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A B S T R A C T 

Combining the visibilities measured by an interferometer to form a cosmological power spectrum is a complicated process. 
In a delay-based analysis, the mapping between instrumental and cosmological space is not a one-to-one relation. Instead, 
neighbouring modes contribute to the power measured at one point, with their respective contributions encoded in the window 

functions. To better understand the power measured by an interferometer, we assess the impact of instrument characteristics 
and analysis choices on these window functions. Focusing on the Hydrogen Epoch of Reionization Array (HERA) as a case 
study, we find that long-baseline observations correspond to enhanced low- k tails of the window functions, which facilitate 
foreground leakage, whilst an informed choice of bandwidth and frequency taper can reduce said tails. With simple test cases 
and realistic simulations, we show that, apart from tracing mode mixing, the window functions help accurately reconstruct 
the power spectrum estimator of simulated visibilities. The window functions depend strongly on the beam chromaticity and 

less on its spatial structure – a Gaussian approximation, ignoring side lobes, is sufficient. Finally, we investigate the potential 
of asymmetric window functions, down-weighting the contribution of low- k power to a v oid foreground leakage. The window 

functions presented here correspond to the latest HERA upper limits for the full Phase I data. They allow an accurate reconstruction 

of the power spectrum measured by the instrument and will be used in future analyses to confront theoretical models and data 
directly in cylindrical space. 

Key words: methods: data analysis – techniques: interferometric – dark ages, reionization, first stars – cosmology: observations. 
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 I N T RO D U C T I O N  

s the spin of the electron in the neutral hydrogen atom flips from
arallel to antiparallel, a photon is emitted with the exact wavelength 
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f 21 cm. Despite this transition being forbidden, the amount of
ydrogen present in our Universe (about 75 per cent of all baryonic 
atter) makes observing the 21 cm line one of the most exciting

rospects of modern cosmology. In the local Universe, most of the
ignal comes from nearby galaxies, tracing their structure (Martin 
t al. 2010 ; Hu et al. 2019 ; Obuljen et al. 2019 ). In the distant
niverse, measuring the 21 cm signal has the potential of unveiling
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he reionization of the neutral intergalactic medium (IGM) by the
rst galaxies on cosmological volumes, for different redshifts (e.g.
iardi & Ferrara 2005 ; Furlanetto, Oh & Briggs 2006 ; Morales &
yithe 2010 ; Pritchard & Loeb 2012 ; Mesinger 2019 ; Liu & Shaw

020 ). 
Different strategies are used to access the high-redshift H I signal.

ecently, Bowman et al. ( 2018 ) have reported an unexpected ab-
orption profile at 78 MHz in the sk y-av eraged spectrum, which has
ed to numerous interpretations (Barkana 2018 ; Ewall-Wice et al.
018 ; Mirocha & Furlanetto 2019 ; Singh et al. 2022 ). In order to
ccess more detailed information about the astrophysics of the early
alaxies whilst maintaining a good signal-to-noise ratio, another
trategy consists of using radio interferometers to measure the power
pectrum of the fluctuations of the high-redshift 21 cm signal. This is
he strategy adopted by, e.g., the Giant Metre Wave Radio Telescope
GMRT; Ananthakrishnan 1995 ) in India, the Low-Frequency Array
LOFAR; van Haarlem et al. 2013 ) in the Netherlands, the Murchison

idefield Array (MWA; Tingay et al. 2013 ) in Australia and the
ydrogen Epoch of Reionization Array (HERA, DeBoer et al.
017 ) in South Africa. Although none of these experiments has yet
chieved a detection, upper limits are getting closer and closer to the
osmological signal (Paciga et al. 2013 ; Beardsley et al. 2016 ; Ewall-
ice et al. 2016 ; Cheng et al. 2018 ; Barry et al. 2019 ; Eastwood et al.

019 ; Gehlot et al. 2019 ; Kolopanis et al. 2019 ; Li et al. 2019 ; Mertens
t al. 2020 ; Trott et al. 2020 ; Garsden et al. 2021 ; Rahimi et al. 2021 ;
oshiura et al. 2021 ), with HERA reporting the lowest upper limits
t z = 7.9 and z = 10.4 to date (The HERA Collaboration 2022 )
ith only 18 nights of data and 39 antennas out of the 350 to be
eployed. 
There are various reasons why the 21 cm signal from the Epoch of

eionization has not yet been detected. Notably, the noise levels are
till too large for the cosmological signal to be visible in the data.
o we ver, this should only be a temporary issue as accumulating
ata with more observing seasons will increase signal-to-noise ratios
SNR). A more concerning problem is the presence of foregrounds,
our to five orders of magnitude brighter than the cosmological signal
n the low-frequency range targeted by reionization experiments.
everal methods are currently under investigation to either subtract

heir contribution to the data (e.g. Chapman et al. 2012 , 2013 ;
ertens, Ghosh & Koopmans 2018 ; Hothi et al. 2021 ) or simply

 v oid them, capitalizing on their spectral smoothness compared to
he cosmological signal. Ho we ver, the chromaticity of the interfer-
meter’s sampling pattern introduces high frequency modulations
o the foreground signal, ef fecti vely causing them to fill a wedge-
ike region of the cylindrical space formed by line-of-sight and sky
lane Fourier modes, k � and k ⊥ 

, respectively (Datta, Bowman &
arilli 2010 ; Morales et al. 2012 ; Vedantham, Udaya Shankar &
ubrahman yan 2012 ; Liu, P arsons & Trott 2014a , b ; Dillon et al.
015 ). Mathematically, the limit of this wedge is simply set by
he delay of a source at the horizon. Outside this wedge, the
ignal is supposedly dominated by the cosmological signal, forming
he ‘EoR window’ for the Epoch of Reionization. 1 Avoiding the
edge is possible: The HERA data are analysed in the ‘delay

pproximation’ framework, in which the Fourier transform along
he frequency axis of visibility (i.e. a delay transform) is considered
nalogous to a line-of-sight Fourier transform (Parsons & Backer
009 ; Parsons et al. 2012 ), ef fecti vely concentrating the foregrounds
ithin their wedge. Ho we ver, imprecise calibration, poor modelling
NRAS 520, 375–391 (2023) 

 Despite the name, the same logic applies to all redshifts and not only to the 
oR. 

2

S

f the beam frequency response, and various other systematics lead
o foregrounds leaking from their wedge into the EoR window (Datta
t al. 2010 ; Barry et al. 2016 ; Ewall-Wice et al. 2017 ; Orosz et al.
019 ; Joseph et al. 2020 ). 
In this paper, we attempt to characterize these effects in order to

etter understand the power spectrum measured by the interferometer
s opposed to the intrinsic cosmological power spectrum. To do
o, we derive the expression of the exact window functions of the
nstrument, which relate the power measured at a giv en frequenc y
nd for a given baseline to the cosmological power spectrum as
 function of k ⊥ 

and k � . The window functions presented here
iffer from previous works by two main aspects. First, they are
btained outside of the delay approximation and, therefore, fully
istinguish between the instrumental baseline-delay ( b , τ ) 2 space
nd the cosmological ( k ⊥ 

, k � ) space. Second, they include a precise
imulation of the beam along the instrument bandwidth rather than
 Gaussian approximation, as well as data weights and flagging. 

This paper is organized as follows: In Section 2 , we present a
eneral deri v ation of the exact window functions in the framework
f a delay-based power spectrum analysis. In Section 3 , we introduce
he data and validation simulations used to obtain and test our
indow functions. In Section 4 , we present the window functions
btained for the full HERA Phase I data, and assess the impact
f various analysis choices and instrument characteristics on the
stimated power spectrum. Finally, in Section 5 , we investigate the
otential of data analyst-imposed asymmetric window functions
o mitigate foreground leakage near the wedge. We discuss our
esults and conclude in Section 6 . Note that, despite these results
eing applicable to an y low-frequenc y interferometer, we focus for
oncreteness on the HERA setup and data, reflective of the latest
ERA results obtained with the full Phase I data (The HERA
ollaboration 2023 ). 
We use the same Planck Collaboration I ( 2016 ) cosmology as The

ERA Collaboration ( 2023 ), with �� 

= 0 . 6844, �b = 0.04911,
c = 0.26442, and H 0 = 67 . 27 km s −1 Mpc −1 . 

 M E T H O D S  

n this section, we first introduce the quadratic estimator formalism
sed to obtain a cosmological power spectrum from the visibilities
easured by the interferometer. We then derive the expression of the

xact window functions outside of the delay approximation. 

