CHARACTERIZATION OF ϕ-SYMMETRIC LORENTZIAN PARA-KENMOTSU MANIFOLDS

Rajendra Prasad, Abhinav Verma, Vindhyachal Singh Yadav

Department of Mathematics and Astronomy, University of Lucknow, India

Abstract

The purpose of the present paper is to explore the characteristics of the Lorentzian ϕ-symmetric para-Kenmotsu manifold as an Einstein manifold. In this paper, we also study the parallel 2-form on the LP-Kenmotsu manifold (LP-Kenmotsu manifold is used in lieu of Lorentzian para-Kenmotsu manifold throughout the present research article). We explain that the conformally flat LP-Kenmotsu manifold is locally ϕ-symmetric iff, it has constant scalar curvature. Keywords: Einstein manifold, ϕ-symmetric LP-Kenmotsu manifold, scalar curvature, Ricci tensor.

1. Introduction

A number of authors have examined the concept of weak local symmetry of Riemannian manifolds with different approaches in distinct areas. Takahashi [15] initiated the concept of locally ϕ-symmetry as a weaker form of local symmetry on Sasakian manifolds. De [4, 5] initiated the concept of ϕ-recurrent Sasakian manifolds by generalizing the concept of locally ϕ-symmetry. Haseeb, Pandey and Prasad studied solitons on Sasakian manifold [8]. The concept of ϕ-symmetry in reference to the contact geometry is initiated and examined by Vanhecke, Buecken and Boeckx [3]. Alternatively, Kenmotsu manifold has been established by Kenmotsu [10]. He explained Kenmotsu manifold as a category of contact metric manifold. Kenmotsu manifold is different from Sasakian manifold. Since $\operatorname{div} \xi=2 n$, therefore, Kenmotsu

[^0]manifold is not compact. A Kenmotsu manifold is said to be a locally warped product $I \times{ }_{f} N$ of an interval I [10], which is Kähler manifold N together with warping function $f(t)=s e^{t}$, here s is a non-zero constant.
We have organized this paper in the following manner:
We mention preliminaries in section-2. Section 3 establishes a result on LP-Kenmotsu manifold with parallel 2-form. Section 4 gives results on ϕ-symmetric LP-Kenmotsu manifold as an Einstein manifold. Section 5 explains that the conformally flat LPKenmotsu manifold is ϕ-symmetric, iff it has constant scalar curvature.
In the last section of this paper, examples on the ϕ-symmmetry together with locally ϕ-symmetric LP-Kenmotsu manifold are given.

2. Preliminaries

We assume that the $M^{n}(\phi, \xi, \eta, g)$ be a Lorentzian metric manifold. Here, ϕ is $(1,1)$ tensor field, ξ is characteristic vector field, η is 1 -form and g is the Lorentz metric. We are well acquainted with the results mentioned below:

$$
\begin{gather*}
\phi \xi=0, \quad \eta(\phi U)=0, \quad \eta(\xi)=-1, \tag{2.1}\\
\phi^{2} U=U+\eta(U) \xi \tag{2.2}\\
g(U, \xi)=\eta(U) \tag{2.3}\\
g(\phi U, \phi V)=g(U, V)+\eta(U) \eta(V) \tag{2.4}
\end{gather*}
$$

\forall vector fields U, V on $M[6]$,

$$
\begin{equation*}
\left(\nabla_{U} \phi\right) V=-g(\phi U, V) \xi-\eta(V) \phi U, \tag{2.5}
\end{equation*}
$$

\forall vector fields U, V on M,

$$
\begin{equation*}
\nabla_{U} \xi=-U-\eta(U) \xi \tag{2.6}
\end{equation*}
$$

here, ∇ represents the Levi-Civita connection of g, then $M(\phi, \xi, \eta, g)$ is said to be a LP-Kenmotsu manifold [6, 7]. Kenmotsu [10], De and Pathak [4], Jun, De and Pathak [9], Binh, Tamassy, De and Tarafdar [1], Özgür and De [13], Özgür [11, 12] and other mathematicians have explained the Kenmotsu manifolds.
In LP-Kenmotsu manifolds, the results given below hold:

$$
\begin{gather*}
\left(\nabla_{U} \eta\right) V=-g(U, V)-\eta(U) \eta(V) \tag{2.7}\\
\eta(R(U, V) Z)=g(V, Z) \eta(U)-g(U, Z) \eta(V) \tag{2.8}\\
R(U, V) \xi=\eta(V) U-\eta(U) V \tag{2.9}
\end{gather*}
$$

$$
\begin{gather*}
R(\xi, U) V=g(U, V) \xi-\eta(V) U \tag{2.10}\\
R(\xi, U) \xi=U+\eta(U) \xi \tag{2.11}\\
S(U, \xi)=(n-1) \eta(U) \tag{2.12}\\
\left(\nabla_{Z} R\right)(U, V) \xi=g(U, Z) V-g(V, Z) U+R(U, V) Z \tag{2.13}
\end{gather*}
$$

\forall vector fields U, V, Z on M, where R and S denote the Riemannian curvature tensor and the Ricci tensor respectively.

