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Abstract. Machine learning (ML) will be heavily used in the future generation of wireless 

communication networks. The development of diverse communication-based applications 

is expected to boost coverage and spectrum efficiency in relation to conventional systems. 

ML may be employed to develop solutions in a wide range of domains, such as antennas. 

This article describes the design and optimization of a circular patch antenna. The 

optimization is done through ML algorithms. Six ML models, Decision Tree, Random 

Forest, XG-Boost Regression, K-Nearest Neighbour (KNN), Gradient Boosting Regression 

(GBR), and Light Gradient Boosting Regression (LGBR), were employed in this work to 

predict the antenna's return loss (S11). The findings show that all of these models work 

well, with KNN having the highest accuracy in predicting return loss of 98.5%. The 

antenna design & optimization process can be accelerated with the support of ML. These 

developments allow designers to push beyond the limits of antenna technology, optimize 

performance, and offer novel solutions for emerging applications such as 5G, 6G, IoT, 

and flexible wireless communication systems). 

Key words: Circular patch antenna, Machine Learning (ML), Return Loss (S11), KNN, 

Decision Tree, Random Forest, XG Boost, GBR, LGBR 

1. INTRODUCTION 

Antennas were originally used only for receiving communications such as radio and 

television. Antennas are now found in almost every electronic gadget and are extremely 

important. The need for fast and dependable communication networks has been rising 

rapidly over the past several years. The employing of ultra-wideband (UWB) antennas is 

one method that could be used to accomplish this. The frequency range between 3.1 and 

10.6 GHz has been designated by the Federal Communications Commission (FCC) for 

UWB applications [1, 2]. Since then, several researchers have started working on optimized 

antennas for various UWB applications. For the development and optimization of antennas, 
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electromagnetic (EM) simulators such as the High-Frequency Structure Simulator (HFSS) 

are commonly used. To achieve the desired parameters, the optimization will be done by 

adjusting the size of various antenna attributes. Usually, the test-and-error approach has been 

used to carry out the optimization process. That is why the optimizing procedure consumes a 

lot of time. Traditional antenna design methodologies rely significantly on the practical 

experiences of designers and electromagnetic (EM) simulation technologies. However, these 

approaches are time-consuming, computationally expensive, and sometimes produce sub-

optimal results. As a result, there is a great demand for more efficient and intelligent 

methodologies for designing and optimizing antennas for a wide range of applications [3]. 

Due to the diverse shapes of antennas, exact solutions in finite and closed forms are 

not available. However, by approximating solutions, valuable insights can be gained for 

antenna design. Numerical analysis is a widely adopted technique for antenna design. 

Methods such as finite difference time domain, finite element method electromagnetic, 

and Method of Moments [4, 5, 6,] are commonly utilized for testing and evaluating 

antennas. In complex antenna designs, this approach posed challenges in terms of 

memory usage and CPU requirements due to the size and parameters of the antenna 

structure. To enhance results and reduce irregularities, ML has emerged as a powerful 

tool. ML, a branch of artificial intelligence (AI), focuses on extracting information from 

data and finds significant application in statistical data science [7] 

ML-powered solutions boost custom antenna design greatly, giving benefits such as a 

reduction in time, increased computational performance, lower operational expenses, 

shorter simulation time, and reduced working hours. The ever-changing demand for 

multipurpose and compact antennas exposes antenna designers to new problems on a 

daily basis. ML has enormous promise in tackling these difficulties by building trained 

models that can rapidly optimize antenna designs to fulfill a variety of objectives. ML 

enables the establishment of connections between input and output responses by finding 

undiscovered mathematical relationships inside data, which enables accurate predictions 

in antenna design. Various types of ML are represented in Fig. 1. 

 

Fig. 1 Types of ML 

A Deep Belief Network- Extreme Learning Machine (DBN-ELM) model based on 

PSO (Particle Swarm Optimization) was proposed by the author [8]. Results demonstrate 

that the model can rapidly extract samples, minimize the complexity and computational 

cost imposed by repeated simulations in antenna design, and significantly increase the 

effectiveness of antenna design. Two UWB antenna designs have been optimized in their 

work using this approach. The antenna's operational frequency range is from 3.3 to 12.1 

GHz. The proposed DBN ELM model offers better prediction abilities and may also be 

utilized for illustrating more complicated antenna structures. 

