FACTA UNIVERSITATIS (NIŠ)
Ser. Math. Inform. Vol. 38, No 4 (2023), 731-740
https://doi.org/10.22190/FUMI230425047K
Original Scientific Paper

CHARACTERIZATION OF BI-NULL SLANT(BNS) HELICES OF (k, m)-TYPE IN R_{1}^{3} AND R_{2}^{5}

Shujaul Hasan Khan ${ }^{1}$, Mohammed Jamali ${ }^{1}$, Mohammad Aslam ${ }^{2}$
${ }^{1}$ Department of mathematics, Alfalah University, Dhauj, India
${ }^{2}$ Department of mathematics, Dr.Akhilesh Das Gupta Institute of Technology
New Delhi, India

Abstract

The present study discusses bi-null slant helices of (k, m) type in R_{2}^{5} and give the characterization for a curve to be certain (k, m) type bi null slant helix (BNS helix). The discussion includes the proofs for the non existence cases of (k, m) type bi null slant helices in R_{2}^{5}. Moreover certain characterizations and non existence have also been obtained for bi null slant helix to be (k, m) type using modified orthogonal frame. Keywords: k-type Slant helix, Semi Euclidean space, Bi-null curves, Frenet Formulae.

1. Introduction

In 2004, Izumiya and Takeuchi [7] introduced the notion of slant helix which is defined as a curve ξ in R^{3} where principal normal vector makes a constant angle with a fixed vector in R^{3}. Several geometers have studied slant helices $[1,8,9]$ and gave characterizations for being such curves. In particular k-type slant helices have been one of the most interesting cases due to the rich geometric properties and applications in different branches of science and engineering [2, 6, 10]. Different varieties of k -type slant helices, k-type partially null and pseudo null helices etc. were further studied by Ergiiut et al [6] Ahmad T et.al.[2] and E. Nesovic et.al [10] respectively.

On the other hand, in 2012, bi null cartan curves were introduced and studied by M. Sakaki [12] in R_{2}^{5} with concerned distinctive Frenet frame and the related

[^0]curvatures called the Cartan curvatures. Proceeding on, in [13] and [14], some characterizations were proved for bi null Cartan curves to be k-type slant helices in semi Euclidean spaces R_{3}^{6} and R_{2}^{5} respectively.

Later in 2020, a class of slant helices called (k, m) type slant helices was considered in [3] which presented a study of (k, m) type slant helices for partially null and pseudo null curves in Minkowski space E_{1}^{4}.

The aim of this paper is to give characterization for bi null curve to be (k, m) type slant helices in R_{2}^{5} using the curvature function. Moreover, characterizations of bi-null curves to be (k, m) type slant helix have also been obtained in R_{1}^{3} with modified orthogonal frame.

2. Preliminaries

Assume that R_{2}^{5} is the 5 -dimensional semi-Euclidean space with index 2. It is clear that if the standard co-ordinate system of R_{2}^{5} is $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$, then the metric can be written as [13].

$$
d s^{2}=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}-d x_{4}^{2}-d x_{5}^{2}
$$

The inner product on R_{2}^{5} is denoted by $<,>$. We know that vector $X \in R_{2}^{5}-\{0\}$ is called timelike if $<X, X><0$, spacelike if $<X, X \gg 0$ and null (lightlike) if $<X, X>=0$. If $X=0$, then it will fall in the category of spacelike vectors. Also we have $\|X\|=\sqrt{(}|<X, X>|)$. Here $\|X\|$ denotes the norm of a vector X. Two vectors X and Y are said to be orthogonal if $\langle X, Y\rangle=0$.

We now give a brief idea of modified orthogonal frame which in some sense generalizes Frenet frame in R_{1}^{3}.

Let ξ be a general analytic curve which can be re parameterized by its arc length s, where $s \in I$ and I is a non empty open interval. Assuming that the curvature function has discrete zero points or $\mathrm{k}(\mathrm{s})$ is not identically zero, we have an orthogonal frame T, N, B defined as follows [4].