Definition 2.1. An LP-Kenmotsu manifold is called locally ϕ-symmetric if it satisfies the condition,

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(U, V) Z\right)=0 \tag{2.14}
\end{equation*}
$$

\forall vector fields U, V, Z, W orthogonal to ξ.
Takahashi initiated the above concept for a Sasakian manifold [15]. We extend this concept for LP-Kenmotsu manifold in the above definition.

Definition 2.2. An LP-Kenmotsu manifold is called the ϕ-symmetric LP-Kenmotsu manifold if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(U, V) Z\right)=0 \tag{2.15}
\end{equation*}
$$

\forall vector fields $\mathrm{U}, \mathrm{V}, \mathrm{Z}, \mathrm{W}$ on M.
Definition 2.3. A second order tensor α is called the parallel tensor, if $\nabla \alpha=0$, where, ∇ represents the Levi-Civita connection in the direction of metric g.

3. Parallel 2-form in the LP-Kenmotsu manifolds

Theorem 3.1. There is no non-zero parallel 2-form on a LP-Kenmotsu manifold.
Proof. We assume α to be a $(0,2)$ type skew symmetric tensor. By definition, α is parallel tensor, if $\nabla \alpha=0$. This provides the following relation,

$$
\begin{equation*}
\alpha(R(W, U) V, Z)+\alpha(V, R(W, U) Z)=0 \tag{3.1}
\end{equation*}
$$

\forall vector fields U, V, Z, W on M.
Putting $W=V=\xi$ in the equation (3.1), we obtain,

$$
\alpha(R(\xi, U) \xi, Z)+\alpha(\xi, R(\xi, U) Z)=0
$$

Using the equations (2.10) and (2.11), we obtain,

$$
\begin{equation*}
\alpha(U, Z)=\eta(Z) \alpha(\xi, U)-\eta(U) \alpha(\xi, Z)-g(U, Z) \alpha(\xi, \xi) \tag{3.2}
\end{equation*}
$$

Since, α is $(0,2)$ skew-symmetric tensor, which implies that $\alpha(\xi, \xi)=0$, therefore equation (3.2) reduces to,

$$
\begin{equation*}
\alpha(U, Z)=\eta(Z) \alpha(\xi, U)-\eta(U) \alpha(\xi, Z) \tag{3.3}
\end{equation*}
$$

Now, let A be $(1,1)$ tensor field, which is metrically equivalent to α, i.e., $\alpha(U, V)=$ $g(A U, V)$, then the equation (3.3) becomes,

$$
g(A U, Z)=\eta(Z) g(A \xi, U)-\eta(U) g(A \xi, Z),
$$

which implies that,

$$
\begin{equation*}
A U=g(A \xi, U) \xi-\eta(U) A \xi \tag{3.4}
\end{equation*}
$$

Now, we have the relation,

$$
\nabla_{U}(A \xi)=\left(\nabla_{U} A\right) \xi+A\left(\nabla_{U} \xi\right)
$$

As, α is parallel, so A is parallel, therefore $\nabla_{U} A=0$. Applying this relation together with $\nabla_{U} \xi=-U-\eta(U) \xi$ in the above equation, we get,

$$
\nabla_{U}(A \xi)=A(-U-\eta(U) \xi)
$$

or

$$
\nabla_{U}(A \xi)=-A U-\eta(U) A \xi
$$

With the help of the equation (3.4), the above equation is reduced to

$$
\nabla_{U}(A \xi)=-g(A \xi, U) \xi
$$

By calculation,

$$
g\left(\nabla_{U}(A \xi), A \xi\right)=0
$$

for any vector field U on M. Consequently $\|A \xi\|=$ constant on M .
From the above equation,

$$
g\left(\left(\nabla_{U} A\right) \xi+A\left(\nabla_{U} \xi\right), A \xi\right)=0
$$

Because A is parallel, the first term in the above equation vanishes, and the above equation simplifies to become.

$$
g\left(A\left(\nabla_{U} \xi\right), A \xi\right)=0
$$

or,

$$
\alpha\left(\nabla_{U} \xi, A \xi\right)=0
$$

Since, $\alpha(U, V)=-\alpha(V, U)$, so the above equation becomes,

$$
-\alpha\left(A \xi, \nabla_{U} \xi\right)=0
$$

or,

$$
-g\left(A^{2} \xi, \nabla_{U} \xi\right)=0
$$

or,

$$
-g\left(\nabla_{U} \xi, A^{2} \xi\right)=0
$$

As, $\nabla_{U} \xi=-U-\eta(U) \xi$, the above equation implies,

$$
-g\left(-U-\eta(U) \xi, A^{2} \xi\right)=0
$$

or,

$$
g\left(U, A^{2} \xi\right)+\eta(U) g\left(\xi, A^{2} \xi\right)=0
$$

or

$$
g\left(U, A^{2} \xi\right)=-g\left(\xi, A^{2} \xi\right) g(\xi, U)
$$

Since, $-g\left(\xi, A^{2} \xi\right)=-\alpha(A \xi, \xi)=\alpha(\xi, A \xi)=g(A \xi, A \xi)=\|A \xi\|^{2}$, the above equation becomes,

