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Abstract

The increasing amount of available data and access to high-performance computing allows companies

to use complex Machine Learning (ML) models for their decision-making process, so-called ”black-box”

models. These ”black-box” models typically show higher predictive accuracy than linear models on com-

plex data sets. However, this improved predictive accuracy can only be achieved by using more complex

and confusing methodologies which leads to a deterioration of the model’s explanatory power. This will

be further analysed in chapter 1 ”Open the black box” and make the model predictions explainable is

summarised under the research area of Explainable Artificial Intelligence (XAI). Using black-box models

also raises practical and ethical issues, especially in critical industries such as finance. For this reason,

the explainability of models is increasingly becoming a focus for regulators. Applying XAI methods to

ML models makes their predictions explainable and hence, enables the application of ML models in the

financial industries. The application of ML models increases predictive accuracy and supports the differ-

ent stakeholders in the financial industries in their decision-making processes.

This thesis consists of five chapters: a general introduction, a chapter on conclusions and future research,

and three separate chapters covering the underlying papers. Chapter 1 proposes an XAI method that

can be used in credit risk management, in particular, in measuring the risks associated with borrow-

ing through peer-to-peer lending platforms. The model applies correlation networks to Shapley values

and thus the model predictions are grouped according to the similarity of the underlying explanations.

Chapter 2 develops an alternative XAI method based on the Lorenz Zonoid approach. The new method

is statistically normalised and can therefore be used as a standard for the application of Artificial Intelli-

gence (AI) in credit risk management. The novel ”Shapley-Lorenz”-approach can facilitate the validation

of model results and support the decision of whether a model is sufficiently explained. In Chapter 3,

an XAI method is applied to assess the impact of financial and non-financial factors on a firm’s ex-ante

cost of capital, a measure that reflects investors’ perceptions of a firm’s risk appetite. A combination of

two explanatory tools: the Shapley values and the Lorenz model selection approach, enabled the iden-

tification of the most important features and the reduction of the independent features. This allowed a

substantial simplification of the model without a statistically significant decrease in predictive accuracy.
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General Introduction

In recent years the amount of produced data increased drastically (Reinsel, Gantz, & Rydning, 2017).

Together with simplified access to high-performance computers, many companies are able to use more

models to support their decision-making process (Jordan & Mitchell, 2015). In some areas the amount of

available data is too big and too complex to be analyzed by simple linear models, hence many companies

use complex ML models for their decision-making process (Chen & Guestrin, 2016).

AI and ML models can analyze huge and complex data sets and show typically a higher predictive ac-

curacy than linear models on these kinds of data sets. However, this improved predictive accuracy can

only be achieved through a deterioration in explainability. The increasing complexity of ML models, in

combination with the large amount of data processed by the models, reduces the capability to explain a

model’s decision. Hence, the predictions of a model are no longer comprehensible (Linardatos, Papaste-

fanopoulos, & Kotsiantis, 2020).

In other words, there is a trade-off between the model performance and its explainability. Simple models,

such as linear regression and logistic regression models, can satisfy the explainability condition. How-

ever, the predictive accuracy of these models is diminished when they are applied to large and complex

data sets, especially with non-linear relationships. The use of sophisticated ML models, such as neural

networks and random forests, provides a high predictive accuracy but it leads to limited explainability.

For this reason, the literature also calls these complex ML models łblack box” models (Molnar, 2020).

Although complex models show better model performance, it is difficult to trust them. Using black box

models also includes practical and ethical issues, especially when they are used in crucial industries like

healthcare or finance. These industries require trustworthy models and a basic requirement for trustwor-

thiness is explainability. This requirement shows the importance of XAI methods (Gunning & Aha, 2019).

This doctoral thesis focuses on the financial industries and the potential applications of AI or ML

models, enabled by the use of XAI methods. Credit risk management is one of the main application areas

of ML models in the financial industries. It is a key banking area and addresses one of the material risks,

financial institutions are facing. The risk arises primarily from potential credit defaults when a financial

institution lends money to borrowers. Credit Risk Management includes the identification, measure-

ment, and monitoring of these risks, an appropriate treatment, and the implementation of adequate risk

models (BCBS, 2000).

To measure and manage the credit risk of a financial asset, banks use three key measures: 1) Probability

of default (PD); 2) Loss given Default (LGD); and 3) Exposure at Default (EAD) (Altman & Heine, 2006).

Credit risk, measured by the above-mentioned models is crucial to a bank and the stability of the bank-

ing system. Hence, the three risk models are strictly supervised by the European regulator and as such

financial institutions have to fulfil strict requirements. For the European Union (EU) these requirements

are defined inter alia in the Capital Requirements Regulation (CRR) (EC, 2013b) and the Capital Require-

ments Directive (CRD) IV (EC, 2013a). Similar requirements are defined by other regulators as well. Even

though these requirements for credit risk management models are defined as technology-neutral, the

regulator requires the financial institutions to approve the respective models internally. To be able to ap-

prove the models, the senior management needs to comprehensively understand the respective models.

Hence, a lot of banks and financial institutions use simple models to measure credit risk, for example,

logistic regression models.

The regulators identified that the risk associated with the increased use of models does not only apply

in credit risk management but in general and responded with various regulations. Two of the most rele-

1



General Introduction

vant regulations are the US SR 11-7 (FED, 2011) and the European Central Bank (ECB) Guide to Internal

Models (Consolidated version from 2019) (ECB, 2019).

Additionally, the regulators focus increasingly on the application of AI andMLmodels in financial institu-

tions. This is reflected in various guidelines and recommendations, which have been published during the

last years. In the following paragraph, some of the most important guidelines, reports, and regulations

are presented that illustrate the importance of explainability for the application of AI and ML models in

financial institutions.

In 2016 the European Parliament published the General Data Protection Regulation (GDPR), which

states that data processing via automated decision-making should include information about the under-

lying logic (EC, 2016).

The Financial Stability Board highlights in their report from 2017 (FSB, 2017) the following areas

regulators and supervision need to focus on:

∙ Governance and accountability

∙ Data quality and bias

∙ interpretability and transparency

∙ Risk management and validation

∙ Ethical considerations

The high-level expert group on AI from the European Commission published in 2019 the Ethics guide-

lines for trustworthy AI (EC, 2019a). They defined a framework for trustworthy AI including three pillars

that require AI to be 1) compliant with existing laws and regulations, 2) it should be ethical, and 3) robust

against technical and social influences. To realise a trustworthy AI system, they defined seven concrete

requirements. One of these requirements is transparency. The component transparency includes the

requirements that AI should be traceable, explainable, and it should communicate with the user. They

further describe that the decision-making process of AI should be explainable whenever it affects people’s

lives and that this explanation should be adjusted according to the expertise of the respective stakeholder.

The seven requirements to realise a trustworthy AI system are:

∙ Human agency and oversight

∙ Technical robustness and safety

∙ Privacy and data governance

∙ Transparency

∙ Diversity, non-discrimination and fairness

∙ Societal and environmental well-being

∙ Accountability

2



General Introduction

The EuropeanBanking Authority (EBA) Report on BigData andAdvanced Analytics from 2020 defined

seven elements of trust in big data and advanced analytics (EBA, 2020). Again, explainability is one of

the key elements in the context of the trustworthiness of AI models. The EBA defines in their report that

explainable models have to enable humans to understand how the model generated the output and that

the models need to be able to justify what the output is based on. These are the defined seven elements

of trust in big data and advanced analytics:

∙ Ethics

∙ Explainability and interpretability

∙ Fairness and avoidance of bias

∙ Traceability and auditability (including versioning)

∙ Data protection and quality

∙ Security

∙ Consumer protection

The most recent regulation is the proposal of the EU Artificial Intelligence Act which categorizes

some applications of AI and ML models in banks as high-risk applications that require extensive regu-

lation. They explicitly define systems as high risk, which are used to estimate the creditworthiness of a

person or estimate a credit score. The regulation states that the European Union aims for a solid Euro-

pean regulatory Framework for trustworthy AI. Hence, they defined that high-risk AI systems need to

meet certain requirements, such as traceability and transparency (EC, 2021).

In 2023 the German Regulator Bundesanstalt für Finanzdienstleistungsaufsicht (BaFin) published

the updated Minimum Standards for Risk Management Mindestanforderungen an das Risikomanage-

ment (MaRisk). The minimum standards explicitly state that in addition to the predictive accuracy, suf-

ficient explainability must be ensured, particularly for the application of AI models (BaFin, 2023).

All these guidelines and regulations show the important role of explainability in the context of trans-

parency and trustworthiness concerning the application of AI or ML models in the financial industries.

The fact that expert groups, regulators, and supervisors have focused on the topic of explainability for

many years emphasises that financial institutions must include the requirement of explainability in their

model development process. The possibility of explaining the model needs to be as much prioritized as

the performance of the model itself.

The important role of explainability leads to some fundamental questions, such as ”What is the cor-

rect definition of explainability” and ”When is a model actually explainable”?

Next to explainability, the term interpretability is often used synonymously. However, there is an ongo-

ing discussion in the literature about the correct terminology. (Sokol & Flach, 2021) extensively discussed

among others these two terminologies and their meaning within their paper. They show that the research

in XAI and interpretable ML can be traced back to 1990 and if expert systems are considered as well, even

to the 1970s (Rudin, 2019; Gregor & Benbasat, 1999; Leondes, 2001). They further elaborate that inter-

pretability is a passive characteristic, whereas explainability is an active one. In other words, the degree of

interpretability of a model describes the passive structure and the extent to which it enables an explainee

3



General Introduction

to understand the underlying structure of a model and the decisions based on it. The explainability of

a model describes the active functions and methods implemented in a model in illustrating its decisions

and predictions to an explainee.

Finally, Sokol and Flach decide to use the term explainability instead of interpretability and define it as

ł[. . . ] insights that lead to understanding (the role of an explanation) [. . . ]” (Sokol & Flach, 2021). They

argue that this is a commonly used and frequently applied definition in the social sciences. Based on this

definition, they defined the following equation:

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 (𝑇 𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑐𝑦 |𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔

(1)

This equation illustrates that explainability is a process of understanding through reasoning. This re-

quires taking the transparency of a model and the background knowledge of the explainee into account.

Taking the explainee into the focus of the explanation of a model is a key element for the application

of AI models in financial services. The explainee can vary between different stakeholders. (Bracke, Datta,

Jung, & Shayak, 2019) defined at least six different stakeholders in the financial institutions:

∙ Model developers/implementers

– The persons who develop and implement the ML model.

∙ First-line model checkers

– The persons who ensure that the ML models have been developed sufficiently. This could

be achieved via the implementation of Peer-to-peer (P2P) reviews between different model

development teams.

∙ Responsible management

– Many banks have the concept of a model owner. This person is ultimately responsible for the

model.

∙ Second-line model checkers

– The persons who independently validate a model to ensure the quality of development and

employment.

∙ Conduct regulators

– The regulators ensure that a model meets the respective conduct rules.

∙ Prudential regulators

– The regulators ensure that a model meets the respective prudential requirements.

In addition to the listed explainees, one could addmembers of the board, corporate audit services, and

customers. Some of the above-mentioned explainees have similar requirements regarding XAI methods

and can be combined accordingly.

4



General Introduction

To address the requirements of different explainees it is important to highlight the already existing XAI

methods. The methods can be categorized into different types, according to their respective character-

istics. The following list provides a brief overview. A more complete overview and a detailed description

of the respective example methods can be obtained via the following documents: (e.g. Molnar, 2020;

Guidotti et al., 2018).

∙ White-box models vs. black-box models in combination with posthoc XAI methods

– White-boxmodels: This category includes all models that are interpretable due to their simple

underlying structure, such as linear regression models or decision trees. These models do not

need to be explained.

– Black boxmodels in combinationwith post-hoc XAImethods: This category includes all meth-

ods that are applied to already trained black box models (post-hoc). Post-hoc methods are

for example Local Interpretable Model-agnostic Explanations (LIME) or the Shapley values

approach.

∙ Model agnostic vs. model-specific

– Model agnostic methods: These methods can be applied to all models independent of the

models’ structure. Examples are Partial Dependence Plots (PDP) or Shapley values approach.

– Model-specific methods: These methods are only applicable to a specific category of models,

like the analysis of the weights of regression coefficients in a linear regression model.

∙ Local vs. Global explanations

– Local explanations: These methods explain individual predictions of a model. A famous ex-

ample from credit risk management is the question of why a specific credit application has

been rejected. Example methods are LIME or Counterfactual Explanations.

– Global explanations: These methods explain the effect one feature has on the overall model

predictions, e.g. PDP.

∙ Statistical methods vs. Visualisation methods

– Statistical methods: These methods provide summary statistics regarding the variables, like

feature importance values.

– Visualisation methods: Many of the above-mentioned methods use this method to explain a

model. Visualisations can be PDP, heatmaps, or diagrams.

The above-described model agnostic post-hoc XAI methods do not satisfy the requirements of all ex-

plainees in the financial industries. Explainees, like the members of the board, need to get a sufficient

understanding of a model quickly to decide without being able to familiarise themselves intensively with

the respective topic. Other explainees like corporate audit services need to understand every detail of a

model and compare it with other models. Hence, the results of a model need to be clearly and compre-

hensively explained and the explainability of different models needs to be comparable with each other.

Therefore, this doctoral thesis aims to create methods that can address many different explainees, in-

cluding the above-mentioned, by extending existing XAI methods and developing new methods. The

contributions to the existing literature are presented in three self-contained chapters.

5



General Introduction

Chapter 1 investigates howMLmodels in combination with XAI methods can be applied in credit risk

management to estimate the PD of a potential customer. The paper on which this chapter is based was

published in the Springer Journal of Computational Economics (2020). In this chapter, an existing XAI

method is extended by applying a Correlation Network to Shapley Values. The output of the model is

made explainable by the Shapley Values and is further simplified by the visual representation as a network

and by the clustering of the underlying Shapley Values. This improves the degree of explainability of the

model even more.