$$
\begin{equation*}
T=\frac{d \xi}{d s}, N=\frac{d T}{d s}, B=T \times N \tag{2.1}
\end{equation*}
$$

where $T \times N$ is the vector product of T and N .The relationship between T, N and B and previous Frenet frame vectors at non zero points of k are

$$
T=t, N=k n, B=\tau b
$$

Thus from above equations we conclude that $\mathrm{N}=\mathrm{B}=0$, when $\mathrm{k}=0$ and squares of length of N and B vary analytically in s. From equation 2.1, it is easy to calculate

$$
\left[\begin{array}{l}
T^{\prime}(s) \tag{2.2}\\
N^{\prime}(s) \\
B^{\prime}(s)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-k^{2} & \frac{k^{\prime}}{k} & \tau \\
0 & -\tau & \frac{k^{\prime}}{k}
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]
$$

where all the differentiation are done with respect to the arc length (s) and

$$
\tau(s)=\frac{\operatorname{det}\left(\xi^{\prime}, \xi^{\prime \prime}, \xi^{\prime \prime \prime}\right)}{k^{2}}
$$

is the torsion of ξ. From Frenet equation, we know that at any point, where $k^{2}=0$ is a removable singularity of τ. Let $<,>$ be the standard inner product of E^{3}, then T, N, B satisfies:

$$
\begin{equation*}
\langle T, T\rangle=1,\langle N, N\rangle=\langle B, B\rangle=k^{2},\langle T, N\rangle=\langle T, B\rangle=\langle N, B\rangle=0 \tag{2.3}
\end{equation*}
$$

The orthogonal frame defined in 2.2 satisfying 2.3 is called as modified orthogonal frame.

Remark 2.1. It can be easily seen that once we put $\mathrm{k}=1$ in 2.3 , the modified orthogonal frame coincides with Frenet frame.

Definition 2.1. [12] Any curve $\xi(t)$ in R_{2}^{5} is a bi-null curve if span $\left\{\xi^{\prime}(t), \xi^{\prime \prime}(t)\right\}$ is isotropic i.e $<\xi^{\prime}(t), \xi^{\prime}(t)>=0,<\xi^{\prime}(t), \xi^{\prime \prime}(t)>=0$ and $<\xi^{\prime \prime}(t), \xi^{\prime \prime}(t)>=0$, and $\left\{\xi^{\prime}(t), \xi^{\prime \prime}(t)\right\}$ are linearly independent for all t .

We consider any bi null curve $\xi(t) \subset R_{2}^{5}$ with t as a parameter. Then for $\xi(t)$, there exist Frenet frame $\left\{T, N, B_{1}, B_{2}, B_{3}\right\}$ such that $\xi^{\prime}(t)=T$ and

$$
\left[\begin{array}{c}
T^{\prime} \tag{2.4}\\
N^{\prime} \\
B_{1}^{\prime} \\
B_{2}^{\prime} \\
B_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & k_{1} & 0 & 0 & 0 \\
-k_{1} & 0 & -1 & 0 & k_{0} \\
0 & -k_{0} & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right]
$$

where B_{1}, B_{2} are null and B_{3} is a spacelike unit vector, $\left.\left\langle T, B_{1}\right\rangle=<N, B_{2}\right\rangle=1$. $\operatorname{Span}\left\{T, B_{1}\right\}, \operatorname{span}\left\{N, B_{2}\right\}$ and $\operatorname{span}\left\{B_{3}\right\}$ are mutually orthogonal. The frame $\left\{T, N, B_{1}, B_{2}, B_{3}\right\}$ is a pseudo-orthonormal frame. Here the functions k_{0} and k_{1} are the curvatures.

Definition 2.2. [12, 5] Any bi null curve $\xi(t)$ in R_{2}^{5} with $\left\{\xi^{3}(t), \xi^{3}(t)\right\} \neq 0$ is a bi-null Cartan curve if $\xi^{\prime}(t), \xi^{\prime \prime}(t), \xi^{\prime \prime \prime}(t), \xi^{\prime \prime \prime \prime}(t)$ are linearly independent for all t .

We now quote the following theorem which guarantees the existence of a unique bi null Cartan curve with Cartan frame [3,11] for given curvatures $k_{0}(t)$ and $k_{1}(t)$.

Theorem 2.1. Let $k_{0}(t)$ and $k_{1}(t)$ be the differentiable functions on $\left(t_{0}-\epsilon, t_{0}+\epsilon\right)$ Let p_{0} be the point in R_{2}^{5}, and $\left\{T, N, B_{1}, B_{2}, B_{3}\right\}$ be a pseudo-orthonormal basis of R_{2}^{5}. Then there exists a unique bi-null Cartan curve $\xi(t)$ in R_{2}^{5} with $\xi\left(t_{0}\right)=p_{0}$, binull arc parameter t and curvatures k_{0}, k_{1}, whose Cartan frame $\left\{T, N, B_{1}, B_{2}, B_{3}\right\}$ satisfies $T\left(t_{0}\right)=T, N\left(t_{0}\right)=N, B_{1}\left(t_{0}\right)=B_{1}, B_{2}\left(t_{0}\right)=B_{2}, B_{3}\left(t_{0}\right)=B_{3}$.