$$
g\left(U, A^{2} \xi\right)=\|A \xi\|^{2} g(U, \xi)
$$

or,

$$
g\left(U, A^{2} \xi\right)=g\left(U,\|A \xi\|^{2} \xi\right)
$$

or,

$$
\begin{equation*}
A^{2} \xi=\|A \xi\|^{2} \xi \tag{3.5}
\end{equation*}
$$

Differentiating covariantly the equation (3.5) along U, we obtain.

$$
\nabla_{U}\left(A^{2} \xi\right)=\left(\nabla_{U} A^{2}\right) \xi+A^{2}\left(\nabla_{U} \xi\right)=\|A \xi\|^{2} \nabla_{U} \xi
$$

Using $\nabla_{U} A=0$ and $\nabla_{U} \xi=-U-\eta(U) \xi$, the above equation becomes,

$$
\nabla_{U}\left(A^{2} \xi\right)=A^{2}(-U-\eta(U) \xi)
$$

or,

$$
\nabla_{U}\left(A^{2} \xi\right)=-A^{2} U-\eta(U) A^{2} \xi
$$

From equation (3.5), the above equation turns into,

$$
\nabla_{U}\left(\|A \xi\|^{2} \xi\right)=-A^{2} U-\eta(U)\|A \xi\|^{2} \xi
$$

or,

$$
\|A \xi\|^{2} \nabla_{U} \xi=-A^{2} U-\eta(U)\|A \xi\|^{2} \xi
$$

or,

$$
-\|A \xi\|^{2} U-\eta(U)\|A \xi\|^{2} \xi=-A^{2} U-\eta(U)\|A \xi\|^{2} \xi
$$

On simplification, the above equation becomes,

$$
\begin{equation*}
A^{2} U=\|A \xi\|^{2} U \tag{3.6}
\end{equation*}
$$

If, $\|A \xi\| \neq 0$, then the equation (3.6) becomes,

$$
\left(\frac{A}{\|A \xi\|}\right)^{2} U=U
$$

Let $\mathrm{F}=\frac{A}{\|A \xi\|}$, then we have,

$$
\begin{equation*}
F^{2} U=U \tag{3.7}
\end{equation*}
$$

Therefore on M, F defines the almost product structure. Then the fundamental 2 -form is given by,

$$
g(F U, V)=g\left(\frac{A U}{\|A \xi\|}, V\right)=\frac{1}{\|A \xi\|} g(A U, V) .
$$

Suppose $\lambda=\frac{1}{\|A \xi\|}$. Using the relation $\alpha(U, V)=g(A U, V)$ together with the above equation, we get

$$
g(F U, V)=\lambda g(A U, V)=\lambda \alpha(U, V)
$$

But the equation (3.3) shows that α is degenerate, which is a contradiction, this implies,

$$
\|A \xi\|=0
$$

and

$$
\alpha=0
$$

This completes the proof of the theorem 3.1.

4. ϕ-symmetric LP-Kenmotsu manifolds

Assuming M is a ϕ-symmetric LP-Kenmotsu manifold. With the help of equation (2.2) and (2.14), we get

$$
\begin{equation*}
\left(\nabla_{W} R\right)(U, V) Z+\eta\left(\left(\nabla_{W} R\right)(U, V) Z\right) \xi=0 \tag{4.1}
\end{equation*}
$$

Let $\left\{e_{i}\right\}_{i=1}^{n}$ be the orthonormal basis of $T_{p} M$ at any point p of M. Now, contracting the equation (4.1) along U, we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} g\left(\left(\nabla_{W} R\right)\left(e_{i}, V\right) Z, e_{i}\right)+\sum_{i=1}^{n} g\left(\left(\nabla_{W} R\right)\left(e_{i}, V\right) Z, \xi\right) g\left(e_{i}, \xi\right)=0 \tag{4.2}
\end{equation*}
$$

Putting $Z=\xi$ in the above equation, we obtain,

$$
\begin{equation*}
\left(\nabla_{W} S\right)(V, \xi)+\sum_{i=1}^{n} g\left(\left(\nabla_{W} R\right)\left(e_{i}, V\right) \xi, \xi\right) g\left(e_{i}, \xi\right)=0 \tag{4.3}
\end{equation*}
$$

Second term of the above equation,

$$
\begin{align*}
\left.g\left(\left(\nabla_{W} R\right)\left(e_{i}\right), V\right) \xi, \xi\right)=g\left(\nabla_{W}\right. & \left(R\left(e_{i}, V\right) \xi, \xi\right)-g\left(R\left(\nabla_{W} e_{i}, V\right) \xi, \xi\right) \tag{4.4}\\
& -g\left(R\left(e_{i}, \nabla_{W} V\right) \xi, \xi\right)-g\left(R\left(e_{i}, V\right) \nabla_{W} \xi, \xi\right) .
\end{align*}
$$