.1 Quadratic estimator formalism 

n the framework of quadratic estimators of the power spectrum, the
ontinuous quantity P ( k ) is discretized by dividing it into bins of
re-defined thickness in k -space called the bandpowers. In practice,
 bandpower will be built from a set of visibilities measured for a
iven baseline on a given frequency band. The estimator ˆ p of the αth 

andpower is then given by 

ˆ p α ≡ x † E 

α x , (1) 

here x is the data vector – made of visibilities measured at different
requencies for example, E 

α is a matrix chosen by the data analyst
Liu & Shaw 2020 ) and the dagger denotes the Hermitian conjugate.
 The delay τ is the Fourier dual of frequency for a fixed baseline. See 
ection 2.2 for details. 
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Figure 1. The HERA normalized primary power beam A ( θ , ν) at ν0 = 

105 MHz for the instrumental xx polarization, obtained with a simulation 
(Fagnoni et al. 2021b ). This figure illustrates the complicated spatial structure 
of the beam and the existence of side lobes around the main lobe centred on 
the zenith. 
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he expectation value of the estimator is then 

 ̂

 p α〉 = Tr [ E 

αC ] 

= Tr 

[ 

E 

α

( 

C 

(0) + 

∑ 

β

p βQ 

β

) ] 

= 

∑ 

β

Tr 
[
E 

αQ 

β
]

p β + Tr 
[
E 

αC 

(0) 
]
, (2) 

here C ≡ 〈 x x † 〉 is the data covariance matrix and Tr stands for the
race of the matrix considered. The covariance depends linearly on 
he power spectrum (Liu & Tegmark 2011 ), such that 

 = C 

(0) + 

∑ 

α

p αQ 

α. (3) 

ere, the C 

(0) element contains terms that do not depend on the
bserv ed sk y, such as the instrumental noise covariance. The matrix
 

α ≡ ∂ C /∂ p α is the response of the covariance matrix to the αth -
in. 3 In equation ( 2 ), the final term is an additive bias term (e.g. an
nstrumental bias) that comes from the squaring operation inherent 
o the power spectrum and which vanishes when one correlates 
wo data vectors with different, uncorrelated noise contributions. 
ubsequently, we have, for p and ˆ p the true and estimated power 
pectrum, respectively, 

ˆ p = W p , (4) 

here W is a matrix such that each row represents a window
unction and whose elements are given by W αβ ≡ Tr 

[
E 

αQ 

β
]
. We 

all this matrix the window function matrix. Equation ( 4 ) translates
he fact that each bandpower estimate is a weighted sum of the
rue bandpowers. For normalization purposes, we have, for each 
andpower α, ∑ 

β

W αβ = 1 . (5) 

The matrix E 

α defined in equation ( 1 ) is chosen in order to obtain
n optimal estimator, such as a minimal variance estimator. These 
onditions result in the choice of a normalization matrix M such that

ˆ p = M ̂

 q where 

ˆ 
 α = 

1 

2 
x † 1 R 

† Q αR x 2 , (6) 

s the unnormalized estimate of the αth bandpower, with x 1 and 
x 2 data vectors, and R a weighting matrix. One can rewrite this
quation as 〈 ̂  q 〉 = H p and identify with equation ( 4 ) to obtain 

 = MH . (7) 

hoosing M to be diagonal and R ≡ C 

−1 will lead to the minimum
ariance estimator. Another option is to pick M = H 

−1 , such that
 ̂

 p 〉 = p and the window functions are the identity matrix. Ho we ver,
uch a choice artificially inflates the associated error bars on the 
ower spectrum. Finally, one can choose M to diagonalize the 
ovariance of the estimator. In Section 5 , we will see how the
ormalization matrix can be modified to obtain desired properties of 
he window functions such as asymmetry. Note that, in equation ( 4 ),
he matrix W gives the mapping between a baseline-delay ( b , τ )
air and a cosmological ( k ⊥ 

, k � ) pair. The simplest form of W is a
ne-to-one mapping of b to k ⊥ 

and τ to k � , which is equi v alent to
aking the delay approximation. 
 Note that, usually, the matrices C , E 

α and Q 

α are symmetric (Hermitian for 
omplex data). 

4

m
s

.2 Delay window functions 

e have seen in the previous section that the window functions are
oth dependent on the instrument, through the matrix Q 

α , and of the
hoice of the data analyst, through the matrix E 

α . In this section, we
ill derive the former contribution, allowing for a better mapping 
etween measurement space ( b , τ ) and cosmological space ( k ⊥ 

, k � ).
ere, b is the baseline length and τ is the delay. Take the visibility

quation 

 ( b , ν) = 

∫ 
d 2 θ T ( θ, ν) A ( θ , ν) e −2i πνb ·θ/c , (8) 

ith A ( θ , ν) the primary power beam of the instrument, shown in
ig. 1 for HERA according to the Fagnoni et al. ( 2021b ) simulations,
nd T ( θ , ν) the sky temperature. In the flat-sky approximation, 4 

e can re-write the latter in Cartesian coordinates as T ( r ⊥ 

, r ‖ ) ≡
 ( θ , ν), with r ⊥ 

≡ d c ( z ) θ and r � ≡ α( z ) ν, where d c ( z ) is the
omoving distance to redshift z. We define 

( z) ≡ c(1 + z) 2 

ν21 H ( z) 
, (9) 
MNRAS 520, 375–391 (2023) 

 Liu, Zhang & Parsons ( 2016 ) showed that, despite the large field of view of 
ost 21 cm e xperiments, curv ed-sk y corrections to the estimated delay power 

pectrum are negligible. 
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M

Figure 2. Fourier transform of the HERA beam in the sky plane, represented for different frequencies along the Phase I HERA bandwidth. The shift in Fourier 
space illustrates the chromaticity of the instrument: At different frequencies, the instrument will probe different spatial scales. The k ⊥ coordinates are obtained 
for b = 38 . 65 m. 
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or ν21 the rest-frame 21 cm frequency, and H ( z) the Hubble function.
or a Fourier transform 

˜ T ( k ⊥ 

, k ‖ ), one can write 

 ( r ⊥ 

, r ‖ ) = 

∫ 
d 2 k ⊥ 

d k ‖ 
(2 π) 3 

˜ T ( k ⊥ 

, k ‖ ) e i( k ⊥ ·r ⊥ + k ‖ r ‖ ) , (10) 

hich, in turn, leads to 

 ( b , ν) = 

1 

(2 π) 3 

∫ 
d 2 θ

∫ 
d 2 k ⊥ 

d k ‖ A ( θ , ν) ˜ T ( k ⊥ 

, k ‖ ) ×

e i θ ·[ d c ( z) k ⊥ −2 πb ν/c] e i α( z) νk ‖ , (11) 

here we have denoted k � as a scalar since it has a component only
long one axis. We define the delay transform as the Fourier transform
f the visibility measured by one baseline, along the frequency axis,
ccording to Parsons & Backer ( 2009 ): 

 ( b , τ ) ≡
∫ 

d ν V ( b , ν) e −2i πντ × � ( ν) . (12) 

he visibility inside the integral is multiplied by a tapering function
 ( ν) to account for the visibilities being measured on a finite range

f frequencies (see Section 3.1 ). Following the equations abo v e, we
ave 

 ( b , τ ) = 

1 

(2 π) 3 

∫ 
d 2 k ⊥ 

d k ‖ ˜ T ( k ⊥ 

, k ‖ ) χ ( k ⊥ 

, k ‖ ; b , τ ) , (13) 

here we have defined the function χ which describes the mapping
etween Fourier space and measurement space: 

( k ⊥ 

, k ‖ ; b , τ ) ≡
∫ 

d ν
∫ 

d 2 θ A ( θ , ν) e i θ ·[ d c ( z) k ⊥ −2 πb ν/c] 

×� ( ν) e i ν[ α( z) k ‖ −2 πτ ] . (14) 

he estimated delay spectrum can then be written as 

ˆ 
 ( b , τ ) = 

1 

(2 π) 3 

∫ 
d 3 k P ( k ) | χ ( k ; b , τ ) | 2 , (15) 

here P ( k ) is the cosmological, continuous power spectrum. We
ee that a bandpower is a weighted sum of the true power spectrum,
ith the weights being what is usually referred to as the window

unctions W ( k ; b , τ ) ∝ | χ ( k ; b , τ ) | 2 , normalized for each ( b , τ ) bin,
r each power spectrum estimator, according to ∫ 

d k ‖ d k ⊥ 

W ( k ⊥ 

, k ‖ ) = 1 . (16) 

e then have the continuous equi v alent of equation ( 4 ): 

ˆ 
 ( b , τ ) = 

∫ 
d 3 k P ( k ) W ( k ; b , τ ) . (17) 
NRAS 520, 375–391 (2023) 
ote that these deri v ations are specific to a delay-spectrum-based
nalysis and would not carry o v er to an image-based power spectrum
nalysis. 

Let us now write the full expression giving the window functions.
dentifying Fourier transforms in equation ( 14 ), we can write 

( k ; b , τ ) = 

∫ 
d ν e 2i πν[ α( z) k ‖ / 2 π−τ ] ˜ A ( q ⊥ 

, ν) × � ( ν) , (18) 

here ˜ A ( q ⊥ 

, ν) is the Fourier transform of A ( θ , ν) in the sky plane,
ith Fourier dual 

q ⊥ 

≡ ν

c 
b − d c ( z) 

2 π
k ⊥ 

. (19) 

e recognize the commonly used u coordinate defined as u ≡ νb /c.
n the delay approximation, the frequency-dependent term vanishes
nd the Fourier dual of θ is simply d c ( z) k ⊥ 

/ 2 π: We reco v er the fact
hat the approximation is valid for short baselines ( b ∼ 0; Parsons
t al. 2012 ). Outside of this approximation, the chromaticity of the
eam translates as a shift by νb / c in the Fourier transform of the
eam, as illustrated in Fig. 2 . 

