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1 | INTRODUCTION

Ischaemia is the key risk factor for the failure of diabetes-related foot
ulceration healing and increases the risk of hospital admission and
major amputation.! Together with ischaemic gangrene and ischaemic
rest pain, ischaemic ulceration constitutes one of the presentations of
chronic limb threatening ischaemia (CLTI). The treatment of CLTI fo-
cuses on revascularisation by open or endovascular surgery along with
treatment of associated infection and wound debridement as recom-
mended by global guidelines.>? Revascularisation is the main treat-
ment of CLTI but is not always possible or successful with minor and
major amputation still being a common outcome, thus highlighting the
need for identifying additional treatments.™® This narrative review
discusses the pathological factors driving impaired wound healing and
the findings from recent animal model studies and clinical trials to

develop new therapies for CLTI and ischaemic wounds.

2 | ANIMAL MODELS OF FOOT ISCHEMIA

Animal studies of peripheral artery disease (PAD) employ surgically
induced hind limb ischaemia (HLI) (Supplement Figure 1).*> Most
studies have used surgical ligation or excision.>® Less commonly,
artery occlusion was achieved by cautery or injecting particles into
the artery (Supplement Figure 1).”® Photochemical induction of
thrombotic artery occlusion has also been used.” Mice are the most
commonly used animal models due to their low cost and the avail-
ability of a range of genetic tools to study the effects of individual
pathways. Other species used include rats, rabbits and pigs.> Mouse
strains vary in terms of their susceptibility to ischaemia induction,
with C57BL/6 being relatively resistant whilst BALB/c being very
sensitive.’® In BALB/c mice, proximal as opposed to distal artery
occlusion causes more severe ischaemia.'* In C57BL/6 mice, which is
a common background for most genetically modified models, excision
of the femoral artery causes a rapid reduction in limb blood supply,
which recovers to normal within 4 weeks (Supplement Figure 2).°
Placement of ameroid constrictors around the femoral artery causes
gradual femoral artery narrowing over 3-5 days, and it is believed to
cause less rapid increase in shear stress, more limited induction of
growth factors and less severe mobilisation of inflammatory cells that
limits blood flow recovery.*? This model was recently extended by a
second stage procedure performed 2 weeks after ameroid placement
when the femoral artery and any collateral arteries were excised
(Supplement Figure 2).° This two-stage procedure leads to prolonged
severe ischaemia and impaired ambulation not evident after femoral
excision alone, better simulating the human presentation of PAD
(Supplement Figure 2).° It should be noted, that all these animal
models have multiple limitations in simulating human PAD. For
example, ischaemia induced in these animal models does not result
from atherosclerosis, as in humans. Furthermore, there are multiple
pathophysiological differences between humans and rodents. As a
result, translating findings from animal models to patients remains

challenging.

3 | TARGETING INFLAMMATION IN ISCHEMIC
AND DIABETES-RELATED WOUNDS

3.1 | Rewiring macrophage polarisation

Ischaemia drives an inflammatory response that contributes to tis-
sue perfusion recovery. Macrophages, which produce growth factors
for vascular remodelling, are essential for this process. Uncontrolled
macrophage activation is implicated in delayed wound healing and
thus manipulation of macrophages has been proposed to promote
wound healing. Iron overload has been implicated in ischaemia
associated with renal failure and induces a pro-inflammatory M1
activation state in macrophages, triggering senescence in resident
fibroblasts and impairing wound healing.*>'* A study using a HLI
mouse model found that the lipid mediator resolvin D1, acting
through its receptor ALX/FPR2 on macrophages, promotes perfu-
sion recovery.'® Tissue macrophages can be instructed to resemble
tumour-associated macrophages, thereby helping in suppressing
inflammation, stimulating angiogenesis, and activating fibroblasts,
ultimately leading to an improvement in diabetic wound healing.*®
In a study conducted on 60 individuals without diabetes and 53
patients with type 2 diabetes, we examined monocyte subsets based
on CD (cluster of differentiation) 14 and CD16 markers and char-
acterised them as M1 (CDé68(+)CCR2(+)) and M2 (CX3CR1(+)
CD206(+)/CD163(+)) monocytes based on in vitro phenotypes.”
Patients with diabetes showed an imbalanced M1/M2 ratio, pri-
marily due to a reduction in M2 monocytes. The M1/M2 ratio was
correlated with waist circumference and HbA1c levels. Among dia-
betic patients, the decrease in M2 monocytes and increase in the
M1/M2 ratio were specifically associated with microangiopathy.
Additionally, there was a decrease in M2 monocytes in the bone
marrow of diabetic patients, with a relative excess of M2 cells in the
bloodstream. Stimulation of the bone marrow with granulocyte-
colony stimulating factor mobilised M2 macrophages in diabetic
individuals but not in healthy individuals. Thus, the study demon-
strates that type 2 diabetes leads to a significant reduction in anti-
inflammatory M2 monocytes, primarily due to dysregulation in bone
marrow function. This defect may have a negative impact on
microangiopathy, suggesting that the imbalance in monocyte
polarisation may contribute to the development of complications in
distant organs, including the wound sites.?” To understand the im-
plications of these findings in the diabetic ischaemic wound healing
process, it should be emphasised that M2 macrophages, which are
defective in diabetes, are directly implicated in angiogenesis and
responses to ischaemia. M2 macrophages secrete various factors
and cytokines that promote angiogenesis. In addition to growth
factors, M2 macrophages produce enzymes, such as matrix metal-
loproteinases that facilitate the remodelling of the extracellular
matrix, allowing endothelial cells to migrate and form new vessels.
They also secrete cytokines such as interleukin-8 (IL-8) and tumour
necrosis factor-alpha that promote endothelial cell proliferation and
vessel sprouting. Furthermore, M2 macrophages can directly