As, e_{i} is orthonormal basis at p, therefore, $\nabla_{W} e_{i}=0$. On applying the relation $\nabla_{W} e_{i}=0$ in the second term together with equation (2.9) in $3^{\text {rd }}$ term of the above equation, we obtain,

$$
g\left(R\left(e_{i}, \nabla_{W} V\right) \xi, \xi\right)=g\left(\eta\left(\nabla_{W} V\right) e_{i}-\eta\left(e_{i}\right) \nabla_{W} V, \xi\right),
$$

or,

$$
g\left(R\left(e_{i}, \nabla_{W} V\right) \xi, \xi\right)=\eta\left(\nabla_{W} V\right) g\left(e_{i}, \xi\right)-\eta\left(e_{i}\right) g\left(\nabla_{W} V, \xi\right)
$$

which again implies,

$$
g\left(R\left(e_{i}, \nabla_{W} V\right) \xi, \xi\right)=\eta\left(e_{i}\right) \eta\left(\nabla_{W} V\right)-\eta\left(e_{i}\right) \eta\left(\nabla_{W} V\right)
$$

or,

$$
\begin{equation*}
g\left(R\left(e_{i}, \nabla_{W} V\right) \xi, \xi\right)=0 \tag{4.5}
\end{equation*}
$$

Using the equation (4.5) into the equation (4.4), we get

$$
\begin{equation*}
\left.g\left(\left(\nabla_{W} R\right)\left(e_{i}\right), V\right) \xi, \xi\right)=g\left(\nabla_{W}\left(R\left(e_{i}, V\right) \xi, \xi\right)-g\left(R\left(e_{i}, V\right) \nabla_{W} \xi, \xi\right)\right. \tag{4.6}
\end{equation*}
$$

As,

$$
\begin{equation*}
g\left(R\left(e_{i}, V\right) \xi, \xi\right)=-g\left(R(\xi, \xi) V, e_{i}\right)=0 \tag{4.7}
\end{equation*}
$$

therefore,

$$
g\left(R\left(e_{i}, V\right) \xi, \xi\right)=0
$$

Differentiating covariantly the above equation with respect to W, we obtain,

$$
\left(\nabla_{W} g\right)\left(R\left(e_{i}, V\right) \xi, \xi\right)+g\left(\nabla_{W} R\left(e_{i}, V\right) \xi, \xi\right)+g\left(R\left(e_{i}, V\right) \xi, \nabla_{W} \xi\right)=0
$$

On simplification, the above equation is reduced to,

$$
\begin{equation*}
g\left(\nabla_{W} R\left(e_{i}, V\right) \xi, \xi\right)=-g\left(R\left(e_{i}, V\right) \xi, \nabla_{W} \xi\right) \tag{4.8}
\end{equation*}
$$

Using (4.8) into (4.6), we find

$$
g\left(\left(\nabla_{W} R\right)\left(e_{i}, V\right) \xi, \xi\right)=-g\left(R\left(e_{i}, V\right) \xi, \nabla_{W} \xi\right)-g\left(R\left(e_{i}, V\right) \nabla_{W} \xi, \xi\right),
$$

or,

$$
\left.g\left(\nabla_{W} R\right)\left(e_{i}, V\right) \xi, \xi\right)=-g\left(R\left(e_{i}, V\right) \xi, W+\eta(W) \xi\right)-g\left(R\left(e_{i}, V\right)(W+\eta(W) \xi, \xi)\right.
$$

On evaluation, the above equation becomes,

$$
\left.g\left(\left(\nabla_{W} R\right)\left(e_{i}, V\right) \xi, \xi\right)=-g\left(\left(R\left(e_{i}, V\right) \eta(W)\right) \xi\right), \xi\right)
$$

Since

$$
\left(R\left(e_{i}, V\right) \eta(W)\right)=0
$$

so,

$$
g\left(\left(\nabla_{W} R\right)\left(e_{i}, V\right) \xi, \xi\right)=0
$$

With the aid of the above equation, the equation (4.3) turns into,

$$
\left(\nabla_{W} S\right)(V, \xi)=0
$$

or,

$$
\left(\nabla_{W} S\right)(V, \xi)=\nabla_{W}(S(V, \xi))-S\left(\nabla_{W} V, \xi\right)-S\left(V, \nabla_{W} \xi\right)
$$

With the help of the equations (2.6) and (2.12), the above relation provides,

$$
\begin{equation*}
S(V, W)=(n-1) g(V, W) \tag{4.9}
\end{equation*}
$$

which shows that a ϕ-symmetric LP-Kenmotsu manifold is an Einstein manifold. So, we state the following theorem:

Theorem 4.1. : A ϕ-symmetric LP-Kenmotsu manifold is an Einstein manifold.