The final integral over the frequency can also be considered a
ourier transform, where η is the Fourier dual of ν such that 

≡ τ − α( z) 

2 π
k ‖ . (20) 

gain, in the delay approximation, the second term vanishes, and
he Fourier dual of the frequency is simply the delay τ . We take the
ourier transform of ˜ A ( q ⊥ 

, ν) along the frequency axis to obtain ˜ ˜ A ,
nd write 

 ( k ⊥ 

, k ‖ ; b , τ ) = 

∣∣∣∣≈
A 

(
ν

c 
b − d c ( z) 

2 π
k ⊥ 

, τ − α( z) 

2 π
k ‖ 

)
× ˜ � ( η) 

∣∣∣∣
2 

, 

(21) 

hich we can cylindrically average to obtain W ( k ⊥ 

, k ‖ ; b , τ ). 5 If the
rimary beam peaks at zenith, each window function corresponding
o a ( b , τ ) pair will peak at a ( k ⊥ 

, k � ) pair given by: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

k ⊥ 

= 

2 π

d c ( z) 

νb 

c 
, 

k ‖ = 

2 π| τ | 
α( z) 

. 

(22) 

n Fig. 3 , we illustrate how the k ⊥ 

probed by a given baseline evolves
ith frequency, according to the equation abo v e. This is not a one-

o-one mapping: Ef fecti v ely, each baseline inte grates o v er a range

art/stad090_f2.eps
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Figure 3. Perpendicular (sky plane) Fourier modes probed by different 
baselines along the HERA bandwidth, illustrating how the range of k ⊥ 
probed by a given baseline evolves with frequency. Solid lines correspond to 
equation ( 22 ) and shaded areas to 99 per cent of the total integral of the Fourier 
transform of the beam 

˜ A ( q ⊥ , ν) for each frequency. The jagged edges are a 
result of the limited resolution of the beam simulation. This figure is another 
illustration of the variety of spatial scales probed by a given baseline along 
the instrument’s bandwidth. In the delay approximation, only the one-to-one 
mapping represented by the solid lines is considered. 
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f k ⊥ 

modes, increasing with frequency and with baseline length. 
ote that the width of this range is given by the width of the Fourier

ransform of the beam shown in Fig. 2 , clearly frequency-dependent. 
For a Gaussian beam, the window functions can be derived 

nalytically, greatly simplifying the computations and a v oiding 
esolution issues. Indeed, integrating by parts, the Fourier transform 

˜ 
 ( q ) of a Gaussian beam A ( θ ) defined as a function of the flat-sky

ngle θ is: 

 ( θ ) = exp 
[−θ2 /σb ( ν) 2 

] ←→ 

˜ A ( q ) ∝ exp 
[−πq 2 σb ( ν) 2 

]
, (23) 

here σ b ( ν) is the width of the beam, for which we model the
requency and polarization dependency of the HERA beam. This 
rocess is described in more details in Appendix A . 
We will apply this formalism to two data sets, depending on the

ests we wish to perform: The full HERA Phase I data set or the
imulations used to validate the initial Phase I analysis. They are 
oth introduced in Section 3 below. 

 DATA  

o assess the impact of window functions on the estimator of the
osmological power spectrum, we use throughout this paper the 
ERA data presented in The HERA Collaboration ( 2023 ), as well

s the validation simulations introduced in Aguirre et al. ( 2022 ). We
escribe some essential features of both these data sets below but 
efer the reader to the aforementioned papers for more details. 

.1 The HERA phase I data 

n contrast to the initial analysis presented in The HERA Collabora- 
ion ( 2022 ), the new data set includes a full season of HERA Phase I
ata that is 94 nights of observing (Julian dates 2458026 to 2458208)
panning a period from 2017 September to 2018 March. Depending 
n the nights and selection criteria applied, up to 42 antennas are used,
orming baselines whose lengths range from 14.6 m to 124.8 m. The
hase I observing setting is made of HERA’s 14 m parabolic antennas
ith cross-dipole feeds, front-end and back-end systems inherited 
rom the PAPER experiment (Parsons et al. 2010 ; Cheng et al. 2018 ;
olopanis et al. 2019 ; Fagnoni et al. 2021b ). Observations co v er

requencies between 100 and 200 MHz, corresponding to redshifts 
.1 ≤ z ≤ 13.2. The full bandwidth is run through the data reduction
ipeline, which includes redundant-baseline and absolute calibration, 
adio frequency interference (RFI) flagging, gain smoothing, LST 

inning, hand-flagging, inpainting of flagged frequency channels, 
nd cross-talk subtraction (DeBoer et al. 2017 ; Dillon et al. 2020 ;
ern et al. 2020a , b ). Howev er, only two frequenc y bands are selected

or the power spectrum analysis in order to a v oid sections with heavy
agging: 

(i) Band 1: 117.1 ≤ ν/MHz ≤ 132.6, centred on z = 10.4 and 
(ii) Band 2: 150.3 ≤ ν/MHz ≤ 167.8, centred on z = 7.9. 

Note that these are slightly different from the ones used in the
rst Phase I analysis (The HERA Collaboration 2022 ). In order to
 v oid edge effects in the Fourier transforms, we apply a Blackman–
arris tapering function along the spectral window of each band 

Blackman & Tukey 1958 ), ef fecti vely reducing their bandwidth by
alf. Another important characteristic of the data set is that, in order
o to a v oid bright fore grounds in the sk y, such as the Galaxy or
ornax A, the 10 ◦ wide stripe centred on declination −30.7 ◦ co v ered
y the HERA drift scan is divided into five ‘fields’, corresponding
o cuts in the data in local sidereal time (LST). The power spectrum
s estimated independently on each of those fields, corresponding to 
ST ranges of 21.5–0.0 h, 0.75–2.75 h, 4.0–6.25 h, 6.25–9.25 h, and
.25–14.75 h. 
An additional important analysis choice to highlight here is the 

edge buffer. This buffer corresponds to modes within the EoR 

indow excluded from the spherical power spectra estimates, as 
he beam chromaticity, the usage of a tapering function, and their
ntrinsic chromaticity lead foregrounds to leak outside of their wedge 
Parsons et al. 2012 ). In The HERA Collaboration ( 2023 ), we choose
his buffer to be 300 ns away from the horizon wedge (200 ns in the
revious analysis), corresponding to k = 0 . 15 h Mpc −1 for Band 1
nd k = 0 . 17 h Mpc −1 for Band 2. 

We use the ‘power spectrum method’ of Tan et al. ( 2021 ) to
stimate the error bars on the measured power spectrum. These rely
n the noise power spectrum P N and on an unbiased estimator of the
oise and signal-noise cross-term 

ˆ P SN . The former is defined by 

 N = 

α2 ( z ) d c ( z ) �eff T 
2 

sys 

t int N co 
√ 

2 N inco 
, (24) 

here �eff is the ef fecti ve beam area, T sys is the system temperature,
 int is the integration time, and N co and N inco are, the number of integra-
ions averaged together coherently and incoherently , respectively . 6 

he latter writes 

ˆ 
 SN = P N ×

√ √ 

2 ˆ P /P N + 1 ×
(√ 

1 / 
√ 

π + 1 − 1 

)
. (25) 

e refer the interested reader to Tan et al. ( 2021 ) for a more detailed
escription of the error bar estimation. 
When incoherently averaging the power spectra o v er redundant 

aseline groups and within fields, we apply weights corresponding 
o the inverse square of the noise power spectrum. This corresponds to
n inverse variance-weighted average, and the same weights are later 
pplied to the window functions in Section 4 . Note that these weights
lso include flagging, with flagged data having zero weight (infinite 
MNRAS 520, 375–391 (2023) 
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Figure 4. Upper panel: Normalized inverse-noise variance weights applied 
to the full Phase I HERA data along Band 2. A zero weight corresponds to 
infinite variance. Flagged data, such as data located in the wedge buffer ( τ
∼ 0), has zero weight. Lower panel: Contribution of baselines of different 
lengths to the HERA Phase I data along Band 2, before (thin-green line) 
and after (thick-blue line) applying inverse-variance weights. Because of the 
high redundancy of the array, the shorter baselines have better sampling and 
lower noise, explaining their significant contribute to the signal after applying 
weights. The shortest baselines ( b � 20 m) are flagged because of cross-talk. 
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7 The simulator used is available at ht tps://github.com/zacharymart inot /redsh 
ifted gaussian fields . 
8 Available at https:// github.com/UPennEoR/ RIMEz . 
9 Available at https://github.com/HERA-Team/hera pspec . 
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ariance). Overall, about 35 per cent of all individual baseline-delay
airs along Band 2 have infinite variance. The impact of these weights
n the contribution of different baselines to the final power spectrum
s illustrated in Fig. 4 . We see that the noise-variance correction
emo v es the contribution from short baselines that have been flagged
ecause of cross-talk residuals. Additionally, the small number of
ong baselines leads to a high noise in their sampling, so that applying
nverse-variance weights reduces their contribution to the final power
pectrum. 