interact with endothelial cells through cell-cell contact and the
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release of adhesive molecules. These interactions help in the sta-
bilisation and maturation of newly formed blood vessels.'®

Comorbidities often observed in diabetes, such as dyslipidemia,
can also contribute to an imbalance in monocyte phenotype and can
sustain the ischaemic component of delayed wound healing. In in-
dividuals with familial and non-familial (NFH) hypercholesterolaemia,
compared to those with normocholesterolemia (CTRL), higher levels
of circulating pro-inflammatory M1 monocytes were detected,
marked by the CD68(+)CCR2(+) phenotype. Additionally, NFH in-
dividuals showed reduced anti-inflammatory M2 monocytes, char-
acterised by the CX3CR1(+)CD163(+)/CD206(+) phenotype. The
M1/M2 ratio was increased in hypercholesterolemic individuals and
correlated with pre-treatment low density lipoprotein-cholesterol
levels, and was strongly associated with the severity of atheroscle-
rosis. This study suggests that human hypercholesterolaemia is linked
to an imbalance of circulating monocytes, favouring a pro-
inflammatory state. This imbalance can potentially contribute to
the development of atherosclerosis, thereby sustaining the ischaemic
component of delayed wound healing.*’

Ding and colleagues analysed publicly available transcriptomics
data and found downregulation of period circadian regulator 1 gene
expression in monocytes from patients with CLTI compared to con-
trols.2° In C57BL/6 mice, an adenovirus delivering mRNA expressing
period circadian regulator 1 significantly improved recovery of blood
flow following femoral artery excision. This effect was associated with
a switch in macrophage phenotype from M1 to M2 and increased
capillary density. It should be noted that the role of monocyte-
macrophage phenotype may be different in men and women. Oes-
trogen treatment can protect against the inflammatory response
induced by M1 stimuli in macrophages, whereas the loss of oestrogen
during menopause is associated with impaired M2 activation.?!

Notably, targeting macrophage polarisation has recently reached
clinical application. A novel compound (ON101) that inhibits pro-
inflammatory M1 macrophages and stimulates adipose precursor
cells to secrete granulate colony stimulating factor and CXCL3 to
increase anti-inflammatory M2 macrophages was tested in a multi-

1.2 Among 236 patients with

centre, phase 3 randomized clinical tria
diabetes and Wagner grade 1 or 2 foot ulcers, those randomized to
ON101 cream had an increased rate of healing (odds ratio 2.84) than
those in the comparator group. There is a great expectation that new
therapeutics directed to rewiring macrophage polarisation will also
aid healing of ischaemic wounds, but to date there is no definite

clinical demonstration.