5. Conformally flat locally ϕ-symmetric LP-Kenmotsu manifolds

Let $\left(M^{n}, g\right)$ be an n-dimensional $(n>3)$ connected pseudo-Riemannian manifold of class C^{∞} and ∇ be the Levi-Civita connection, then the conformal curvature tensor C of (M, g) is defined by

$$
\begin{align*}
C(U, V) Z=R(U, V) Z-\frac{1}{n-2}[S(V, Z) U & -S(U, Z) V+g(V, Z) Q U-g(U, Z) Q V] \tag{5.1}\\
+ & \frac{r}{(n-1)(n-2)}[g(V, Z) U-g(U, Z) V]
\end{align*}
$$

where, r is the scalar curvature, S is the Ricci tensor and Q is the Ricci operator s.t. $S(U, V)=g(Q U, V)[14,16]$. We assume that the manifold is conformally flat, so, $C(U, V) Z=0$. Hence the equation (5.1) turns into,
(5.2) $\quad R(U, V) Z=\frac{1}{n-2}[S(V, Z) U-S(U, Z) V+g(V, Z) Q U-g(U, Z) Q V]$

$$
-\frac{r}{(n-1)(n-2)}[g(V, Z) U-g(U, Z) V] .
$$

Replacing $U=Z=\xi$ in the above equation and using (2.11) together with (2.12), we obtain

$$
\begin{equation*}
Q U=\left(\frac{r}{n-1}-1\right) U+\left(\frac{r}{n-1}-n\right) \eta(U) \xi \tag{5.3}
\end{equation*}
$$

According to the definition, $S(U, V)=g(Q U, V)$, we get

$$
\begin{equation*}
S=\left(\frac{r}{n-1}-1\right) g+\left(\frac{r}{n-1}-n\right) \eta \otimes \eta \tag{5.4}
\end{equation*}
$$

by virtue of the equations (5.3), (5.4), the equation (5.2) turns into

$$
\begin{align*}
& R(U, V) Z=\left(\frac{1}{n-2}\right)\left(\frac{r}{n-1}-2\right)[g(V, Z) U-g(U, Z) V] \tag{5.5}\\
& +\left(\frac{1}{n-2}\right)\left(\frac{r}{n-1}-n\right)[g(V, Z) \eta(U) \xi-g(U, Z) \eta(V) \xi] \\
& \quad+\left(\frac{1}{n-2}\right)\left(\frac{r}{n-1}-n\right)[\eta(V) \eta(Z) U-\eta(U) \eta(Z) V]
\end{align*}
$$

Differentiating covariantly the equation (5.5) with respect to W, we find
(5.6) $\quad\left(\nabla_{W} R\right)(U, V) Z=\left(\frac{1}{n-2}\right) \frac{d r(W)}{(n-1)}[g(V, Z) U-g(U, Z) V]$

$$
\begin{gathered}
\left.+\left(\frac{1}{n-2}\right) \frac{d r(W)}{(n-1)}[g(V, Z) \eta(U) \xi-g(U, Z) \eta(V) \xi+\eta(V) \eta(Z) U-\eta(U) \eta(Z) V)\right] \\
+\left(\frac{1}{n-2}\right)\left(\frac{r}{n-1}-n\right)\left[g(V, Z)\left(\nabla_{W} \eta\right)(U) \xi+g(V, Z) \eta(U) \nabla_{W} \xi-g(U, Z)\left(\nabla_{W} \eta\right)(V) \xi\right. \\
-g(U, Z) \eta(V) \nabla_{W} \xi+\left(\nabla_{W} \eta\right)(V) \eta(Z) U+\eta(V)\left(\nabla_{W} \eta\right)(Z) U \\
\left.\left.-\left(\nabla_{W} \eta\right)(U)\right) \eta(Z) V-\eta(U)\left(\nabla_{W} \eta\right)(Z) V\right] .
\end{gathered}
$$

Now, operating ϕ^{2} on both sides of the equation (5.6), we get

$$
\begin{align*}
& \text { (5.7) } \quad \phi^{2}\left(\left(\nabla_{W} R\right)(U, V) Z\right)=\phi^{2}\left(\left(\frac{1}{n-2}\right) \frac{d r(W)}{(n-1)}[g(V, Z) U-g(U, Z) V]\right. \tag{5.7}\\
& \left.+\left(\frac{1}{n-2}\right) \frac{d r(W)}{(n-1)}[g(V, Z) \eta(U) \xi-g(U, Z) \eta(V) \xi+\eta(V) \eta(Z) U-\eta(U) \eta(Z) V)\right] \\
& +\left(\frac{1}{n-2}\right)\left(\frac{r}{n-1}-n\right)\left[g(V, Z)\left(\nabla_{W} \eta\right)(U) \xi+g(V, Z) \eta(U) \nabla_{W} \xi-g(U, Z)\left(\nabla_{W} \eta\right)(V) \xi\right. \\
& \quad-g(U, Z) \eta(V) \nabla_{W} \xi+\left(\nabla_{W} \eta\right)(V) \eta(Z) U+\eta(V)\left(\nabla_{W} \eta\right)(Z) U \\
& \\
& \left.\left.\quad-\left(\nabla_{W} \eta\right)(U) \eta(Z) V-\eta(U)\left(\nabla_{W} \eta\right)(Z) V\right]\right)
\end{align*}
$$