.2 Validation simulations 

o understand the impact of the window functions on EoR signal
eco v ery, we use the end-to-end simulations presented in Aguirre
t al. ( 2022 ). The simulated clean visibilities include a cosmological
ignal and foregrounds. The mock foregrounds are made of the
patially smooth diffuse emission from the Galaxy, obtained with
he Global Sky Model (GSM; de Oliveira-Costa et al. 2008 ), and
oint-like sources from the GLEAM catalogue (Hurley-Walker et al.
017 ; Zheng et al. 2017 ) and additional bright sources such as Fornax
 (McKinley et al. 2015 ). The mock EoR signal is a Gaussian
NRAS 520, 375–391 (2023) 
andom field with a time-invariant power spectrum such that P true ( k ,
) = A 0 k −2 , converted to its angular harmonic space analogue C � ( ν,
′ 
). Corresponding harmonic realizations are produced 7 and run

hrough RIMEZ 

8 to generate visibilities. The clean visibilities are
hen contaminated with all instrumental ef fects kno wn for HERA,
ncluding thermal noise, antenna gains, cross-coupling, and cable
eflections. Data sets with different components are run through the
ull Phase I analysis pipeline (see Section 3.1 ) and the subsequent
ower spectrum estimation pipeline, HERA PSPEC . 9 In this work, we
se the power spectra made with EoR signal only, foregrounds only,
oR and foregrounds but no systematics, and EoR, foregrounds,
ystematics and instrumental effects. 

The main result of Aguirre et al. ( 2022 ) is that, for all bands and
elds considered, the HERA analysis pipeline produces unbiased
ower spectrum estimates consistent with the known analytic input at
he 2 σ level for k > 0.2 h Mpc −1 , where the EoR signal dominates the
ore grounds. On ev en smaller scales ( k � 0.4 h Mpc −1 ), the reco v ered
ignal matches the predicted noise floor P N , showing that systematics
re mitigated below the noise level. 

Note that the simulations used to validate the results presented in
he HERA Collaboration ( 2023 ) are slightly different from the ones
escribed abo v e. Namely, the EoR signal has a boosted amplitude in
he new simulations, which has the advantage of allowing for a more
recise estimate of analysis biases but is not useful for this work.
herefore, we use the validation simulations corresponding to the

imited data set used in The HERA Collaboration ( 2022 ). 
We now turn to estimate the window functions described in

ection 2 . First in the cylindrical space and then their spherical
verage for the two data sets described above. 

 RESULTS  

n Section 4.1 , we apply the formalism derived in Section 2 to obtain
he exact window functions corresponding to the analysis of the full
hase I HERA data (The HERA Collaboration 2023 ) described in
ection 3.1 . We then study the impact of different analysis choices
nd instrument characteristics, such as the frequency resolution or
he bandwidth, on the resulting window functions in Section 4.2 .
n Section 4.3 , we illustrate the importance of knowing the exact
indow functions of one’s estimator with the help of simple test cases

nd more realistic simulations. Finally, in Section 5 , we investigate
he possibility of including asymmetric window functions in the
nalysis in the hope of reducing the foreground leakage from low to
igh k -modes. 
Throughout this section, we will call ‘approximate’ window func-

ions the window functions obtained in the framework of the delay
pproximation. On the other hand, the ‘exact’ window functions are
he ones obtained following the calculations of Section 2.2 . 

.1 Cylindrical and spherical window functions 

e consider the full Phase I HERA data set introduced in Section 3.1
nd compute the corresponding exact cylindrical window functions
 ( b , τ ; k ⊥ 

, k � ) with the formalism described in Section 2 , for Band 1
nd 2, as well as for the five fields considered in the analysis. Accord-
ng to equation ( 17 ), each cylindrical window function corresponds
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Figure 5. Example of cylindrical window functions W ( b , τ ; k ⊥ , k � ) obtained with the formalism described in Section 2 for HERA Band 1 (first row) and Band 2 
(second row). Each panel corresponds to a different delay, and within each panel, the window functions corresponding to baseline lengths 38.7, 63.7, 95.8 m 

are represented. The centre (maximum) of each window function in ( k ⊥ , k � ) space is given by equation ( 22 ). Note that the k � value corresponding to each delay 
τ will slightly change between Band 1 and Band 2. This figure illustrates the contribution of neighbouring modes to the power spectrum measured at a given 
point (the centre of the window function, identified with equation ( 22 ) and shown as a cross). 

t  

a  

e  

g  

w
l  

I  

a  

c
b

c  

k  

f
(  

t
a
S  

f  

i  

b
b
N  

t  

8  

s  

s
c
t  

s
s

g
i  

n
n  

t  

o  

a  

b  

c  

t  

w

t
e
f  

f
a  

a
G
c
l
U  

s  

o  

f  

f  

10 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/1/375/6986279 by Scuola N
orm

ale Superiore Biblioteca user on 27 D
ecem

ber 2023
o a baseline-delay pair ( b , τ ). We show in Fig. 5 the result for Band 1
nd a set of HERA baseline lengths and delays. We see that, although
ach window function reaches its maximum at the expected ( k ⊥ 

, k � )
iven by equation ( 22 ) for each ( b , τ ) pair, they have a non-zero
idth, meaning power from neighbouring cylindrical k -modes will 

eak into the measurement of the power spectrum at a given ( k ⊥ 

, k � ).
n particular, longer baselines lead to a longer tail towards low k � , as
lready observed in Liu & Shaw ( 2020 ). Note that the effect will be
learer in the next section, when baselines longer than the maximum 

aseline in the current HERA array ( b > 120 m) are included. 
The spherical window functions are obtained by averaging the 

ontribution of each W ( b , τ ) window to the appropriate spherical
 -bin, as illustrated in Fig. 6 . The resulting spherical window
unctions, which were also presented in The HERA Collaboration 
 2023 ), are shown in Fig. 7 . When taking the spherical average of
he 4D exact window functions, we apply inverse-noise weighting 
nd discard flagged data, as described in Section 3.1 (see also 
ection 4.2 ), ef fecti vely cutting of f the lo w- k modes located in the
oreground wedge and neighbouring buffer ( k � 0 . 15 h Mpc −1 ), as
llustrated in the lower panel of Fig. 8 . The small difference observed
etween approximate and exact window functions can be explained 
y different factors, which we will investigate in the next section. 
otably, the baselines considered co v er a range of k ⊥ 

much smaller
han k � (5.8 × 10 −3 < k ⊥ 

/[h Mpc −1 ] < 4.7 × 10 −2 for Band 1,
.0 × 10 −3 < k ⊥ 

/[h Mpc −1 ] < 6.4 × 10 −2 for Band 2), such that a
pherical bin is roughly equi v alent to a k � and only one baseline is
ufficient to sample the spherical k -space properly. Only for small k � 
ould the difference be more significant, but these modes live inside 
he wedge. This is illustrated in the upper panel of Fig. 8 , where we
how the contribution of perpendicular and parallel modes to a single 
pherical k -bin. 
v

This close to one-to-one mapping between a given spherical k and a 
iven k � or τ can also explain the outlier window function highlighted 
n Fig. 6 . This window function, centred on k = 1 . 47 h Mpc −1 , is
arrower – hence, taller, than its neighbours. Indeed, because of the 
ormalization in equation ( 16 ), a narrower window function will be
aller , and con versely. The shape of this outlier is a symmetry effect
f the spectral window cut. Indeed, k = 1 . 47 h Mpc −1 corresponds to
 delay located one quarter of the way along the delay range defined
y that spectral window, and the low- k tail of the window function
entred on k will receive a zero contribution from delays located at
he edge of the beam, ef fecti vely lo wering the amplitude of this tail;
hilst the larger modes will not (see Appendix B for details). 
Having access to the exact cylindrical window functions is essen- 

ial to an accurate theoretical interpretation of the power spectrum 

stimates. First, convolving theoretical models with the exact window 

unctions will mo v e them to the same space as the data, hence
acilitating their comparison. Second, the window functions give 
ccess to the distribution of power in the data between line-of-sight
nd perpendicular modes, which will be useful when testing non- 
aussian models for the cosmological signal. The possibility to 

ompare theoretical models to data at the cylindrical power spectrum 

evel will be included in future versions of the HERA likelihood. 10 

ntil now, the model testing was done at the spherical power
pectrum level, where a lot of the information has been smoothed
ut: As seen in Fig. 7 , the approximate and exact spherical window
unction only differ for modes far from the centre of the window
unction, whose contribution to the bin is lower than 10 −4 . Although
MNRAS 520, 375–391 (2023) 

Available at https://github.com/HERA-Team/pspec likelihood – under de- 
elopment. 
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Figure 6. Distribution of baselines, and corresponding k ⊥ (upper panel) and delays, and corresponding k � (lower panel) per spherical bin and window function 
for Band 2 (The HERA Collaboration 2023 ). Vertical-dashed lines represent bin edges. The dashed-tilted line represents the horizon, whilst the solid-tilted line 
represent the cut taken in the analysis (the wedge buffer, see Section 3 ). Note that several baselines can be stacked on a single dot. The outlier, centred on k = 

1.47 h Mpc −1 , which is taller than the other window functions, is highlighted in red. It is investigated in Appendix B . 
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mall, this difference can become significant in the presence of
xtremely bright foregrounds, e.g. near the wedge. 

