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Abstract—We present broadband reverberation chamber

measurements of the absorption cross section (ACS) of the

human body averaged over all directions of incidence and an-

gles of polarization. This frequency-dependent parameter

characterizes the interactions between the body and the enclo-

sures of reverberant environments such as aircraft cabins, and

is therefore important for the determination of the overall Q-

factor and hence the field strength illuminating equipment

inside such enclosures. It also correlates directly with the elec-

tromagnetic exposure of occupants of reverberant environ-

ments. The average absorption cross section of nine subjects

was measured at frequencies over the range 1-8.5 GHz. For a

75 kg male the ACS varied between 0.18 and 0.45 square me-

ters over this range. ACS also correlated with body surface

area for the subjects tested. The results agree well with com-

putational electromagnetic simulations, but are obtained much

more rapidly. We have used the obtained values of absorption

cross section to estimate the effect of passengers on the Q-

factor of a typical airliner cabin.

Index Terms—reverberation chamber, absorption cross-

section, specific absorption rate, aerospace biophysics.

I. INTRODUCTION

OUPLING of electromagnetic fields within vehicles such

as aircraft is important for wireless communications

and in determining interference to onboard electronic sys-

tems [1]. In this paper we investigate the effect of human

bodies on those fields.

In the aerospace industry, the increasing complexity of

electronic systems is driving up the cost of testing for elec-

tromagnetic compatibility (EMC), prompting an increased

reliance on simulation for at least the earlier stages of air-

craft design. To develop accurate models, the bodies of

passengers and crew need to be taken into account [2].

Aircraft cabins, and also other enclosures such as train

carriages, buses and elevators (lifts), are generally fabricated

from conducting sheet materials, and thus behave like reso-

nant cavities. At gigahertz frequencies, these enclosures are

electrically large and will support many cavity resonances.

In this overmoded regime, full-wave simulation of the inter-

nal electromagnetic (EM) fields is unfeasible, and a statisti-
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cal power-balance model is more appropriate [3, 4].

The most important parameter affecting the behaviour of

the fields is the average Q-factor of the resonances. A high

Q will lead to internal ‘hot spots’ of enhanced field strength,

but power losses through windows, currents in walls and

attenuation by absorbing materials will lower the Q-factor,

thus reducing the electric and magnetic fields, and increas-

ing the propagation losses. Body tissues at microwave fre-

quencies are lossy dielectrics and their effect on average Q-

factor is significant.

Power absorption in bodies can be easily combined with

other losses, such as in the passenger seats in an airliner [5].

The absorption effect applies not only in aircraft [6, 7] but

also in other confined spaces such as tunnels and mines [8].

In this work we describe the power losses within each

body in terms of its absorption cross section (ACS), which is

averaged over all angles of incidence and polarization, in

order to be applicable to overmoded reverberant environ-

ments. Following a review of measurements and calcula-

tions of ACS in the literature, we present measurements of

ACS, performed in a mode-stirred reverberation chamber.

We present results for nine subjects, describe how their ACS

varies with frequency, investigate its correlation with body

mass and surface area, and thus evaluate the effects of pas-

sengers loading a passenger aircraft cabin.

II.ABSORPTION CROSS SECTION (ACS)

The ACS is the ratio of absorbed power, Pabs, to incident

power density, Sinc, and has the dimensions of area:

inc

abs
a

S

P
 . (1)

Human ACS will generally be less than the actual surface

area of the body, or even than its projected or ‘silhouette’

area, because a substantial portion of the incident power is

reflected from or transmitted through the body.

ACS varies with frequency, direction of the incident

wave, and polarization, and is closely related to the whole

body specific absorption rate (WBSAR), an important pa-

rameter in EM dosimetry:

inc

a WBSAR
S

m
 , (2)

where m is body mass. Hence knowledge of the ACS allows

the exposure to a reverberant EM field to be assessed.

It is important to distinguish between the average ACS
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a , which is what we are interested in for a reverberant

environment, and the ACS in a particular direction
a . In

calculations of WBSAR, researchers often need the worst

case, i.e. the highest absorbed power. Note also that litera-

ture sources sometimes refer to ‘average WBSAR’ meaning

averaged over all parts of the body, rather than over multiple

directions and polarizations of the incident wave.

A.Measurements of ACS

Published data on the average ACS of the human body at

microwave frequencies are scarce. In our previous work [9]

we estimated it at 910 MHz from the changes to the Q of a

screened room (with no mechanical stirring) containing up

to nine people, and obtained a value of 0.25 m2.