On simplification, the above equation becomes,

$$
\begin{gather*}
\phi^{2}\left(\left(\nabla_{W} R\right)(U, V) Z\right)=\left(\frac{1}{n-2}\right) \frac{d r(W)}{(n-1)}[g(V, Z) U-g(U, Z) V+g(V, Z) \eta(U) \xi- \tag{5.8}\\
g(U, Z) \eta(V) \xi-\eta(U) \eta(Z) V+\eta(V) \eta(Z) U] \\
+\left(\frac{1}{n-2}\right)\left(\frac{r}{n-1}-n\right)\left[\left(\nabla_{W} \eta\right)(V) \eta(Z) U+\eta(V)\left(\nabla_{W} \eta\right)(Z) U-\right. \\
\left(\nabla_{W} \eta\right)(U) \eta(Z) V-\eta(U)\left(\nabla_{W} \eta(Z) V\right)+\left(\nabla_{W} \eta\right)(V) \eta(U) \eta(Z) \xi- \\
\left(\nabla_{W} \eta\right)(U) \eta(V) \eta(Z) \xi+g(U, Z) \eta(V) W-g(V, Z) \eta(U) W \\
\quad+g(U, Z) \eta(V) \eta(W) \xi-g(V, Z) \eta(U) \eta(W) \xi] .
\end{gather*}
$$

Let U, V, Z be orthogonal to ξ, therefore the equation (5.8) becomes,

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(U, V) Z\right)=\left(\frac{1}{n-2}\right) \frac{d r(W)}{(n-1)}[g(V, Z) U-g(U, Z) V] \tag{5.9}
\end{equation*}
$$

If M is locally ϕ-symmetric, then the equation (5.9) reduces to

$$
\begin{equation*}
\left(\frac{1}{n-2}\right) \frac{d r(W)}{(n-1)}[g(V, Z) U-g(U, Z) V]=0 \tag{5.10}
\end{equation*}
$$

Hence, we state the following theorem:
Theorem 5.1. A conformally flat LP-Kenmotsu manifold is locally ϕ-symmetric, iff the scalar curvature is constant.

Let $\left(M^{n}, g\right)$ be an n-dimensional $(n>3)$ connected pseudo-Riemannian manifold of class C^{∞} and ∇ be the Levi-Civita connection, then the conformal curvature tensor C of (M, g) is defined by,

$$
\begin{align*}
C(U, V) Z=R(U, V) Z-\frac{1}{n-2}[S(V, Z) U & -S(U, Z) V+g(V, Z) Q U-g(U, Z) Q V] \tag{5.11}\\
& +\frac{r}{(n-1)(n-2)}[g(V, Z) U-g(U, Z) V]
\end{align*}
$$

where, r, S and Q are scalar curvature, Ricci tensor and Ricci operator, respectively, such that $S(U, V)=g(Q U, V)$.
If M is ϕ-symmetric, then from the theorem 4.1 together with the equation (4.9), S is found as,

$$
\begin{equation*}
S(U, V)=(n-1) g(U, V) \tag{5.12}
\end{equation*}
$$

Using $S(U, V)=g(Q U, V)$ in the equation(5.12) we yield,

$$
\begin{equation*}
Q U=(n-1) U \tag{5.13}
\end{equation*}
$$

Contracting the equation (5.12),

$$
\begin{equation*}
r=n(n-1) \tag{5.14}
\end{equation*}
$$

Using equations (5.12), (5.13) and (5.14) in the equation (5.11), we get

$$
C(U, V) Z=R(U, V) Z-\frac{\left(n^{2}-3 n+2\right)}{(n-1)(n-2)}[g(V, Z) U-g(U, Z) V]
$$

or,

$$
\begin{equation*}
C(U, V) Z=R(U, V) Z-\{g(V, Z) U-g(U, Z) V\} \tag{5.15}
\end{equation*}
$$

We assume that M is conformally flat, i.e. $C \equiv 0$. Hence, from this result, the equation (5.15) reduces to

$$
\begin{equation*}
R(U, V) Z=\{g(V, Z) U-g(U, Z) V\} \tag{5.16}
\end{equation*}
$$

Thus, we state the following theorem:
Theorem 5.2. ϕ-symmetric conformally flat LP-Kenmotsu manifold M of dimension greater than 3 is a space of constant curvature 1.

6. example

Example 6.1. Conformally flat LP-Kenmotsu manifold M of dimension $n(n>3)$, together with scalar curvature $r=n(n-1)$, is ϕ-symmetric.