In Fig. 7 , we additionally compare our results to the exact window
unctions obtained when approximating the HERA beam by a
aussian beam (see Appendix A ). We see that the approximation
orks very well in spherical space, with the tails of the window

unctions being underestimated by only about 5 per cent . This is
xpected as these tails do not come from the beam’s side lobes,
hich will be poorly reproduced by a Gaussian, but from the shape
f the Fourier transform of the taper used along the spectral window.
e will discuss this idea further in Section 4.3 . In cylindrical

pace, because the approximated Gaussian beam is slightly wider
ut decreases much more steeply (exponentially) than the HERA
eam (Fig. A1 ), the Gaussian window functions are wider than the
xact ones by about � k ⊥ 

= 0.01 h Mpc −1 , a difference that is washed
ut by the spherical average. Along k � , because of the Gaussian beam
eing steeper, the fluctuations corresponding to the Fourier transform
f the tapering function are amplified. Ho we ver, this ef fect occurs
nly for contributions W ( k ) < 10 −6 . 
Being able to approximate the beam by a Gaussian is extremely

seful. First, because all calculations outlined in Section 2.2 can
e done analytically, a v oiding numerical issues such as resolution
r sampling limits, as well as significantly lowering computing
imes. Secondly, because accurately characterizing the beam of an
nstrument is an extremely difficult e x ercise. Different approaches
ave been used until now, including simulations (Trott et al. 2017 ;
agnoni et al. 2021b , a ), and in situ measurements (Neben et al. 2015 ;
upillo et al. 2015 ; Jacobs et al. 2017 ; Line et al. 2018 ; Nunhokee
t al. 2020 ), often with limited precision, especially on the structure
f the side lobes. 
NRAS 520, 375–391 (2023) 

s

.2 Impact of different elements on the window functions 

n this section, we investigate how the instrument characteristics,
s well as analysis choices, can impact the window functions and,
n turn, the estimated power spectrum. To ease computations, we
onsider a Gaussian beam instead of the simulated HERA beam (see
ppendix A ). 

.2.1 Weights 

e show in the top panel of Fig. 8 the cylindrical window functions
btained after adding all the ( b , τ ) pairs contributing to the spherical
in centred on k = 0 . 79 h Mpc −1 . In the middle panel, we show the
esult of applying inverse-variance weights and removing flagged
ata on the composition of the bin. As in Fig. 4 , we see that applying
eights lowers the contribution of long baselines (sampling larger
 ⊥ 

) and enhances the contribution of short baselines. Indeed, because
f the high redundancy level of the HERA array, the power probed
y short baseline lengths is sampled by many more antenna pairs
han long baselines, leading to lower noise. 

The cylindrical window functions shown in the upper and middle
anels are then spherically averaged, ef fecti vely averaging along
orizontal lines of constant k � , since k ⊥ 

� k � , and, in turn, k ∼
 � , and the resulting spherical window functions are shown in the
ower panel. Because of this average, the difference between the non-
eighted and weighted case is mostly washed out, leading to almost

dentical spherical window functions. Again, the difference is only
een for W ( k ) ≤ 10 −6 contributions. Only for low k -bins does the
eighting introduce a significant difference in the spherical window

unctions, because of the ef fecti v e remo val of the contribution from
hort baselines. 
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Figure 7. Exact spherical window functions obtained for the full Phase I 
HERA analysis of Band 1 (upper panel) and Band 2 (lower panel) (The 
HERA Collaboration 2023 ), compared to the initial computation and to a 
case where the HERA beam is approximated by a Gaussian (Appendix A ). 
The inverse-variance weighting leads to zero window functions at the largest 
scales. Most of the cylindrical structure observed in Fig. 5 is washed out 
by the spherical average due to the structure of the HERA array (see text), 
resulting in nearly identical approximate and exact window functions. The 
difference induced by the frequency-dependence and the spatial structure of 
the beam is visible in the tails of the exact window functions but only has a 
small contribution ( W ( k ) � 10 −4 ). 
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Figure 8. Perpendicular and parallel modes contributing to the spherical 
bin centred on k = 0 . 79 h Mpc −1 , after summing contributions from all ( b , 
τ ) pairs. Upper panel: No weights applied to the data. Middle panel: After 
applying inverse-variance weights and removing flagged data. As already 
seen in Fig. 4 , most of the power is redirected toward short baselines (small 
k ⊥ ). Lower panel: Resulting spherical window functions for both cases. The 
spherical average being almost horizontal ( k ∼ k � ), most of the cylindrical 
structure is lost in the average, and the spherical window functions are nearly 
identical. Only the wedge filtering has a noticeable effect. 

i  

t
f  

t  

n  

t  

i  

n  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/1/375/6986279 by Scuola N
orm

ale Superiore Biblioteca user on 27 D
ecem

ber 2023
This example demonstrates again the importance of cylindrical 
indow functions in future, high precision theoretical interpretations 
f 21 cm power spectrum measurements. 

.2.2 Spectral properties 

e compute the spherical window functions with the Gaussian beam 

or different choices of spectral windows, all analogous to Band 1, 
hat is centred on z = 10.4. We choose a set of 500 mock baselines,
hose lengths range between 1–500 m, leading to window functions 
ery different from the ones shown in Fig. 7 for the HERA baselines
 b � 120 m). 

We show, in Fig. 9 , the window function centred on k =
.79 h Mpc −1 for the HERA spectral specs (thin solid line). As
xpected, including longer baselines leads to enhanced low- k tails 
or all bins. We also show the window function obtained for the
ame bandwidth as Band 1, but doubling the frequency resolution, 
hat is for a channel width of 48 . 83 kHz instead of 97 . 66 kHz for
ERA (DeBoer et al. 2017 ) (dashed line). Both lines perfectly 
 v erlap, mostly because increasing the frequency resolution is only 
qui v alent to extending the range of k � co v ered to larger values
ut will not impact k -bins already co v ered. On the other hand,
ncreasing the bandwidth does not change the range of k � probed but
heir sampling resolution. We double the bandwidth, now including 
requencies 109.2 ≤ ν/MHz < 141.2, and show the result as the
hick purple line. We show that the resulting window function is
arrower than for the shorter bandwidth, which can be traced back
o the cylindrical window function being narrower along k � . This
s expected since the Fourier transform of a wider taper will be
arrower. We find the cylindrical window function to be wider along
MNRAS 520, 375–391 (2023) 
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Figure 9. Spherical window function centred on k = 0.79 h Mpc −1 at z = 

10.4, obtained with 50 mock baselines ranging from 10–230 m long. We 
consider different spectral parameters and characteristics of the instrument. 
The addition of long baselines (not present in the HERA array) explains why 
the window functions presented here are wider than Fig. 7 . Increasing the 
frequency resolution does not have an impact on the window functions, whilst 
increasing the bandwidth helps narrowing them down. These two effects are 
explained by a simple Fourier sampling argument (see text). 
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 ⊥ 

for a wider bandwidth. This is also expected since the beam
hift illustrated in Figs 2 and 3 will be more significant on a longer
ange of frequencies. Hence, choosing a longer bandwidth can be an
nteresting strategy to narro w windo w functions and limit foreground
eakage from neighbouring modes. Ho we ver, such a choice comes
ith theoretical drawbacks as the lightcone approximation will not
old on wide spectral windows (Barkana & Loeb 2004 ). Here,
oubling the frequency range covered is equi v alent to doubling the
edshift range to �z = 2.95, corresponding to 172 Myr. Ignoring
he line-of-sight evolution of the cosmological signal is ef fecti vely
qui v alent to underestimating (o v erestimating) the 21 cm power
n large (small) scales (Datta et al. 2012 ) and could have strong
mplications on the theoretical interpretation of the observations. 

.2.3 Spherical binning 

he choice of spherical bins used to derive upper limits from the
nitial Phase I data set (The HERA Collaboration 2022 ) has been
hanged for the newest results, based on the full Phase I data release
see Section 3.1 and The HERA Collaboration 2023 ). These new
pherical bins allow an even distribution of ( k � , k ⊥ 

) pairs probed
n each spherical bin, as illustrated in Fig. 6 . The upper and lower
anels of this figure present the distribution of baseline-delay ( b , τ )
airs contributing to each spherical k -bin for Band 2. As mentioned
efore, in the HERA data, k ∼ k � , which explains the nearly vertical
istribution of ( b , τ ) pairs in the upper panel and the nearly horizontal
istribution in the lower panel. Indeed, all baselines will contribute
o each k -bin, for a given k � , or, equi v alently, | τ | . We sho w the
orresponding spherical window functions obtained for weighted
ERA data in the middle panel. 
To a v oid sampling errors, it is necessary to make sure at least one

elay is included in each k � -bin when choosing the grid the window
unctions will be computed along. The spacing � k � between two
odes must be a multiple of 2 π�τ / α( z) where �τ is the spacing

etween two measured delays, that is 1/ B where B is the length of the
pectral window considered. Because, for HERA, the k ⊥ 

sampled
y the instrument are shorter than the k � by at least one order of
NRAS 520, 375–391 (2023) 
agnitude, choosing the spherical binning is ef fecti vely equi v alent
o choosing the k � binning. Hence, to not o v ersample the k -range,
ne must ensure that � k is a multiple of 2 π/ B α( z). 
The abo v e e xamples show what impact some analysis choices,

uch as the bandwidth or the k -sampling pattern, can have on the win-
ow functions and, subsequently, on power spectrum measurement
nd analysis. In the following section, we demonstrate for several
est cases the importance of window functions when reconstructing
he 21 cm power spectrum via a delay-based analysis. 