Hurst and Ellingson [6] state that average ACS for a typi-

cal person is about 0.4 m2 at 2.1 GHz, varying very slowly

with frequency; however no experimental evidence is pre-

sented to support this assertion.

Andersen et al. [7] estimated average ACS from the ef-

fects of people on the reverberation time of a mock-up of an

aircraft cabin, getting a value of 0.33 m
2
. This was averaged

over a very broad frequency range of 3 to 8 GHz. Narrow-

band measurements, also obtained from the reverberation

time but in an office environment, are presented by Bamba

et al. [10]. They found that the average ACS was 0.34 m
2
at

2.3GHz and 0.36 m
2
at 3 GHz.

ACS can also be found from measurements in a reverber-

ation chamber [11] (see also Section III.A). Harima [12]

obtained the WBSAR of a male 70.6 kg in mass and 1.7 m

high. From this data the subject’s average ACS decreased

with frequency from 0.33 m
2
at 1 GHz to 0.11 m

2
at 4 GHz.

The above values of ACS are approximately 10-20% of

the total body surface area of an adult: reference data pub-

lished by the International Commission on Radiological

Protection [13] gives this as 1.6 m
2
for a female and 1.8 m

2

for a male.

Interestingly, the ACS can also be measured for sound

waves. Conti et al. [14] measured the average ACS of

adults in an acoustic reverberant chamber as 0.1 to 0.2 m2.

The absorption mechanism here is clearly different, sound

waves being absorbed mostly by clothes and EM waves

being attenuated by high-water-content tissues, but the ACS

is of a similar order of magnitude.

B.Calculation of ACS

Exposure to EM waves can be simulated with computa-

tional EM codes such as transmission line matrix (TLM) or

finite-difference time-domain (FDTD). Many detailed hu-

man body models (phantoms) have been created in order to

calculate WBSAR, as this is a key parameter for interna-

tional guidelines limiting human exposure [15]. If the source

of the simulated radiation is in the far field:

2

0

0

2

abs
a WBSAR

E

m

E

P 


  , (3)

where E is the RMS amplitude of the incident electric field

and 0 is the impedance of free space, approximately 377 .
So we can get the ACS from the WBSAR using the inci-

dent electric field and the mass of the phantom, but only for

a single direction of incidence and polarization. Usually the

phantom is standing, and the wave vertically polarized and

incident from the front, to give the worst-case exposure, i.e.

the highest WBSAR. The WBSAR in this orientation ini-

tially increases with frequency, shows a broad resonance

between 10 and 100 MHz (the peak varying with body

shape) and then decreases much more slowly between

200 MHz and 2.4 GHz [16]. Substituting the WBSAR for

male or female phantoms at 1 GHz into (3) gives the maxi-

mum ACS at low microwave frequencies as 0.48 m
2
for

males and 0.46 m
2
for females.

These high-resolution models require a lot of computing

power and time, so repeating the simulation for sufficient

numbers of different directions of incidence and polarization

to gain an accurate average is time consuming. Moglie et al.

did this with FDTD in the VHF band (25 to 200 MHz), and

found that the peak absorption at 75 MHz persisted even

after averaging [17]. However they reported that it took 200

processors 18 hours to calculate a single frequency point.

Conil et al. performed FDTD simulations at 2.1 GHz of a

105 kg male [18]. With the subject standing, they varied the

azimuth angle of the incident wave to include all horizontal

directions, but only varied the angle of elevation by 20.
This excludes waves coming from directly above or below,

which would probably give the lowest WBSAR.

Uusitupa et al calculated WBSAR from FDTD simula-

tions at five frequencies from 300 MHz to 5 GHz, and over

a range of angles, with 30 steps in azimuth and elevation
[19]. Details of how we weighted these values to obtain an

average ACS are given in Section IV.B. However it is

straightforward to calculate upper and lower limits on aver-

aged ACS, by applying (3) to the maximum and minimum

WBSAR over different orientations. Results for their 72.24

kg male phantom are listed in Table I, along with the meas-

ured values described in Section II.A.

Passengers and crew on an aircraft are often seated rather

than standing. Uusitupa [19] also calculated WBSAR for six

different phantom postures at the frequencies in Table I, for

two polarizations, but with just one direction of incidence

(horizontal, from the front). The WBSAR, and hence ACS,

was 8 to 22% lower for ‘sitting’ than for ‘standing.’

The data in Table I show large uncertainties in ACS or in

frequency, indicating a need for more precise measurements.