Example 6.2. We take a 3 -dimensional smooth manifold $M^{3}=\left\{(u, v, w) \in R^{3}\right.$: $(u, v, w) \neq(0,0,0)\}$, where (u, v, w) is the standard coordinates in 3-dimensional real space R^{3}. Consider the set $\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\}$ of vector fields at every point of M^{3}, which are linearly independent, are defined as,

$$
\bar{e}_{1}=e^{u+w} \frac{\partial}{\partial u}, \quad \bar{e}_{2}=e^{v+w} \frac{\partial}{\partial v}, \quad \bar{e}_{3}=\frac{\partial}{\partial w} .
$$

We define the Lorentz metric g on M^{3} as:

$$
g_{i j}=g\left(\bar{e}_{i}, \bar{e}_{j}\right)= \begin{cases}0 & \text { if } i \neq j \\ -1 & \text { if } i=j=3 \\ 1 & \mathrm{i}=\mathrm{j}=1 \text { or } 2\end{cases}
$$

Assume η to be the 1 -form corresponding to the Lorentz metric g by

$$
\eta(U)=g\left(U, \bar{e}_{3}\right),
$$

for any $U \in \Gamma\left(M^{3}\right)$, where $\Gamma\left(M^{3}\right)$ is the set of all smooth vector fields on M^{3}. We define the (1,1)-tensor field ϕ as follows:

$$
\phi\left(\bar{e}_{1}\right)=\bar{e}_{1}, \quad \phi\left(\bar{e}_{2}\right)=\bar{e}_{2}, \quad \phi\left(\bar{e}_{3}\right)=0
$$

From linearity property of ϕ and g, we simply prove the results given below:

$$
\eta\left(\bar{e}_{3}\right)=-1, \quad \phi^{2}(U)=U+\eta(U) \bar{e}_{3}, \quad g(\phi U, \phi V)=g(U, V)+\eta(U) \eta(V),
$$

$\forall U, V \in \Gamma\left(M^{3}\right)$. This implies that $\bar{e}_{3}=\xi$, the structure (ϕ, ξ, η, g) goes to a Lorentzian paracontact structure and the manifold M^{3} equipped with the Lorentzian paracontact structure is called the Lorentzian paracontact manifold of dimension 3.
We represent $[U, V]$ as the Lie-derivative of vector fields U and V, defined by $[U, V]=$ $U V-V U$. The non-zero constituents of the Lie-bracket are calculated as:

$$
\left[\bar{e}_{1}, \bar{e}_{3}\right]=-\bar{e}_{1}, \quad\left[\bar{e}_{2}, \bar{e}_{3}\right]=-\bar{e}_{2}
$$

Let Levi-Civita connection with respect to the Lorentzian metric tensor g be denoted by ∇. Then for $\bar{e}_{3}=\xi$, the Koszul's formula

$$
\begin{aligned}
2 g\left(\nabla_{U} V, Z\right)=U g(V, Z)+V g(Z, U)-Z & (U, V) \\
& -g([V, Z], U)+g([Z, U], V)+g([U, V], Z)
\end{aligned}
$$

gives,

$$
\begin{array}{rrl}
\nabla_{\bar{e}_{1}} \bar{e}_{1}=-\bar{e}_{3}, & \nabla_{\bar{e}_{1}} \bar{e}_{2}=0, & \nabla_{\bar{e}_{1}} \bar{e}_{3}=-\bar{e}_{1}, \\
\nabla_{\bar{e}_{2}} \bar{e}_{1}=0, & \nabla_{\bar{e}_{2}} \bar{e}_{2}=-\bar{e}_{3}, & \nabla_{\bar{e}_{2}} \bar{e}_{3}=-\bar{e}_{2}, \\
\nabla_{\bar{e}_{3}} \bar{e}_{1}=0, & \nabla_{\bar{e}_{3}} \bar{e}_{2}=0, & \nabla_{\bar{e}_{3}} \bar{e}_{3}=0 .
\end{array}
$$

Let $U \in \Gamma\left(M^{3}\right)$. So, $U=\sum_{i=1}^{3} U^{i} \bar{e}_{i}=U^{1} \bar{e}_{1}+U^{2} \bar{e}_{2}+U^{3} \bar{e}_{3}$. From the above equations, it can be verified that $\nabla_{U} \bar{e}_{3}=-\left\{U+\eta(U) \bar{e}_{3}\right\}$ holds for each $U \in \Gamma\left(M^{3}\right)$. Hence, the Lorentzian paracontact manifold is a LP-Kenmotsu manifold of dimension 3. From the above equations, the non-zero constituents of R are evaluated underneath:

$$
\begin{array}{cc}
R\left(\bar{e}_{1}, \bar{e}_{2}\right) \bar{e}_{2}=\bar{e}_{1}, & R\left(\bar{e}_{2}, \bar{e}_{3}\right) \bar{e}_{2}=-\bar{e}_{3}, \\
R\left(\bar{e}_{1}, \bar{e}_{3}\right) \bar{e}_{3}=-\bar{e}_{1}, & R\left(\bar{e}_{2}, \bar{e}_{3}\right) \bar{e}_{3}=-\bar{e}_{2}, \\
R\left(\bar{e}_{2}, \bar{e}_{1}\right) \bar{e}_{1}=\bar{e}_{2}, & R\left(\bar{e}_{1}, \bar{e}_{3}\right) \bar{e}_{1}=-\bar{e}_{3} .
\end{array}
$$