.3 Validation 

n this section, we illustrate how window functions can explain mode
ixing by analysing the impulse response of the power spectrum

stimator. We then proceed to apply the exact window functions to
he validation simulations presented in Aguirre et al. ( 2022 ) for a
ata set made of a known cosmological signal, following a power
aw, as well as physical foregrounds (see Section 4.3 for details). 

.3.1 Toy models to illustrate mode mixing 

s a proof of concept, let us consider the impulse response of the
ower spectrum estimator. That is, we consider a spherical power
pectrum such that 

 in ( k) = 

{ 

10 10 if k = k 0 , 

1 else , 
(26) 

nd construct the corresponding power in cylindrical space for the
ERA setup, P in ( k ⊥ 

, k � ), shown in the left-hand panel of Fig. 10 .
e then use equation ( 17 ) to obtain the estimated bandpowers for

he input power spectrum: 

ˆ 
 out ( b, τ ) = 

∫ 
d k ⊥ 

d k ‖ P in ( k ⊥ 

, k ‖ ) W ( k ⊥ 

, k ‖ ; b, τ ) . (27) 

he estimator at ( b , τ ) is then matched to the appropriate ( k ⊥ 

,
 � ) pair according to equation ( 22 ). Results for Band 1 are shown
or the cylindrical and spherical power spectra in, respectively, the
iddle and right-hand panels of Fig. 10 . We compare several results

n spherical space: The power spectrum reco v ered with window
unctions, including or not the data noise errors and flagging (see
ection 3.1 ), in the dashed purple and thick pink lines, respectively.
e also show the results obtained with weighted window functions

or a Gaussian beam and for the HERA beam, but without applying
 tapering function along the spectral window. 

We see that despite the input power being o v erall well reco v ered,
he estimated power spectrum contains power at scales k �= k 0 , which
s a perfect illustration of mode mixing (Morales et al. 2012 ). The
hape of the reco v ered spherical power spectrum is the exact shape
f the spherical window function at the corresponding k -bin, scaled
y the amplitude of the input power. We find that the power at
 = k 0 is underestimated by a factor three, whilst the power in
eighbouring cylindrical cells is overestimated by a factor eight. As
lready noted in Section 4.2 , applying inverse-variance weights to
he window function only has a small impact on the reco v ered power,
emoving the contribution from low- k modes or small delays located
n the foreground wedge. Indeed, the weights change the sampling
attern along k � (see Fig. 8 ), to which the spherical window functions
re only weakly sensitive. The Gaussian approximation once again
erforms well, slightly enhancing the modulations around the peak
ue to the Gaussian beam power decreasing exponentially with k ⊥ 

,
n contrast to the simulated HERA beam. 
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Figure 10. Impulse response of the interferometer, illustrating mode-mixing. We compare the input (Dirac) power spectrum given in equation ( 26 ) to the 
resulting estimated bandpowers obtained with the HERA window functions on Band 1 by applying equation ( 27 ). Left and middle panels: Cylindrical power 
spectra. Right-hand panel: spherical power spectrum. In the right-hand panel, we compare the spherical power spectra obtained in different cases: With exact 
window functions but with or without weights (dashed-purple line, thick-pink line, respectiv ely), without a frequenc y taper (dash–dotted line), or with weights 
and taper but a Gaussian beam (thick-light blue line). We see that mode mixing leads to power leaking outside of the impulse, and so missing power in the 
estimator at k = k 0 . This effect is, however, mitigated by the use of a taper, which ho we ver adds structure to the recovered cylindrical power (see the ripples in 
the middle panel). Again, the Gaussian approximation of the beam performs well. 
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Figure 11. Input (upper panel) and reco v ered (lower panel, equation 27 ) 
spherical power spectra for a toy model including a Gaussian cosmological 
signal and a simplified (diffuse) foregrounds model where the foregrounds 
are limited to k � < k lim 

, represented as the vertical line in the lower panel. 
This figure illustrates how the exact window functions can explain foreground 
leakage around the wedge. 
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These modulations, also seen as ripples along k � in the reco v ered
ylindrical power spectrum, correspond to the Fourier transform of 
he beam being convolved by the Fourier transform of the tapering 
unction, a leakage that was already observed in Aguirre et al. ( 2022 ).
f no taper (or a step-like taper) is applied, the Dirac input power
pectrum is smeared into a k −2 

‖ power-law corresponding to the 
ourier transform of the step function – the sinc function. This is
isible in the right-hand panel, where we show the spherical power 
pectrum reco v ered in the no-taper case. According to Tegmark 
 1997 ), a way to mitigate this effect would be to impro v e the
odelling of the data covariance matrix and doing so equi v alently

ower the weights applied to the edges of the spectral window. 
dditionally, applying a taper such as Blackman–Harris widens the 

ails of the window functions as it reduces the ef fecti ve bandwidth by
alf (see Section 4.2 ). We refer the interested reader to Th yag arajan
t al. ( 2013 ) for a discussion of the impact of tapering choices in
erms of foreground leakage. 

Let us now increase the complexity of the model and consider 
 simplified foregrounds and cosmological model, defined on the 
wo HERA Bands. We generate a Gaussian cosmological signal in 
D Fourier space such that P cosmo ( k ) ∝ k −2 , following Aguirre et al.
 2022 ). We add a simplified foreground model, analogous to a diffuse
ky model, such that 

 fg ( k ⊥ 

, k ‖ ) = 

{ 

10 6 if k ‖ < k lim 

, 

1 else , 
(28) 

here k lim 

= 0 . 15 h Mpc −1 , corresponding to the wedge limit (see
.1 ). These two contributions, along with their sum, which is our
ock signal, are shown as spherical power spectra in the upper panel

f Fig. 11 for Band 1. Because there are no correlations between the
osmological and foreground signals, the two power spectra simply 
dd up: P in ( k ) = P cosmo ( k ) + P fg ( k ). 

Again, we use the exact window functions and equation ( 27 ) to
btain the estimated bandpowers corresponding to the HERA analy- 
is. We compare in the lower panel of Fig. 11 the difference between
he input P in ( k ) and the output P out ( k ) spherical power spectra. Some
eakage of the foregrounds power above k lim 

is visible in cylindrical 
nd spherical space, extending to ∼ 2 k lim 

= 0 . 30 h Mpc −1 . Note that
he reconstruction is identical for a Gaussian beam. 
MNRAS 520, 375–391 (2023) 
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M

Figure 12. Comparison between the input power-law power spectrum (solid- 
black line), and the reco v ered one (data points), obtained by running simulated 
visibilities through the HERA PSPEC pipeline o v er a 100 < ν/MHz < 140 
bandwidth. Accounting for aliasing (see Appendix B of Aguirre et al. 2022 ) 
corrects for the reco v ery bias on small scales ( k � 0 . 4 Mpc −1 , dashed line) 
whilst including the window function weighting (equation ( 17 ), shown on the 
lower panel in alternate colours) impro v es results on larger scales (solid-red 
line). 
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11 Because H is symmetric and positiv e-definite, the Cholesk y decomposition 
is unique. 
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.3.2 Validation simulations 

e now consider the validation simulations introduced in Aguirre
t al. ( 2022 ) and succinctly described in Section 3.2 . We take the data
et made of the mock EoR signal only, noting that it is simulated to
ave a power spectrum P ( k ) ∝ k −2 . No foreground emission, noise,
r instrumental corruption beyond the beam is included in the data.
e consider a bandwidth 100.0 < ν/MHz < 114.0 centred on z =

2.3. 
These simulated visibilities are run through the HERA analysis

ipeline, and Fig. 12 presents the resulting power spectrum (blue
ata points) compared to the theoretical input power (black line). As
n Aguirre et al. ( 2022 ), we find that the reco v ered power spectrum
s generally in good agreement with the theoretical P ( k ) ∝ k −2 on
he central modes of the k -range. Namely, this test validates the
ormalization conventions and cosmological conversions carried out
hroughout the analysis. Ho we ver, there is a clear discrepancy on
arge and small scales. On small scales, the authors of Aguirre
t al. ( 2022 ) find that the positive bias can be corrected by a simple
pproximation of the aliasing effect, as illustrated in Fig. 12 as the
ashed line. This correction brings the reco v ery back to a 5 per cent
recision on k � 0 . 4 Mpc −1 . On large scales, the discrepancy is
artly due to the window functions: For each k -bin, the estimated
ower spectrum is effectively a weighted average of the true power
pectrum o v er neighbouring modes. Since the input power spectrum
s a decreasing function of k , this effect is stronger for low k -modes,
orresponding to a larger power. We use equation ( 17 ) to correct
or this effect by including the window function weighting in the
stimated power. We achieve a better recovery of the input power
pectrum, reducing the discrepancy that was seen in Aguirre et al.
 2022 ): All modes k > 0 . 04 Mpc −1 are reco v ered within a 5 per cent
NRAS 520, 375–391 (2023) 
recision. Ho we ver, the asymmetry on the window functions on the
dge of the k -range leads to a largely underestimated power for the
rst few bins. Note that, in this example, only one realization of the
ock EoR signal is used, but an even better precision can be achieved

y averaging over several realizations: In Aguirre et al. ( 2022 ), the
liasing corrections averaged over 50 realizations leads to a better
han 1 per cent precision on the reco v ered power. 