For this purpose, a data set was analysed that included an evaluation of various financial characteris-

tics of 15,000 small and medium-sized enterprises that requested a loan on a P2P-platform. The analysis

was based on the PD of the customers. A logistic regression model and an XGBoost model were trained

on a training dataset. The model performance of the two models was compared using the area under

the curve Area Under the Receiver Operating Characteristic curve (AUROC). The comparison shows that

the ML model has a better model performance and was able to predict the default probability of the cus-

tomers more accurately.

To explain the XGBoost model, we first calculated the Shapley values of the predictions. Since calculat-

ing the Shapley values for a large number of variables requires high computational power, we used the

TreeSHAP method by (Lundberg et al., 2020). To further increase the explanatory power of the Shapley

Value approach and to visualize the structure within the Shapley Values, we used a MST (a single link-

age cluster). Within the graph, we coloured individual observations to distinguish between the defaulted

loans and the non-defaulted ones.

In chapter 2 the Shapley value approach described in chapter 1, is further developed by combining it

with the Lorenz Zonoid approach to obtain a new XAI method, the Shapley Lorenz value approach. The

paper on which this chapter is based on has been published in the Classification and Data Analysis Group

2021 post-proceedings Springer collection. Shapley values are not normalised and therefore difficult to

understand. This problem has made it difficult to use Shapley values in economics so far.

The Shapley-Lorenz values provide a normalised value between 0 and 1 for every feature of a model. This

enables stakeholders to compare models and the respective drivers of the models’ predictions with each

other based on the explainability. The novel method is used to analyse the same dataset as in chapter

1. We applied a logistic regression model to the data, as it is easy to interpret and allows us to better

evaluate the new explainability method.

To analyse the results we compared the Shapley-Lorenz values with the Shapley values and with the

contribution of each variable to the deviance 𝐺2. The Shapley-Lorenz values were the easiest to interpret.

Additionally, this approach is more robust to outlier observations.

Chapter 3 addresses the topic of sustainability, which is currently a highly relevant topic in the finan-

cial industry. The paper on which this chapter is based on has been published on SSRN. Environmental,

Social, and Governance (ESG) topics have become increasingly important in the last years. In this chap-

ter, the important ESG variables to estimate the cost of capital were identified. We trained a ML model

on financial and non-financial factors to predict the cost of capital, which in this context, reflects the

investor’s perceptions of a firm’s risk profile.

Our data set contains more than 1400 companies, listed on global stock markets. We applied two XAI

Methods to the results of the ML model, the Shapley Values approach and the Lorenz Zonoid approach.

Our model is the well-known eXtreme Gradient Boosting ML model, XGBoost. Based on the Shapley

Values, we are able to prioritize the variables regarding their importance. We used the Lorenz Zonoid
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approach, which we used in chapter 2 as well to further develop the Shapley values approach, but this

time we use it to identify pivotal factors influencing the implied cost of capital.

The results showed that financial and country characteristics are most important for the model’s pre-

dictions, but it also showed that non-financial factors contribute to the prediction of the cost of capital,

especially environmental and governance-related factors. The results indicate that investors penalize the

most polluting companies, highlighting the necessity of fostering the shift to amore sustainable economic

structure.
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1 Explainable Machine Learning in Credit Risk

Management

What we learn from history is that people don’t learn

from history.

– Warren Buffett

1.1 Introduction

Black box AI is not suitable for regulated financial services. To overcome this problem, Explainable AI

models, which provide details or reasons to make the functioning of AI clear or easy to understand, are

necessary.

To develop such models, we first need to understand what ”Explainable” means. Recently, some im-

portant institutional definitions have been provided. For example, (Bracke et al., 2019) states that ”Expla-

nations can answer different kinds of questions about a model’s operation depending on the stakeholder

they are addressed to” and (Croxson, Bracke, & Jung, 2019) ”interpretability will be the focus of explain-

ability, generally taken to mean that an interested stakeholder can comprehend the main drivers of a

model-driven decision”.

Explainability means that an interested stakeholder can comprehend the main drivers of a model-

driven decision; (FSB, 2017) suggests that łlack of interpretability and auditability of AI and ML methods

could become a macro-level risk”; (Croxson et al., 2019) establishes that łin some cases, the law itself may

dictate a degree of explainability.”

The European GDPR (EC, 2016) regulation states that łthe existence of automated decision-making

should carry meaningful information about the logic involved, as well as the significance and the envis-

aged consequences of such processing for the data subject.” Under the GDPR regulation, the data subject

is therefore, under certain circumstances, entitled to receive meaningful information about the logic of

automated decision-making.

Finally, the European Commission High-Level Expert Group on AI presented the Ethics Guidelines

for Trustworthy Artificial Intelligence in April 2019. Such guidelines put forward a set of seven key re-

quirements that AI systems should meet in order to be deemed trustworthy. Among them three relate to

the concept of ”eXplainable Artificial Intelligence (XAI)” , and are the following.

∙ Human agency and oversight: decisions must be informed, and there must be a human-in-the-loop

oversight.

∙ Transparency: AI systems and their decisions should be explained in a manner adapted to the

concerned stakeholder. Humans need to be aware that they are interacting with an AI system.

∙ Accountability: AI systems should develop mechanisms for responsibility and accountability, au-

ditability, assessment of algorithms, data and design processes.

Following the need to explain AI models, stated by legislators and regulators of different countries,

many established and startup companies have started to embrace Explainable AI models. In addition,

more and more people are searching for information about what ”Explainable Artificial Intelligence”

means.
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In this respect, (Figure 1.1) represents the evolution of Google searches for explainable AI related

terms.

Figure 1.1: Google trend searches for explainable AI related terms.

From a mathematical viewpoint, it is well known that łsimple” statistical learning models, such as

linear and logistic regression models, provide a high interpretability but, possibly, limited predictive ac-

curacy. On the other hand, ”complex” ML models, such as neural networks and tree models, provide high

predictive accuracy at the expense of limited interpretability.

To solve this trade-off, we propose to boost MLmodels, that are highly accurate, with a novel method-

ology, that can explain their predictive output. Our proposed methodology acts in the post-processing

phase of the analysis, rather than in the preprocessing part. It is agnostic (technologically neutral) as it

is applied to the predictive output, regardless of which model generated it: a linear regression, a classifi-

cation tree or a neural network model.

The ML procedure proposed in the chapter processes the outcomes of any other arbitrary ML model.

It providesmore insight, control, and transparency to a trained, potentially black boxMLmodel. It utilises

a model-agnostic method aiming at identifying the decision-making criteria of an AI system in the form

of variable importance (individual input variable contributions).

A key concept of our model is the Shapley value decomposition of a model, a pay-off concept from

cooperative game theory. To the best of our knowledge, this is the only explainable AI approach rooted

in an economic foundation. It offers a breakdown of variable contributions so that every data point (e.g.

a credit or loan customer in a portfolio) is not only represented by input features (the input of the ML

model) but also by variable contributions to the prediction of the trained ML model.

More precisely, our proposed methodology is based on the combination of network analysis with

Shapley values (see (Lundberg & Lee, 2017), (Joseph, 2019b), and references therein). Shapley values

were originally introduced by (L. Shapley, 1953) as a solution concept in cooperative game theory. They

correspond to the average of the marginal contributions of the players associated with all their possible

orders. The advantage of Shapley values, over alternative XAI models, is that they can be exploited to

measure the contribution of each explanatory variable for each point prediction of aMLmodel, regardless

of the underlyingmodel itself (see, e.g.(Lundberg& Lee, 2017) ). In other words, Shapley-based XAImodels

combine the generality of application (they are model agnostic) with the personalisation of their results

(they can explain any single-point prediction).

Our original contribution is to improve Shapley values, improving the interpretation of the predictive

output of a MLmodel using correlation network models. To exemplify our proposal, we consider one area

of the financial industry in which Artificial Intelligence methods are increasingly being applied: credit

risk management (see for instance the review by (Giudici, 2018)).
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Correlation networks, also known as similarity networks, have been introduced by (Mantegna & Stan-

ley, 1999) to show how time series of asset prices can be clustered in groups based on their correlation

matrix. Correlation patterns between companies can similarly be extracted from cross-sectional features,

based on balance sheet data, and they can be used in credit risk modeling. To account for such similari-

ties we can rely on centrality measures, following (Giudici, Hadji-Misheva, & Spelta, 2019a) and (Giudici,

Hadji-Misheva, & Spelta, 2019b), who have shown that the inclusion of centrality measures in credit scor-

ing models does improve their predictive utility. Here we propose a different use of similarity networks.

Instead of applying network models in a pre-processing phase, as in (Giudici et al., 2019a) and (Giudici

et al., 2019b), which extract from them additional features to be included in a statistical learning model,

we use them in a post-processing phase, to interpret the predictive output from a highly performing ML

model. In this way, we achieve both predictive accuracy and explainability.

We apply our proposed method to predict the credit risk of a large sample of small and medium enter-

prises. The obtained empirical evidence shows that, while improving the predictive accuracy concerning

a standard logistic regression model, we improve, the interpretability (explainability) of the results.

The rest of the chapter is organized as follows: Section 1.2 introduces the proposed methodology.

Section 1.3 shows the results of the analysis in the credit risk context. Section 1.4 concludes and presents

possible future research developments.

1.2 Methodology

1.2.1 Statistical Learning of Credit Risk

Credit risk models are usually employed to estimate the expected financial loss that a credit institution

(such as a bank or a P2P lender) suffers if a borrower defaults to pay back a loan. The most important

component of a credit risk model is the PD, which is usually estimated statistically by employing credit

scoring models.

Borrowers could be individuals, companies, or other credit institutions. Here we focus, without loss

of generality, on small and medium enterprises, whose financial data are publicly available in the form

of yearly balance sheets.

For each company, n, define a response variable 𝑌𝑛 to indicate whether it has defaulted on its loans

or not, i.e. 𝑌𝑛 = 1 if the company defaults, 𝑌𝑛 = 0 otherwise. And let 𝑋𝑛 indicate a vector of explanatory

variables. Credit scoring models assume that the response variable 𝑌𝑛 may be affected (łcaused”) by the

explanatory variables 𝑋𝑛.

The most commonly employed model of credit scoring is the logistic regression model. It assumes

that

ln(
𝑃𝑛

1 − 𝑃𝑛
) = 𝛼 +

𝐽∑
𝑗=1

𝛽𝑗𝑥𝑛𝑗

where 𝑝𝑛 is the PD for company 𝑛; 𝐱𝑛 = (𝑥𝑖,1, ..., 𝑥𝑖,𝐽 ) is a 𝐽 -dimensional vector containing the values

that the 𝐽 explanatory variables assume for company 𝑛; the parameter 𝛼 represents an intercept; 𝛽𝑗 is the

𝑗-th regression coefficient.

Once the parameters 𝛼 and 𝛽𝑗 are estimated using the available data, the PD can be estimated, in-
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verting the logistic regression model, from:

𝑝𝑛 = (1 + 𝑒𝑥𝑝(𝛼 +

𝐽∑
𝑗=1

𝛽𝑗𝑥𝑛𝑗 ))
−1 (1.1)

1.2.2 Machine learning of credit risk

Alternatively, credit risk can be measured with ML models, able to extract non-linear relations among

the financial information contained in the balance sheets. In a standard data science life cycle, models

are chosen to optimise predictive accuracy. In highly regulated sectors, like finance or medicine, models

should be chosen to balance accuracy with explainability (Murdoch, Singh, Kumbier, Abbasi-Asl, & Yu,

2019). We improve the choice-selectingmodels based on their predictive accuracy and employ a posteriori

algorithm that achieves explanability. This does not limit the choice of the best-performing models.

To exemplify our approach we consider, without loss of generality, the Extreme Gradient Boost model,

one of the most popular and fast ML algorithms (e.g. Chen & Guestrin, 2016).

XGBoost is a supervised model based on the combination of tree models with Gradient Boosting.

Gradient Boosting is an optimisation technique able to support different learning tasks, such as classi-

fication, ranking, and prediction. A tree model is a supervised classification model that searches for the

partition of the explanatory variables that best classify a response (supervisor) variable. Extreme Gradi-

ent Boosting improves tree models strengthening their classification performance, as shown by (Chen &

Guestrin, 2016). The same authors also show that XGBoost is faster than tree model algorithms.

In practice, a tree classification algorithm is applied successively to ”training” samples of the data

set. In each iteration, a sample of observations is drawn from the available data, using sampling weights

that change over time, weighting the observations with the worst fit. Once a sequence of trees is fit, and

classifications made, a weighted majority vote is taken. For a more detailed description of the algorithm

see, for instance, (Friedman, Hastie, & Tibshirani, 2000).

1.2.3 Learning model comparison

Once a default probability estimation model is chosen, it should be measured in terms of predictive

accuracy, and compared with other models, so to select the best one. The most common approach to

measure the predictive accuracy of credit scoring models is to randomly split the available data into two

parts: a ”train” and a ”test” set; build the model using data in the train set, and compare the predictions

the model obtains on the test set, 𝑌𝑛, with the actual values of 𝑌𝑛.

To obtain 𝑌𝑛 the estimated default probability is rounded into a ”default” or ”non-default”, depending

on whether a threshold is passed or not. For a given threshold 𝑇 , one can then count the frequency of

the four possible outputs, namely: False Positives (FP): companies predicted to default, that do not; True

Positives (TP): companies predicted to default, which do; False Negatives (FN): companies predicted not

to default, which do; True Negatives (TN): companies predicted not to default, which do not.

The misclassification rate of a model can be computed as:

𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1.2)

and it characterizes the proportion of wrong predictions among the total number of cases.