The simulations only used a single body phantom, while for

some of the measurements the individual body dimensions

are not recorded, hence our interest in also studying how

ACS relates to body size and type.

TABLE I

AVERAGEACS OF HUMAN BODY FROM 0.9 TO 8 GHZ: LITERATURE VALUES

frequency

(GHz)
a

(m2)

measured/

simulated
reference

0.90 0.27-0.51 s [19]

0.92 0.25 m [8]
1.0 0.33 m [11]

2.1 0.21-0.47 s [19]

2.3 0.28-0.42 m [9]
2.5 0.20 m [11]

3.0 0.24-0.43 m [9]

3.5 0.16-0.37 s [19]

4.0 0.11 m [11]

5.0 0.12-0.31 s [19]
3.0-8.0 0.33 m [6]
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III. THEORY

A.Power balance model

As frequency increases the resonant modes of an aircraft

cabin or a reverberation chamber become more closely

spaced, and eventually a statistical approach to describing

their behavior becomes appropriate. According to Hill et al.

[4], the various contributions to the average Q-factor of the

enclosure can then be combined thus:

1

4

1

3

1

2

1

1

1

av

  QQQQQ , (4)

where Q1 represents losses in the metal walls, Q2 absorption

by lossy dielectrics, Q3 the effects of apertures (windows)

and Q4 the losses in any measuring antennas.

If there are several absorbers, the contribution of absorber

i to the second term in (4) can be found from its average

ACS:

 


 

i

i

i

i
V

Q
V

Q a

1

2

a

2
2

,
2 





 , (5)

where V is the cavity volume and λ the wavelength. So if
we assume that the average ACS of each person is unaffect-

ed by others nearby, we can simply add all their cross-

sections, and thus characterize their effect on EM propaga-

tion.

In order to apply this approach, it is necessary to deter-

mine the frequency above which a statistical multimode

environment model is appropriate. The Helmholtz equation

was used to calculate the resonant modes in the fuselages

(modeled as cuboids, based on the interior cabin dimen-

sions) of an airliner (based on Boeing 747), a small helicop-

ter (based on Bell Jet Ranger) and an executive jet (based on

Learjet 85). Fig. 1 shows the mode densities (these were

counted using a 50 MHz moving window, which covered

enough modes to provide a realistic assessment of the mode

count). As can be seen, the airliner exceeds 10 modes/MHz

at 150 MHz, while the Jet Ranger achieves this density at

nearer 1500 MHz. At 1 GHz, the airliner typically has over

1000 modes within the bandwidth of the resonant modes

(f/Q), meaning that many modes are excited at any given

frequency and a reverberant cavity is an appropriate model

for the aircraft’s cabin at this and higher frequencies. At the

same frequency, the Bell’s cabin supports 5 modes / MHz,

so while no Q factor data is available for this aircraft, a Q of

100 (similar to the loaded 747 cabin in Fig. 8) would give a

resonance bandwidth of 10MHz, or 50 resonant modes. So

all three aircraft can be appropriately modeled as resonant

cavities at our frequencies of interest (1 to 8.5GHz).

Fig. 1. Resonant mode density in the cabins of three aircraft.

B.ACS in a Reverberation Chamber

In a stirred-mode reverberation chamber a mechanical

perturber, such as a rotating paddle, randomizes the internal

propagation paths. Average ACS is obtained from the scat-

tering (S) parameters Sij, between two antennas, measured

with and without a test object inside the chamber.

Following Carlberg et al. [20] we define a normalized

chamber transmission factor, G, as

)1)(1(
2

22

2

11

2

21

SS

S
G


 , (6)

where angle brackets represent averaging over all n stirrer

positions. If we take the ratio of the measured G-factors for

‘no object’ and ‘with object’ as
wono GGGr  , the average

ACS is given by

 1
8

11

8
r

no

2

nowo

2

a 







 G

GGG 



 . (7)

and its statistical uncertainty is

G

G

G

G 



1

2

r

r

a

a





 , (8)

where

n

k

G

G


 , (9)

and k determines the confidence (68 % for k=1, 95 % k=2)

[21].

The above method assumes lossless antennas. If there are

ohmic losses, the ACS should be multiplied by the product

TABLE II
PLANE WAVE PENETRATION OF EM WAVES INTO TISSUES (cm)

Frequency (GHz) Skin Fat Muscle

1 3.9 23 4.1

2.5 2.2 11 2.2

5.0 1.1 4.9 0.93

8.5 0.49 2.4 0.43
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of the two antenna radiation efficiencies. [12, 20] It is there-

fore important to use low loss, broadband antennas to mini-

mize systematic error. In this study we assumed each an-

tenna’s radiation efficiency to be 95%, based on ongoing

measurements of our own horns and on measured data for

similar horn antennas [22].