 ASYMMETRI C  W I N D OW  F U N C T I O N S  

n this section, we investigate the potential of asymmetric window
unctions, that is window functions with a deflated low- k tail,
o mitigate foreground leakage around the wedge. To do so, we

odify the normalization matrix included in the analysis (see
ection 2.1 ) to change the shape of the window functions and
btain a window function matrix that is upper triangular. Note
hat this step is fully independent of the exact window functions

entioned in previous paragraphs: The exact window functions
re an intrinsic effect of the data going through the instrument,
hilst the analysis choices we make here are, in contrast, applied to

lready squared data, that is already formed delay power spectrum 

stimators. 
We perform a Cholesky decomposition of the response matrix H 

11 

ntroduced in Section 2.1 , that is we can write H = LL 

† , where L
s a lower triangular matrix with real and positive diagonal entries,
nd the dagger denotes the conjugate transpose of L . Identifying
ith the terms of equation ( 7 ) and observing that all the terms in
 are real, we have M = L 

−1 and W = L 

t , the transpose of L .
e adjust the normalization of each row of M to ensure that the

esulting window functions sum to one for each bin. The resulting
symmetric window function matrix in instrument space is presented 
n Fig. 13 . 

There are some technical subtleties one needs to be aware of
hen substituting for the new normalization matrix in the analysis.
irst, the two axes of W correspond to, respectively, delay- and
osmological space, which are identified in the framework of the
elay approximation. When the delay bandpowers will be binned
y k ∼ | τ | to form a spherical power spectrum, the window
unctions will ef fecti vely be folded along the delay axis. Hence,
o obtain an asymmetric window function in spherical space with
 smaller low- k tail, one must define a block window function
atrix made of two blocks: A lower triangular block for ne gativ e

elays and an upper triangular for positive delays. This structure is
learly visible in Fig. 13 . Second, the normalization of M must be
djusted to ensure the normalization of the window functions as in 
quation ( 5 ). 

In Fig. 14 , we present the result of applying these asymmetric win-
ow functions to the validation simulations introduced in Section 3.2
or Field 1 (first LST cut) and Band 2. Here, the simulations include
oth the foregrounds and the EoR signal, as well as instrument
ystematics such as thermal noise, cable reflections, antenna gains,
nd cross-coupling. The visibilities are run through the analysis
ipeline, including redundant and absolute calibration, RFI flagging,
ystematics removal, and coherent time average. The resulting power
pectra are then averaged by redundancy and spherically to obtain the
stimated power spectra presented in the upper panel of the figure,
or the original and the asymmetric window functions (shown in the
ower panel), with 2 σ error bars. These results are compared to the

art/stad090_f12.eps
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Figure 13. Top panel: The window function matrix obtained through the 
Cholesky decomposition of the response matrix H for b = 44 . 1 m. Lower 
panel: Rows of the window function matrix corresponding to | τ | = 0 . 26 μs, 
for the Cholesky decomposition and the fiducial case. The symmetry of the 
matrix with respect to τ = 0 s is a requirement to keep the window function 
asymmetric after folding the delay power spectra. 
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Figure 14. Upper panel: Reco v ered power spectra after running the full 
validation simulations of (Aguirre et al. 2022 ) through the HERA analysis 
pipeline, including systematics treatment, for the fiducial analysis (in blue), 
or the Cholesk y-deriv ed asymmetric window functions (in dark purple). 
Middle panel: Ratio of the reco v ered to the EoR po wer spectrum. Lo wer 
panel: Corresponding spherical window functions. The spherical binning 
leads to non-zero low- k tails of the asymmetric window functions, compared 
to Fig. 13 . In all panels, open-filled plot symbols correspond to ne gativ e values 
of the estimated power. Because of their enhanced high- k tail, the asymmetric 
window functions integrate down to a k -value slightly larger than the fiducial 
ones – explaining the shift between the light and the dark symbols. In both 
cases, the EoR signal and the noise are reco v ered within error bars in the 
region of k -space where they dominate, respectively. Applying asymmetric 
window functions does not seem to have a significant impact on the reco v ered 
power. 
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oise floor, obtained with equation ( 24 ), and to the power spectrum
btained when following the same steps, but for visibilities including 
he EoR signal only – and no systematics. The middle panel shows the 
atio of reco v ered power spectrum for the full data to the EoR-only
ower spectrum. 
As already observed in Aguirre et al. ( 2022 ), in both cases, the EoR

ignal is reco v ered within error bars in the region of k -space where it
ominates both the foregrounds and the noise (0.17 � k /[h Mpc −1 ]
 0.33). On smaller scales, the reco v ered spectra are consistent with

oise, proving that the systematics have been efficiently removed 
nd that the analysis has not produced additional biases. Note that 
he results presented here only correspond to a sub-set of the full
alidation simulations, so that the reco v ery statistics are not as good
s the results presented in Aguirre et al. ( 2022 ). The impact of the
symmetric window functions is difficult to assess. In the region 
urrounding the foreground wedge ( k ∼ 0 . 15 h Mpc −1 ), the power
pectrum reco v ered with asymmetric window functions is closer to 
he EoR signal: It is 50 per cent –80 per cent smaller in amplitude 
han with the original window functions. 

In the previous sections, we have demonstrated the importance 
f knowing the exact window functions of a given power spectrum 

stimator to correctly assess the amount of foreground signal leak- 
ng into the cosmological signal beyond the wedge and, in turn, 
ake an accurate theoretical interpretation of the observations. We 

ave attempted to mitigate this intrinsic effect by post-processing 
he already formed delay power spectra with asymmetric window 

unctions, whose deflated low- k tails prevent some of the foreground 
eakages near the edge of the wedge. Ho we ver, more aggressi ve
oreground mitigation requires a more upstream approach, including 
xplicit filtering. 
 C O N C L U S I O N S  

hen constructing a power spectrum estimator from low-frequency 
nterferometric data, proper knowledge of the mapping between 
nstrumental and cosmological space that is of the window functions 
f the power spectrum estimator is crucial to the correct theoretical
nterpretation of observations. In this paper, we introduced a for- 

alism to derive these window functions, which can be applied to
ny delay-based analysis (Section 2.2 ). We demonstrated the impact 
f different analysis choices on the window functions, arguing in 
a v our of a choice of spherical bins consistent with the spectral
indow considered (Fig. 6 ). Namely, we showed that including long
aselines in the analysis tends to enhance the low- k tails of the
pherical window functions, facilitating foreground leakage outside 
f the wedge. On the other hand, considering a wide spectral window
an help narrow down the window functions and concentrate the 
easured power around the centre of the bin (Fig. 9 ). However,

uch a choice can bias power spectrum estimates as it is in tension
ith the lightcone approximation, in which the fluctuations of the 

osmological power along the bandwidth are ignored (Datta et al. 
MNRAS 520, 375–391 (2023) 
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012 ). In a similar way, the choice of the taper used to a v oid edge
ffects along the bandwidth has a strong impact on the window
unctions (e.g. Fig. 10 ; Th yag arajan et al. 2013 ). 

We focused on the HERA as a case study. We derived the window
unctions used in the analysis of the full Phase I data, which led to
he deepest upper limits on the power spectrum of the high-redshift
uctuations of the 21 cm signal (The HERA Collaboration 2023 ).
hese window functions explain part of the discrepancy observed
etween a theoretical model ( P ( k ) ∝ k −2 ) and the power spectrum
stimated after running a realization of this model through the HERA
nalysis pipeline (Fig. 12 and Aguirre et al. 2022 ). Additionally, we
ho wed ho w the exact windo w functions are shaped by the charac-
eristics of the array. HERA is designed to maximize redundancy,
ith many short baselines and few long ones, such that k ∼ k � . This

trategy has the advantage of limiting foreground leakage by limiting
he intrinsic asymmetry of the window functions. However, most of
he instrument- and data-specific structure present in the cylindrical
indow functions, conv e yed through weights and data flagging,

s lost in spherical space (Fig. 8 ), illustrating the importance of
onfronting theoretical models with observations before performing
he spherical average. Such an approach, made possible by the
ormalism introduced in this work, will be applied to future analyses
f the HERA data. Finally, we find that, thanks to the structure of
he array, a precise knowledge of the structure of the beam is not
ecessary to obtain accurate window functions, even in cylindrical
pace: Throughout this work, we have compared the results obtained
sing a beam simulation (Fagnoni et al. 2021b , shown in Fig. 1 ) 12 or
 Gaussian approximation of the beam (Appendix A ), and found little
o no difference (e.g. Fig. 7 ). On the other hand, the chromaticity of
he beam (Fig. 2 ) is a crucial element of the window functions. In
he context of the HERA analysis, we have used simple test cases
o illustrate how the frequency-dependence of the beam leads to
ode mixing and foregrounds leaking from their wedge into the
oR window (Figs 10 and 11 ). In order to correct for this leakage
 posteriori, we modified the power spectrum estimator to form
symmetric window functions with deflated low- k tails (Fig. 13 ). We
nd that applying this technique to simulated visibilities (Aguirre
t al. 2022 ; The HERA Collaboration 2022 ) can prevent some
oreground leakage near the edge of the wedge, but that aggressive
oreground mitigation requires upstream analysis techniques and
ltering (Fig. 14 ). 
The results presented in this paper are a step towards a better

nderstanding of the systematics currently preventing detection of the
1 cm signal from the Cosmic Dawn and the Epoch of Reionization.
ylindrical window functions will be instrumental in using upper

imits – and a future detection, to constrain theoretical models of the
igh-redshift Universe. 