The misclassification rate depends on the chosen threshold and it is not, therefore, a generally agreed

measure of predictive accuracy. A common practice is to use the Receiver Operating Characteristics
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(ROC) curve, which plots the False Positive Rate (FPR) on the 𝑌 axis against the True Positive Rate (TPR)

on the 𝑋 axis, for a range of threshold values (usually percentile values). FPR and TPR are then calculated

as follows:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(1.3)

𝑇 𝑃𝑅 =
𝑇 𝑃

𝑇𝑃 + 𝐹𝑁
(1.4)

The ideal ROC curve coincides with the 𝑌 axis, a situation which cannot be realistically achieved. The

best model will be the one closest to it. The ROC curve is usually summarised with the Area Under the

ROC curve value AUROC, a number between 0 and 1. The higher the AUROC, the better the model.

1.2.4 Explaining model predictions

Wenow explain how to exploit the information contained in the explanatory variables to localise and clus-

ter the position of each individual (company) in the sample. This information, coupled with the predicted

default probabilities, allows a very insightful explanation of the determinant of each individual’s credit-

worthiness. In our specific context, information on the explanatory variables is derived from the financial

statements of borrowing companies, collected in a vector 𝐱𝑛, representing the financial composition of

the balance sheet of institution 𝑛.

We propose to calculate the Shapley value associated with each company. In this way, we provide

an agnostic tool that can interpret in a technologically neutral way the output from a highly accurate

ML model. As suggested in (Joseph, 2019b), the Shapley values of a model can be used as a tool to

transfer predictive inferences into a linear space, opening a wide possibility of applying them to a variety

of multivariate statistical methods.

We develop our Shapley approach using the SHAP (Lundberg & Lee, 2017) computational framework,

which allows us to compute Shapley values expressing predictions as linear combinations of binary vari-

ables that describe whether each single variable is included or not in the model.

More formally, the explanation model 𝑔(𝑥′) for the prediction 𝑓 (𝑥) is constructed by an additive

feature attributionmethod, which decomposes the prediction into a linear function of the binary variables

𝑧′ ∈ {0, 1}𝑀 and the quantities 𝜙𝑖 ∈ ℝ:

𝑔(𝑧′) = 𝜙0 +
𝑀∑
𝑖=1

𝜙𝑖𝑧
′
𝑖 . (1.5)

In other terms, 𝑔 ′(𝑧′) ≈ 𝑓 (ℎ𝑥(𝑧
′)) is a local approximation of the predictions where the local function

ℎ𝑥(𝑥
′) = 𝑥 maps the simplified variables 𝑥′ into 𝑥 , 𝑧′ ≈ 𝑥 and 𝑀 is the number of the selected input

variables.

Indeed, (Lundberg & Lee, 2017) prove that the only additive feature attribution method that satisfies

the properties of local accuracy, missingness and consistency is obtained attributing to each feature 𝑥′𝑖 an

effect 𝜙𝑖 called Shapley value, defined as

𝜙𝑖(𝑓 , 𝑥) = ∑
𝑧′⊆𝑥′

|𝑧′|!(𝑀 − |𝑧′| − 1)!

𝑀!
[𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧

′
⧵ 𝑖)] (1.6)

where 𝑓 is the trained model, 𝑥 the vector of inputs (features), 𝑥′ the vector of the 𝑀 selected input

features. The quantity 𝑓𝑥(𝑧
′) − 𝑓𝑥(𝑧

′
⧵ 𝑖) is the contribution of a variable 𝑖 and expresses, for each single
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prediction, the deviation of Shapley values from their mean.

In other words, a Shapley value represents a unique quantity able to construct an explanatory model

that locally linearly approximates the original model, for a specific input 𝑥 ,(local accuracy). With the

property that, whenever a feature is locally zero, the Shapley value is zero (missingness) and if in a second

model the contribution of a feature is higher, so will be its Shapley value (consistency).

Once Shapley values are calculated, we propose to employ similarity networks, defining a metric that

provides the relative distance between companies by applying the Euclidean distance between each pair

(𝐱𝑖, 𝐱𝑗 ) of company predicted vectors, as in (Giudici et al., 2019a) and (Giudici et al., 2019b).

We then derive the MST representation of the companies, employing the correlation network method

suggested by (Mantegna & Stanley, 1999)). The MST is a tree without cycles of a complex network, that

joins pairs of vertices with the minimum total ”distance”.

The choice is motivated by the consideration that, to represent all pairwise correlations between

𝑁 companies in a graph, we need 𝑁 ∗ (𝑁 − 1)/2 edges, a number that quickly grows, making the

corresponding graph not understandable. The MST simplifies the graph into a tree of 𝑁 −1 edges, which

takes 𝑁 − 1 steps to be completed. At each step, it joins the two closest companies, in terms of the

Euclidean distance between the corresponding explanatory variables.

In our Shapley value context, the similarity of variable contributions is expressed as a symmetric

matrix of dimension n x n, where n Is the number of data points in the (train) data set. Each entry of the

matrix measures how similar or distant a pair of data points is in terms of variable contributions. The

MST representation associates to each point its closest neighbour. To generate the MST we have used

the EMST Dual-Tree Boruvka algorithm, and its implementation in the R package łemstreeR”.

The samematrix can also be used, in a second step, for a further merging of the nodes, through cluster

analysis. This extra step can reveal segmentations of data points with very similar variable contributions,

corresponding to similar credit-scoring decision-making.

1.3 Application

1.3.1 Data

We test our proposed model to data supplied by the European External Credit Assessment Institution

(ECAI) which specializes in credit scoring for P2P platforms focused on Small and medium-sized Enter-

prises (SME) commercial lending. The data is described by (Giudici et al., 2019a) to which we refer for

further details. In summary, the analysis relies on a dataset composed of official financial information

(balance-sheet variables) on 15,045 SMEs, mostly based in Southern Europe, for the year 2015. The infor-

mation about the status (0 = active, 1 = defaulted) of each company one year later (2016) is also provided.

The proportion of defaulted companies within this dataset is 10.9%.

Using this data, (Giudici et al., 2019a) and (Giudici et al., 2019b) have constructed logistic regression

scoringmodels that aim at estimating the PD of each company, using the available financial data from the

balance sheets and, in addition, network centrality measures that are obtained from similarity networks.

Here we aim to improve the predictive performance of the model and, for this purpose, we run an

XGBoost tree algorithm (e.g. Chen & Guestrin, 2016). To explain the results from the model, typically

highly predictive, we employ similarity network models, in a post-processing step. In particular, we em-

ploy the cluster dendrogram representation that corresponds to the application of the MST algorithm.
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1.3.2 Results

We first split the data into a training set (80%) and a test set (20%), using random sampling without

replacement.

We then estimate the XGBoost model on the training set, apply the obtained model to the test set,

and compare it with the best logistic regression model. The ROC curves of the two models are contained

in (Figure 1.2) below.

Figure 1.2: Receiver Operating Characteristic (ROC) curves for the logistic credit risk model and for the XGBoost
model. In blue, we show the results related to the logistic models while in red we show the results related to the
XGBoost model.

From (Figure 1.2) note that the XGBoost clearly improves predictive accuracy. Indeed the comparison

of the Area Under the ROC curve AUROC for the twomodels indicates an increase from 0.81 (best logistic

regression model) to 0.93 (best XGBoost model).

We then calculate the Shapley values of the companies in the test set, using the values of their ex-

planatory variables. The MST (a single linkage cluster) is used to simplify and interpret the structure

present among Shapley values. We can also ”colour” the MST graph in terms of the associated response

variables values: default, not default.

(Figure 1.3) and (Figure 1.4) present the MST representation. While in (Figure 1.3) company nodes

are coloured according to the cluster to which they belong, in (Figure 1.4) they are coloured according

to their status: not defaulted (grey); defaulted (red).

In (Figure 1.3), nodes are coloured according to the cluster in which they are classified. The figure

shows that clusters are quite scattered along the correlation network.

To construct the coloured communities in (Figure 1.3), we used the algorithm implemented in the

R package łigraph” that directly optimizes a modularity score. The algorithm is very efficient and easily

scales to very large networks.

In (Figure 1.4), nodes are coloured in a simpler binary way: whether the corresponding company has

defaulted or not.
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Figure 1.3: MST representation of the borrowing companies. Clustering has been performed using the standardized
Euclidean distance between institutions. Companies are coloured according to their cluster of belonging.

From (Figure 1.4) note that default nodes appear grouped in the MST representation, particularly

along the bottom left branch. In general, defaulted institutions occupy a precise portion of the network,

usually to the leaves of the tree, and form clusters. This suggests that those companies form communities,

characterised by similar predictor variables’ importance. It also suggests that not defaulted companies

that are close to default ones have a high risk of becoming defaulted as well, being the importance of

their predictor variables very similar to those of the defaulted companies.

To better explain the explainability of our results, in (Figure 1.5) we provide the interpretation of the

estimated credit scoring of four companies: two that defaulted and two that did not.

(Figure 1.5) clearly shows the advantage of our explainable model. It can indicate which variables

contribute more to the prediction of default. Not only in general, as is typically done by statistical and

ML models, but differently and specifically for each company in the test set. Indeed, (Figure 1.5) clearly

shows how the explanations are different (”personalised”) for each of the four considered companies.

The most important variables, for the two non-defaulted companies (left boxes) regard: profits before

taxes plus interests paid, and Earnings before interest, taxes, depreciation and amortization (EBITDA),

which are common to both; trade receivables, for company 1; total assets, for company 2.

Economically, a high proficiency decreases the PD, for both companies; whereas a high stock of out-

standing invoices, not yet paid, or a large stock of assets, helps reduce the same probability.

On the other hand, (Figure 1.5) shows that the most important variables, for the two defaulted

companies (right boxes) concern: total assets, for both companies; shareholder’s funds plus non-current

liabilities, for company 3; profits before taxes plus interests paid, for company 4.
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Figure 1.4: MST representation of the borrowing companies. Clustering has been performed using the standardized
Euclidean distance between institutions. Companies are coloured according to their default status: red= defaulted;
grey= not defaulted.

In other words, lower total assets coupled, in one case, with limited shareholder funds and, in the

other, with low proficiency, increase the PD of these two companies.

The above results are consistent with previous analysis of the same data: both (Giudici et al., 2019a)

and (Giudici et al., 2019b) select, as the most important variables in several models, the return on equity,

related to both EBITDA and profit before taxes plus interests paid; the leverage, related to total assets

and shareholders’ funds; and the solvency ratio, related to trade payables.

We remark that (Figure 1.5) contains a ”local” explanation of the predictive power of the explanatory

variables, and it is the most important contribution of Shapley value theory. If we average Shapley values

across all observations we get an ”overall” or ”global” explanation, similar to what is already available in

the statistical andML literature. (Figure 1.6) below is the global explanation in our context: the ten most

important explanatory variables, over the whole sample.

From (Figure 1.6) note that total assets to total liabilities (the leverage) are the most important vari-

able, followed by the EBITDA, along with profit before taxes plus interest paid, measures of operational

efficiency; and by trade receivables, related to solvency, in line with the previous comments.

1.4 Conclusions and future research

The need to leverage the high predictive accuracy brought by sophisticated ML models, making them

interpretable, has motivated us to introduce an agnostic, post-processing methodology, based on correla-
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Figure 1.5: Contribution of each explanatory variable to the Shapley’s decomposition of four predicted default
probabilities, for two defaulted and two non-defaulted companies. The more red the color the higher the negative
importance, and the more blue the color the higher the positive importance.

Figure 1.6: Mean contribution of each explanatory variable to Shapley’s decomposition. The redder the colour the
higher the negative importance, and the bluer the color the higher the positive importance.

tion network models. The model can explain, from a substantial viewpoint, any single prediction in terms

of the Shapley value contribution of each explanatory variable.

For the implementation of our model, we have used TreeSHAP, a consistent and accurate method,

available in open-source packages. TreeSHAP is a fast algorithm that can compute SHAP values for trees

in polynomial time instead of the classical exponential runtime. For the XGBoost part of our model we

have used NVIDIA Graphics Processing Unit (GPU)s to considerably speed up the computations. In this

way, the TreeSHAP method can quickly extract the information from the XGBoost model.

Our research has important policy implications for policymakers and regulators who are in their

attempt to protect the consumers of artificial intelligence services. While artificial intelligence effectively

improves the convenience and accessibility of financial services, it also triggers new risks. Our research

suggests that network-based explainable AI models can effectively advance the understanding of the

determinants of financial risks and, specifically, of credit risks. The samemodels can be applied to forecast

the PD, which is critical for risk monitoring and prevention.

Future research should extend the proposed methodology to other datasets and, in particular, to

imbalanced ones, for which the occurrence of defaults tends to be rare, even more than what is observed
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for the analysed data. The presence of rare events may inflate the predictive accuracy of such events

(as shown in (Bracke et al., 2019)). Indeed, (Thomas, Edelman, & Crook, 1997) suggests dealing with this

problem via oversampling and it would be interesting to see what this implies in the proposed correlation

network Shapley value context.

Finding comprehensive data sets which contain information about credit risk is difficult, especially

those which include information about credit defaults. There are multiple reasons for this but the main

ones are privacy and regulatory concerns. Credit risk data contains sensitive information that allows

drawback conclusions about the respective customer. Hence, this data is subject to strict regulatory

requirements, such as the European GDPR. Sharing this data and making it publicly available could

lead to serious issues for the respective institution (EC, 2016). Accordingly, we were not able to test the

approach on other strongly imbalanced data sets.

The credit default rate of 10.9 % of the applied data set shows that the amount of credit defaults which

the model should estimate is scarce and the credit risk data is imbalanced. However, compared to the

default rate of other data sets, it is still comparatively high. Other data sets can have imbalances in the

form of 1,000:1 or even 10,000:1. Working with these imbalanced data sets describes a well-known issue of

model development in the financial sector. Imbalanced data sets lead to difficulties in the training process

of models such as biased learning, which means that the model is trained on the majority class (no credit

default) and is less sensitive against the minority class (credit default). Since the model is mainly learning

from cases of themajority class, it is overfitting on this class and hence captures noise and outliers instead

of identifying the desired patterns in the data (H. He & Garcia, 2009). The above-described difficulties can

also be transferred to the MST. The risk of biased learning could impact the MST in the form of a biased

structure of the tree. This means the MST structure mainly reflects connections within the majority class

and has fewer connections within the minority class. This could lead to a reduction of the explanatory

power of the MST. Again noise and outliers could have a significant impact on the structure of the MST

and would lead to longer or less meaningful branches within the tree (H. He & Garcia, 2009).