Further improvement to the uncertainty (at the expense of

losing some frequency resolution) is achieved by ‘frequency

stirring’ which means averaging the S-parameters over a

narrow band of frequencies as well as over stirrer positions.

C.Absorption in the human body

At microwave frequencies, body tissues are lossy dielec-

trics. Their complex permittivity is frequency-dependent

and can be obtained from parametric models [23]. Standard

EM theory then gives the plane wave penetration depth dp.

Table II shows dp for the tissues closest to the surface of

the body. The value for other soft tissues is similar to that

of muscle, while bone is comparable to fat. It is evident that

attenuation is high (except in fat at the lower end of our fre-

quency range), so most power absorption will occur near the

surface of the body.

Models of the human body, such as the IT’IS Virtual

Family [2], typically have a voxel dimension of 2 mm,

which allows FDTD simulation up to 15 GHz. To simulate

the fuselage of a large airliner such as the Boeing 747 (V 
2500m

3
) at this resolution would require ~300 GB of RAM.

Given that our primary interest is EMC aboard the aircraft

rather than dosimetry in the passengers, the precise energy

distribution within the body is unimportant: all we need to

know is the power absorbed. These voxel models are there-

fore overly complex for our purposes – a simpler model is

needed.

IV. MEASUREMENT TECHNIQUE

A.Reverberation chamber measurements

Measurements were taken in a reverberation chamber

with dimensions 4.70m  3.00m  2.37m and a lowest usa-
ble frequency (LUF) of 200MHz [24], using two double

ridged waveguide horn antennas. These were connected to a

vector network analyzer through N-type bulkhead connect-

ors in the chamber wall. A full 2-port calibration was per-

formed at the connectors on the antenna ports. Frequency

sweeps were made using 1601 points, spaced at approxi-

mately 5 MHz intervals from 1 GHz to 8.5 GHz. The net-

work analyzer used a 6 dBm stimulus (keeping the worst-

case WBSAR well within exposure guidelines [15]), and

70 kHz IF bandwidth.

Fig. 2. Diagram of reverberation chamber setup for ACS measurements.

The equipment was arranged in the reverberation chamber

as shown in Fig. 2. In order to eliminate direct path, the

port 1 antenna was aimed at the stirrer, while the port 2 an-

tenna was pointed at a chamber wall at approximately 45.
This gave a ratio of unstirred to stirred energy in the cham-

ber (K-factor) of typically 0.01, rising to 0.07 at the lowest

frequencies in the loaded chamber. In order to eliminate the

remaining unstirred energy, during post-processing the S21
was vector averaged over all stirrer positions. This average

was then subtracted from the S21 for each individual posi-

tion:

 212121 SSS (10)

The resulting change in S21 was as large as 10% at the

low end of the frequency range, but within 1% at high fre-

quencies. This is consistent with stirring being more effec-

tive at higher frequencies – as is indicated in the previous

paragraph, and is shown in Fig. 3, where S21 is autocorrelat-

ed over stirrer movements – the higher the frequency, the

smaller a movement is required to give an independent S21.

Normalized transmission factors were then calculated us-

ing (6) and ACS was then calculated using (7). Frequency

stirring was applied using a window size of 20 points, i.e.

100 MHz. This window size was chosen as an acceptable

compromise, providing additional stirring to the existing

mechanical stirring, without being so large as to obscure any

resonances or other features of the measurement. As such,

100MHz can be taken to be the frequency resolution of

these results.

B.Validation

Our measurement technique was validated in two ways:

by measurement of a test object [11], and by comparison to

values of human ACS in the literature described above.

The test object was a dielectric sphere filled with water,

for which
a is the same in all directions and can be ob-

tained analytically from Mie scattering theory [25]. Over

the range 1-8.5 GHz its ACS is approximately 0.07 m
2
with

a measurement uncertainty of 11 to 13%. The differences

between measured and calculated ACS were within this un-

certainty.
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Fig. 3. Autocorrelation of S21 over mechanical stirrer movement.