3.2 | Disarming neutrophils

Neutrophils can interact with macrophages to impair wound resolu-
tion. Neutrophils release web-like structures called neutrophil
extracellular traps (NETs) to trap and kill pathogens (NETosis).
Neutrophil extracellular traps act as a physical barrier and contain
antimicrobial components that neutralise and immobilise microbes,

thereby aiding in host defence against infections. The role of NETs in

the healing of DFUs has been examined in a growing number of
studies in the last 10 years, making it a current hot topic in this
research field.?® A study demonstrated that neutrophils from diabetic
individuals and mice are primed to produce NETs.2* Higher levels of
NETSs and delayed wound healing were observed in diabetic mice, but
these effects were mitigated in mice lacking peptidylarginine deimi-
nase 4 (PAD4). Additionally, disrupting NETs with DNase 1 acceler-
ated wound healing in both diabetic and non-diabetic mice. These
findings suggest that inhibiting NETosis could be a potential strategy
to improve wound healing in diabetes.?* Some of the mechanisms
that sustain NET release have been clarified, including oxidative
stress, epigenetic changes driven by microRNAs and activation of the
inflammasome.?> We found that, in patients with diabetes, neutro-
phils are prone to release NETSs. Specifically, NET components were
enriched in samples collected from non-healing DFUs, and high levels
of neutrophil elastase in the wounds were associated with infection
and worsened ulcer outcomes.?® Furthermore, inhibiting the activity
of PAD4, an enzyme involved in NETosis, improved wound healing in
diabetic mice.2® The observation that NET components are over-
represented in non-healing diabetic wounds has been confirmed by
others, supporting this as a therapeutic target.24?”

Recently, blocking NETosis was reported to accelerate wound
healing in mice by reducing endothelial-to-mesenchymal transition in
the microcirculation and promoting angiogenesis.?® This opens the
possibility that NETosis is also involved in delaying wound healing in
the presence of ischaemia and that, consequently, targeting NETosis
is a strategy to accelerate vascular recovery. This area of research is
still preliminary, as the role of NETosis in angiogenesis may vary
according to the disease setting. In pulmonary arterial hypertension,
NETs appear to be involved in the stimulation of angiogenesis and
blocking NET release was proposed as a therapy.?’ NETing cells can
also inhibit angiogenesis by secreting neutrophil elastase and a-
defensins, which generate molecules that inhibit blood vessel for-
mation and inactivate proangiogenic factors. It should be noted that a
circulating proangiogenic neutrophil subpopulation has been recently
discovered in both mice and humans, which is rapidly recruited to
oxygen-deprived tissues by vascular endothelial growth factor A.5%3!
How NETosis interacts with the pro- or anti-angiogenic function of
neutrophils remains to be elucidated.

4 | TARGETS FOR TREATING LIMB ISCHEMIA
FROM FINDINGS OF RECENT RODENT STUDIES

Figure 1 and Table 1 summarise recent findings of targets that
significantly impacted HLI in mice models.
4.1 | Promoting mobilisation, homing and

differentiation of bone marrow derived cells

A long-standing concept in recovery from limb ischaemia has been

that bone marrow-derived cells are mobilised in response to HLI and
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FIGURE 1 Recent findings of experimental studies on targets for novel treatments for ischaemic foot disease. Proposed mechanisms for
angiogenesis and arteriogenesis and potential drug targets for medical revascularisation based on the findings of recent animal and clinical
research. Beneficial and detrimental effects on revascularisation were denoted in purple and red colours respectively. Potential treatment
strategies were presented in a golden yellow colour box. CD, Cluster of differentiation; eNOS, Endothelial nitric oxide synthase; G-CSF,
Granulocyte colony stimulating factor; GPR39, G protein couple receptor 39; miR, MicroRNA; MMP, Matrix metalloproteinase; NET,
Neutrophil extracellular traps; NO, Nitric oxide; oxLDL, Oxidised low density lipoprotein; PAD4, Peptidyl arginine deiminase 4; SDF1q, stromal
cell-derived growth factor-1a; SHH, Sonic hedgehog; TGF, Transforming growth factor; TNF, Tumour necrosis factor; VEGFR, Vascular

endothelial growth factor receptor; WNT, Wingless.

