	rs559077054 locus	Reverse pr	imer: 5' – AAAATAGAGCAGATGCCATCC – 3'
		Annealing	temperature 63 °C
sgRNA oligonucleotide	R35 locus	TTGTTTC	AGGATCTCGAATCAGG (reversed)
-	K3016 locus	AGACTAC	AAGAGAAACTGAAAGG
	L1465 locus	AATAACG	TCTCGAAGAACAAAGG (reversed)
	A3054 locus	CACACCC	AAGCTTTCCATCCTGG (reversed)

I

I

Table 2 (continued)		
Antibodies and stains used for immunocyt	tochemistry/flow-cytometry/western blot Antibody	Dilution Company Cat # and RRID
Genomic target sequence(s)	Including PAM and other sequences likely to affect UCN activity	R35 locus, exon 3: Homo sapiens chromosome 11q22.3, GRCH38: 108.227,806 K3016 locus, exon 63: Homo sapiens chromosome 11q22.3, GRCH38: 108.365.383 L1465 locus, exon 29: Homo sapiens chromosome 11q22.3, GRCH38: 108.289.759 A3054 locus, exon 63: Homo sapiens chromosome 11d22.3, GRCH38: 108.365498
Bioinformatic gRNA on- and -off-target binding prediction tool used, specific sequence/outputs link(s)	HTGT WGE	 R35 locus: https://wge.stemcell.sanger.ac.uk/crispr/1088290180 K3016 locus: https://wge.stemcell.sanger.ac.uk/crispr/1088301744 L1465 locus: https://wge.stemcell.sanger.ac.uk/crispr/1088295510 A3054 locus: https://wge.stemcell.sanger.ac.uk/crispr/1088301760
ODNs/plasmids/RNA molecules used as templates for HDR-mediated site-directed	Ultramer® DNA oligo, Alt-R® HDR modified for R35 locus	ATTAGTAACCCÅTTATTÄTTTCCTTTTTTTTCAGÅÅÅGÅÅGÅTGAGTTGAGAATTTTÅÅGCGCCTGATTTGAGÅTCCTGÅAACATTTÅÄACATCTAGÅTCGGC
mutagenesis.	Ultramer® DNA oligo, Alt-R® HDR modified for K3016 locus Ultramer® DNA oligo, Alt-R® HDR modified for L1465 locus	CCIGCTGTATGAGGAAATTCACTTGTCCACCAACACTGAGCACAGTGGCCTTCTTCCACTTCCAGTTGCTCTTGAGTTGGTCTCATTAAGACACGTTCAGC TCACCTGTTTGTTAGTTATTACTGAAAGGATATAAAAAGTGGCTTAGGAGGTTGGGGCCTTTGTTCCTCGAGAGGTTATTATTACTTGATTGA
	Ultramer® DNA oligo, Alt-R® HDR modified for A3054 locus	GACAAGTGAATTTGCTCATACAGCAGGCCATAGACCCCCAAAAATCTCCGGGCGGATGGAAAGTTTGGGFGFGFGFGFGFGTCTTCAGTATATGAAT

protein is activated, recruited to the DSBs, and initiates a cascade of phosphorylation events, ultimately leading to the activation of various downstream effector proteins that coordinate DNA repair processes, cell cycle checkpoints and apoptosis, thereby playing a crucial role in maintaining genomic stability (McKinnon, 2004; Shiloh, 2003). The parental cell line used for the generation of human iPSCs (hiPSCs) was the subclone KOLF2-C1, isolated in the Skarnes Lab from the cell line WTSIi018-B (Skarnes et al., 2019). Characterizations of the cell lines are summarized in Table 1.

CRISPR/Cas9 technology was used to introduce mutations at selected sites by designing specific single guide RNAs (sgRNAs) (see Table 2) targeting the respective sequences in the ATM gene. The four designed mutations are spanning across the entire ATM gene (Fig. 1, Panel A). Due to DSBs that are introduced at the desired sites, repair pathways are triggered. By providing exogenous template DNA (see Table 2), DSB repair pathway choice can be shifted to provoke cellular machineries to repair the gap predominantly by homology-directed repair (HDR), which can copy the desired mutations into the ATM locus from synthetic, single-stranded oligonucleotides. Since A-T only manifests in a homozygous mutant background, biallelic mutations needed to be established (Fig. 1, Panel B). To exclude deleterious ontarget effects in the edited cell lines, Sanger sequencing was performed to ensure that no loss of heterozygosity or larger deletions occurred by detecting single nucleotide polymorphisms (SNPs). All hiPSCs lines showed the presence of selected SNPs rs186556743 and rs559077054 (Supplementary Fig. S1).

The hiPSC lines exhibit typical stem cell-like morphology which display a high nuclear-to-cytoplasmic ratio (Fig. 1, Panel C).

The multilineage differentiation potential was confirmed by a trilineage differentiation assay and demonstrated positive signals in the immunofluorescence analysis for the ectodermal marker Nestin, mesodermal marker Brachyury and endodermal marker Sox17 (Fig. 1, Panel D).

Karyotyping analysis (Szuhai and Tanke, 2006) at passage 6 (PEIi019-A-14) and passage 8 (PEIi019-A-13, PEIi019-A-15, PEIi019-A-16) showed normal numbers and structures of chromosomes (46, XY) (Fig. 1, Panel E). Immunofluorescence analysis showed, that the cell lines express pluripotency markers such as TRA-1–60 and NANOG (Fig. 1, Panel F).

