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Abstract. The objective of this paper is to study the nature of Ricci soliton admitting
various type of contact metric manifolds such as Kenmostu manifold, LP Sasakian
manifold and LCS manifold. In this paper, it is proved that a Kemnotsu Ricci soliton is
expanding, whereas the LP-Sasakian Ricci soliton is shrinking. Further, the conditions
have been obtained on (LCS)n Ricci soliton to be expanding, shrinking and steady and
the results are verified by suitable examples. It is also proved that the possible values
of soliton constant is the set of all even integers Z2n and the set of negative integres
Z− respectively for Kenmostu Ricci soliton and LP Sasakian Ricci Soliton and if the
(LCS) Ricci soliton is expanding then soliton constant lies on the interval (0,∞) and
for shrinking it lies on (−∞, 0). The Projectively flat cases for the above manifolds
are also discussed to be expanding, shrinking and steady. Finally, we study these Ricci
solitons admitting Ricci semi-symmetric condition R.S = 0 and prove that the soliton
constant λ is an eigen value of metric tensor g with respect to associated vector field ξ.
Keywords: Ricci soliton, Contant metric manifolds, Kenmostu manifold.

1. Introduction

The Ricci flow was introduced by Richard S. Hamilton [10] in 1982 to study
compact three dimensional manifolds with positive Ricci curvature and called the
equation defined Ricci flow as a evolution equation. The concept of Ricci soliton
also introduced by Hamilton [10] and identified as a generalization of an Einstein

Received August 01, 2022. accepted August 18, 2023.
Communicated by Ljubica Velimirović
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metric. In a Riemannian manifold (M, g), g is called a Ricci soliton [10] if it satisfies
the following equation:

Lvg(F,G) + 2S(F,G) + 2λg(F,G) = 0,(1.1)

where L denotes the Lie derivative along the complete vector field v, S is the Ricci
tensor, λ is a constant and called soliton constatnt, and X,Y are vector fields on
χ(M). The value of soliton constant play an important role to study the nature
of the Ricci soliton. A Ricci soliton is said to be shrinking, steady and expanding
according as λ is negative, zero and positive respectively.

Kenmotsu, in 1972 studied a class of Riemannian manifolds satisfying conditions
which are known as Kenmotsu manifolds [18]. The notion of LP-Sasakian manifold
was introduced by K. Matsumoto [15] in 1989. In [28] Yano and Sawaki defined and
studied a tensor field W on a Riemannian manifold of dimension n which includes
both the conformal curvature tensor C and the concircular curvature tensor C ′ as
special cases.
The notion of Lorentzian concircular manifolds was introduced by Shaikh [27] in
2003. The (LCS)n manifold has been studied by several authors [12, 23, 27].
Pokhariyal [21] studied some properties of this curvature tensor in a Sasakian man-
ifold. Matsumoto et al. [16] and, Yildiz and De [34] studied W2-curvature ten-
sor in LP-Sasakian and Kenmotsu manifolds, respectively. In the continuation of
this study, Pandey and Chaturvedi also studied the constant and generalized quasi
constant curvature tensor and established some examples of various Riemannian
manifolds [3, 4, 19, 20].

Recently, Y.C. Mandal and S.K. Hui [14] studied Yambe soliton with torse form-
ing vector field and obtained the conditions of existence for shrinking steady and
expanding and contruct an example to prove thier results. Shaikh and S.K. Hui in
their paper introduced the notion of generalized φ-recurrent β-Kenmotsu manifolds
and obtained the necessary and sufficient condition for manifold to be generalized
ricci recurrent manifold. Recently, the concepts of Ricci soliton are generalized and
grew up by several authors [2, 5, 6, 7, 8, 11, 12, 18, 23, 24, 25, 30, 1].