recruited to ischaemic tissue in response to local growth factors,
where they promote new capillaries formation (angiogenesis) and
remodelling and expansion of existing collateral arteries (arterio-
genesis) (Figure 1).% A range of growth factors such as stromal cell-
derived growth factor-1a (SDF1a), have been shown in rodent
models to promote mobilisation of progenitor cells from the bone
marrow and promote increased density of limb capillaries.®? A study
in C57BL/6 mice with HLI using single-cell RNA sequencing sug-
gested that CD34+ progenitor cells were recruited to ischaemic
muscles where they differentiate into fibroblasts and promote
angiogenesis via the oncostatin M-angiopoietin-like protein
pathway.® Oncostatin M blocking antibody or CD34+ cell deficiency
significantly reduced blood flow recovery in C57BL/6 mice with
HLI.23 The role of this pathway is controversial because other studies
demonstrated that blocking oncostatin M reduced the excess in-
flammatory myelopoiesis seen in diabetes, rescued bone marrow
stem cell mobilisation, improved stem-cell transfer to ischaemic sites
and facilitated recovery of limb blood supply.®*

Hsu and colleagues identified that tumour necrosis factor super-
family 14 (TNFSF14) inhibited endothelial progenitor cell (EPC)
mobilisation by downregulating SDF-14, significantly worsening limb
blood flow in C57BL/6 mice after HLI.32 In vitro, TNFSF14 reduced
EPC proliferation and endothelial tube formation.3? In C57BL/6 mice

with streptozotocin induced diabetes and HLI, upregulating lysine

demethylase 4B activated the canonical wingless (Wnt/B-catenin)
pathway, which was associated with upregulation in SDF-1a and
vascular endothelial growth factor & (VEGF). These effects signifi-
cantly improved blood flow recovery compared to control mice.®> A
number of studies have also implicated microRNAs (miRs) in control-
ling bone marrow cell contribution to angiogenesis and arterio-
genesis.*¢3” Cheng and colleagues studied miRs in patients with PAD
and mice models of acute HLI secondary to Femoral artery ligation
(FAL) and more gradual HLI secondary to placement of ameroid con-
strictors around the femoral artery (Supplement Figure 2).2¢%7 They
identified 22 miRs including three of the four members of the miR-181
family (miR-181a-5p, miR-181b-5p and miR-181c-5p) that were
downregulated in the plasma of both patients with diabetes and PAD,
and mice with HLI.3” These miR-181 members were also down-
regulated within the ischaemic limbs of mice with impaired glucose
tolerance compared to those with normal glucose handling.®” C57BL/6
mice with global deficiency in alleles miR-181a2b2 had significantly
worse recovery of blood supply following HLI induction compared to wild
type controls.>” Bone marrow transplant and cell specific transgenic
studies suggested that miR-181 deficiency impaired Ly6Chi monocyte
mobilisation from the bone marrow without local effects in endothelial
cells. The impairment in blood flow recovery and the density of new
capillaries in these mice could be rescued by infusion of Ly6Chi

monocytes, illustrating the importance of these cells in angiogenesis.

85U8017 SUOWILLIOD BA11E81D) 8|qeot[dde au) Aq peueob ek S9o1e YO ‘8sn JO s3I0} ARIqIT8UIIUQ AB|IM UO (SUOTIIPUOD-PUB-SWSH W00 A8 | 1M Ake.q)1|Bu 1 [UO//:SANy) SUORIPUOD Pue SWie | 8U18eS " [7202/T0/0g] Uo ArigiTauliuo A(Im ‘Ariqi] oqeiN b0 81pp3 Aq £02€"1IWP/ZO0T 0T/I0p/W0 48| im A Iq U1 |UO//STY WOJ pepeoiumoq ‘0 ‘09G202ST



15207560, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/dmrr.3703 by Eddie Koiki Mabo Library, Wiley Online Library on [30/01/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

N (sanuiuo))
:n“ SONB® pue zy493A Suipodud Ajddns poo|q (INTFTT) uoissaudxs SON? S9oueyua
sauad Jo uondiosueuy pajowold JNFIT  quil| ul AISA0DDI 9SIOM Ajjuedyiudis g Jey3 YNy Suipodsuou 3uo| ui Aduaipysg Iv4 0IW 9/79/5D <%
uolssaldxa gT|9XD pue T-INVD| paseadsp sAep Qg J4aA0 uoisnyiad Jajddoq Joje|nwis
PO ‘19)2wWelp Jejolialie paseaudul yensidijeld Jase| panoJdwi Ajpuedyiu8is 0z 9se|2Ad 93ejAuensd s|gqn|os jendidljedd E\VA| 901w JudIdYap-J103dadau unda 4%
ﬁ.._LL Ajsusp Auejjided sAep T JaAo uoisnyiad Jajddoq
— pue 3ses|a. SpIX0 JLIIU paseasdul 1ensiory J9se| paAoidwil Ajjuedoyiugis  GT  Joje|nwils ase(dAd a1ejAuend s|gnjos 1ensidory Iv4 20IW djeway 9/19/6D (74
W SON® 3uizeindaidn