Western blot analysis revealed a full knock out for ATM in PEIi019-A-13 cells and reduced protein amounts in PEIi019-A-14, PEIi019-A-15 and PEIi019-A-16 cells (Fig. 1, Panel G) compared to the parental cell line.

Expression of stem cell surface markers TRA-1–60 and SSEA3 was tested with flow cytometry analysis, and showed positive signals for > 99 % cells (Fig. 1, Panel H).

Short tandem repeats (STRs) analysis confirmed that the reported new cell lines were identical to the original parental cell line KOLF2-C1 (Skarnes et al., 2019). The hiPSC cell lines were healthy during culture and no mycoplasma contamination was observed (Supplementary Fig. S2).

Hence, the PEIi019-A-13, PEIi019-A-14, PEIi019-A-15 and PEIi019-A-16 lines, carrying *ATM*-specific genetic modifications, provide valuable model cell lines for the further analysis of A-T pathology on a cellular level.

3. Materials and methods

3.1. hiPSC culture

hiPSCs were cultured on Synthemax-coated (Corning® Synthemax® II-SC Substrate, 3535) 6-well plates in StemFlexTM Medium (Thermo Fisher Scientific, A3349401) at 37 °C and 5 % CO₂. Cell passage was conducted at a ratio of 1:10 every 5–6 days with ReLeSRTM (Stemcell, 100–0484).

Fig. 1. Characterization of hiPSC lines with ATM mutations.

3.2. 4D nucleofection of hiPSCs

Nucleofection was performed on 10^6 cells following the Skarnes et al., 2019 protocol for delivery of Cas9 RNP and oligo using the Amaxa 4D Nucleofector. hiPSCs were nucleofected for each clones with a mix of 16 µg of sgRNA and 20 µg of recombinant Cas9 protein (20 µg HiFi Cas9 nuclease v3; IDT), then reseeded on Synthemax-coated 6-well plates in StemFlexTM containing Revitacell (100X stock solution, Life Technologies, A26445-01) with addition of HDR enhancer (IDT, 1081073) to a 30 µM final concentration. The medium was replaced the next day without Revitacell and HDR enhancer. After cells reached ~ 80 % confluency, they were dissociated by using Accutase (Stemcell, 07920) and replated for single clone expansion.

3.3. Immunofluorescence

Immunofluorescence was performed using standard protocols (Reprocell) at passage 5 with the antibodies listed in Table 2.

3.4. Western blotting

Cell lysates of each hiPSC line and the parental wild type line were prepared with RIPA buffer containing a protease inhibitor cocktail (Roche, 11697498001). Western blotting and RIPA buffer preparation were performed using the standard protocol for Western blots by Abcam. Antibodies are listed in Table 2.

3.5. Flow cytometry

For flow cytometry analysis, 10^6 hiPS cells (passage 10) were dissociated into single cells with Accutase, washed with 2 % FCS in PBS and resuspended and stained in the primary antibody solution (SSEA3-AF488 and TRA-1–60-AF647, Table 2) at 4 °C for 2 h. They were then washed twice and treated with secondary antibodies at room temperature for 2 h. After staining, the cells were analyzed with the MACS-Quant® and the FlowJo software.

3.6. Mycoplasma detection

Mycoplasma detection was performed with PCR testing. Primers are listed below in Table 2.

3.7. Genotyping

Isolation of genomic DNA and PCR followed by Sanger sequencing (Eurofins Genomics) was used to determine the genotype of the clones as described in Skarnes et al., 2019. Additionaly, SNP sequencing was

performed targeting heterozygous SNPs previously identified in the WTSIi018-B cell line. Primers are listed in Table 2. PCR was done by using Q5® High-Fidelity DNA polymerase (New England Biolabs) with the following cycle parameters: 98 °C 30 sec, followed by 35 cycles of 98 °C 10 sec, primer annealing 30 sec, 72 °C 30 sec, and completed by 72 °C 2 min.

3.8. Karyotyping

Karyotyping was performed at the Leiden University Medical Center as previously described by Szuhai and Tanke, 2006.

3.9. Trilineage differentiation

Each cell line was differentiated into the three germ layers by using the STEMdiffTM Trilineage Differentiation Kit (Stemcell Technologies, 05230) according to manufacturer's instructions.

3.10. STR analysis

STR analysis was performed by Multiplexion GmbH.

Declaration of Competing Interest

The authors declare no financial interests/personal relationships which may be considered as potential competing interests.

Acknowledgements

This research received financial support from the Deutsche Forschungsgemeinschaft, grant number IV 21/17-1.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2023.103247.

References

McKinnon, P.J., 2004. ATM and ataxia telangiectasia. EMBO Rep. 5 (8), 772–776. https://doi.org/10.1038/sj.embor.7400210.

- Shiloh, Y., 2003. ATM and related protein kinases: safeguarding genome integrity. Nat. Rev. Cancer 3 (3), 155–168. https://doi.org/10.1038/nrc1011.
- Skarnes, W.C., Pellegrino, E., McDonough, J.A., 2019. Improving homology-directed repair efficiency in human stem cells. Methods 164–165, 18–28. https://doi.org/ 10.1016/j.ymeth.2019.06.016.
- Szuhai, K., Tanke, H.J., 2006. COBRA: Combined binary ratio labeling of nucleic-acid probes for multi-color fluorescence in situ hybridization karyotyping. Nat. Prot. 1 (1), 264–275. https://doi.org/10.1038/nprot.2006.41.