2. Preliminaries

Definition 2.1. Kenmotsu manifold:
Let M2n+1 be an almost contact Riemannian manifold, where φ is a (1, 1) tensor
field, η is a 1-form and g is the riemannian metric which satisfy [24]

φξ = 0, η(φF ) = 0, η(ξ) = 1, g(F, ξ) = η(F ),(2.1)

φ2F = −F + η(F )ξ, g(φF, φG) = g(F,G)− η(F )η(G),

for any vector fields F,G on M and

∇F ξ = F − η(F )ξ, (∇Fφ)G = −η(G)φ(F )− g(X,φY )ξ,(2.2)

where ∇ denotes the Riemannian connection of g.
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Definition 2.2. LP-Sasakian manifold:
An n-dimensional differentiable manifold M is called an LP-Sasakian manifold ([28],
[34]) if it admits a (1, 1) tensor field φ , a contravariant vector field ξ , a 1-form η
and a Lorentzian metric g which satisfy [32]

η(ξ) = −1, φ2F = F + η(F )ξ,

g(φF, φG) = g(F,G) + η(F )η(G),(2.3)

g(F, ξ) = η(F ),

(∇Fφ)F = g(F,G)ξ + η(G)F + 2η(F )η(G)ξ, ∇F ξ = φF,(2.4)

where∇ denotes the operator of covarient differentiation with respect to the Lorentzian
metric g.

Definition 2.3. (LCS)n-manifold:
Let (M, g) be an n-dimensional Lorentzian manifold admitting a unit timelike con-
circular vector field ξ. More general the Lorentzian manifold M together with the
unit timelike concircular vector field ξ, an 1-form η, and an (1, 1) tensor field φ is said
to be a Lorentzian concircular structure manifold (M, g, ξ, η, φ, α) (briefly,(LCS)n-
manifold), which was introduced by A. A. Shaikh [26].

η(ξ) = −1, φξ − 0, φ2F = X + η(F )ξ,

g(φF, φG) = g(F,G) + η(F )η(G),(2.5)

g(F, ξ) = η(F ),

for any vector fields F,G on M .

(∇Fφ)G = −η(G)φ(F )− g(F, φG)ξ, (∇F ξ) = α[X + η(X)ξ](2.6)

where ∇ denotes the Riemannian connection of g.

3. Ricci Soliton on Kenmotsu Manifold

Let M2n+1 be a Kenmotsu manifold with structure (φ, ξ, η, g) then we have [24],

η(R(F,G)H) = g(F,H)η(G)− g(G,H)η(F ),(3.1)

R(ξ, F )G = η(G)F − g(F,G)ξ,(3.2)

R(F,G)ξ = η(F )G− η(G)F,(3.3)
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S(F, ξ) = −2nη(F ),(3.4)

S(φF, φG) = S(F,G) + 2nη(F )η(G),(3.5)

(∇F η)G = g(F,G)− η(F )η(G),(3.6)

for the vector fields F,G,H, where R denotes the Riemannian curvature tensor.
Let (g, ξ, λ) be a Ricci soliton on Kenmotsu manifold M . Then, from (2.2) we get,

Lvg(F,G) = 2(g(F,G)− η(F )η(G)).(3.7)

Taking V = ξ in (3.7) and using (1.1) and (2.2), we obtain:

S(F,G) = −(λ+ 1)g(F,G) + η(F )η(G),(3.8)

QF = −(λ+ 1)F + η(F ),(3.9)

S(F, ξ) = −λη(F ),(3.10)

r = −λ(2n+ 1)− 2n.(3.11)

Let M2n+1 be a Kenmotsu manifold with structure (φ, ξ, η, g) then using (3.7) in
(1.1), we get

(λ+ 1)g(F,G)− η(F )η(G) + S(F,G) = 0,(3.12)

Taking G = ξ in (3.12) and using (3.4), we get

(λ− 2n)η(F ) = 0,(3.13)

As η(F ) 6= 0

λ = 2n.(3.14)

So, we can state the following theorem:

Theorem 3.1. A (2n+ 1)-dimensional Kemnotsu Ricci soliton is always expand-
ing and the set of all possible values of soliton constant λ is a discrete set of even
integers Z2n.

Also, from the equation (3.8), we have the result:

Corollary 3.1. If a (2n+1)-dimensional Kenmotsu manifold admits a Ricci Soli-
ton, then the manifold is η-Einstein manifold.
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Here, we present an example to verify the above result stated in Theorem 3.1.