C K N OW L E D G E M E N T S  

he authors thank Jordan Mirocha, Ronniy Joseph, and Ian Hothi
or their valuable insight on this project, as well as for their support
hroughout. 

This material was based upon work supported by the National
cience Foundation under grant numbers 1636646 and 1836019 and

nstitutional support from the HERA collaboration partners. This
NRAS 520, 375–391 (2023) 

2 The results presented in this paper were obtained with simulations of the 
APER dipole feeds (Fagnoni et al. 2021b ). They will need to be updated for 
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Figure A1. Result of fitting a Gaussian to the HERA beam (solid lines) 
for pseudo-Stokes I polarization at 113 . 7 MHz . The shaded areas represent 
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is the beam obtained with the equation ( A2 ). 
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M

Figure A2. Full-width half-maximum of the Gaussian fit of the HERA beam, 
for different polarization channels, as a function of frequency (solid lines). 
The four data sets are fitting by a linear evolution in frequency (equation A2 ), 
resulting in the dashed line. Shaded areas represent the 68 per cent confidence 
intervals. The solid black line represents the evolution given in equation ( A1 ). 

Figure A3. Relati ve dif ference between the exact spherical window func- 
tions and different approximations for Band 1 of the HERA analysis, at k = 

0.48 h Mpc −1 . 
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Figure B1. Difference between the outlier spherical window function (solid 
pink line) and a (shifted) regular neighbour (dashed-black line). 
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eam are largely underestimated by the Gaussian, which will have a
ignificant impact on measurements of large amplitude signals, such
s foregrounds. Ho we ver, we do not expect the impact to be large on
indow functions. 
As frequency increases, the width σ b of the beam decreases, as

llustrated in Fig. A2 . This dependency is expected as we have the
ull-width half-maximum of the beam equal to 

FWHM 

= 

λ( z) 

b 
, (A1) 

here λ( z) ≡ 21 cm × (1 + z) is the redshifted 21 cm wavelength
nd b is the characteristic baseline length of the array. For HERA
1C IDR3 data, this value is equal to the mean baseline length, after
NRAS 520, 375–391 (2023) 
pplying inverse noise-variance weights: b = 19 . 58 m. In Fig. A1 ,
e show this evolution to compare with the Gaussian width fitted

o the simulation. To model the frequency-response more precisely,
e fit the data with a straight line to the obtained widths for four
olarization channels and obtain 

b ( ν) / [ deg ] = −(0 . 0343 ± 0 . 0003) ν/ν0 + (11 . 30 ± 0 . 04) , (A2) 

or ν0 = 1 MHz . We compare the beam obtained with this linear
odel to the true beam at ν = 113.7 MHz and for pI polarization in
ig. A1 , and we find a reasonably good match. 
The resulting spherical window functions, once inverse-noise

ariance weights have been applied, are shown in Fig. 7 . We see
hat the Gaussian beam is a very good approximation of the exact
indow functions, despite the suppression of the tails of the beam

een in Fig. A1 . A closer look shows that the tails of the window
unctions are underestimated by about 5 per cent in the Gaussian
pproximation – this missing power is found in a slightly higher peak,
ompared to the approximate window functions underestimating the
ails by as much as 77 per cent , as illustrated in Fig. A3 . 

PPENDI X  B:  I NVESTI GATI NG  T H E  OUTLIER  

n this appendix, we investigate the amplitude difference observed
n Fig. 6 between the spherical window function centred at k =
 . 47 h Mpc −1 and its neighbours. As illustrated in Fig. B1 , we find
hat the larger amplitude can be explained by a weaker tail on
he low- k side, which is compensated by a larger amplitude when
ormalizing. 
This difference stems from the cylindrical binning of the window

unctions. Indeed, when building the spherical window functions,
e subsequently bin the Fourier transform of the beam 

˜ A ( q ⊥ 

, η)
long k ⊥ 

and k � using equations 19 and 20 . In particular, the window
unction centred on k = k 0 , mapping to k � = k � , 0 and τ = τ 0 , receives
ontributions from all the modes along η such that 

 ‖ , 0 = 

2 π

α( z) 
| η + τ0 | = 

2 π

α( z) 
τ0 , (B1) 

hich is reached for η = 0 and η = −2 τ . The latter is only achieved if
≤ B /4, where B is the bandwidth considered. Changing coordinates

art/stad090_fa2.eps
art/stad090_fa3.eps
art/stad090_fb1.eps


Exact window functions of the 21cm power spectrum 391 

F  

w  

c

f  

i

 

c  

f  

z  

W
 

η  

i

r  

f  

b
b  

r

1 Department of Physics and McGill Space Institute, McGill University, 3600 
University Street, Montreal, QC H3A 2T8, Canada 
2 School of Earth and Space Exploration, Arizona State Univer sity, Tempe , 
AZ 85287-1404, USA 

3 Department of Astronomy, University of California, Berkeley, CA 94720- 
3411, USA 

4 South African Radio Astronomy Observatory, Black River Park, 2 Fir Street, 
Observatory, Cape Town, 7925, South Africa 
5 Department of Physics and Astronomy, University of Pennsylvania, Philadel- 
phia, PA 19104-6396, USA 

6 Cavendish Astrophysics, University of Cambridge, Cambridge CB3 0HE, 
UK 

7 Department of Physics, Winona State University, Winona, MN 55987, USA 

8 INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna, Italy 
9 Department of Physics and Electronics, Rhodes University, PO Box 94, 
Grahamstown, 6140, South Africa 
10 National Radio Astronomy Observatory, Charlottesville, VA 22903, USA 

11 Jodr ell Bank Centr e for Astrophysics, University of Manc hester, Manc h- 
ester, M13 9PL, UK 

12 Department of Physics and Astronomy, University of Western Cape, Cape 
Town, 7535, South Africa 
13 Department of Physics, Brown University, Pro vidence , RI 02906, USA 

14 National Radio Astronomy Observatory, Socorro, NM 87801, USA 

15 Radio Astronomy Lab, University of California, Berkeley, CA 94720-3411, 
USA 

16 Department of Physics, University of California, Berkeley, CA 94720-3411, 
USA 

17 Department of Physics and Astronomy, University of California, Los 
Angeles, CA 90095-1547, USA 

18 National Radio Astronomy Observatory, Socorro, NM 87801-0387, USA 

19 School of Physics, University of Melbourne, Parkville, VIC 3010, Australia 
20 Department of Physics, University of Washington, Seattle, WA 98195-1560, 
USA 

21 eScience Institute , Univer sity of Washington, Seattle , WA 98195-1560, USA 

22 MIT Kavli Institute, Massachusetts Institute of Technolo gy, Cambridg e , MA 

02139, USA 

23 Department of Physics, Massachusetts Institute of Technolo gy, Cambridg e , 
MA 02142, USA 

24 Department of Computer Science , Univer sity of Nevada, Las Vegas, NV 

89154, USA 

25 Nevada Center for Astrophysics, University of Nevada, Las Vegas, NV 

89154, USA 

26 Scuola Normale Superiore, I-56126 Pisa, Italy 
27 Commonwealth Scientific and Industrial Research Organisation (CSIRO), 
Space & Astronomy, P. O. Box 1130, Bentley, WA 6102, Australia 
28 Center for Astrophysics, Harvard & Smithsonian, Cambridg e , MA 02138, 
USA 

29 American Astronomical Society, Washington, DC 20006, USA 

This paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/1/375/6986279 by Scuola N
orm

ale Superiore Biblioteca us
igure B2. Normalized Fourier transform of the beam 

˜ A ( q ⊥ , η) at q ⊥ = 0,
here the signal is maximal, as a function of η and for different coordinate

hanges: folding ( η
′ = | η| ) and translation ( η

′ = η + �η). 

rom η to k � is equi v alent to translating and folding ˜ A ( q ⊥ 

, η),
llustrated in Fig. B2 . On this figure, we see that: 

(i) For small translations (third panel), | τ | < B /4, two modes will
ontribute to each k -bin: η = 0 and η = −2 τ . Since η = −2 τ is far
rom the centre of the beam, its contribution will al w ays amount to
ero, and hence the total contribution (the mean of the two) will be
 ( η = 0)/2. 
(ii) For large translations (fourth panel), | τ | > B /4, only one mode,
= 0, contributes to each k -bin. The difference with the abo v e case

s washed out by the normalization. 
(iii) For a translation exactly equal to a quarter of the whole η

ange (second panel), or | τ | = B /4, the left-hand side of the window
unction ( k � < k � , 0 ) will be probed twice, with one of the contributions
eing zero, whilst the right-hand side of the window function will 
e probed only once (( k � > k � , 0 )), explaining the asymmetry in the
esulting window function and the weaker tail at low k . 
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