3. Characterization of (\mathbf{k}, \mathbf{m})-type BNS helics in R_{1}^{3}

First we give the definition of bi-null slant(BNS) helices of (k, m) type in R_{1}^{3}.
Definition 3.1. [3] Let $\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3},\right\}$ be the frame for a bi null curve ξ in R_{1}^{3}. Then ξ is known as a bi-null slant helix of (k, m) type, if we are able to find a fixed vector $U \neq 0 \in R_{1}^{3}$ such that $<\Gamma_{k}, U>=\alpha$, and $<\Gamma_{m}, U>=\beta$, where α, β are constants for $1 \leq k \leq 3$ and $1 \leq m \leq 3$.

We can express U as $\mathrm{U}=u_{1} T+u_{2} N+u_{3} B_{1}$, where u_{i} 's are differentiable functions of ' t '. Here we write $\Gamma_{1}=T, \Gamma_{2}=N, \Gamma_{3}=B_{1}$.

Theorem 3.1. $(1,2)$ and $(1,3)$ type $B N S$ helices in R_{1}^{3} with modified orthogonal frame do not exist there.

Proof. Let ξ represents a bi null slant helix of $(1,2)$ type in R_{1}^{3}. Then by definition, for any fixed vector U, we have

$$
<T, U>=\alpha \quad \text { and } \quad<N, U>=\beta
$$

where $\alpha \neq 0$ and $\beta \neq 0$ are constants. Differentiating with respect to t, we get

$$
<T^{\prime}, U>=0 \quad \text { and } \quad<N^{\prime}, U>=0
$$

Now using equation (2.2), we get

$$
<N, U>=0
$$

which contradicts our supposition. Hence there does not exist a BNS helix of $(1,2)$ type in R_{1}^{3} with modified orthogonal frame.

Similarly we can show that there does not exist BNS helix of $(1,3)$ type in R_{1}^{3} with modified orthogonal frame.

Theorem 3.2. ξ is a bi null slant helix of $(2,3)$ type in R_{1}^{3} with modified orthogonal frame parameterized by arclength ' t ' with $k_{0}, k_{1} \neq 0$ if and only if

$$
\alpha^{2} k^{2}+\left(\alpha^{2}+\beta^{2}\right) d\left(\frac{k^{\prime}}{k}\right)=0
$$

Proof. Let ξ represents a bi null slant helix of $(2,3)$ type in R_{1}^{3} with modified orthogonal frame.

$$
<N, U>=\alpha \quad \text { and } \quad<B, U>=\beta
$$

where $\alpha \neq 0$ and $\beta \neq 0$ are constants. Then we can write

$$
U=u_{1} T+\alpha N+\beta B
$$

Differentiating with respect to 't', we get

$$
u_{1} T^{\prime}+u_{1}^{\prime} T+\alpha N^{\prime}+\beta B^{\prime}=0
$$

Using equation (2.2), we get

$$
u_{1}^{\prime} T+u_{1} N+\alpha\left(-k^{2} T+\frac{k^{\prime}}{k} N+\tau B\right)+\beta\left(-\tau N+\frac{k^{\prime}}{k} B\right)=0
$$

On simplification we get

$$
\begin{equation*}
u_{1}^{\prime}-\alpha k^{2}=0, u_{1}+\alpha \frac{k^{\prime}}{k}-\beta \tau=0, \alpha \tau+\beta \frac{k^{\prime}}{k}=0 \tag{3.1}
\end{equation*}
$$

Solving 2nd and 3rd equation of equation 3.1, we have

$$
\begin{equation*}
u_{1} \alpha+\frac{k^{\prime}}{k}\left(\alpha^{2}+\beta^{2}\right)=0 \tag{3.2}
\end{equation*}
$$

Now differentiating equation 3.2 and using 1st equation of 3.1 , we arrive at

$$
\alpha^{2} k^{2}+\left(\alpha^{2}+\beta^{2}\right) d\left(\frac{k^{\prime}}{k}\right)=0
$$