y8nouy3 uoijesayijoid |ejjyjopus Suizowo.d sAep {1 J49A0 uoisnyuad Jsjddoq 121p 384 Y31y snid upojozoyda.ls
Aq sisauadoi3ue paseatoul apiiniSedi] J9se| panoJdwi Apuedyiudis gz 1siuode T-d19 -opiIn|3edr] Iv4 paJajsiuiwpe aDIwW 9/19/6D rA%
Ajisuap eixodAy
AJe|jided paseatdul pue g|A 03 sa8eydoJdew sAep T JaAo uoisnyiad Jajddoq 03 pasodxa S||92 |eWAYIUSSDW PIALISP
pastiejod Opg-yiw pajen8audn sa|d1SSA sy | Jase| panosdwil Ajpuesyiusis  zT MOLIEW 3UOQ WOJJ SI|DISIA Jejn||ade.ix3 Iv4 221w 9/79/5D 6€
$9100S
(VGHNI) V-g-uigiyul Jaquisw sISo0J23u pue uolsnyiad usjddoq juswade|d
Ajlweygiadns q-49] ayj passaudad qoeT-yiw J9se| panosdwil Ajjueoyiugis 8T oW qOST-Y!W  ploJswe Jo 7y4 21W qp/gp S|ews) pue s[eN 9¢
sisauagdol3ue pue uoljesajijosd
1192 |eljayjopus padnpaJd Aduspysp Ajddns poo|q Adusipysp
T Suluiejuod ujewop 7 uijoadodijody quil] ul AI9A0D3I 3SI0M Ajjuedyiudls  ZT T Suluiejuod ujewop 7 uidjoidodijody E\VA| 0IW 9/79/5D 8¢
quil| D1WSBYDS] pUe 31NJe|NISEA U3 UIYIM S1I9)4 [e207]
Mo.lJew
auo(g ay3 wouy uoljesijiqow a3Ad0uow Ajddns poo|q qui| puly jJuswaoe(d
1YD9AT paJieduwl Asuaidyap zqzergT-yiw Ul Adanodad padjeduw Ajjuesyiusis UN Adusdysp zqgergr-ylw  plolawe Jo Tv4 0IW 9/79/5D dlewsy pue e LE
MO}
V493A pue eT-4gs paje|nsaidn poojq qui| passasse Jajddoq u0|5s94dX3J9A0 uol323[ul uojozoydalls
pue JUAA Pa3eAl}de gy 9selAylawap sulsA J9se| panoadwi Ajpuedyiudis YN dp 9sejAylawap auisA| pasnpul snuIAOUSpY Iv4 pue 221w 9/79/6D 9N [«

e uoisnyiad
uia304d 91| ualodoiSue vip 3 s

9|ddoQ Jase| paonpau Ajjuedyius S|[90 + 0 1N0XJ0Uy |euo o El)
PUE Jy UI3e3S00UO eiA sisauasoisue 49|ddo( J3se| padonpad Ajjuesyiusis Q1 Il 7€dD J0 010U |euOHIpUO) IAVA W 9/19/5D €€
9j0woud pue s3se|qo.qy 03 I)eljudIHIP TP 3e uoisnjiad
MOJJBW 3U0q WOoJy pa3IinIdal s||192 +H£@D J9|ddoq Jase| paonpaJ Ajjuedyiudis T ApoqIjue Jo SnJIA jA UI}e}S0dUO-1juy IAVA 20lW 9/19/5D e
Ayisuap Auejjided 83) Jamo|
pue SON3-PV JO uofiqgiyul Yy3noayy oA
Ul UOIJBWIO) 9N} PAJNPaAJ pUB SJUISSUIS
Dd3 padnpul pue |TH 0} asuodsal ul MO}} poo|q quil| passasse 3%/81 00€ 40 0ST ‘G/ (PT4SANL)
$Dd3 Suizenoud pue T-4dS padnpad $T4S4NL  J49|ddoq Jase| asiom Ajpuedyiusis 0z T Ajlwejiadns 103oey) S|S04d3u Jnown | v 0DIW 9/19/5D z€
S||92 PAALISP MOLIBW SUO] JO UOIIRIFUDIDHIP pue Sujwoy ‘uollesi|iqoin
m wsjueydaw pasodo.id Suipuly N 1984e) 10 UoIjUBAIRIU| uoinpul |apoy uoneu)d
I} ejwaeyas|
2 40 spoyIsN
3
o]
(V]