To optimize antenna design, the article’s [9] author recommended applying ML 

models such as the least absolute shrinkage and selection operator (lasso), artificial neural 

networks (ANNs), and k-nearest neighbour (kNN) and checking the accuracy of these 
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models, they are applied to a reference double T-shaped monopole antenna. Results from 

the high-frequency structure simulator (HFSS) are compared with those predicted by 

these ML techniques. Specifically, ANN and lasso provide more precise predictions as 

compared to kNN. In the final analysis, proposed by the author, these innovative methods 

are more effective than the conventional EM simulation optimization technique in 

designing an optimal antenna design. The findings of this investigation also demonstrate 

that ML methods possess an opportunity to transform EM simulation methods. 

The uses of ML in antenna design are discussed and examined thoroughly in the study 

[10]. The essential features of ML are covered, including its fundamental idea, how it differs 

from artificial intelligence and deep learning, learning algorithms, and its numerous 

applications across a range of technologies, with a particular focus on how it's utilized in 

antenna design. The analysis contrasts the outcomes of antenna design using ML with those 

obtained using traditional design techniques. It has been observed that ML will speed up the 

antenna design process while maintaining high precision, and able to predict antenna 

performance, with better computing power, and a reduction in the amount of simulations that 

are required. 

The author [11] demonstrates the application of ML techniques to forecast the S11 

(return loss), which is a very important feature of patch antennas. The results show that 

S11 predictions made using different ML algorithms (Decision Tree, Random Forest, XG 

Boost, and KNN) are quite precise as well as accurate. It might be helpful in predicting 

resonant frequency without the need for time-consuming simulations. 

The article [12] illustrates the modeling of a microstrip antenna using regression-

based ML. The author investigated several effects on the physical and electrical 

characteristics of the materials employed, the impact of the slot, and the size of the patch 

on the antenna's resonant frequency. Root mean square error, R square value, and mean 

absolute error (MAE) are the evaluation criteria used in this work, result shows that 

performance is extremely similar as predicted by the regression-based ML approach. 

In the work [13] author describes the design and optimization of a small Coplanar 

Waveguide (CPW) fed band-notched monopole antenna. This article's distinctive 

characteristic is that it offers a method for optimally building an antenna using ML 

techniques. The antenna design process can be accelerated with the aid of ML. Five 

methods are used: KNN, XG-Boost Regression, Decision Tree, Random Forest, and 

Artificial Neural Network (ANN). KNN produces the most precise results out of all the 

algorithms, with an accuracy rate of as much as 98%. It can estimate the dimensions of 

the required parameters based on the acquired results, something the High-Frequency 

Structure Simulator (HFSS) Electromagnetic (EM) simulator was unable to accomplish. 

This article analyses the use of ML technology in antenna design optimization. The 

purpose is to use ML algorithms to predict the return loss (S11) based on various antenna 

parameters. By doing so, it hopes to eliminate the need for repetitive trial and error-

optimization methods. The study employs six different algorithms: Decision Tree, Random 

Forest, XG-Boost Regression, KNN, GBR, and LGBR. These algorithms were chosen 

because of their capacity to handle regression tasks involving nonlinear data, which is 

typically found in the dataset generated by HFSS antenna simulations. After running 

antenna simulations, the dataset is generated which contains the resonance frequency, 

diameter of the circular slot of the patch, and diameter of the semi-circular slot of ground 

and return loss values. The S11 values are then predicted using various ML techniques.  
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The rest of the article is organized as follows: Section 2 details the antenna evolution 

and analysis of the proposed antenna. Section 3 exhibits optimization through the use of 

ML models. Section 4 evaluates performance using results. Finally, Section 5 presents 

the conclusions. 