Conversely choose $u_{1}=\beta \tau-\alpha \frac{k^{\prime}}{k}$ such that

$$
U=\left(\beta \tau-\alpha \frac{k^{\prime}}{k}\right) T+\alpha N+\beta B
$$

Differentiating above equation, we obtain

$$
U^{\prime}=\left(\beta \tau-\alpha \frac{k^{\prime}}{k}\right) T^{\prime}+\left(\beta \tau^{\prime}-\alpha \frac{k k^{\prime}-k^{2}}{k^{2}}\right) T+\alpha N^{\prime}+\beta B^{\prime}
$$

Using equation (2.2), we get

$$
\begin{aligned}
U^{\prime}=\left(\beta \tau-\alpha \frac{k^{\prime}}{k}\right) N+\left(\beta \tau^{\prime}-\alpha \frac{k k^{\prime}-k^{\prime 2}}{k^{2}}\right) T+ & \alpha\left(-k^{2} T\right. \\
& \left.+\frac{k^{\prime}}{k} N+\tau B\right)+\beta\left(-\tau N+\frac{k^{\prime}}{k} B\right)
\end{aligned}
$$

Finally, using equation (3.1) in above equation we get $U^{\prime}=0$. Hence proved.
As a whole, we conclude the results of this section in the form of the following table.

Table 3.1: Existence and non-existence of BNS helix in modified orthogonal frame in R_{1}^{3}

Type of BNS helix	Existence/Non-existence
$(1,2)$-type	does not exist
$(1,3)$-type	does not exist
$(2,3)$-type	exists iff $\alpha^{2} k^{2}+\left(\alpha^{2}+\beta^{2}\right) d\left(\frac{k^{\prime}}{k}\right)=0$

4. Characterization of (k,m)-type BNS helics in R_{2}^{5}

First we give the definition of bi-null slant(BNS) helices of (k, m) type in R_{2}^{5}.
Definition 4.1. [3] Let $\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}, \Gamma_{5}\right\}$ be the frame for a bi null curve ξ in R_{2}^{5}. Then ξ is known as a bi-null slant helix of (k, m) type, if we are able to find a fixed vector $U \neq 0 \in R_{2}^{5}$ such that $<\Gamma_{k}, U>=\alpha$, and $<\Gamma_{m}, U>=\beta$, where α, β are constants for $1 \leq k \leq 5$ and $1 \leq m \leq 5$.

We can express U as $\mathrm{U}=u_{1} T+u_{2} N+u_{3} B_{1}+u_{4} B_{2}+u_{5} B_{3}$, where u_{i} 's are differentiable functions of ' t '. Here we write $\Gamma_{1}=T, \Gamma_{2}=N, \Gamma_{3}=B_{1}, \Gamma_{4}=$ $B_{2}, \Gamma_{5}=B_{3}$.

Theorem 4.1. There does not exist $(1,2)$ type BNS helix in R_{2}^{5}.

Proof. Let ξ represents a bi null slant helix of $(1,2)$ type in R_{2}^{5}. Then by definition, for any fixed vector U, we have

$$
<T, U>=\alpha \quad \text { and } \quad<N, U>=\beta
$$

where $\alpha \neq 0$ and $\beta \neq 0$ are constants. Differentiating with respect to t , we find

$$
<T^{\prime}, U>=0 \quad \text { and } \quad<N^{\prime}, U>=0
$$

Using equation (2.4), we get

$$
<N, U>=0 \quad \text { and } \quad<B_{3}, U>=0
$$

which contradicts our supposition. Hence there does not exist a BNS helix of $(1,2)$ type in R_{2}^{5}.

Similarly we can prove the non existence of $(1,5),(2,3),(2,5),(3,4),(3,5)$ and $(4,5)$ type bi null slant helices.

Theorem 4.2. ξ is a bi null slant helix of $(1,3)$ type in R_{2}^{5} parameterized by arc length ' t ' with $k_{0}, k_{1} \neq 0$ if and onlt if $k_{1} \neq 0$ is a constant.