The above relations indicates that the M^{3} under consideration is locally ϕ-symmetric. We have

$$
R(U, V) Z=g(V, Z) U-g(U, Z) V
$$

so, it is the space of constant curvature 1 .
The definition of the Ricci tensor S of M^{3} gives,

$$
S(U, V)=\varepsilon_{1} g\left(R\left(\bar{e}_{1}, U\right) V, \bar{e}_{1}\right)+\varepsilon_{2} g\left(R\left(\bar{e}_{2}, U\right) V, \bar{e}_{2}\right)+\varepsilon_{3} g\left(R\left(\bar{e}_{3}, U\right) V, \bar{e}_{3}\right)
$$

where, $\varepsilon_{i}=g\left(\bar{e}_{i}, \bar{e}_{i}\right), i \in\{1,2,3\}$.
The matrix representation of S is given by

$$
S=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

and the scalar curvature $r=\varepsilon_{1} S\left(\bar{e}_{1}, \bar{e}_{1}\right)+\varepsilon_{2} S\left(\bar{e}_{2}, \bar{e}_{2}\right)+\varepsilon_{3} S\left(\bar{e}_{3}, \bar{e}_{3}\right)=6$, where, $\varepsilon_{i}=g\left(\bar{e}_{i}, \bar{e}_{i}\right)$, $i \in\{1,2,3\}$. This shows that the manifold under consideration possesses the constant scalar curvature 6 .

REFERENCES

1. T. Q. Binh, L. Tamassy, U. C. De and M. Tarafdar : Some Remarks on almost Kenmotsu manifolds. Maths. Pannonica 13 (2002), 31-39.
2. D. E. Blair: Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol.509. Spinger-Verlag, Berlin-New York, 1976.
3. E. Boeckx, P. Buecken and L. Vanhecke: ϕ-symmetric contact metric spaces. Glawsgo Math. J. 41 (1999), 409-416.
4. U. C. De and G. Pathak: On 3-dimensional Kenmotsu manifolds. Indian J. Pure Applied Math. 35 (2004), 159-165.
5. U. C. De and K. De: On a class of three-dimensional trans-Sasakian manifolds. Commun. Korean Math. Soc. 27 (2012), No.4, 795-808.
6. A. Haseeb and R. Prasad: Certain results on Lorentzian para-Kenmotsu manifolds. Bol. Soc. Paran. Mat. (3s.) v. 393 (2021) 201-220. doi:10.5269/bspm. 40607.
7. A. Haseeb and R. Prasad: Some results on Lorentzian Para-Kenmotsu Manifolds. Bulletin of the Transilvania University of Brasov, Vol. 13 (62) No.1-2020 Series III : Mathematics, Informatics, physics, pp.185-198.
8. A. Haseeb, S. Pandey, R. Prasad: Some results on η-Ricci solitons in quasiSasakian 3-manifolds. Commun. Korean Math. Soc. 36 (2021), no. 2, 377-387.
9. J. B. Jun, U. C. De and G. Pathak: On Kenmotsu manifolds. J. Korean Math. Soc. 42 (2005), 435-445.
10. K. Kenmotsu: A class of almost contact Riemannian manifolds. Tohoku Math. J., 24 (1972), 93-103.
11. C. ÖzGür: On weakly symmetric Kenmotsu manifolds. Differ. Geom. Dyn. Syt. 8 (2006), 204-209.
12. C. ÖzGÜr: On generalized recurrent Kenmotsu manifolds. World Applied Sciences Journal 2 (2007), 29-33.
13. C. ÖzGÜr and U. C. DE: On the quasi conformal curvature tensor of Kenmotsu manifold. Math. Pannonica, 17 (2006), 221-228.
14. Pankaj, S. K. Chaubey and R. Prasad: Three Dimensional Lorentzian paraKenmotsu manifolds and Yamabe Soliton. Honam Mathematical J. 43 (4) (2021) 613626.
15. T. Takahashi: Sasakian ϕ-symmetric space. Tohoku Math. J. 29 (1977), 91-113.
16. K. Yano and M. Kon: Structures on manifolds. Series in Pure Math., World Scientific, Vol. 3, (1984).

[^0]: Received March 14, 2023. accepted May 16, 2023.
 Communicated by Uday Chand De
 Corresponding Author: Abhinav Verma, Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India | E-mail: vabhinav831@gmail.com
 2010 Mathematics Subject Classification. Primary 53C50; Secondary 53C25