2. EVOLUTION AND ANALYSIS OF UWB ANTENNA 

2.1. Antenna Dimensions & Evolution 

The antenna design evolution is derived in five iterations, along with the intermediate 

stages and geometry of the proposed antenna depicted in Figs. 2 and 3, as well as the 

geometric parameters listed in Table 1. It is composed of FR-4 (Flame Retardant and 

Type 4) substrate and is 43mm x 40mm x 1.6mm. The thickness of the substrate is 1.6 

mm, the dielectric constant is εr = 4.4, and the loss tangent is tan δ = 0.02 for all specified 

antenna design iterations. 

The first stage as illustrated in Fig. 2, Ant 1 is a standard circular patch antenna, the 

radius of the patch can be calculated using the following equation 1[14]. 
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where, F = 8.791 ∙ 109 / (fr ∙ (εr )1/2), R = Radius of circular patch, fr =Resonant frequency, 

h=Substrate height, εr =Dielectric constant of the substrate. 
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 (a) Ant 1 (b) Ant 2 (c) Ant 3 (d) Ant 4 

Fig. 2 Antenna Evolution 

In Ant 2, two circular slots of diameter 7 mm are formed from the main circular radiating 

patch of diameter 15 mm to provide for a seamless transition of current from the transmission 

line to the radiating patch. Ant 3 is formed by four patches of diameter 3.5 mm inside these 

two slots of 7mm diameter, followed by Ant 4 Additionally, two slots are created on the main 
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patch, one at the top and one at the bottom, whose diameter is varied from 2.4mm to 4mm 

with a step size of 0.2mm to apply ML algorithms for optimization., Ant 5 A semicircle slot 

with a diameter ranging from 0.1 to 3mm is produced in the ground plane, which is a 

defective ground structure (DGS) with dimensions of 10 mm by 40 mm (for optimization). 
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Fig. 3 Geometry of Ant 5  

(Proposed Antenna) 
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Fig. 4 Comparison of Return Loss for Ant 1, Ant 2, 

Ant 3, Ant 4 & Ant 5 (Proposed antenna) 

B
o

tt
o

m
 V

ie
w

 

Table 1 Antenna Dimensions  

Parameters Symbol Value Parameters Symbol Value 

Diameter of Main Circular 

Patch 
C1 15mm Length of Ground GL 10mm 

Diameter of Circular Slot C2 7mm Width of Ground GW 40mm 

Diameter of Inner Circle Patch C3 3.5mm 
Diameter of Semi-Circular 

Slot at Ground 
SC 1.3mm 

Diameter of Top & Bottom 

Circular Slot 
C4 2.4mm Substrate Length SL 43mm 

Feed line width FW 3mm Substrate Width SW 40mm 

Feed line length FL 10mm    

Fig. 4 represents the comparison of Return Loss for Ant 1, Ant 2, Ant 3, Ant 4 & Ant 

5 (Proposed antenna). Ant 1 is a simple circular patch antenna having a dual band from 

2.4 GHz to 5.8GHz & 6GHz to 10.16GHz, resonating at 4.4GHz & 9GHz with -26dB & -

47dB return loss respectively. Further in the next modification i.e. Ant 2, band 2.4 to 

10.9GHz, giving ultra-wideband characteristics, resonating at 4.35 GHz & 8.9GHz with -

33dB & -27dB return loss. In Ant 3, three bands are there at 4.6GHz, 7GHz, 9GHz with -

23dB, -20dB, & -32dB return loss respectively. In Ant 4, 4.6GHz, 7.07GHz & 9.05GHz 

with -30dB, -24dB & -30dB return loss respectively. In the final design Ant 5 which is 
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the proposed antenna gives ultra wide band from 2.37GHz to 10.56GHz having 

multiband’s resonating at 4.6GHz, 6.6GHz, 9GHz & 10.3GHz with -34.26dB, -34dB, -

24dB & -31.46dB return loss respectively. 

3. OPTIMIZATION THROUGH MACHINE LEARNING MODELS METHODOLOGY 

The flowchart of optimizing antenna parameters through ML models is shown in Fig. 5. 

 

Fig. 5 Methodology Flowchart 

The first step represents the design and simulation of an antenna on HFSS, further 

performance is checked and redesigned if required. The design methodology of the 

proposed UWB antenna in this work begins with the antenna design modification by 

conventional methods, in which the first antenna is designed and evaluated on the basis 

of return loss, and further modifications as mentioned in section 2 until we reach the 

proposed structure with good results, i.e. multiband along with UWB characteristics. 

