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Abstract 

Inflation forecasting is one of the central issues in micro and macroeconomics. Standard 

forecasting methods tend to follow a "winner-take-all" approach by which, for each time series, 

a single believed to be the best method is chosen from a pool of competing models. This paper 

investigates the predictive accuracy of a metalearning strategy called Arbitrated Dynamic 

Ensemble (ADE) in inflation forecasting using United States data.  The findings show that: i) 

the SARIMA model exhibits the best average rank relative to ADE and competing state-of-the-

art model combination and metalearning methods; ii) the ADE methodology presents a better 

average rank compared to widely used model combination approaches, including the original 

Arbitrating approach, Stacking, Simple averaging, Fixed Share, or weighted adaptive 

combination of experts; iii) the ADE approach benefits from combining the base-learners as 

opposed to selecting the best forecasting model or using all experts; iv) the method is sensitive 

to the aggregation (weighting) mechanism. 

Keywords: Inflation; Time Series Forecasting; Model Combinations; Arbitrating; Stacking. 

 

1. INTRODUCTION AND PREVIOUS RESEARCH 

Inflation forecasting is one of the central issues in micro and macroeconomics. Economic agents 

base their consumption, expenditure, wage bargaining, price setting, asset allocation, financing, and 

savings rational decisions on a nominal anchor used to tie down the price level (El Mekkaoui et al. 

2021). Regular wage bargaining resulting in nominal wage increases relies on backward- or forward-

looking inflation forecasts. The indexation of social security benefits, retirement income benefits, 

inflation-linked debt instruments, longevity-linked insurance-based or capital market-based 

securities are tied to national inflation (deflation) measures such as the Consumer Price Index (CPI) 

or Retail Price Index (RPI) (Bianchi et al. 2021; Simões et al. 2021; Bravo & Herce, 2022; Ayuso 

et al., 2021a,b; Bravo et al., 2021, 2023). Prices in regulated markets (e.g., energy, water, residential 

housing markets) tend to follow the dynamics of prices in the economy. 

Central banks depend on inflation forecasts to assess, inform, and regulate standard and non-standard 

monetary policy instruments (e.g., interest rate policy, standing facilities, bank reserve requirement, 

long-term refinancing operations, asset purchase programmes) targeting price stability, preserving 

the purchasing power of the currency, supporting general economic policy, and setting inflation 
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expectations which enhance policy credibility and efficacy. Moreover, in recent decades an 

increasing number of central banks (e.g., the Reserve Bank of New Zealand, the European Central 

Bank, the Bank of England, The U.S. Federal Reserve, Brazilian Central Bank) believe monetary 

policy should be conducted according to predictable and intertemporally consistent rules and have 

adopted an inflation targeting approach which consists of adjusting monetary policy to achieve an 

explicit target for the annual inflation rate (Bernanke & Mishkin, 1997). 

Inflation is challenging to forecast, partially because the time series properties of inflation measures 

often comprise non-stationarities and time-evolving complex structures and have changed 

substantially over time (Cogley & Sbordone, 2008). Over the last decades, a persistent effort has 

been made by economists to produce more accurate inflation forecasts, reducing the sizeable welfare 

costs associated with significant forecast errors. Previous research on inflation forecasting identifies 

five main types of traditional time series methods. The first group encompasses classical univariate 

time series methods such as autoregressive integrated moving average (ARIMA), random walk 

(RW), unobserved components stochastic volatility model (UCSV) or exponential smoothing (ETS) 

(Stock & Watson, 2007), and multivariate time series methods such as the structural vector 

autoregressive (SVAR) model and the Bayesian vector autoregressive (BVAR) model (see, e.g., 

Carriero et al. 2015). The second group refers to Philips-curve type of inflation models fitting data 

to a pre-specified relationship between input (e.g., past values of the unemployment gap, the NAIRU 