The WBSAR of the Virtual Family (VF) heterogeneous

male phantom has been calculated in [18], for plane wave

illumination at 11 angles of arrival and 2 polarizations using

FDTD simulations. An unweighted average of the ACS

from these 22 different illuminations is however biased

since the 22 samples are not uniformly distributed with an-

gle of arrival. This bias results in a significant overestimate

of the average ACS, since angles of arrival corresponding to

the smaller silhouette areas are under-represented. In order

to construct an unbiased estimate of the average ACS from

these results an ellipsoidal model of the phantom silhouette

area was constructed. Regarding the phantom as an ellipsoid

with estimated semi-major axes a = 0.10 m, b = 0.20 m and

c = 0.89 m the silhouette area for angle of arrival () is
[26]

     222
cossinsincossin),(  abacbcS  . (11)

The true average silhouette area over 4 steradians for the
ellipsoidal model is found to be

,m337.0d),(
4

1 2

4

unbiased
 






SS

(12)

whereas the average silhouette area over the i = 1,…,11 an-

gles of arrivals in the FDTD simulations is

,m382.0sin),(
11

1 2
11

1
biased

 


i

i

iiSS  (13)

indicating an overestimate by a factor of 1.13. The range

over angles of arrival of the Uusitupa ACS simulation re-

sults at 300, 450, 900, 2100, 3500 and 5000 MHz, together

with the biased and estimated unbiased averages are shown

in Fig. 6.

C.Human subjects

Nine subjects were recruited locally, after obtaining ethi-

cal permission to experiment on volunteers, and selected to

give a range of different physical characteristics (Table III).

Subjects wore light clothes. Before entering the chamber,

they were briefed on the experiment and photographed. We

recorded their gender, age, mass and height, a description of

their clothing, and the room temperature.

All subjects sat on the same wooden stool inside the

chamber, which was registered to markings on the floor,

1.5 m  1 m from the chamber walls. Subjects were asked
to keep their feet on the cross-bar of the stool in order to

keep them within the stirred volume of the chamber, i.e.

more than 7.5 cm from the floor at 1 GHz and above. They

were also asked to remain still as far as possible during the

measurement.

Fig. 3 relates to a measurement of the empty chamber,

where the stirrer was moved over one complete rotation in

3200 steps. The S21 was then autocorrelated over stirrer

movement, at several frequencies across the range of inter-

est. At 1GHz, 28 steps were required to produce an inde-

pendent S21 (using a metric of 1/e). This gives 3200/28 =

114 independent stirrer positions in the chamber at 1GHz.

For the human subjects, measurements were taken over 100

mechanical stirrer positions in one full rotation. Using few-

er than 115 steps meant that all samples were independent

over the whole frequency range. This setup gave a total

measurement time of approximately 15 minutes, which was

felt to be the longest that subjects could be asked to sit still

in the chamber. This is the limiting factor on the statistical

error in the ACS results.

V.RESULTS

A.Human ACS values

Fig. 5 shows ACS versus frequency for all nine subjects.

The uncertainty in ACS for each plot, estimated from (8), is

approximately 10-12% [11]. In the 1 to 2 GHz band the

higher statistical uncertainty due to the lower number of

independent samples available in the chamber limits the

ability to resolve the differences in ACS between the sub-

jects.

TABLE III

PHYSICAL PARAMETERS OF MEASURED SUBJECTS

Subject Gender height (m) mass (kg)

1 Male 1.89 101

2 Male 1.81 75.7

3 Female 1.65 84.1

4 Male 1.76 101.5

5 Male 1.75 67.8

6 Female 1.54 38.1

7 Male 1.81 59.3

8 Female 1.72 52.8

9 Male 1.95 112.2
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Fig. 4. ACS of one subject measured five times on different days.

Fig. 5. ACS of nine human subjects measured in the York reverberation
chamber.

To investigate the repeatability of our technique, one sub-

ject was measured five separate times on different days.

These results are shown in Fig. 4 and indicate that the meas-

urement procedure is robust.

These results give ACS values that are slightly low com-

pared to some of those given in the literature. Our subjects’

ACS values range from 0.22 to 0.34 m
2
at 2.1 GHz, com-

pared to Hurst and Ellingson’s 0.4 m
2
. Between 3 and

8 GHz, averaged values vary around 0.2 m2, as compared to

Andersen’s 0.33 m2. Bamba’s value of 0.34 m2 at 2.4 GHz

is within our range, although Bamba does not predict the

drop in ACS by 3 GHz.

Fig. 6. Measured ACS of a 75.7kg male subject compared to Uusitupa’s

FDTD simulation of the VF heterogeneous male phantom based on plane

wave incidence from 11 directions with two polarisations.