Now in the next step, by varying the diameter of the circular slot (C4) from 2.4mm to 

4mm with a step size of 0.2mm and the semi-circular slot (Sc) varied from 0.1mm to 

3mm with a step size of 0.2mm, the dataset is generated. HFSS was used to generate all 

possibilities that fit within the range of values set for each design parameter. This dataset, 

which contains 67650 records with 451 columns and 150 rows, is composed of the 

following features: frequency (Freq in GHz), return loss (S11 in dB), circular slot diameter 

(C4), and semi-circular diameter (Sc). To apply ML methods, frequency, C4, Sc will be 

treated as an independent variable and S11 as a dependent variable. The relationship 

between dependent (S11) and independent variables (C4, Sc) is shown in Fig. 6. 

The next step is to split the dataset into training and test sets. The typical practice is to 

randomly assign a certain percentage (e.g., 70-80%) of the data to the training and the 
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remaining portion to the test. The randomization helps ensure the representativeness of 

both. In this work, 80% of the data is used for training. The training dataset is utilized to 

train ML models. The models learn patterns and relationships between the dependent & 

independent features during the training process. After training, the ML models are 

evaluated on the test data set. This allows for assessing their performance on unseen data. 

The model predictions on the test dataset are compared with the actual values to measure 

their accuracy and other relevant performance metrics.  

Certain models for ML are trained and tested for accuracy and predictability using the 

dataset produced above. Predictions made with ML take substantially less time and have 

far smaller margins of error. The best model is chosen based on having the highest R-

square score and the lowest MSE value after the ML models have been trained using the 

dataset collected from the HFSS. Then, using that model, the S11 value for this dataset 

will be predicted. The parameters that produce the lowest S11 value will be chosen next. 

 

(a) 

 

(b) 

Fig. 6 (a) The Relationship between S11 and C4. (b) The Relationship between S11 and Sc. 

4. RESULT AND DISCUSSION 

Common performance metrics used to evaluate the accuracy and efficiency of machine 

learning models are the MSE (Mean Squared Error), R-Square Value, MAE (Mean Absolute 

Error), MAPE (Mean Absolute Percentage Error), Fit Time (in seconds), and Prediction Time 

(in seconds). Table 2 shows the values estimated by several ML algorithms. 

The mean squared error (MSE) is calculated as the average squared difference 

between predictions and actual values, Lower MSE indicates better accuracy, as shown in 

equation (2). The R-square value of the regression model shows how accurate it is, R-

square ranges from 0 to 1, with 1 indicating a perfect fit, as shown in equation (3). The 

MAE is the average absolute difference between the predicted and actual values. It 

provides a measure of the model's prediction accuracy without considering the direction 

of the error, as shown in equation (4). The MAPE is a relative measure of the prediction 

accuracy and is calculated as the average percentage difference between the predicted and 

actual values. It is useful for interpreting the prediction errors in terms of their percentage 

relative to the actual values, as shown in equation (5). Fit Time is the time taken by the 

machine learning model to learn from the training data and build the internal representation. It 
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indicates the training time required for the model to be ready for predictions. Prediction 

Time is the time taken by the model to make predictions on new data. It measures the 

efficiency of the model during the prediction phase [11, 15, 16]. 
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where n is the number of data points, yi is the actual value, ˆ
iy  is the predicted value, 

iy  is 

the mean of actual values. 

Table 2 compares MSE, R-square, MAE, MAPE, Fit Time, and Prediction Time for 

various models, illustrating that the KNN model has the highest R-square value and the 

lowest MSE, MAE, MAPE, fit time, and prediction time, implying that it is the most 

accurate and fastest model among the models compared. Random Forest has the second 

highest R-square value, however, it takes significantly more time to train and test in 

comparison to other models. All models have an accuracy of more than 76%, five of 

them having an accuracy of more than 90% making them extremely useful, and the error 

is quite low. Because KNN is a non-parametric approach that finds a fixed number of 

training samples based on feature similarity, it outperforms the other methods [17]. 