Example 3.1. Let us consider a 3-dimensional manifold M = (f, g, h) : h 6= 0. Let
e1, e2, e3 be be a linearly independent global frame on M given by

e1 = h2 d

df
, e2 = h2 d

dg
, e3 =

d

dh
(3.15)

Let g be the Riemannian metric defined by g(ei, ej) = 1, if i = j and 0 otherwise,
then Koszul formula yields

∇e1e1 =
2

z
e3, ∇e1e2 = 0, ∇e1e3 = −2

z
e1,

∇e2e1 = 0, ∇e2e2 =
2

z
e3, ∇e2e3 = −2

z
e2,(3.16)

∇e3e1 = 0, ∇e1e3 = 0, ∇e3e3 = 0,

The scalar curvature of this manifold is also computed and it is r = 32
h2 . Since (e1, e2, e3)

forms a basis, any vector field F,G,K ∈ χ(M) can be written as

F = a1e1 + b1e2 + c1e3,

G = a2e1 + b2e2 + c2e3,

K = a3e1 + b3e2 + c3e3,

where ai, bi, ci ∈ R+ for i = 1, 2, 3.
If we choose the 1-form η by η(W ) = g(W, e2) for any W ∈ χ(M),
then we have the relation

∇FG = F − η(F )G,(3.17)

that is G is a torse-forming vector field.
Now from (∗ ∗ ∗) we get

Lvg(F,G) = g(∇FG,K) + g(F,∇KG).(3.18)

which yields

Lvg(F,G) = 2(g(F,G)− η(F )η(G)),(3.19)

Also we can calculate

g(F,K) = a1a3 + b1b3 + c1c3,

g(G,K) = a2a3 + b2b3 + c2c3,(3.20)

g(K,H) = a1a2 + b1b2 + c1c2,

η(F ) = b1, η(G) = b2, η(K) = b3,(3.21)

Using equation (3.20) and (3.21) in (3.13) we get

(a1a3 + b1b3 + c1c3 − b1b3) + S(F,K) + λ(a1a3 + b1b3 + c1c3) = 0.(3.22)

After simplification, we have

S(F,K) + (λ+ 1)(a1a3 + b1b3 + c1c3)− b1b3,(3.23)
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which yields

S(F,K) + (λ+ 1)g(F,K)− η(F )η(K).(3.24)

Put K = ξ and using (3.4), the equation (3.24) gives the result

(λ− 2)η(F ) = 0,(3.25)

As η(F ) 6= 0

λ = 2,(3.26)

which verifies the result of theorem 3.1 for 3-dimensional Kenmostu manifolds that is for
n = 1.

4. Ricci Soliton on LP-Sasakian Manifold

In an LP-Sasakian manifold, we know that the following conditions hold [32]:

φξ = 0, η(φF ) = 0, rank φ = n− 1.(4.1)

Let M be an n-dimensional LP-Sasakian manifold with structure (φ, ξ, η, g) then
we have the following results [32]:

g(R(F,G)H, ξ) = η(R(F,G)H) = g(G,H)η(F )− g(F,H)η(G),(4.2)

R(ξ, F )G = g(F,G)ξ − η(G)F,(4.3)

R(F,G)ξ = η(G)F − η(F )G,(4.4)

R(ξ, F )ξ = F + η(F )ξ,(4.5)

S(F, ξ) = (n− 1)η(F ),(4.6)

S(φF, φG) = S(F,G) + (n− 1)η(F )η(G),(4.7)

(∇F η)G = g(φF,G),(4.8)

for the vector fields F,G,H, where R denotes the Riemannian curvature tensor.
Let (g, ξ, λ) be a Ricci soliton on LP-Sasakian manifold on M . Then, from (2.4) we
get,

Lvg(F,G) = 0.(4.9)



Study of Ricci Soliton on contact manifolds 479

Taking V = ξ in (4.9) and using (1.1) and (2.4), we obtain:

S(F,G) = −λg(F,G).(4.10)

QF = −λF,(4.11)

S(F, ξ) = −λη(F ),(4.12)

r = −λn.(4.13)

Let Mn be an LP-Sasakian manifold with structure (φ, ξ, η, g),
then using (4.9) in (1.1), we get

λg(F,G)) + S(F,G) = 0,(4.14)

Taking G = ξ in (4.14) and using (3.20), we have

(λ+ (n− 1))η(F ) = 0(4.15)

As η(F ) 6= 0

λ = −(n− 1),(4.16)

So, we have the following theorem:

Theorem 4.1. An n-dimensional LP-Sasakian Ricci soliton is always shrinking
and the set of all possible values of soliton constant λ is a discrete set of negative
integers Z−.

The equation (4.10) gives the following result:

Corollary 4.1. If an n-dimensional LP-Sasakian manifold admits a Ricci Soliton,
then the manifold is Einstein manifold.

Now, we construct an example to verify the above result.