– the non-accelerating inflation rate of unemployment –, housing prices, cash and credit availability, 

exchange rates, interest rates, past values of inflation or core inflation, inflation expectations) and 

output variables, thereby assuming a specific functional form for the stochastic process underlying 

that variable (Faust & Wright, 2013; Bravo & El Mekkaoui, 2022). The third group produces 

inflation forecasts from anchored and unanchored inflationary expectations (Gobbi et al., 2019) 

considering the theoretical channels through which the inflation expectations of households and 

firms are supposed to impact the actual inflation levels. The fourth group encompasses dynamic 

stochastic general equilibrium (DSGE) models based on using modern macroeconomic (e.g., the 

real business cycle model, the New Keynesian monetary models) theory to explain and predict co-

movements of aggregate time series over the business cycle (Christiano et al., 2018). The fifth group 

refers to survey-based methods (Berge, 2018). 

What these forecasting methods have in common is that they tend to follow a "winner-take-all" 

approach by which, for each inflation (or other macroeconomic variables) dataset, a single believed 

to be the best model is chosen from a pool of competing approaches using some in-sample fitting or 

out-of-sample metric or criteria (e.g., model confidence set, information criteria, cross-validation, 

stepwise regression, Bayesian variable selection methods based on decision-theory, shrinkage 

methods, Extreme Bounds Analysis, s-values, best subset regression) (Steel, 2020). Statistical 

inference continues conditionally upon the conjecture that the selected forecasting model happens 
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to be a good estimate of the actual data-generating process, deprecating conceptual uncertainty for 

statistical inference purposes. Previous research on inflation forecasting suggests that univariate time 

series models often exhibit superior forecasting accuracy in most economic scenarios and that 

computing simple averages of past inflation values tend to produce more accurate forecasts than the 

canonical Phillips curve or other structural models (Atkeson & Ohanian, 2001; Stock & Watson, 

2007). Recently, research has investigated the suitability of machine learning models in inflation 

forecasting (Medeiros et al., 2021). 

To cope with conceptual uncertainty and improve the accuracy of prediction, recent research 

investigated the use of dynamic model combinations in economics and finance time series 

forecasting (Bravo et al., 2021; Ashofteh et al., 2021, 2022). Ensemble methods integrating multiple 

heterogeneous learning algorithms can capture more information on the underlying structure of the 

data and have proved to provide a superior predictive performance relative to single experts (Brown 

et al. 2005; Clemente et al., 2023).  

Notwithstanding the attractive features of model combinations, selecting the model set and the 

model weights of each learning algorithm in the combination rule and ensuring diversity among the 

experts are important and non-trivial tasks. First, several windowing strategies for expert 

combination have been developed, including model selection before aggregation using alternative 

trimming methods, e.g., discarding a percentage of the worst forecasters in the training set (Jose and 

Winkler, 2008) and averaging the output of the remaining experts, building a «team of champions» 

using the model confidence set approach (Hansen et al., 2011; Samuels & Sekkel, 2017). A popular 

approach is to determine the model weights based on the expert's out-of-sample forecasting accuracy 

using, e.g., a Bayesian model ensemble approach (Hernández et al. 2018; Bravo & Ayuso, 2021a; 

Bravo, 2022), determining performance on a window of recent data, or using some forgetting 

mechanism that values more recent forecasting performance (Timmermann, 2008; Sánchez, 2008). 

Second, several methods use metalearning strategies for modelling the learning process of individual 

forecasting algorithms to improve que predictive accuracy in model combinations. Popular 

approaches include stacking (Wolpert, 1992), applying multiple regression on the output of the 

experts (Gaillard & Goude, 2015), or arbitrating, a strategy that combines learners that are selected 

according to their expertise pertaining to the input data (Ortega et al., 2001). 