*(ITH) elwaeyds! qui| puly JO S|opow juapod jusdal wolj s3esiey 8nig T 314dV 1



6012 | WILEY

(Continued)

TABLE 1

Methods of

ischaemia

Proposed mechanism

Finding

N2

Intervention or target

induction

Citation Model

Trimetazidine upregulated VEGF-A and

20 Significantly improved ischaemic

Trimetazidine 10 mg/kg/d for 2 weeks

Male db/db mice with blood glucose FAL

46

myogenin and downregulated ICAM-1

and functional scores

>17 mMol/L

12 Significantly improved laser Period circadian regulator polarised

Adenovirus expressing period circadian

FAE

Male C57BL/6 mice

20

macrophages to M2 associated with

increased capillary density

Doppler perfusion over 21 days

regulator 1 mRNA

GOLLEDGE ET AL

GPR39 decreased endothelial cell proliferation,

12 Significantly improved laser

Deficiency in G protein-coupled receptor 39

Female C57BL/6 mice administered FAL

47

migration and tube formation via blocking

the sonic hedgehog pathway

Doppler perfusion over 28 days

(GPR39)

streptozotocin plus high fat diet

Abbreviations: eNOS, endothelial nitric oxide synthase; EPC, Endothelial cell progenitor; FAE, Femoral artery excision; FAL, Femoral artery ligation; FAVL, Femoral artery and vein ligation; GLP, Glucagon-like

peptide; ICAM, Intercellular adhesion molecule; N, Total sample size of intervention and control groups; R, Randomisation yes (+) or no (-); Outcome assessor blinding yes (+) or no (-); R2, Receptor 2; SDF,

Stromal cell derived factor; VEGF, Vascular endothelial growth factor.

Includes control group.

4.2 | Local effects within the vasculature and
ischaemic limb

The growth of new capillaries and remodelling of existing collaterals
is also dependent on the function of endothelial cells and vascular
smooth muscle cells within the lower limb vessels.*> Numerous novel
local factors controlling angiogenesis and arteriogenesis have been
identified in recent studies in mouse HLI models (Table 1). One of
these factors is an apolipoprotein L domain containing 1 (Apold1),
which is predominantly expressed in endothelial cells and has been
shown to be upregulated in response to ischaemia. A recent study
found that C57BL/6 mice deficient in Apold1 had significantly worse
recovery of blood supply following HLI as a result of reduced endo-
thelial cell proliferation and contribution to new blood vessel for-
mation.*® miR-130b has been found to improve limb blood supply.
miR-130b was downregulated in the plasma of C57BL/6 mice and
patients with limb ischaemia but upregulated in the ischaemic limb
muscle compared to healthy tissue.® In db/db (diabetic) mice, no
upregulation of miR-130b in ischaemic leg muscle was identified. In
vitro, D-glucose was downregulated, whereas VEGF and hypoxia
upregulated miR-130b in human umbilical endothelial cells. Endo-
thelial cells overexpressing miR-130b had enhanced proliferation and
migration in vitro. Injection of miR-130b mimics into the gastrocne-
mius muscle of db/db mice significantly improved blood flow recov-
ery and reduced necrosis score following FAL but not femoral artery
ameroid constriction. The improved blood supply was accompanied
by increased capillary density and reduced expression of TGF- su-
perfamily member inhibin-b-A (INHBA). Furthermore, silencer RNA
targeting INHBA injected into the gastrocnemius muscle of db/db
mice after FAL significantly improved blood flow recovery and ne-
crosis score. This suggested that miR-130b overexpression and
downregulation of INHBA are targets for promoting angiogenesis.
MiRs have also been suggested to be responsible for the improved
limb blood supply stimulated by bone marrow-derived mesenchymal
stem cells.3? Extracellular vesicles derived from stem cells exposed to
hypoxia significantly improved blood flow recovery in C57BL/6 mice.
This effect was associated with upregulation in miR-34c, M2 polar-
isation of macrophages and increased capillary density. The effects
were partially blocked by deficiency in miR-34c, suggesting an
important role in promoting angiogenesis. Other approaches of
promoting M2 polarisation of macrophages have also been reported
to promote blood flow recovery in C57BL/6 mice as discussed
earlier.2°