Example 4.1. Let us consider the case of example 3.1 and choose the 1-form η by
η(W ) = g(W, e2) for any W ∈ χ(M), then one can esily verify that the following relation
holds:

∇FG = φF.(4.17)

Now from (4.17) we get

Lvg(F,G) = g(∇FG,K) + g(F,∇KG)Lvg(F,G) = 0(4.18)
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Using (3.20) and (3.21), equation (4.14) yields

0 + S(F,K) + λ(a1a3 + b1b3 + c1c3) = 0,(4.19)

which simplifies

S(F,K) + λ(a1a3 + b1b3 + c1c3).(4.20)

From above we have

S(F,K) + λg(F,K).(4.21)

Put K = ξ and using (4.6), we obtain

(λ+ 2)η(F ) = 0(4.22)

As η(F ) 6= 0

λ = −2,(4.23)

which verifies the theorem for dimension 3.

5. Ricci Soliton On (LCS)n-manifold

In an (LCS)n manifold, n > 2, we know the following relation holds [12]:

η(R(F,G)H) = (α2 − ρ)g(G,H)η(F )− g(F,H)η(G),(5.1)

(R(F,G)ξ) = (α2 − ρ)η(G)F − η(F )G,(5.2)

(R(ξ,G)H) = (α2 − ρ)g(G,H)ξ − η(H)G,(5.3)

S(F, ξ) = (n− 1)(α2 − ρ)η(F )(5.4)

S(φF, φG) = S(F,G) + (α2 − ρ)η(F )η(G),(5.5)

∇F ξ = α[F + η(F )ξ],(5.6)

Let (g, ξ, λ) be a Ricci soliton on (LCSn) manifold on M then from (2.2) we get,

Lvg(F,G) = 2(g(F,G)− η(F )η(G))(5.7)

Taking V = ξ in (5.7) and using (1.1) and (2.6), we obtain

S(F,G) = −(α+ λ)g(F,G)− αη(F )η(G),(5.8)

S(F, ξ) = −λη(F ),(5.9)
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QF = −(α+ λ)F − αη(F )ξ,(5.10)

r = −nλ− (n− 1)α(5.11)

Let M be an (LCS)n manifold with structure (φ, ξ, η, g).
Using (5.7) in (1.1), we get

(α+ λ)g(F,G) + αη(F )η(G) + S(F,G) = 0,(5.12)

Put Y = ξ in (5.12) and using (5.4), we obtain

[λ+ (n− 1)(α2 − ρ)]η(F ) = 0(5.13)

As η(F ) 6= 0, so we have

λ = −(n− 1)(α2 − ρ)(5.14)

Theorem 5.1. An n-dimensional (LCS)n Ricci soliton with vector field ξ is:
(i) expanding if (α2 < ρ) and the soliton constant λ lies on the interval (0,∞),
(ii) shrinking if (α2 > ρ) the soliton constant λ lies on the interval (−∞, 0),
(iii) steady if α2 = ρ.

The equation (5.8) yields the following:

Theorem 5.2. If an n-dimensional (LCS)- manifold admits a Ricci Soliton, then
the manifold is η-Einstein manifold.

Here we construct an example to verify the above result.

Example 5.1. Let us consider the case of example 3.1 and choose the 1-form η by
η(W ) = g(W, e2) for any W ∈ χ(M), then one can esily verify that the following relation
holds:

∇FG = α[F + η(F )ξ].(5.15)

Now from (5.15) we get

Lvg(F,G) = g(∇FG,K) + g(F,∇KG)(5.16)

Lvg(F,G) = 2(g(F,G)− η(F )η(G)).(5.17)

Using (3.20) and (3.21), equation (5.12) gives the following

α(a1a3 + b1b3 + c1c3 + b1b3) + S(F,K) + λ(a1a3 + b1b3 + c1c3) = 0.(5.18)

We can easily find from above equation

(α+ λ)((a1a3 + b1b3 + c1c3) + S(F,K) + α(b1b3) = 0,(5.19)
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which yields the following relation

S(F,K) + (α+ λ)g(F,K) + αη(F )η(K).(5.20)

Put K = ξ and using (5.4), we obtain

(λ+ 2(α2 − ρ))η(F ) = 0(5.21)

As η(F ) 6= 0

λ = −2(α2 − ρ).(5.22)

Hence, theorem 5.1 has been verified.