Against this background, this paper investigates the predictive accuracy of a metalearning strategy 

denoted as Arbitrated Dynamic Ensemble (ADE) in inflation forecasting. Proposed by Cerqueira et 

al. (2019), the strategy is based on arbitrating and adaptively combines heterogeneous forecasters 

by creating an embedded meta-learner for each base algorithm that specializes them across the time 

series. The underlying assumption of this metalearning strategy is that forecasting models tend to 

have different areas of expertise capturing, with varying relative performance, the time series 
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recurring structures and changes in the data distribution. The findings from empirical experiments 

using time series from several real-world domains provided evidence of the method’s 

competitiveness relative to state-of-the-art approaches. However, the approach was not tested using 

inflation time series data. 

In this preliminary experiment, we consider a single type of measurement for inflation - the 

Consumer Price Index (CPI), and a single forecasting horizon of 36 months. The Consumer Price 

Index (CPI) consists of a family of indexes that measure the average change in the price paid by a 

representative private household for a basket of consumer goods and services (e.g., housing, 

communication, food, education, transportation, medical care, leisure) between two periods of time. 

The CPI proxies the average cost-of-living and socioeconomic development in a country or region 

by estimating the purchasing power of money. The CPI is the key macroeconomic indicator for 

assessing inflation (or deflation) and is measured in terms of the annual growth rate or an index.  

The model space of base learning algorithms considered in the ensemble includes both statistical 

learning and machine learning methods such as Gaussian processes (Karatzoglou et al., 2004), 

Support vector regression (Karatzoglou et al., 2004), Projection Pursuit Regression (R Core Team, 

2022), Multi-layer Perceptron (Venables & Ripley, 2002), Multivariate adaptive regression spline 

models (Milborrow, 2012), Generalised linear regression (Friedman et al., 2010), Generalized 

boosted regression (Ridgeway, 2015), Random Forest (Wright, 2015), Principal components 

regression (Mevik et al., 2016), Partial least regression (Mevik et al., 2016) and Cubist Rule-based 

regression (Kuhn et al., 2014). Different parameter specifications are considered for each of the 

individual forecasters, adding up to 52 different models. The forecasting performance is compared 

with benchmark univariate time series models (ARIMA, the Exponential Smoothing State Space 

Model (ETS), Seasonal Naïve (SNAÏVE)) and benchmark state-of-the-art ensemble and 

metalearning strategies (e.g., Stacking, Arbitrating, weighted adaptive combinations of experts, a 

forecast combination approach based on an exponentially weighted average of experts, Simple 

average of base forecasters with model trimming).  

The findings show that: i) the SARIMA model exhibits the best average rank relative to ADE and 

competing state-of-the-art model combination and metalearning methods; ii) the ADE methodology 

presents a better average rank compared to widely used model combination approaches, including 

the original Arbitrating approach, Stacking, Simple averaging, Fixed Share, or weighted adaptive 

combination of experts; iii) the ADE approach benefits from combining the base-learners as opposed 

to selecting the best forecasting model or using all experts; iv) the method is sensitive to the 

weighting mechanism. The remainder of this article is structured as follows. Section 2 outlines the 

key concepts and research methods used in the paper. Section 3 reports and critically discusses the 

empirical results of the paper. Section 4 concludes. 
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2. ARBITRATED DYNAMIC ENSEMBLE 

This section briefly describes the Arbitrated Dynamic Ensemble (ADE) forecasting methodology 

proposed by Cerqueira et al. (2019) and used in this paper. Let 𝑌 = {𝑦1, … , 𝑦𝑡} denote a numerical 

time series (e.g., CPI values) with components 𝑦𝑡 ∈ ℝ  observed at times 𝑡 = 1,… , 𝑡. The time 

series forecasting problem is framed as a regression task, with the past 𝐾 observations of the time 

series (embedding vector) and summary statistics on the embedding vector as attributes in the 

learning of the experts. Each observation comprises a feature vector 𝑥𝑖 ∈ X ∈ ℝ
𝐾+𝑁 including the 

past 𝐾 values and 𝑁 summary statistics on the embedding vector, and a target vector 𝑦𝑖 ∈ Y ∈ ℝ 

representing the variable we want to predict. The goal is to obtain an estimate of the approximation 

�̂�(𝒙) of the function 𝐹(𝒙) mapping the unknown functional dependence 𝑥
𝐹
→ 𝑦, that minimizes the 

expected value of some specified loss function ℒ(𝑦, 𝐹(𝒙)) over the distribution of all 𝑌-values, 

where 𝐹 denotes the regression function. 