Nitric oxide (NO) release promotes angiogenesis and arterio-
genesis.*>*! The glucagon-like peptide-1 (GLP-1) receptor agonist
liraglutide was reported to upregulate endothelial nitric oxide syn-
thase (eNOS) in C57BL/6 mice with hyperglycemia and was shown to
improve limb blood flow.*? Riociguat is a member of a novel class of
soluble guanylate cyclase stimulators that increase NO release. Rio-
ciguat was reported to improve blood supply in C57BL/6 mice
following HLI.*® Another soluble guanylate cyclase stimulator, prali-
ciguat, has also been reported to improve limb blood supply in a

mouse model of diabetes.** Tang and colleagues found that levels of

85U8017 SUOWILLIOD BA11E81D) 8|qeot[dde au) Aq peueob ek S9o1e YO ‘8sn JO s3I0} ARIqIT8UIIUQ AB|IM UO (SUOTIIPUOD-PUB-SWSH W00 A8 | 1M Ake.q)1|Bu 1 [UO//:SANy) SUORIPUOD Pue SWie | 8U18eS " [7202/T0/0g] Uo ArigiTauliuo A(Im ‘Ariqi] oqeiN b0 81pp3 Aq £02€"1IWP/ZO0T 0T/I0p/W0 48| im A Iq U1 |UO//STY WOJ pepeoiumoq ‘0 ‘09G202ST



GOLLEDGE ET AL

WILEY__|__7°f%2

long noncoding RNA that enhances eNOS expression (LEENE) were
decreased in the intima of mesenteric arteries from patients with
diabetes compared to controls.*® In vitro LEENE increased expres-
sion of VEGF receptor 2 and eNOS in endothelial cells. C57BL/6 with
LEENE deficiency had significantly impaired recovery of blood supply
from FAL.** These findings suggest that LEENE expressing RNA could
be a novel treatment for limb ischaemia.

Trimetazidine, a drug used to treat angina pectoris, inhibits 3-
ketoacyl-CoA thiolase favouring glucose rather than fatty acid
oxidation, and is proposed to be cytoprotective during ischaemia.
Yang and colleagues found that trimetazidine improved semi-
quantitative scores for limb ischaemia and function in hyper-
glycaemic db/db mice with HLI, which was associated with increased
capillary density.*® Analysis of endothelial cells from people with
diabetes showed upregulation of the G protein-coupled receptor 39
(GPR39).*” In vitro GPR39 acted to impair endothelial cell prolifer-
ation, migration and tube formation through blocking the sonic
hedgehog pathway by binding to a repressor called suppressor of
fused homologue. In C57BL/6 mice with a diabetes phenotype, an
adenovirus delivering mRNA overexpressing GPR39 improved hind

limb blood supply recovery.*”

5 | TARGETS FOR TREATING LIMB ISCHEMIA
FROM FINDINGS OF RECENT CLINICAL TRIALS

Twelve randomised controlled trials were identified published since
2017 that tested a range of medical and rehabilitation therapies in
patients with CLTI (Table 2).*8->° Women were under-represented,
being between 0% and 38% of the enroled patients (Table 2), thus
highlighting the unmet need of gender equality in this field. The in-
terventions tested mainly aimed to promote angiogenesis or arte-
riogenesis using growth factors or stem cells, including plasmids
designed to upregulate Hepatocyte growth factor (HGF) or SDF-1,
umbilical cord blood platelet gel, bone marrow aspirates, mono-
nuclear cells, mesenchymal stem cells and endothelial cell pro-
genitors.*®~>” The VOYAGER sub study reported the efficacy of the
anti-coagulant drug rivaroxaban at low dose in patients with PAD
undergoing open surgical revascularisation, finding that the com-
posite outcome of acute limb ischaemia, major amputation, myocar-
dial infarction, ischaemic stroke and cardiovascular death were
significantly reduced by allocation to rivaroxaban.’® Findings were
similar in the COMPASS trial.®° Another trial tested a programme
designed to improve patient self-management after major amputa-
tion for CLTI and found no effect of the intervention on musculo-
skeletal function but a significant improvement in the psycho-social
and quality of life outcome measure.’® The other trials had small
sample sizes ranging from 20 to 155 and were thus underpowered to
test the outcome assessed (Table 2).48->7 Accepting this limitation,
some promising results were reported for HGF and a number of cell
therapies (Table 2). Gu and colleagues tested a HGF plasmid within