18



2 Shapley Lorenz values for credit risk management

Fear of the unknown is the greatest fear of all.

– Yvon Chouinard

2.1 Introduction

A key point in the application of Artificial Intelligence methods is risk measurement. When applied to

regulated industries, such as energy, finance, and health, artificial intelligence methods lack explain-

ability, and, therefore, authorities aimed at monitoring the risks arising from their application may not

validate them. The interpretability requirement is strong, especially in regulated industries, such as bank-

ing, finance, and insurance, where data have to be exploited in order to draw conclusions from them and

predict future trends (e.g. FSB, 2017; Joseph, 2019a). In these fields, comprehensible results need to be

obtained to allow organizations to detect risks, especially in terms of the factors that can cause them.

This objective is more evident when dealing with AI systems, which have a black-box nature resulting

in automated decision-making and can classify a user into a class associated with the prediction of the

individual behaviour, without explaining the underlying rationale. In order to avoid wrong actions being

taken as a consequence of ”automatic” choice, AI methods have to be as much as possible explainable.

To develop explainable AI methods, the notion of ”explainability” has to be clarified. Some relevant

institutional definitions have been recently provided. (Bracke et al., 2019), for instance, states that ”Ex-

plainability means that an interested stakeholder can comprehend the main drivers of a model-driven

decision”, meaning that, to be explainable, AI methods have to provide details or reasons clarifying their

functioning.

From a mathematical viewpoint, the requirement of high explainability can be fulfilled by resorting

to simple ML models, (such as, e.g., logistic and linear regression models). Nevertheless, these models

provide a reduced predictive accuracy. To improve predictive accuracy, the implementation of complex

ML models (such as neural networks or random forests) seems necessary but this leads to a limited

interpretability. This trade-off can be solved by boosting highly accurate ML models with innovative

methodologies able to explain the corresponding predictive output. A recent attempt in this direction

can be found in (Bussmann, Giudici, Marinelli, & Papenbrock, 2021), who proposed to apply correlation

networks (e.g. Mantegna & Stanley, 1999) to Shapley values (e.g. L. Shapley, 1953) so that Artificial Intel-

ligence predictions are grouped according to the similarity in the underlying explanations. The proposal

was validated in the area of credit lending, in which the use of AI methods for credit risk measurement

is developing fast, to detect the variables that mostly contribute to the prediction of default.

In this chapter, we propose an explainable ML model aimed at accurately measuring credit risks. To

achieve this goal we develop a methodology based on the combination of the Shapley value approach and

the Lorenz Zonoid tool, described in (Giudici & Raffinetti, 2021). Shapley values belong to the class of

local explanation approaches since they can be exploited to interpret individual predictions (e.g. Molnar,

2020; Joseph, 2019a), at the single unit level. Lorenz Zonoids can be used to describe a model as a whole,

in terms of which explanatory variables most determine its predictions, for all units. We propose to

extend the Shapley value game theoretic approach to the Lorenz Zonoid framework, recently proposed

by (Giudici & Raffinetti, 2020). This leads to a new class of global explanation approaches: the Shapley-

Lorenz approach.

The chapter is organized as follows: the next section illustrates themethodology; Section 2.3 discusses
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the empirical findings obtained by applying our proposal to real credit lending data; finally Section 2.4

contains some concluding remarks.

2.2 Methodology

To meet the requirement that risk measurement is explainable, leading To develop a trustworthy applica-

tion of AI in credit lending, in this Section, we propose an explainable ML method to measure credit risk.

Our proposal derives from the combination of two research streams. The first one concerns the develop-

ment of risk management models to analyse credit lending data. The second concerns the development

of explainable methods to understand the results of advanced ML models. The result is a novel method

for credit risk management that is, at the same time, predictively accurate, interpretable, and robust.

2.2.1 Modeling default

Let 𝑌 be a response binary variable, which expresses whether a company defaults (𝑌 = 1) or not (𝑌 = 0).

Given 𝐾 explanatory variables 𝑋1,… , 𝑋𝐾 , a logistic regression model for 𝑌 can be specified as follows:

𝑙𝑛( 𝜋𝑖

1 − 𝜋𝑖) = 𝛽0 +
𝐾∑
𝑘=1

𝛽𝑘𝑥𝑖𝑘 = 𝜂𝑖, (2.1)

where 𝜂𝑖 = 𝛽0 + ∑𝐾
𝑘=1 𝛽𝑘𝑥𝑖𝑘 ; 𝜋𝑖 represents the PD for the 𝑖-th company; 𝐱𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑘) points out

the 𝐾 -dimensional vector reporting the values taken by the 𝐾 explanatory variables referred to the 𝑖-th

company; 𝛽0 and 𝛽𝑘 are the parameters representing the intercept and the 𝑘-th regression coefficient,

respectively.

By means of theMaximum Likelihood Estimation method, the parameters 𝛽0 and 𝛽𝑘 can be estimated

leading to derive the predicted PD as:

�̂�𝑖 =
𝑒𝜂𝑖

1 + 𝑒𝜂𝑖
. (2.2)

2.2.2 The Shapley-Lorenz decomposition for credit risk data

To meet the conditions of predictive accuracy and interpretability, (Giudici & Raffinetti, 2021) have pro-

posed a global explainable AI model, named Shapley-Lorenz decomposition, which combines the inter-

pretability power of the local Shapley value game theoretic approach (e.g. L. Shapley, 1953) with a more

robust global approach based on the Lorenz Zonoid model accuracy tool (e.g. Giudici & Raffinetti, 2020).

The Lorenz Zonoids, originally introduced by (G. A. Koshevoy & Mosler, 1996), were further developed

by (Giudici & Raffinetti, 2020) as a generalisation of the ROC curve in a multidimensional setting and,

therefore, the Shapley-Lorenz decomposition has the advantage of combining predictive accuracy and

explainability performance into one single diagnostics. Furthermore, the Lorenz Zonoid is based on a

measure of mutual variability that is more robust to the presence of outlying observations with respect

to the standard variability around the mean. These theoretical properties can be exploited to develop

partial dependence measures that allow the detection of the additional contribution of a new predictor

into an existing model.

Shapley values were originally introduced by (L. Shapley, 1953) as a pay-off concept from cooperative

game theory. When referring to ML models, the notion of pay-off corresponds to the model prediction.

Thus, for any single statistical unit 𝑖 (1 = 1,… , 𝑛), the pay-offs are computed as

20



Chapter 2. Shapley Lorenz values for credit risk management

𝑝𝑜𝑓 𝑓 (𝑋
𝑘
𝑖 ) =

̂𝑓 (𝑋
′

∪ 𝑋𝑘)𝑖 − ̂𝑓 (𝑋
′

)𝑖, (2.3)

where ̂𝑓 (𝑋
′

)𝑖 are the predicted values provided by a ML model, depending only on 𝑋
′

predictors;
̂𝑓 (𝑋

′

∪ 𝑋𝑘)𝑖 are the predicted values generated by the ML model, depending both on the |𝑋 ′ | predictors
and the additional included 𝑋𝑘 predictor.

The main advantage of Shapley values, over alternative Explainable AI models, is that they can be

exploited to measure the contribution of each explanatory variable for each point prediction of a ML

model, regardless of the underlying model itself (e.g. Lundberg & Lee, 2017; Strumbelj & Kononenko,

2010). In other words, Shapley-based XAI models combine the generality of application (they are model

agnostic) with the personalisation of their results (they can explain any single point prediction).

The main drawback of Shapley values is that they provide explainability scores that are not nor-

malised. They can be used to compare the relative contribution of one variable to that of another, but

they cannot be used to assess the absolute importance of each variable.

The key benefit related to the employment of the Lorenz Zonoid tool is the possibility of evaluating

the contribution associated with any additional explanatory variable to the whole model prediction with

a normalised measure that can be used to assess the importance of each variable.

The Lorenz Zonoid measure was introduced by (Giudici & Raffinetti, 2020) to develop new partial

dependence measures. Specifically, given a set of 𝐾 explanatory variables, let 𝑌𝑋 ′
∪𝑋𝑘

and 𝑌𝑋 ′ be the pre-

dicted values provided by a model, including also covariate 𝑋𝑘 , and the predicted values provided by a

reduced model, excluding covariate 𝑋𝑘 , respectively. The additional contribution related to the inclusion

of covariate 𝑋𝑘 can be determined in terms of the Partial Gini Contribution measure as follows:

𝑃𝐺𝐶𝑌 ,𝑋𝑘 |𝑋 ′ =
𝐿𝑍(𝑌𝑋 ′

∪𝑋𝑘
) − 𝐿𝑍(𝑌𝑋 ′ )

𝐿𝑍(𝑌 ) − 𝐿𝑍(𝑌𝑋 ′ )
, (2.4)

where 𝐿𝑍(𝑌𝑋 ′
∪𝑋𝑘

), 𝐿𝑍(𝑌𝑋 ′ ) and 𝐿𝑍(𝑌 ) define: the Lorenz Zonoids computed on the estimated values

provided by the model including also covariate 𝑋𝑘 ; the Lorenz Zonoids computed on the estimated val-

ues provided by the model including the 𝑋
′

covariates but excluding covariate 𝑋𝑘 ; the Lorenz Zonoid

computed on the 𝑌 target variable values.

The 𝑃𝐺𝐶 measure allows us to assess the partial contribution provided by the additional explana-

tory variable 𝑋𝑘 in explaining the response variable mutual variability which is not explained by the 𝑋
′

explanatory variables.

Our proposal can be applied to the game’s theoretical context by translating the pay-off notion in

terms of the numerator of the 𝑃𝐺𝐶 measure in equation (2.4). For a set of statistical units (𝑖 = 1,… , 𝑛), it

derives that the pay-off notion translated in terms of the Lorenz Zonoids (𝐿𝑍(⋅)) is given by

𝑝𝑜𝑓 𝑓 (𝑋
𝑘) = 𝐿𝑍(𝑌𝑋 ′

∪𝑋𝑘
) − 𝐿𝑍(𝑌𝑋 ′ ), (2.5)

where 𝐿𝑍(𝑌𝑋 ′
∪𝑋𝑘

) and 𝐿𝑍(𝑌𝑋 ′ ) describe the (mutual) variability of the response variable 𝑌 explained

by the models including the 𝑋
′

∪ 𝑋𝑘 predictors and the 𝑋
′

predictors, respectively.

As we are dealing with a binary response variable, denoting the active and defaulted status of the

companies, the terms 𝑌𝑋 ′
∪𝑋𝑘

and 𝑌𝑋 ′ can be re-written as the predicted PD �̂�𝑋 ′
∪𝑋𝑘

and �̂�𝑋 ′ , when resorting

to the logistic regression model including also the explanatory variable 𝑋𝑘 and to the logistic regression

model not including the explanatory variable 𝑋𝑘 , respectively. Thus, equation in (2.5) becomes

𝑝𝑜𝑓 𝑓 (𝑋
𝑘) = 𝐿𝑍(�̂�𝑋 ′

∪𝑋𝑘
) − 𝐿𝑍(�̂�𝑋 ′ ), (2.6)
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The Lorenz Zonoids 𝐿𝑍𝑑=1(𝑌𝑋 ′
∪𝑋𝑘

) and 𝐿𝑍𝑑=1(𝑌𝑋 ′ ) in equation (2.6) can be computed by resorting to

the covariance operators, i.e.,

𝐿𝑍(�̂�𝑋 ′
∪𝑋𝑘

) =
2∑𝑛

𝑖=1 �̂�𝑖𝑋 ′
∪𝑋𝑘

𝐶𝑜𝑣(�̂�𝑋 ′
∪𝑋𝑘

, 𝑟(�̂�𝑋 ′
∪𝑋𝑘

)) and

𝐿𝑍(�̂�𝑋 ′ ) =
2∑𝑛

𝑖=1 �̂�𝑖𝑋 ′

𝐶𝑜𝑣(�̂�𝑋 ′ , 𝑟(�̂�𝑋 ′ )).

The Shapley-Lorenz decomposition expression is the result of a combination of the Shapley value-

based formula and the Lorenz Zonoid tools. Formally, the contribution of the additional variable 𝑋 𝑘 ,

expressed in terms of the differential contribution to the global predictive accuracy, equals to

𝐿𝑍𝑋𝑘 (�̂�) = ∑
𝑋

′
⊆(𝑋 )⧵𝑋𝐾

|𝑋 ′ |!(𝐾 − |𝑋 ′ | − 1)!

𝐾 !
[𝐿𝑍(�̂�𝑋 ′

∪𝑋𝑘
) − 𝐿𝑍(�̂�𝑋 ′ )], (2.7)

where 𝐿𝑍(�̂�𝑋 ′
∪𝑋𝑘

) and 𝐿𝑍(�̂�𝑋 ′ )measures the marginal contribution provided by the inclusion of variable

𝑋𝑘 ; 𝐾 is the number of available predictors; (𝑋 ) ⧵ 𝑋𝑘 is the set of all the possible model configurations

which can be obtained with 𝐾 − 1 variables, excluding variable 𝑋𝑘 ; |𝑋 ′ | denotes the number of variables

included in each possible model.

Finally, it is worth noting that the Shapley-Lorenz decomposition presents as an agnostic eXplainable

Artificial Intelligence method that can be applied to the predictive output, regardless of which model and

data generated it.

2.2.3 Algorithm

The code used to compute the Shapley Lorenz Zonoid values is available on Github.com.