Fig. 7. Correlation of average human ACS with body surface area.

Uusitupa’s multi-angle SAR simulation does, however,

predict this drop; our measurements are particularly close to

the values of Uusitupa once the latter have been unbiased

for the limited number of angles of incidence, as described

in Section IV B.

Despite the measurement uncertainties, it can be seen

from Fig. 5 that average ACS is generally greater for the

larger subjects, as might be expected. This relationship is

illustrated further in Fig. 7, where the ACS of each subject is

averaged over frequency and plotted against body surface

area. The body surface area (BSA) in m
2
was estimated from

the subject’s height, H, in m and mass, m, in kg using the

Dubois & Dubois equation (14) [13].

425.0725.020247.0BSA mH 
(14)

The ACS to BSA relationship is plotted in two ranges: be-

low 5GHz where the ACS reduces with frequency and

above 5GHz where ACS appears to be more frequency in-

dependent.

The frequency-averaged ACS correlates with surface area

but is not directly proportional to it, rather the proportionali-

ty breaks down at low values, so the linear regression fit

does not intersect the origin. The correlation is much strong-

er for the higher frequency range, which is as expected: not
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only does the chamber support more resonant modes and

thus a higher degree of confidence at these frequencies, the

penetration depth of human tissues is also smaller, so that

absortion is a surface effect which is predictably well-

correlated with surface area. At lower frequencies, EM

waves penetrate further into the inner tissue layers and ana-

tomically-dependent internal scattering effects are more

significant.

The measurements of ACS shows good agreement with

data from the literature. The technique is much faster than

computation by TLM or FDTD, giving average ACS at

1601 frequencies in 15 minutes rather than several hours per

frequency point. Measurement time could be further re-

duced by optimizing the sweep time and paddle speed, while

taking care that the sweep time is not too short to allow the

chamber to reach a steady state at each measured frequency

point.

B.Effect of human ACS on an airliner cabin’s Q factor

The ACS data was used to calculate the effect of a full

complement of passengers on the Q factor of a modern air-

liner cabin. The Q of an empty Boeing 707 (without seats)

was obtained from [27]. The passenger cabin dimensions

were then obtained for a 707 and a 747-8, from the respec-

tive airport planning manuals [28], and the 747’s empty-

cabin Q was estimated, based on scaling the wall and win-

dow areas using the equations provided in [4]. We added

400 airline seats, with their ACS calculated as in [5]. We

then added 400

Fig. 8. Estimated effect of 400 passengers on the Q factor of a 747-8 cabin.

passengers, based on the averaged ACS of six of the meas-

ured subjects: 1, 2, 3, 5, 6 and 8. These six were selected to

give three men and three women, and have an average mass

of 69.9kg and height of 1.73m, which are both well within

the standard deviations of these properties for British adults

[29]. The resulting effect on the 747 Q-factor can be seen in

Fig. 8, where the addition of the passengers reduces the cab-

in’s Q factor by around 50%.

VI. CONCLUSION

Broadband measurements (1 to 8.5 GHz) of the absorp-

tion cross section of the human body, averaged over multi-

ple directions of incidence and angles of polarization, in a

reverberation chamber have been presented. The ACS of a

typical 75 kg subject is around 0.40 m2 at 1 GHz, falls to a

minimum of 0.16 m2 at about 5 GHz, then rises slightly to

0.18 m2 at 8.5 GHz. The ACS is found to be correlated with

body surface area: larger subjects have greater cross-

sections. We have estimated the uncertainties of the meas-

urement as 10-12% and validated it against literature data.

This work enables us to estimate the effect of people on

the Q-factors of enclosures, leading to a better understand-

ing of propagation in resonant environments such as aircraft

– where they are shown to have a significant effect, halving

the Q of a typical airliner’s passenger cabin. The ACS of a

subject exposed to EM waves is closely related to his or her

WBSAR, so this work is also relevant to the field of EM

dosimetry.

Future work to improve this method could include taking

a larger sample of subjects, to give a better understanding of

the correlation of ACS with body dimensions, and hence the

effect of a typical population of passengers and crew on the

EM environment in aircraft.

Also of interest would be the effect of clothing on ACS,

the influence of body posture, and of the total ACS of a per-

son sitting in an airline seat. The slightly lower values of

average ACS compared to the FDTD simulations may be

because the real subjects were sitting, while the phantom

was simulated standing.

We also intend to explore the ACS at higher frequencies:

the upper end of the range is only limited by the perfor-

mance of the network analyzer, cables and antennas.
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