two cohorts with ischaemic rest pain (n = 119) or ischaemic

ulceration (n = 121) at doses ranging between 4 and 8 mg.*® The
proportion of patients with diabetes was not reported. In the cohort
with rest pain, HGF plasmid significantly improved the proportion of
participants with complete resolution of pain (Table 2). In the cohort
with ulceration, no significant effect on the primary outcome was
noted. No safety concerns were reported. An earlier trial by the same
investigators reported that HGF plasmid significantly reduced pain
severity.* In the highest dose HGF group (24 mg), there was also a
significantly greater proportion of participants with complete ulcer
healing in comparison to controls.*’ Of note, the administration of
the growth factor required up to 32 injections into the leg repeated
on three separate days that may not be well-tolerated by patients.
Another open label randomised trial in 20 Italian participants with a
diabetes-related foot ulcer and CLTI reported that a gel prepared
from umbilical cord blood significantly improved percentage ulcer
area reduction by 30 days.’!

Sharma and colleagues reported on a placebo-controlled trial
testing the effect of intra-arterial injections of bone marrow-derived
stem cells.>® Approximately 69% of the 81 participants had CLTI and
approximately one third had diabetes. The intervention doubled the
proportion of participants with improvement in measures of leg
blood supply, including an increase in ankle brachial index of >0.1 and

).>° There was a

in transcutaneous oxygen pressure of >15% (Table 1
significant reduction in the rate of major amputation by comparison
to controls. Liotta and colleagues reported on an open label rando-
mised trial comparing administration of EPCs with non-enriched
mononuclear cells in 40 participants with CLTI, of whom 17 had
diabetes.>> The investigators reported that both groups had signifi-
cant improvement from baseline in contrast ultrasound assessed
microvascular circulatory flow, rest pain, ankle brachial index and
transcutaneous oxygen pressure.>> The outcomes in the other cell
therapy trials reported over the last 5 years have been less
encouraging despite similar or larger sample sizes (Table 2). The
reasons for this are unclear but could include heterogeneity in routes
of administration, cell extraction methods, populations and outcome
measures.

Three ongoing trials in people with CLTI were also identified
(Supplement Table 1).°27%® The HOPE CLTI is further testing the
plasmid encoding HGF in two cohorts with rest pain (n = 150) and
ischaemic ulceration (n = 240).°* The SAIL trial is testing bone
marrow derived-mesenchymal stem cells in a small trial of patients
with CLTI (n = 66).%° Finally, the GENEPAD trial is testing the value
of CYP2C19 gene sequencing prior to the choice of anti-thrombotic
therapy in patients with PAD (n = 2276). This open label trial is
based on the prior finding that approximately 30% of patients are
unable to adequately metabolise clopidogrel to the active anti-
platelet form.®? It is hoped that these trials will shed additional
light on the value of these therapies and approaches to managing
people with CLTI. In addition, it is important that future trials focus
on people with diabetes who have a higher risk of amputation and in
whom specific pathways involved in improving blood supply to

ischaemic tissues seem to be impaired, as discussed above.
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TABLE 3 Summary of targets identified in recent mouse
models and clinical studies to upregulate or downregulate in order
to improve limb blood supply.

Targets to downregulate
Targets to upregulate or administer or inhibit
Tumour necrosis factor

superfamily 1432

Oncostatin M3

CD34+ cells mobilisation®® G protein-coupled

receptor 397
Lysine demethylase 4B
miR-181a2b2%”
Apolipoprotein L domain containing 1°8
miR-130b%¢

Extracellular vesicles from bone marrow
derived mesenchymal cells exposed to
hypoxia®’

Liraglutide*?
Riociguat*® and praliciguat®*

Trimetazidine*®

Period circadian regulator 1%°

Hepatocyte growth factor#®47:61

Bone marrow derived stem cells>°

Umbilical cord blood platelet gel®*

High frequency spinal cord stimulation®2

6 | CONCLUSIONS

Diabetes is a key risk factor for ischaemic foot disease. Based on the
findings of the animal studies and clinical trials summarised in this
review, there are a number of novel therapy targets for improving
limb blood supply and aiding the healing of ischaemic wounds as
outlined in Table 3 and Figure 1. It is hoped that a range of drugs
targeting these and other novel targets will be developed for medical
revascularisation as adjuncts and alternatives to surgical revascu-

larisation of ischaemic foot disease.
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