Following the Shapley value attribution method, computing exact Shapley Lorenz Zonoid covariate

contribution measures for 𝐾 covariates, requires the computation of Lorenz Zonoid marginal contri-

butions across 2𝐾 different subsets, per covariate. Computationally this becomes intractable for non-

conservative covariate sizes and therefore an approximate solution is implemented in the Shapley Lorenz

Zonoid package. The method can be summarised as follows:

2.3 Application

2.3.1 Data

We apply our proposed model to data supplied by the ECAI which specializes in credit scoring for P2P

platforms focused on SME commercial lending. The data is described by (Giudici et al., 2019b) to which

we refer for further details. In summary, the analysis relies on a dataset composed of official financial

information, extracted from the balance sheets of 15,045 SMEs, mostly based in Southern Europe, for the

year 2015. The information about the status (0 = active, 1 = defaulted) of each company one year later

(2016) is also provided. The observed proportion of defaulted companies is equal to 10.9%. .

Table 2.2 lists the nineteen financial variables included in our dataset. All variables are continuous

financial ratios, calculated from the balance sheet variables.

We remark that, for the variables in Table 2.2, and particularly for those reflecting the operations of

the companies, there is a noticeable presence of unusually large or small values when compared to the

mean. These outliers should not be substituted or deleted as they can provide important explanations
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for the companies included in the sample. However, their presence is going to affect the robustness of

ML models, and of Shapley values in particular. This further motivates the use of Shapley-Lorenz values,

more robust to outliers.

2.3.2 Results

Using the data, (Giudici et al., 2019b) have constructed logistic regression scoring models that aim at

estimating the PD of each company, using the available financial data from the balance sheets and, in

addition, network centrality measures that are obtained from similarity networks.

To improve the predictive performance of the model, (Bussmann et al., 2021) have applied to the

same database the Gradient Boosting Tree algorithm, and obtained a substantial increase in predictive

performance: the AUROC increases from a value of 0.81 obtained with the application of the logistic

regression, to a value of 0.93, obtained with the Gradient Boosting method.

The same authors identify Variable 3: Total Assets/Total Liabilities; Variable 7: EBITDA/Interest paid

and Variable 8: (Profit or Loss before tax + Interest paid)/Total asset as the variables that mostly con-

tribute to Shapley values decomposition. This is quite consistent with most credit scoring models, which

typically include, among the explanatory variables of credit default: a measure of financial leverage (such

as Variable 3) and a measure of profitability (such as Variables 7 and 8).

We use the same data and apply the Gradient Boosting Tree after the data is split into a training set

(80%) and a test set (20%). We then calculate, on the same split, the contribution of each of the twenty-

three explanatory variables to the estimate of the PD, using two explainable AI methods: the Shapley

value approach and the Lorenz-Shapley approach that we propose.

Table 2.3 contains the result of the comparison. For each variable, we report: the value of the Shapley

Lorenz Zonoid contribution and the Shapley Value contribution, calculated as the sum of the Shapley

values over all observations. For comparison purposes, we also report the contribution of each variable

to the deviance (𝐺2), calculated using the Shapley value formula.

From Table 2.3 note that the variables which most contribute to the prediction of default, according

to the sum of the Shapley values, is Variable 8: (Profit or Loss before tax + Interest paid)/Total asset,

followed at a considerable distance by Variable 13 and 14 (both related to EBITDA) and by variable 3

(Total Assets/Total liabilities). In terms of 𝐺2, instead, the differences between variable 8 (the highest

contributor) and variables 14,15 and 3 are lower. The role that Variable 13 has in terms of Shapley value is

replaced by Variable 15. Note that the variables selected as the most important by both Shapley and 𝐺2

have a similar structure: one variable that indicates leverage (Variable 3) and a few variables that express

profitability (8,13,14 or 8,14,15). The latter are highly correlated, as they are based on similar information:

this may indicate a weakness of the selection methods, possibly redundant and more sensible to outlier

observations.

The first column of Table 2.3, giving the Shapley Lorenz values, indicates, instead, that Variable 8,

with a value of 0.16, and Variable 3, with a value of 0.11, are one magnitude order higher than the others.

This indicates a more clear-cut choice, with only two variables being selected: a measure of leverage,

and a measure of profitability. In the latter case, only the most contributing one, among the several that

measure profitability, is chosen.

Comparing the results obtained with the different methods, the Shapley Lorenz selection is evidently

the easiest to interpret and, by definition, the more robust to outlier observations, as can be easily noticed

by repeating the analysis for different training/validation splits.
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2.4 Concluding remarks

The chapter proposes a new model agnostic XAI method, based on the combination of Shapley values

and Lorenz Zonoids, that can be used to interpret the results of a highly performingML risk management

algorithm.

The proposed method, like other explainable AI models, can identify the variables that most affect

the predictions.

A XAI method with normalised values has several desirable advantages. Firstly, the results are user-

friendly and easier to interpret in comparison to other XAI methods. This means that users who do

not have sufficient technical expertise, such as political decision-makers or members of the board of a

company, can quickly and easily identify the features of the model with the most significant impact on

the result. They can incorporate this information into their decision-making process. The advantage of

normalised values should not be neglected, especially in the context of trustworthiness and in connection

with ethical and regulatory requirements for models. As described in the general introduction of this

thesis, regulators continuously focus on the transparency and trustworthiness of models in the financial

sector. Normalised XAI values support regulators in deciding whether a model fulfils the requirements

e.g. transparency, trustworthiness, and ethics.

There are further advantages concerning model debugging and feature selection. By simplifying the

identification of features which have a significant impact on the model and features which are redun-

dant, redundant features can be quickly removed from the analysis. Normalised values also support the

identification of potential errors in the model, which manifest themselves in unexpected or undesirable

model behaviour. These errors can be quickly identified and resolved.

The application of the proposal to a credit risk management use case shows its superior performance,

in terms of selectivity, consistency with economic intuition, and robustness.

It identifies one measure of leverage and one measure of profitability as those that most matter.

We can thus conclude that the proposed method is satisfactory and can be proposed as a use case

to standardise risk measurement and management in the application of artificial intelligence to credit

lending.
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Table 2.1: Shapley Lorenz Zonoid Algorithm

0. A pre-defined (user supplied) upper bound on a total number of fully considered
subset permutations is defined, given, by say, n perm. This is similar to the
nsamples parameter used in the kernel SHAP module by (Lundberg & Lee, 2017).
Unlike the kernel SHAP module, however, only subsets are considered, for which
full permutations can be considered, given n perm. Subsets are considered
sequentially, in order of highest to lowest Shapley kernel weights, defined by
𝑋 ′(𝑀−𝑋 ′−1)!

𝑀!
. Due to the symmetric property of this Shapley kernel weight, a given

subset is always considered pairwise, with its complement, i.e. first all
permutations of subset size 1 and those of size 𝐾 − 1 are considered. If all
permutations of the next subset can be considered as well, given the upper bound
in n perm, this is added to the subset sizes considered in the next step.

1. Do for 𝑘 ∈ 𝐾 : (i.e. for all covariates)

1a) Do for 𝑠 ∈ (𝑋 ) (i.e. for all subset permutations):

1b) Do for 𝑖 ∈ 𝑁 :

Let �̃� contain a given permutation of a given subset size without 𝑘.

Compute 𝐸[𝑓 (𝑋 ) ∣ �̃� = �̃�𝑖]. Once for �̃�/𝑘 and once for �̃� ∪ 𝑋𝑘 .

Assuming covariate independence, this can be approximated by
1
𝑁
∑𝑛

𝑗=1 𝑓 (𝑋𝑗/�̃� , �̃�𝑖), and analogously for �̃�𝑖 ∪ 𝑋𝑘 .

𝑋/�̃� represents all covariates not included in the subset 𝑋 ′ ∪ 𝑋𝑘 and is

obtained by replacing those covariates with either training data or a

row-wise shuffled variant of the original covariate matrix.

The result of this step, thus is 𝐸[𝑓 (𝑋 ) ∣ �̃� = �̃�𝑖], approximated by the

sample mean, over the underlying distribution of 𝑋 .

2. Sort the obtained values for the current permutation of the current subset

size iteration.

3. Compute the Lorenz Zonoid share for the

current permutation of the current subset size iteration. Once for the

permutation not including 𝑘 and once

for the permutation including 𝑘. Then compute the difference.

4. Weight obtained Lorenz Zonoid difference, by the kernel Weight as defined

above.

5. Compute weighted sum of differences

25



Chapter 2. Shapley Lorenz values for credit risk management

ID Formula or Description Type

1 Total Assets/Equity Continuous

2 (Long term debt + Loans)/Shareholders Funds Continuous

3 Total Assets/Total Liabilities Continuous

4 Current Assets/Current Liabilities Continuous

5 (Current assets - Current assets: stocks)/Current liabilities Continuous

6 Shareholders Funds + Non current liabilities)/Fixed assets Continuous

7 EBIT/interest paid Continuous

8 (Profit or Loss before tax + Interest paid)/Total assets Continuous

9 Return on Equity Continuous

10 Operating revenues/Total assets Continuous

11 Sales/Total assets (Activity Ratio) Continuous

12 Interest paid/(Profit before taxes + Interest paid) Continuous

13 EBITDA/interest paid Continuous

14 EBITDA/Operating revenues Continuous

15 EBITDA/Sales Continuous

16 Trade Payables/Operating Revenues Continuous

17 Trade Receivables/Operating Revenues Continuous

18 Inventories/Operating Revenues Continuous

19 Turnover Continuous

Table 2.2: List of financial ratios used as independent variables.

ID Variable Shapley-Lorenz 𝐺2 Shapley

1 (Total assets/Equity 0.00 0.16 2.53

2 (Long term debt + Loans)/Shareholders Funds -0.00 0.54 -202.80

3 Total assets/Total liabilities 0.11 1088.12 -1273.97

4 Current assets/Current liabilities 0.05 553.68 -641.69

5 (Current assets - Current assets: stocks)/Current liabilities -0.00 479.06 -93.51

6 (Shareholders Funds + Non current liabilities)/Fixed assets -0.00 13.16 4180.56

7 EBIT/interest paid -0.01 411.10 1504.44

8 (Profit (loss) before tax + Interest paid)/Total assets 0.16 1633.51 -13115.53

9 Return on Equity 0.05 826.96 -1993.98

10 Operating revenues/Total assets 0.06 17.36 -289.46

11 Sales/Total assets -0.02 10.96 252.59

12 Interest paid/(Profit before taxes + Interest paid) 0.01 103.26 379.73

13 EBITDA/interest paid 0.02 418.00 -1697.31

14 EBITDA/Operating revenues 0.03 1254.63 -1419.43

15 EBITDA/Sales 0.02 1122.05 -785.95

16 Trade Payables/Operating revenues 0.00 14.73 -193.60

17 Trade Receivables/Operating revenues 0.05 475.40 -585.58

18 Inventories/Operating revenues 0.01 126.78 1190.47

19 Turnover 0.02 85.26 1072.37

Table 2.3: Marginal contribution of each explanatory variable in terms of Shapley-Lorenz zonoids, 𝐺2 and total
Shapley values
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3 Explainable Machine Learning to Predict the Cost of

Capital

The greatest threat to our planet is the belief that

someone else will save it.

– Robert Swan

3.1 Introduction

The employment of AI tools in finance is becoming quite common: by leveraging multidimensional and

high-frequency data, AI tools can help in the prediction of returns and risk of securities and risk man-

agement (Ortmann, 2016; J. Lin, 2018; Simonian, 2019; Liu, Chen, & Wang, 2022; Cao, 2022). However,

traditional AI tools can also be very opaque, making the economic and financial interpretation of the

results of AI applications very difficult for an investor. Indeed, regulators have warned investment firms

and financial institutions about the use of AI tools, as their interpretability and accountability are key in

the policymakers’ agenda (Weber, Carl, & Hinz, 2023).

One way to address the interpretability issue is to use models and algorithms from the XAI set of in-

struments, and those that are able to łopen” the black box, such as the Shapley Values or the SHAP Frame-

work (Kumar, Venkatasubramanian, Scheidegger, & Friedler, 2020; Fryer, Strümke, & Nguyen, 2021).

Within this framework, this chapter is the first to apply XAI tools to estimate the cost of capital for a

sample of large listed companies. The cost of capital represents the remuneration investors require to

provide funds to a firm and it is determined by a company’s financial and non-financial characteristics

and country-specific features. Previous studies choose between two main approaches to proxy the cost of

capital: a historical approach (ex-post) or an implied (ex-ante) approach. The first approach is suitable for

finding the determinants of the historical cost of capital (e.g., Weighted Average Cost of Capital (WACC)

or Capital Asset PricingModel (CAPM) (Wong et al., 2021; Desender, LópezPuertas-Lamy, Pattitoni, & Pe-

tracci, 2020; Shad, Lai, Shamim, &McShane, 2020). The second approach, based on the ex-ante or implied

cost of capital, interprets the cost of capital as the risk associated with an investment in the company by

an investor. Studies taking this second approach often employ Price Earning Growth models. These rely

on ’analysts’ forecasts for future earnings to predict the cost of capital (Garcı́a-Sánchez, Hussain, Khan,

& Martı́nez-Ferrero, 2021; Gupta, 2018; E. P.-y. Yu, Tanda, Luu, & Chai, 2021).