Proof. Let ξ represents a bi null slant helix of $(1,3)$ type in R_{2}^{5}. Let U a fixed vector, then by definition we have

$$
<T, U>=\alpha \quad \text { and } \quad<B_{1}, U>=\beta
$$

where $\alpha \neq 0$ and $\beta \neq 0$ are constants. Differentiating with respect to t , we get

$$
<T^{\prime}, U>=0 \quad \text { and } \quad<B_{1}^{\prime}, U>=0
$$

Using equation 2.4, we conclude

$$
<N, U>=0 \quad \text { and } \quad k_{1}<N, U>=0
$$

Differentiating first part with respect to ' t ', we get

$$
<N^{\prime}, U>=0
$$

Again by using equation (2.4) in the above equation, we obtain

$$
<B_{3}, U>=0
$$

Differentiating the above equation with respect to' t' and using equation (2.4), we get

$$
-k_{0}<N, U>-<B_{2}, U>=0
$$

OR

$$
<B_{2}, U>=0
$$

Therefore we can write

$$
U=\alpha T+\beta B_{1}
$$

Differentiating with respect to ' t ', we get

$$
\alpha T^{\prime}+\beta B_{1}^{\prime}=0
$$

Now putting equation 2.4 in the above equation, which implies

$$
k_{1}=-\frac{\alpha}{\beta}=\text { constant } .
$$

Conversely, assume that k_{1} is a constant. For $\beta \neq 0$, choose the vector U as

$$
U=-\beta k_{1} T+\beta B_{1}
$$

On differentiating this with respect to t we get

$$
U^{\prime}=0
$$

and hence

$$
<T, U>=\text { constant } \quad \text { and } \quad<B_{1}, U>=\text { constant }
$$

Hence ξ is a bi null slant helix of $(1,3)$ type in R_{2}^{5}.

Theorem 4.3. ξ is a bi null slant helix of $(1,4)$ type in R_{2}^{5} if and only if $k_{1}=0$ and $\beta k_{0}^{\prime}-\alpha=0$, where 't' is a parameter.

Proof. Let ξ represents a bi null slant helix of $(1,4)$ type in R_{2}^{5}.

$$
<T, U>=\alpha \quad \text { and } \quad<B_{2}, U>=\beta
$$

where $\alpha \neq 0$ and $\beta \neq 0$ are constants. Then we can write

$$
U=\alpha T+u_{2} N+u_{3} B_{1}+\beta B_{2}+u_{5} B_{3} .
$$

Differentiating with respect to ' t ', we get

$$
\alpha T^{\prime}+u_{2} N^{\prime}+u_{2}^{\prime} N+u_{3} B_{1}^{\prime}+u_{3}^{\prime} B_{1}+\beta B_{2}^{\prime}+u_{5} B_{3}^{\prime}+u_{5}^{\prime} B_{3}=0
$$

Using equation 2.4, we arrive at

$$
\begin{aligned}
\alpha N+u_{2} B_{3}+u_{2}^{\prime} N+u_{3} k_{1} N+u_{3}^{\prime} B_{1}+\beta\left(-k_{1} T-\right. & \left.B_{1}+k_{0} B_{3}\right)+ \\
& u_{5}\left(-k_{0} N-B_{2}\right)+u_{5}^{\prime} B_{3}=0
\end{aligned}
$$

which implies that

$$
k_{1}=0, \quad \beta k_{0}^{\prime}-\alpha=0
$$

Conversely choose the vector U as

$$
U=-\alpha T-k_{0} \beta N+(\beta t+A) B_{1}+\beta B_{2} .
$$

On differentiating with respect to 't' we get

$$
U^{\prime}=0
$$

which gives

$$
<T, U>=\text { constant } \quad \text { and } \quad<B_{2}, U>=\text { constant }
$$

Hence ξ is a bi null slant helix of $(1,4)$ type in R_{2}^{5}.
Theorem 4.4. ξ is a bi null slant helix of $(2,4)$ type in R_{2}^{5} if $\int k_{1} d t+k_{1} t+C=$ 0 ,where C is a constant of integration.