6. Ricci Soliton on Projectively flat Kenmotsu manifold

The Projective curvature tensor of (M, g) is given by [9]

P (F,G)H = R(F,G)H − 1

n− 1
[S(G,H)F − S(F,H)G].(6.1)

Since, for Projectively flat

P (F,G)H = 0,(6.2)

and hence the equation (6.1) reduced to

R(F,G)H =
1

n− 1
[S(G,H)F − S(F,H)G],(6.3)

Replace H by ξ in (6.3), we get

R(F,G)ξ =
1

n− 1
[S(G, ξ)F − S(F, ξ)G],(6.4)

Substituting (3.3) in (6.4), we have

η(F )G− η(G)F = − λ

n− 1
[η(F )G− η(G)F ],(6.5)

which yields

λ = −(n− 1).(6.6)

This leads to the following statement:

Theorem 6.1. A Projectively flat Kenmotsu Ricci soliton (M, g) is always shrink-
ing and the value of soliton constant is λ = (n − 1), that is the set of all positive
integers Z+.
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Similarly, we can calculate the results for projectively flat LP-Sasakian Ricci soliton
and projectively flat (LCS)n-Ricci soliton and we have the following statements:

Theorem 6.2. Projectively flat LP-Sasakian manifold (M, g), admitting a Ricci
soliton, with ξ being the vector field of the contact metric structure is always shrink-
ing and the value of soliton constant λ = −(n − 1), that is the set of all negative
integers Z−.

Theorem 6.3. Projectively flat (LCS)n manifold (M,g), admitting a Ricci soli-
ton, with ξ being the vector field of the contact metric structure is (i) expanding if
(α2 − ρ) is negative and soliton constant lies on the interval (0,∞),
(ii) shrinking if (α2−ρ) is positive and soliton constant lies on the interval (−∞, 0)
and
(iii) steady if α2 = ρ.

7. Ricci Soliton admitting the semi-symmetric condition R.S = 0

Definition 7.1. A Kenmotsu manifold M is said to be Ricci semi-symmetric if
the condition

R(F,G).S = 0(7.1)

holds for all vector fields F,G.

From , we have

(R(F,G).S)(H,K) = −S(R(F,G)H,K)− S(H,R(F,G)K)(7.2)

Considering R.S = 0 and substituting F = ξ in (7.2), we obtain

S(R(ξ,G)H,K) + S(H,R(ξ,G)K) = 0.(7.3)

Using (3.2) in (7.3), we get

η(H)S(G,K)− g(G,H)S(ξ,K) + η(K)S(H,G)− g(G,K)S(H, ξ) = 0.(7.4)

Put H = ξ in (7.4) and using (2.1) and (3.10) and on simplification we get

S(G,K)− λη(G)η(K) + λη(K)η(G) + 2ng(G,K) = 0.(7.5)

Above equation implies
S(G,K) = −λg(G,K).(7.6)

After substituting K = ξ, we have

S(G, ξ) = −λg(G, ξ),(7.7)

which is the case of eigen value and eigen vector and therefore, we can state the
following theorem:
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Theorem 7.1. If a Kenmotsu Ricci soliton admits the Ricci semi-symmetric prop-
erty R.S = 0 then the Ricci soliton constatnt λ is eigen value of associated vector
field ξ.

After operating H = ξ in (7.4) and using (2.1) and (3.4) and we get

S(G,K) = −2ng(G,K).(7.8)

Therefore, we can state here a corellary as follows:

Corollary 7.1. If a Kenmotsu manifold admits the Ricci semi-symmetric property
R.S = 0 then the it is an Einstein Manifold.

Now, if we consider the LP-Sasakian manifold and (LCS)-manifold and apply the
similar process we get the following result respectively:

Theorem 7.2. If a LP Sasakian Ricci soliton admits the Ricci semi-symmetric
property R.S = 0 then the Ricci soliton constatnt λ is eigen value of associated
vector field ξ.

Theorem 7.3. If a (LCS)n Ricci soliton admits the Ricci semi-symmetric prop-
erty R.S = 0 then the Ricci soliton constatnt λ is eigen value of associated vector
field ξ.

Corollary 7.2. A Ricci semi-symmetric n-dimensional LP-Sasakian manifold is
an Einstein manifold.

Corollary 7.3. A Ricci semi-symmetric n-dimensional (LCS)-manifold is an Ein-
stein manifold.
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