According to the literature, a company’s cost of capital is generally determined by internal firm finan-

cial characteristics, market features, and, less often, country characteristics (Breuer, Mueller, Rosenbach,

& Salzmann, 2018; Desender et al., 2020; Wang, Kartika, Wang, & Luo, 2021; E. P.-y. Yu et al., 2021). Re-

cently also the non-financial behaviour of companies has been studied as a possible determinant of the

cost of capital (El Ghoul, Guedhami, Kwok, & Mishra, 2011; Dorfleitner, Halbritter, & Nguyen, 2015). The

non-financial performance of companies can determine their riskiness and value (D’Amato et al., 2017;

GSIA, 2018; Widyawati, 2020; E. P.-y. Yu, Guo, & Luu, 2018; E. P.-y. Yu et al., 2021). Additionally, the insti-

tutional quality of countries where firms are located can affect the perceived riskiness of their business

and, as a result, the cost of capital. The previous empirical literature has employed different measures. For

instance, (Eldomiaty, Al Qassemi, Mabrouk, & Abdelghany, 2016) employ the Economic Freedom Indica-

tor, while (Grira, Hassan, Labidi, & Soumaré, 2019) more recently employ the measures developed by the

International Country Risk Guide on the quality of institutions, democratic tendencies, corruption, and

government action. The studies find that institutional quality improves the cost of equity. In this chapter,
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we choose to employ the World Bank’s non-financial features and the Human Development Index as we

expect the country’s non-financial characteristics to have predictive power on the cost of capital of listed

companies.

Additionally, almost the entirety of previous studies employs linear models to investigate the rela-

tionship between financial and non-financial characteristics on the cost of capital, while this might not

be the case. To overcome this limitation, this chapter applies the XGBoost model and two explainable

AI methods, Shapley Values and Lorenz Zonoids, to detect which financial and non-financial factors are

good candidates as predictors of the implied cost of capital of more than 1,400 multinational companies

listed worldwide.

Thanks to our approach, we are able to provide an intuitive explanation of the contribution of each

variable to the model prediction, thereby łopening” the black box of ML.

We contribute to the literature by determining the most relevant financial and non-financial features

that predict the implied cost of capital, without making any a priori assumption on the relationships

between them and investigating the role of financial and non-financial features both at firm and country

levels. We find that besides the traditional drivers of cost of capital - i.e. size, profitability, and liquidity -

non-financial features of companies and countries are able to drive the prediction of the cost of capital.

Emission intensity is found to predict a higher cost of capital, suggesting that investors penalise compa-

nies with high emissions. On the other hand, companies with good governance practices or located in

countries with good institutional quality benefit from a lower cost of capital.

We underline that our results have important managerial implications: on one hand, investors can

use our results to choose the portfolio allocation that best aligns with their preferences and, on the other

hand, companies can have a better understanding of how to improve their financial and non-financial

indicators to access to more funding, and at a lower cost.

The remainder of the chapter is organized as follows. Section 2 introduces our proposal; Section 3

describes the data and the variables employed; Section 4 discusses the empirical findings; and, finally,

Section 5 concludes.

3.2 Proposal

To analyse the data set and predict the cost of capital, we use the well-known extreme gradient boost-

ing ML model XGBoost. XGBoost is an ensemble learning method that is particularly well suited to large

structured data sets. It is a supervisedMLmodel that combines decision tree models with gradient boost-

ing. The model applies decision trees, which are weak classifiers, to a data set, where each subsequent

decision tree is built to correct the errors of the previous tree model; (e.g., Chen & Guestrin, 2016). The

XGBoost model is a black-box model: its predictions are not explained in terms of their drivers. However,

as shown in several recent papers, different XAI methodologies can be applied to explain the predictions

of ML models and hence ’open’ the black box (Lundberg et al., 2020; Bussmann et al., 2021; Gramegna &

Giudici, 2021).

The application of thesemethods is becomingmore common in corporate finance (Ghoddusi, Creamer,

& Rafizadeh, 2019). Recently (B. Lin & Bai, 2022) applied a ML approach to estimate the determinants

of the cost of debt for 40 listed companies in the mining, steel, and power industries. (Tron, Dallocchio,

Ferri, & Colantoni, 2023) investigate the ability of corporate governance features of non-listed compa-

nies to determine corporate defaults. Other contributions study the risk management in finance (Gan,

Wang, & Yang, 2020) or the application of AI to corporate financial functions (e.g., Polak, Nelischer, Guo,
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& Robertson, 2020). In this chapter, by applying different XAI methods to our XGBoost model we aim to

identify which financial and non-financial market characteristics mostly affect the cost of capital.

To produce a ranking of the variables, the XGBoost Python package includes an integrated feature

importance plot function. The algorithmmeasures how often each variable is used to split the data, across

all decision trees. With this technique, variables that are often used for important splits are identified as

the most important for the model predictions (Chen & Guestrin, 2016).

Another popular method to explain complex ML models is the SHAP framework. The SHAP frame-

work defines an interpretation for each prediction in the form of an explanation model. It calculates the

average marginal contribution of each feature to the predictions, across all possible feature combinations

(Lundberg & Lee, 2017). The underlying Shapley values method (L. S. Shapley, 1953) belongs to the class

of additive feature attribution methods and derives from cooperative game theory.

The SHAP algorithm calculates Shapley values, which characterize predictions as linear combina-

tions of binary variables, indicating whether or not each variable is included in the model. As a result, a

SHAP value is calculated for each variable, representing the relative contribution to the model predictions

(Lundberg & Lee, 2017). The explanation model is a linear function of the binary variables and is defined

as in Eq. 3.1.

𝑔(𝑥′) = 𝜙0 +
𝑀∑
𝑖=1

𝜙𝑖𝑥
′
𝑖 (3.1)

where:

∙ 𝑥′ ∈ {0, 1}𝑀 ,

∙ 𝜙𝑖 ∈ ℝ,

∙ 𝑀 is the number of independent variables.

The Shapley value approach, underlying the SHAP algorithm, belongs to the class of additive feature

attribution methods. Indeed, (Lundberg & Lee, 2017) showed that the Shapley value method is the only

explanationmodel that jointly satisfies the characteristics of local accuracy, missingness, and consistency.

Local accuracy indicates that the sum of all variables of the explanation model approximates the output

of the original model. Missingness denotes that missing variables do not receive any importance in the

explanation model. Consistency states that a change in the model, which leads to an increase in the

contribution of a variable, cannot decrease its importance (Lundberg et al., 2020).

The above characteristics are achieved by assigning to each feature vector, a feature attribution value,

which is defined as follows (Eq. 3.2).

The 𝑖-th Shapley value of a variable 𝑋𝑘 , (𝑘 = 1,… , 𝐾) is:

𝜙( ̂𝑓 𝑘(𝑋𝑖)) = ∑
𝑋
′
⊆(𝑋 )⧵𝑋𝑘

|𝑋 ′ |!(𝐾 − |𝑋 ′ | − 1)!

𝐾 !
[ ̂𝑓 (𝑋

′

∪ 𝑋𝑘)𝑖 − ̂𝑓 (𝑋
′

)𝑖], (3.2)

where (𝑋 ) ⧵ 𝑋𝑘 is the set of all the possible model configurations which can be obtained excluding

variable 𝑋𝑘 ; ̂𝑓 (𝑋
′

∪ 𝑋𝑘)𝑖 and ̂𝑓 (𝑋
′

)𝑖) are the predictions obtained including and excluding variable 𝑋𝑘 .

The Shapley contribution of 𝑋𝑘 is the sum (or the mean) of all Shapley values (Lundberg et al., 2020).

Although Shapley values aremuch used in the recentML literature, they have a drawback: their values are

not normalised and, therefore, cannot be easily interpreted and compared across different applications.

To overcome this issue, we propose to employ the Lorenz Model Selection approach introduced by

(Giudici & Raffinetti, 2020) to perform variable selection and simplify the ML model. The underlying
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Lorenz Zonoid approach is based on the research of (G. Koshevoy, 1995) for empirical distributions and

of (Mosler, 1994) for general probability distributions.

Lorenz Model Selection offers a novel method to select variables not based on correlation, but based

on a mutual notion of variability. This makes them more robust to outliers. In the univariate case, the

Lorenz Zonoid values equate to the Gini coefficient, which can be used to measure the contribution of

each explanatory variable to the predictive power of a linearmodel more accurately. As shown by (Lerman

& Yitzhaki, 1984) in the univariate case the Lorenz Zonoid 𝐿𝑍𝑑=1 can be expressed by the formula:

𝐿𝑍𝑑=1(𝑌 ) =
2𝐶𝑜𝑣(𝑌 , 𝑟(𝑌 ))

𝜇
(3.3)

where:

∙ 𝑌 is the dependent variable,

∙ 𝜇 is the mean value of Y, and

∙ 𝑟(𝑌 ) is the rank score of Y variables.

(Giudici & Raffinetti, 2020) show that if we consider the dependent variable 𝑌 and the independent

variables𝑋1, ..., 𝑋ℎ, ..., 𝑋𝑘 with ℎ = 1, ..., 𝑘, and we apply amodel on this data set, we receive the predictions

𝑌𝑋1 ,...,𝑋𝑘
. The Lorenz Zonoid values are defined accordingly as:

𝐿𝑍𝑑=1(𝑌 ) =
2𝐶𝑜𝑣(𝑌 , 𝑟(𝑌 ))

𝑛𝜇
(3.4)

and

𝐿𝑍𝑑=1(𝑌𝑋1 ,...,𝑋𝑘
) =

2𝐶𝑜𝑣(𝑌𝑋1 ,...,𝑋𝑘
, 𝑟(𝑌𝑋1 ,...,𝑋𝑘

))

𝑛𝜇
(3.5)

where:

∙ 𝑛 is the number of all observations,

∙ 𝑟(𝑌𝑋1 ,…𝑋𝑘
) is the rank score of the predicted variables 𝑌𝑋1 ,...,𝑋𝑘

.

The formulae described above can be rearranged in such a way that the underlying model predic-

tions are generalised and rearranged in a non-decreasing manner, thus yielding a measure of marginal

dependence, called the Marginal Gini Coefficient (MGC), which determines the explanatory power of

each variable. The𝑀𝐺𝐶 can be calculated with the following formula, for any variable 𝑋ℎ, (ℎ = 1, ..., 𝑘) ∶

𝑀𝐺𝐶(𝑌 |𝑋ℎ) =
𝐿𝑍𝑑=1(𝑌𝑋ℎ

)

𝐿𝑍𝑑=1(𝑌 )
=

𝐶𝑜𝑣(𝑌𝑋ℎ
, 𝑟(𝑌 𝑋ℎ)

𝐶𝑜𝑣(𝑌 , 𝑟(𝑌 ))
(3.6)

The previous formulae can also be rearranged to calculate the additional (partial) contribution of a

new explanatory variable, 𝑋𝑘 + 1, to an existing model, resulting in the partial Gini coefficient (PGC):

𝑃𝐺𝐶(𝑌 , 𝑋𝑘 + 1|𝑋1, ..., 𝑋𝑘) =
𝐿𝑍𝑑=1(𝑌𝑋1 ,...,𝑋𝑘+1) − 𝐿𝑍𝑑=1(𝑌𝑋1 ,...,𝑋𝑘

)

𝐿𝑍𝑑=1(𝑌 ) − 𝐿𝑍𝑑=1(𝑌𝑋1 ,...,𝑋𝑘
)

(3.7)

We employ the PGC tomeasure the contribution of each additional variable to the predictive accuracy

of our model, within a stepwise model selection procedure.

To compare any two models, we need to define the payoff. To do this, we calculate the following

difference for any statistical unit 𝑖:
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𝑃𝑜𝑓 𝑓 (𝑋 𝑘
𝑖 ) =

̂𝑓 (𝑋 ∪ 𝑋𝑘)𝑖 − ̂𝑓 (𝑋 )𝑖, (3.8)

where:

∙ ̂𝑓 (𝑋 )𝑖 represents the predictions of a model and

∙ ̂𝑓 (𝑋∪𝑋𝑘)𝑖) represents the predictions of amodel after including an additional independent variable.

If we replace the model predictions with the 𝑃𝐺𝐶, we receive for a given set of statistical units the

following expression:

𝑃𝑜𝑓 𝑓 (𝑋 𝑘) = 𝐿𝑍𝑑=1(𝑌𝑋1 ,...,𝑋𝑘
) − 𝐿𝑍𝑑=1(𝑌𝑋1 ,...,𝑋𝑘−1

), (3.9)

where:

∙ 𝐿𝑍𝑑=1(𝑌𝑋1 ,...,𝑋𝑘−1
) represent the Lorenz Zonoid values of a model and

∙ 𝐿𝑍𝑑=1(𝑌𝑋1 ,...,𝑋𝑘
) represent the predictions of a model after including an additional independent vari-

able.

Once calculated, the pay-off can be assessed in terms of statistical significance, by means of an ap-

propriate test that compares the predictive accuracy of the two models being compared.

As the cost of capital is a continuous variable, we propose to employ theDieboldMariano test (Diebold

& Mariano, 2002), which compares the forecasting accuracy of a continuous response by two competing

models.

To perform the test the model predictions need to be compared with the actual observations, and

forecast errors calculated. The null hypothesis of the test states that the forecast errors of any two

models do not show statistically significant differences and thus the models being compared could not

be identified as statistically significantly different in terms of their predictive accuracy.

The null hypotheses of the null difference between the forecast errors are defined by 𝐸[𝑔(𝑒𝑖𝑡)], or

𝐸[𝑑𝑡] = 0, where 𝑔(𝑒𝑖𝑡) is a function of the forecast error and 𝑑𝑡 = [𝑔(𝑒𝑖𝑡) − 𝑔(𝑒𝑗 𝑡)] is the loss difference.

In other words, the null hypothesis that the predictive accuracy of both models is equal can also be

expressed as a null hypothesis that the difference between the population mean of the losses is equal to

zero.

To determine whether the difference is statistically significant or not, the test statistic can be com-

pared to a critical value from an appropriate distribution, whose parametric form depends on the as-

sumptions about the prediction errors (Diebold & Mariano, 2002).

3.3 Data

To understand which financial and non-financial features contribute to the prediction of the implied cost

of capital, we collect data from 2013 to 2019 for more than 1,400 publicly listed companies in 43 countries.

Data and information are retrieved frommany sources, including Refinitiv Eikon, I/B/E/S, and Bloomberg.