Table 2 Comparison of MSE, R-square, MAE, MAPE, Fit Time & Prediction Time for 

different models  

Model MSE R-Square 

Value 

MAE MAPE Fit Time 

(sec) 

Prediction 

Time (sec) 

Decision Tree 1.555 0.959 0.506 0.033 0.240 0.012 

Random Forest 1.100 0.970 0.478 0.032 12.214 0.583 

Gradient Boosting 

Regression (GBR) 

8.739 0.769 1.893 0.132 3.796 0.042 

XG Boost Regression 2.782 0.927 0.953 0.065 2.088 0.028 

KNN 0.559 0.985 0.273 0.017 0.038 0.066 

Light Gradient Boosting 

Regression (LGBR) 

3.782 0.901 1.162 0.080 0.302 0.074 

Fig. 7 depicts the association between predicted and actual return loss values for various 

ML models such as Decision Tree, Random Forest, GBR, XG Boost, KNN and LGBR [17-

23] over a frequency range of 1 to 15 GHz. The close correlation indicates that the models 

learned the patterns and relationships in the data successfully, resulting in reliable 

predictions of the return loss. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7 Association between predicted and actual return loss values for (a) Decision Tree. 

(b) Random Forest. (c) GBR. (d) XG Boost. (e) KNN. (f) LGBR. 

The most accurate prediction is provided by KNN. It performs better because it is a 

versatile non-parametric algorithm that can handle complex or unfamiliar data sets. Its 

adaptability enables it to adapt to changing datasets by accommodating new or modified 

data points, eliminating the need for complete model retraining. S11 is now optimized 

with the help of the ML approach. When the circular slot is 3.8 mm and the semi-circular 

slot is 1.3 mm, predicted using ML approach, it gives us the minimum value for S11. Using 
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these optimized values for S11 and simulating on HFSS with C4=3.8 mm and Sc=1.3 mm, 

the results are excellent, saving a significant amount of time. UWB band of 2.37GHz to 

10.72GHz having three bands resonating at 4.51GHz, 7.1GHz & 8.87GHz with return loss 

values of -43 dB, -42.29dB, -57.68dB respectively, and one small band at 10.4GHz with 

return loss of -13.6dB. Hence, comparing the return loss of the proposed design (Ant 5) 

using the conventional approach and the optimized design using the ML approach with 

optimized dimensions of C4=3.8 mm and Sc=1.3 mm is shown in Fig. 8. This illustrates that 

by employing this approach, minimum values of return loss may be estimated for a 

particular band, which is quite time-consuming if the conventional approach is followed. 
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Fig. 8 Comparison of return loss for proposed design using conventional approach and 

optimized design using ML 

To evaluate the accuracy of the KNN model, new random design values C4=4.2mm and 

Sc=1.3mm are being prepared and also fabricated as shown in Fig. 9. The return loss 

comparison of predicted values from KNN, simulated values from HFSS, and measured 

values obtained from fabricated prototype antenna is shown in Fig. 10. The close relationship 

demonstrates that the models generate accurate evaluations of return loss. As compared to 

conventional design approaches, this approach can save significant time and effort. 
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Fig. 8 Fabricated Antenna 
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Fig. 9 Return Loss comparison of predicted values from KNN, 

simulated values from HFSS, and the fabricated prototype 

5. CONCLUSION 

In this work, a circular patch antenna is first designed and subsequently optimized 

using the ML technique. After antenna optimization with ML algorithms and testing, the 

frequency range is confirmed to be 2.37GHz to 10.72GHz, which is suitable for Ultra-

Wideband (UWB) applications. The six ML algorithms were used in this work Decision 

Tree, KNN, Random Forest, GBR, LGBR, and XG-Boost Regression. With an accuracy 

rate of up to 98.5%, KNN produces the best results. It performs better than traditional EM 

simulators. ML-powered antenna design is an innovative approach that will continue to 

define the future of antenna technology, designers can use it to solve design challenges, 

increase performance, and accelerate the development of revolutionary antenna systems. 

The ongoing improvement of ML techniques will surely contribute to the future of 3D 

antenna design, allowing for the creation of highly efficient, compact, and flexible 

antennas for a wide range of applications. 
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