Proof. Let ξ represents a bi null slant helix of $(2,4)$ type in R_{2}^{5}. Then for a fixed vector U , we have

$$
<T, U>=\alpha \quad \text { and } \quad<B_{2}, U>=\beta
$$

where $\alpha \neq 0$ and $\beta \neq 0$ are constants. Differentiating with respect to t , we get

$$
<N^{\prime}, U>=0 \quad \text { and } \quad<B_{2}^{\prime}, U>=0
$$

Using equation 2.4, we find

$$
<B_{3}, U>=0
$$

which gives

$$
U=u_{1} T+\alpha N+u_{3} B_{1}+\beta B_{2}
$$

Differentiating and using equation (2.4)

$$
u_{1} N+u_{1}^{\prime} T+\alpha B_{3}+u_{3} k_{1} N+u_{3}^{\prime} B_{1}+\beta\left(-k_{1} T-B_{1}+k_{0} B_{3}\right)=0
$$

Which, on simplification implies that

$$
\int k_{1} d t+k_{1} t+C=0
$$

where C is constant of integration. Hence proved.
As a whole, the results of this section can be tabulated as follows:

Table 4.1: Existence and non-existence of BNS helix

Type of BNS helix	Existence $/$ Non-existence
$(1,2)$-type	does not exist
$(1,3)$-type	exists iff $k_{1} \neq 0$ is a constant
$(1,4)$-type	exists iff $k_{1}=0$ and $\beta k_{0}^{\prime}-\alpha=0$, where
	't'is a parameter
$(1,5)$-type	does not exist
$(2,3)$-type	does not exist
$(2,4)$-type	exists if $\int k_{1} d t+k_{1} t+C=0$
$(2,5)$-type	does not exists
$(3,4)$-type	does not exists
$(3,5)$-type	does not exists
$(4,5)$-type	does not exists

Acknowledgement

The authors would like to thank Prof. Mohammad Hasan Shahid D/o Mathematics Jamia Millia Islamia, New Delhi for his careful reading and valuable suggestions to improve the manuscript.

REFERENCES

1. A. T. Ali: Position vectors of slant helices in Euclidean 3-space. Journal of the Egyptian Mathematical Society 20 (1) (2012), 1-6.
2. A. T. Ali, R. López and M. Turgut: k-type partially null and pseudo null slant helices in Minkowski 4-space. Mathematical Communications 17 (1) (2012), 93-103.
3. M. Bektaş and M. Y. Yilmaz: (k, m)-type slant helices for partially null and pseudo null curves in Minkowski space. Applied Mathematics and Nonlinear Sciences 5 (1) (2020), 515-520.
4. B. Bukcu and M. K. Karacan: Spherical curves with modified orthogonal frame. Journal of New Results in Science 5 (10) (2016), 60-68.
5. A. C. Çöken and Ü. Çiftçı: On the Cartan curvatures of a null curve in Minkowski spacetime. Geometriae Dedicata 114 (1) (2005), 71-78.
6. M. Ergüt, H. B. Öztekin and S. Aykurt: Non-null k-slant helices and their spherical indicatrices in Minkowski 3-space. J. Adv. Res. Dyn. Control Syst 2 (2010), 1-12.
7. S. Izumiya and N. Takeuchi: New special curves and developable surfaces. Turkish Journal of Mathematics 28 (2) (2004), 153-164.
8. L. Kula, n. Ekmekci, Y. Yayli and K. İlarslan: Characterizations of slant helices in Euclidean 3-space. Turkish Journal of Mathematics 34 (2) (2010), 261-274.
9. L. Kula and Y. Yayli: On slant helix and its spherical indicatrix. Applied Mathematics and Computation 169 (1) (2005), 600-607.
10. E. Nešović, Ö. Koç, B. Esra and U. Öztürk: k-type null slant helices in Minkowski space-time. Mathematical Communications 20 (1) (2015), 83-95.
11. M. Sakaki: Null Cartan curves in R_{2}^{4}. Toyama Mathematical Journal 32 (2009), 31-39.
12. M. Sakaki: Bi-null Cartan curves in semi-Euclidean spaces of index 2. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry 53 (2) (2012), 421436.
13. A. UÇum, K. İlarslan and M. Sakaki: k-Type bi-null slant helices in R_{2}^{5}. Journal of Geometry 108 (3) (2017), 913-924.
14. A. Uçum, K. İlarslan and M. Sakaki: k-Type Bi-null Cartan Slant Helices in R_{3}^{6}. Southeast Asian Bulletin of Mathematics 42 (6) (2018), 937-946.

[^0]: Received April 25, 2023, accepted: August 01, 2023
 Communicated by Uday Chand De
 Corresponding Author: Shujaul Hasan Khan (shujakhan15@gmail.com)
 2010 Mathematics Subject Classification. Primary 53Z05; Secondary 53B50, 37C10, 57R25
 (C) 2023 by University of Niš, Serbia \| Creative Commons License: CC BY-NC-ND