Our dependent variable (’implied’ or ’ex-ante’ cost of capital) is derived from the forward earnings price

ratio (Pinto, 2020). As independent variables, we employ all the financial and non-financial variables that

are indicated by the literature as relevant in the determination of the cost of capital, as well as country-

specific features.

Table 3.1 includes a list of all the variables used in the chapter, with their description.
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Table 3.1: The considered explanatory variables

Variable name Variable description

Firm’s financial features

SIZE Value of a company’s asset size.

ROE The ratio of net income to ’shareholders’ equity (Return on Equity).

VOLATILITY Volatility of a company’s stock price.

Beta Beta is a proxy of systematic risk and shows how share prices move

according to the movements of the relative market index.

CURR Current ratio: Indicator for a company’s liquidity.

QUICK Quick ratio: Indicator for a company’s liquidity.

EPS-GROWTH(t-1) Value of a company’s growth rate on earnings per share (EPS) in t-1.

EPS-GROWTH Value of a company’s growth rate on earnings per share (EPS).

TRAD LIQ Trading liquidity.

GROWTH SALES 1 A company’s growth rate on sales, is based on a ratio of variations in

sales over the previous year.

GROWTH SALES 3 Value of a company’s average annual growth rate on sales over the

previous three years.

RD EXPEND TO NET

SALES

Amount of Research and Development expenses divided by net sales.

LEV Leverage: A ratio of a company’s total debt to total assets.

VOL The trading volume is used for calculating the volume-weighted aver-

age price.

SHARES OUT A company’s outstanding shares are available on the market.

GROWTH-EPS Value of a company’s growth rate on earnings per share (EPS).

Firm’s non-financial features

E-DISC Bloomberg environmental disclosure score measures the amount of

environmental information a company reveals to the public. If com-

panies provide all data points collected by Bloomberg, the maximum

value of 100 is awarded. The minimum value starts from 0.1.

G-DISC Bloomberg governance disclosure score measures the amount of gov-

ernance information a company reveals to the public. If companies

provide all data points collected by Bloomberg, the maximum value of

100 is awarded. The minimum value starts from 0.1.

ESG-DISC Bloomberg ESG disclosure score measures the amount of environmen-

tal, social, and governance information a company reveals to the pub-

lic. If companies provide all data points collected by Bloomberg, the

maximum value of 100 is awarded. The minimum value starts from

0.1.
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S-DISC Bloomberg social disclosure scoremeasures the amount of social infor-

mation a company reveals to the public. If companies provide all data

points collected by Bloomberg, the maximum value of 100 is awarded.

The minimum value starts from 0.1.

EMIS-INT Emission intensity of a company.

EIS Environmental Innovation Score (EIS) is a company’s environmental

innovation degree, measured based on a company’s green revenue and

its research and development expenses.

INSI-OWN Insider ownership: a percentage of equities held by insiders.

BD-SIZE The number of board members.

BD-INDEP A percentage of the independent directors on a company’s board.

INST-OWN A percentage of equities held by a company’s institutional investors.

Country non-financial features

WB-V Indicator of voice for country 𝑖 represents observations of how a coun-

try’s inhabitants have the right to vote for their government and free-

dom to convey their opinions.

WB-RQ Indicator of the regulatory quality for country 𝑖 represents opinions on

how a government implements its prudent policies to help the private

sector grow.

WB-RL Indicator of the rule of law for country 𝑖 represents perceptions of how

agents have confidence in the general public rules.

WB-GE Indicator of the government effectiveness for country 𝑖 represents the

quality of a country’s public service and a government’s creditability

to the public.

WB-C Indicator of control of corruption for country 𝑖 represents observations

of the degree to which the elite and the public power pursue their

private interests.

WB-S Indicator of political stability for country 𝑖 represents perceptions of

the prospects of political uncertainty and terrorism.

HDI The Human Development Index quantifies a country’s development

in these key dimensions: its education, health, and economic aspects.

Other control variables

INF We collect the inflation rate for our sample countries from the IMF

World Economic Outlook Database.

GDPpc Log (Gross domestic product (GDP) per capita) is measured based on

the purchasing power parity exchange rates in 2011. Unit: the U.S.

dollar.
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From Table 3.1 note that we proxy financial information with the firm’s key balance sheet and eco-

nomic indicators. Non-financial information is proxied via different scores and variables. First, we mea-

sure the firm’s relevant non-financial information, captured using ESGdisclosure and performance scores,

in line with the literature (e.g., Breuer et al., 2018; Desender et al., 2020; Mariani, Pizzutilo, Caragnano, &

Zito, 2021; Wang et al., 2021)1. Second, we also investigate the role of the country features, namely the

cultural, socioeconomic, and regulatory framework, that can influence a firm’s ex-ante cost of capital.

Finally, we include some well-known country and macroeconomic variables, namely inflation and GDP

per capita.

3.4 Empirical findings

At first, we split the available data set into an eighty per cent train set and a twenty per cent test set.

Before training the XGBoost model, we use the GridSearchCV function from the ”sklearn” Python pack-

age to determine the optimal hyperparameter settings: it resulted in a learning rate, equal to 0.015; and a

maximal depth, equal to 4. We then applied the XGBoost model to the training data set and applied the

learned model to predict the response values (Cost of Capital values) in the test data set.

The XGBoost model performs rather well: the predicted mean cost of capital in the test set is 6.44%

against an actual mean cost of 6.42%. Furthermore, the root mean Squared Error (RMSE) between the pre-

dicted and actual observations is equal to 3%, about half of the mean value, indicating a small variability

of the errors.

To explain the obtained predictions, we applied several different XAI methods. First, we analysed the

results using the Feature Importance plot, based on the Gini Index, which is included in the XGBoost

Python package. The results of the application are shown in Figure 3.1.

From Figure 3.1 we note that the most explainable variables are, for each company, the systemic risk

proxy Beta, the environmental innovation score, the stock price volatility, the Return on Equity (ROE),

and the size.

However, it is well known that the feature importance plot is a component of tree models, whose

results are not stable, as obtained on subsamples, and not globally (Altmann, Toloi, Sander, & Lengauer,

2010). To improve the robustness of the explanations, and overcome the weaknesses of the Feature im-

portance plot, we analysed the same predictions using Shapley values. The calculated SHAP values can

be visualised as a summary plot, as in Figure 3.2.

The SHAP summary plot in Figure 3.2 shows the importance of the variables according to their con-

tributions to the model predictions of the cost of capital. The variables are ordered according to their

importance, from the most important (top) to the last important (bottom). In the Figure, each dot repre-

sents one observation of the underlying data set. When the dots of the variable are located at the right

of the 0.000 vertical line it means that the variable has a positive impact on the prediction of the cost of

capital; the opposite occurs when the dot is on the left. Blue shades of the dots represent low values of

the underlying independent variable and red represents high values of the independent variable.

From Figure 3.2 we note that the most explainable variables are, for each company: the size, the ROE,

1It is just the case to recall that the measures employed for ESG scores in empirical papers are not homogeneous, and often
lead to different scores for the same company. Among them, the measures obtained by commercial databases (e.g. Bloomberg or
Thomson Reuters) are commonly used, but other proxies are also employed: the inclusion in sustainable/ESG indexes (e.g., Eom
& Nam, 2017) or initiatives (Fisher-Vanden & Thorburn, 2011); own developed measures, sometimes based on previous literature
michaels2017relationship,lau2019economic; hybrid measures based on a mix of the above (Garcı́a-Sánchez et al., 2021). In this
chapter, we choose to rely on the Refinitiv Eikon and Bloomberg ESG information
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Figure 3.1: Feature importance plot. The Figure presents the feature importance plot computed using the XGBoost
algorithm.

the stock price volatility, WB V (i.e. a variable which describes citizens’ right to vote, and freedom to

convey opinions) and the liquidity of the company, described by the Trade liquidity. Furthermore, Beta

(a measure of the systematic risk of the companies’ stock) and emission intensity appear quite highly

placed in the features ranking.

Comparing the five most important variables in Figure 3.1 with those in Figure 3.2 note that three of

them are the same, namely, Size, ROE, and Stock price volatility. Whereas the systematic risk proxy Beta

is first in Figure 3.1 and sixth in Figure 3.2. The Trade liquidity is sixth in Figure 3.1 and fifth in Figure 3.2.

Differences include, for instance, the placement of the variable EIS, which is ranked second in Figure

3.1 and only 25th in Figure 3.2. Conversely, the country’s institutional quality, namely the variable ’Voice’

(WB V), is captured among the most important variables only by Shapley values.

The difference between the two XAI tools may be due to the inclusion of many variables in the ML

model, some of which have only a very small impact. This suggests performing a preliminary feature

selection, to improve the robustness of the model.

To this aim, we have created a series of sub-datasets based on the feature ranking in the SHAP ap-

proach. The first data set consists only of themost important variable (SIZE). The second data set consists

of the most important and the second most important variables (SIZE and ROE). We continued this sub-

division until we obtained 35 sub-datasets, corresponding to all considered variables. We calculated the

Lorenz Zonoid values for each of the chosen sub-datasets, which corresponds to an increasing number

of explanatory variables: from 1 to 35.

Figure 3.3 represents graphically the Lorenz Zonoid values calculated on each of the 35 subsets, or-

dered from the smallest (with only one variable included in themodel) to the largest (all variables included

in the model).

From Figure 3.3 note that the highest Lorenz Zonoid value (0.1865) is achieved with the inclusion in

the model of 13 variables. In other words, Figure 3.3 indicates that, according to the parsimony principle,

good predictions are likely to be obtained by drastically simplifying the model from 35 to 13 features: a
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much simpler model.

Before concluding with the choice of a model with 13 variables, note that Figure 3.3 shows lower

increments of Lorenz Zonoid values after including four variables. When comparing the MSE of the

model with 13 variables (0.0010) with the MSE of the model with 4 variables (0.0012), it can be seen

that the model which includes 13 variables performs only slightly better. The Lorenz Zonoids of the

corresponding sub-sets of four variables are plotted in Figure 3.4, extracted and magnified from Figure

3.3.

From Figure 3.4 note that the feature SIZE, which represents the asset size of a company, explains

about 11% of the predictive accuracy of the model. When ROE is added to SIZE there is an increase of

about 2% in accuracy. Adding VOLATILITY a further increase of about 2% and adding WB V produces an

increase of about 1%.

To gain a better insight on whether to further simplify the chosenMLmodel, from 13 to four variables,

we further analysed our results with the help of the Diebold Mariano test (Diebold & Mariano, 2002).

More precisely, we compared the model which consists of only four variables with the model which

consists of 13 variables, based on the results of the Lorenz Zonoid approach. The result of the test gives a

p-value of 0.999. Since the p-value is higher than 0.05 the null hypothesis that the predictive power of the

simpler model (with four variables) is as good as the predictive power of the more complex model (with

13 variables) cannot be rejected.

Thus, the result of the Diebold Mariano test shows that we can exclude all other variables from the

data set and select a model that only contains four variables: SIZE, ROE, VOLATILITY, and WB V.

From an economic viewpoint, the chosen four variables are found to be themost relevant in predicting

the ex-ante cost of capital. Three of them refer to the firm financial characteristics. The fourth one is a

non-financial country-related feature.

The variable SIZE is the most important variable for the XGBoost model and it represents the asset

size of a company. Concerning the sign of importance, it can be seen from the SHAP summary plot in

3.2 that companies with a large asset size have a positive impact on the model’s predictions of the cost

of capital. Hence, the model predicts a higher cost of capital for companies with a large asset size and

a lower cost of capital for companies with a small asset size. Asymmetries of information would call for

the opposite effect, with larger companies being less exposed to asymmetries of information (Armstrong,

Core, Taylor, & Verrecchia, 2011; Embong, Mohd-Saleh, & Sabri Hassan, 2012; W. P. He, Lepone, & Leung,

2013). Nevertheless, the peculiarity of our sample suggests that this pool of companies - which are all

very largemultinational listed companies - is characterised by having larger total assets. This might imply

being ’too’ large to be understood and, hence, growing after a certain threshold might induce investors

to perceive the complexity of the company as a hurdle rather than an advantage for the future cash flows

determining future profitability and, in the final stance, the cost of capital.

The same plot in 3.2 shows that the importance of ROE indicates that especially low values of return

on equity have a strong impact on the models’ predictions.

From the SHAP summary plot, it can also be seen that high values of the volatility of a company

lead to increased predictions of the cost of capital. A possible explanation for this result is that investors

associate the high volatility of a company’s stock price with higher risk and uncertainty. This indicates

that future values of the company stock price are uncertain and hence, lead to higher cost of capital.

As already mentioned, the fourth most important variable is ’WB V’, a country-specific feature. The

variable indicates the political and regulatory framework of the country, describing how a country’s
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citizens express their votes for the government and how their opinions are conveyed and heard. We can

see from the SHAP summary plot in 3.2 that especially high values of this variable have a strong impact

on the models’ predictions, leading to an increase in the predicted cost of capital.

We finally remark that our empirical findings indicate that the company’s emissions are a significant

predictor of the cost of capital, although the variable is not included in the selected parsimonious model

with four variables. This result may be due to corporate emissions being related to important variables

such as the size and ROE of a company, as well as the institutional quality of a country, described by

variable ’WB V’. We can thus conclude that our findings indicate that Environmental, Social, and Gov-

ernance factors, such as a company’s emission and country regulatory characteristics have an important

role in determining the cost of capital for a company, either directly or indirectly.

3.5 Conclusions

This chapter investigates for the first time the determinants of the cost of capital through a ML model,

in combination with the SHAP framework and the Lorenz Zonoid approaches to make it explainable. We

are able to overcome the a priori hypothesis on the linearity of the relationship among variables and are

able to individuate and rank the features that contribute more to the prediction of the cost of capital.

Overall, our results show that a firm’s size, ROE, portfolio volatility risk, ESG behaviour and coun-

try’s institutional quality are the most valuable variables in predicting a firm’s ex-ante cost of capital.

Concerning non-financial features, the Shapley values approach shows that some of the non-financial

indicators, proxied by ESG factors, such as Emission intensity or corporate governance settings, can be

adopted as good predictors of the cost of equity besides the traditional financial features of companies.

These results corroborate the proposals made by policymakers and indicate that the market penalises

companies with high emission intensity with more expensive capital funding. On the other hand, the

market awards companies with good corporate governance practices by charging a lower cost of capital.

Additionally, our empirical results employing Lorenz Zonoid show that a firm’s cost of capital is well

predicted by the level of the country’s voice, which we use to proxy the institutional quality of the country

where the firm is incorporated.

Our study provides supporting evidence that some key non-financial features both at firm and country

levels can contribute to shaping investors’ risk perception.

Our findings also suggest that investors perceive the most polluted firms as riskier and more costly in

the future, they consequently require these firms with higher emission intensity with a more expensive

cost of capital. In other words, this chapter provides evidence indicating that investors punish the most

polluted firms.

According to this finding, we suggest policymakers call for more transparency in disclosing the ESG

data at the firm level, which will help investors make better decisions on their long-term investment

strategy and asset allocations. Future research can be devoted to understanding if and how these results

change depending on the industries considered or over time, as regulation is modified and sustainability

becomes integrated into the institutional setting of the different countries.
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Figure 3.2: SHAP summary plot.
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Figure 3.3: Lorenz Zonoid values plot.

Figure 3.4: Lorenz Zonoid values plot for the first four subsets.
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4 Concluding remarks and future research

The increasing amount of available data and the simplified access to high-performing computers enables

the use of ML models. Companies that operate in highly regulated markets such as the financial market

are also taking advantage of this opportunity. However, the use of ML models is accompanied by various

risks, such as the decreasing explainability of these algorithms. The motivation of this doctoral thesis

was on the one hand to take a closer look at these risks and on the other hand to further analyse the

opportunities that this technology represents for the financial industries.

As described in the general introduction of this doctoral thesis, there are different types of XAI meth-

ods. One already widespread method in the financial industries is the application of black box models

in combination with the use of model agnostic post-hoc XAI methods. Hence, this thesis focuses on the

above-mentionedmethods and does not discuss the topic of intrinsically (a priori) explainableMLmodels.

Many of the currently available methods are well suited to explain the results of models to model

developers or data scientists. However, they are too complex and confusing for non-specialist stakehold-

ers such as members of the board or regulators. Hence, the principle of the explainee was introduced

in the general introduction. It describes that XAI methods must be adapted to the corresponding per-

son to whom the model should be explained. This explainee-oriented application of XAI methods is also

described in (Bracke et al., 2019). In other words, to make a model explainable, different XAI methods

should be applied and the method that is the most suitable for the level of experience of the particular

explainee should be used.

Therefore, in this doctoral thesis, existing XAI methods were analysed and further developed to make

the results of AI models more explainable and easier to understand for non-specialist stakeholders. This

provides added value, especially in highly regulated markets, such as the financial market, where the use

of models has to be approved by senior management, regulators or policymakers.

In chapter 1, we used a XAI method to explain the predictions of a complex ML model which predicts

the PD of loan applicants. We contributed to the ongoing debate about the application of ML models

in credit risk management. We demonstrated that XAI methods show promising results regarding the

explainability of the ML model’s decisions. The comparison of the models proved the higher model per-

formance of the XGBoost model. We analysed the results using the SHAP framework to identify the most

important variables of the predictions. We visualised the resulting SHAP values using a MST and stan-

dardized Euclidean distance to represent 1) general clusters and 2) the defaulted companies as individual

clusters.

The results of our analysis show that every single prediction of the model could be explained by the ap-

plied XAI methods. This demonstrates that the application of ML models enables the analysis of credit

risk parameters more accurately. The additional implementation of network-based XAI methods pro-

vides stakeholders like e.g. policymakers and regulators deep insights into the model processes but with

a lower complexity by using a visualisation. Especially, the second network model enables stakeholders

to identify that most of the defaulted observations are clustered in similar areas of the network. The

network is based on Shapley values. Hence, showing stakeholders the network in combination with the

SHAP bar plot of the most important variables for the models’ predictions streamlines the traceability of

the Shapley values and as such, increases the overall explainability of the model.

Future research should investigate how the Shapley Correlation Network deals with highly imbalanced

data and how the results change, especially the network model that highlights the defaulted companies.
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In chapter 2, we developed the Shapley-Lorenz approach and contributed to the ongoing development

of new XAImethods to further improve the explainability of AImodels. Themethod ismore accessible and

hence, can be used by several different stakeholder groups to make the output of AI models explainable.

The applied combination of Shapley Values and the Lorenz Zonoids approach provides normalised values

as a result and enables comparable interpretations of differentmodels’ predictions. The comparison of the

Shapley-Lorenz approach, the Shapley values approach, and the calculated contribution of each variable

to the deviance 𝐺2, described in chapter 2 shows that the Shapley-Lorenz approach is the easiest method

to interpret. Additionally, the Shapley-Lorenz approach is more robust to changes in the database than

the other XAI methods. The possibility to compare variables according to their explainability due to the

normalised Shapley-Lorenz values is an advantage that supports the applicability of AI models, especially

in the financial industry. Showing the explainability of a model with normalised values supports model

risk managers, model validators, regulators, auditors, but also the model developers themselves in their

decision-making process and it also improves the model output quality. The Shapley-Lorenz approach

can facilitate the validation of model results and supports the decision of whether a model is sufficiently

explained.

The methodology of the Shapley-Lorenz values needs further improvements since the current version

requires significant amounts of computational power. To avoid long run times we included a warning

message to the algorithm, which recommends users to use a sample data set of not more than 50 obser-

vations. Future research should improve the existing code and perform analyses including enlarged data

sets.

Chapter 3 addresses the currently very relevant topic regarding the application of ESG variables in

the financial industries. European guidelines like the łGuide on Climate-Related and Environmental

Risks” ECB (ECB, 2020) or the EU Sustainable Finance Disclosure Regulation” (European Commission)

(EC, 2019b) expect financial institutions to incorporate climate-related and environmental risks into their

risk management framework and to disclose this sustainability information to their stakeholders.

These guidelines and regulations do not specify exactly which ESG factors should be incorporated into

the risk framework. Chapter 3 contributes to the current debate on how ESG risks should be integrated

into the risk framework of financial institutions due to their importance and grade of information. Using

a ML model, we were able to identify which financial and non-financial factors are the most important

drivers of a company’s overall risk from an investor’s perspective. This research can help policymakers,

regulators, and financial institutions to identify the most important ESG variables for their risk analysis.

It also provides insights into the impact of different financial, economic, and ESG risk-related variables in

predicting a company’s cost of capital, which we used as a proxy for a company’s risk. The results show

that in addition to the traditional financial variables, many ESG variables were also important in predict-

ing the outcome. Some of the ESG variables were more important than traditional economic variables

such as growth in GDP per capita.

The data set was compiled manually from various sources in a time-consuming process. There are no

comparable, publicly available data sets that combine financial and non-financial risk areas. Some of

the analysed variables showed a rather poor database. If the database improves, future research should

repeat the performed analysis, including the improved database and see how the results will change. It

would further be interesting to repeat the experiment with an enlarged database on a yearly basis over

several years to see how the importance of certain variables changes over time.

This thesis analysed the existing methodologies to explain the output of black box models and fur-
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ther developed them to increase the usability of ML models in the financial industries. Since this thesis

is the result of an executive PhD program the studies are focused on real-world scenarios in the financial

industries. Future research should extend the different methodologies by applying them to different data

sets as mentioned above.

Even though this thesis contains many positive aspects of the use of XAI methods to explain black box

ML models, there is also criticism. For example, (Rudin, 2019) points out that in recent years there has

been an increasing focus on the development of XAI methods to explain black box ML models instead of

focusing on the development of inherently explainable ML models. XAI methods are often only down-

stream models that cannot provide a complete explanation of the black box ML models and therefore

might be misunderstood. This is particularly problematic in high-risk markets, such as the financial mar-

ket, since a full understanding of the models with explanations at a detailed level is often required. As an

alternative, (Rudin, 2019) suggests focusing on the development of ML models that inherently provide an

explanation for their decision.

Another critique focuses on XAI methods that use a background sample data set, such as LIME or

SHAP. (Slack, Hilgard, Jia, Singh, & Lakkaraju, 2020) demonstrated the possibility of deliberately altering

the outcome of XAI methods by changing the input data distribution. The performed adversarial attacks

show that the data distribution was biased but the post-hoc explanations looked innocuous. Regulators,

auditors, and risk managers should be aware of this risk and consider not only the ML models but also

the XAI methods in the course of their model audits or validations. Another alternative could be the use

of XAI methods which take the complete data set into account, such as the calculation of Shapley values.

A disadvantage of this alternative is the considerable computational effort. (Huang & Marques-Silva,

2023) claim in their recent paper that for some specific use cases even Shapley Values, calculated with

the whole data set, identify variables as important which do not have any importance for the model’s

prediction at all.

Future Research should take the above-mentioned risks into account and further develop inherently

explainable models or combine and extend XAI methods to provide complete explanations and increase

their robustness against manipulation.
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Grira, J., Hassan, M. K., Labidi, C., & Soumaré, I. (2019). Equity pricing in Islamic banks: International

evidence. Emerging Markets Finance and Trade, 55(3), 613–633. doi: 10.1080/1540496X.2018.1451323

GSIA. (2018). 2018 global sustainable investment review.

Guegan, D., Hassani, B., et al. (2017). Regulatory learning: Credit scoring application of machine learning

(Tech. Rep.). HAL.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., et al. (2018). A survey of methods for

explaining black box models. ACM computing surveys (CSUR), 51(5), 1–42.

Gunning, D., & Aha, D. (2019). Darpa’s explainable artificial intelligence (xai) program. AI magazine,

40(2), 44–58.

Gupta, K. (2018). Environmental sustainability and implied cost of equity: International evidence. Journal

of Business Ethics, 147(2), 343–365. Retrieved from http://www.jstor.org/stable/45022380

Hand, D., Smyth, D., Hand, P., Mannila, H., & Smyth, P. (n.d.). Principles of data mining. MIT Press.

45



He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data

engineering, 21(9), 1263–1284.

He, W. P., Lepone, A., & Leung, H. (2013). Information asymmetry and the cost of equity capital. Inter-

national Review of Economics & Finance, 27 , 611–620. doi: 10.1016/j.iref.2013.03.001

Huang, X., & Marques-Silva, J. (2023). The inadequacy of shapley values for explainability. arXiv preprint

arXiv:2302.08160.

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science,

349(6245), 255–260.

Joseph, A. (2019a). Parametric inference with universal function approximators. Staff Working

Paper No. 784. Retrieved from https://www.bankofengland.co.uk/working-paper/

2019/shapley-regressions-a-framework-for-statistical-inference-on-machine

-learning-models

Joseph, A. (2019b, March). Shapley regressions: a framework for statistical inference on machine learning

models (Research report No. 784). Bank of England.

Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39–43.

Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algo-

rithms. Journal of Banking & Finance, 34(11), 2767–2787.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM),

46(5), 604–632.

Koshevoy, G. (1995). Multivariate Lorenz majorization. Social Choice andWelfare, 93–102. Retrieved from

https://www.jstor.org/stable/41106114

Koshevoy, G. A., & Mosler, K. (1996). The lorenz zonoid of a multivariate distribution. Journal of the

American Statistical Association, 91(434), 873–882.

Kumar, I. E., Venkatasubramanian, S., Scheidegger, C., & Friedler, S. (2020). Problems with shapley-value-

based explanations as feature importance measures. In International conference on machine learning

(pp. 5491–5500).

Lau, C.-K. (2019). The economic consequences of business sustainability initiatives. Asia Pacific Journal

of Management , 36(4), 937–970.

Leondes, C. T. (2001). Expert systems: the technology of knowledge management and decision making for

the 21st century. Elsevier.

Lerman, R. I., & Yitzhaki, S. (1984). A note on the calculation and interpretation of the Gini index.

Economics Letters, 15(3-4), 363–368. doi: 10.1016/0165-1765(84)90126-5

Lessmann, S., Baesens, B., Seow, H.-V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classifica-

tion algorithms for credit scoring: An update of research. European Journal of Operational Research,

247(1), 124–136.

Lin, B., & Bai, R. (2022). Machine learning approaches for explaining determinants of the debt financing

in heavy-polluting enterprises. Finance Research Letters, 44, 102094.

Lin, J. (2018). Using weighted Shapley values to measure the systemic risk of interconnected banks.

Pacific Economic Review , 23(2), 244–270. doi: 10.1111/1468-0106.12155

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable ai: A review of machine learning

interpretability methods. Entropy , 23(1), 18.

Liu, L., Chen, C., & Wang, B. (2022). Predicting financial crises with machine learning methods. Journal

of Forecasting, 41(5), 871–910. doi: 10.1002/for.2840

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., et al. (2020). From local explanations

to global understanding with explainable AI for trees. Nature machine intelligence, 2(1), 56–67. doi:

46



10.48550/arXiv.1905.04610

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances

in neural information processing systems, 30. Retrieved from https://doi.org/10.48550/arXiv

.1705.07874 doi: 10.48550/arXiv.1705.07874

Mantegna, R. N., & Stanley, H. E. (1999). Introduction to econophysics: Correlations and complexity in

finance. Cambridge: Cambridge University Press.

Mariani, M., Pizzutilo, F., Caragnano, A., & Zito, M. (2021). Does it pay to be environmentally responsible?

investigating the effect on the weighted average cost of capital. Corporate Social Responsibility and

Environmental Management , 28(6), 1854–1869.

Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete information. The

Journal of Finance, 42(3), 483–510.
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