The ADE methodology for time series forecasting is implemented in three main steps (Figure 1). 

The first step consists of training the 𝑚 ∈ℳ0 heterogeneous base learners included in the initial 

model space ℳ0 to forecast future values of �̂� = {�̂�1, … , �̂�𝑚}. The second step involves training the 

associated meta-learners ℬ = {𝐵1, … , 𝐵𝑚} to model the error of ℳ0, �̂� = {�̂�1, … , �̂�𝑚}, which is then 

used to dynamically weigh the base learners and select/update the set of superior models ℳ ∈ℳ0 

according to their relative forecasting accuracy. 

 

 

Figure 1 – ADE prediction workflow. The base-learners ℳ0 are trained to model and predict the next value 

of the time series �̂� = {�̂�1, … , �̂�𝑚}. In parallel, the associated meta-learners ℬ = {𝐵1, … , 𝐵𝑚} are trained to 

model the error of ℳ0, �̂� = {�̂�1, … , �̂�𝑚}, which is then used to dynamically weigh the base learners, select 

and/or update the set of superior models ℳ ∈ℳ0 according to their relative forecasting accuracy. The final 

prediction �̂� is computed using a weighted average of the predictions relative to the weights. 

                

base predictions
                

rescaling

Sequential re-weighting
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The metalearning strategy adopted by ADE is inspired by arbitrating (Ortega et al., 2001), an 

approach that combines the output of experts according to predictions of the loss that they will 

produce, and the mixture of experts architecture based on the Divide-and-Conquer principle of 

Jacobs et al. (1991) by which the problem space is partitioned stochastically into subspaces through 

a specific error function, with experts becoming specialized on each subspace. Specifically, a meta-

learner 𝐵𝑗 , 𝑗 ∈ {1,2,… ,𝑚} is trained − using the same feature set used by the base learners to predict 

𝑦𝑡+1 − to build the following model: 

�̂�𝑖
𝑗
= 𝑓(𝑥𝑖) (1) 

where �̂�𝑖
𝑗
 is the absolute error incurred by 𝑀𝑗 in an observation (𝑥𝑖, 𝑦𝑖), i.e., �̂�𝑖

𝑗
= |𝑦𝑖 − �̂�𝑖

𝑗
|. The 

regression analysis on a meta-level is used to apprehend the relationship between each model error 

and the structure and dynamics of the time series, building on this knowledge to dynamically 

combine the base learners according to their expected forecasting proficiency. 

Contrary to most metalearning approaches for dynamic model selection or combination (including 

the original arbitrating formulation) that only start the metalearning layer at run-time, using only 

information from the test set, resulting in few observations to train the meta-learners at the beginning 

of the time series, the ADE methodology uses the training set to generate out-of-bag predictions 

which are subsequently considered to compute an unbiased estimate of the loss of each base-learner 

(Cerqueira et al. 2019). This approach considerably expands the data available for training the meta-

learners, ultimately contributing to improving the accuracy of each meta-learner and the ensemble. 

The ADE methodology uses a blocked prequential procedure (Figure 2) with a growing lookback 

window approach to producing out-of-bag samples (Dawid, 1984). Specifically, the embedded time 

series used for training is divided into 𝛽 equally sized and time-sequential blocks of contiguous 

observations. Then, in the first iteration, the first block is used to train the base-forecasters ℳ0 and 

the second is used to test them. Then, the second block is merged with the first one for training ℳ0  

and the third block is used for testing.  

 

 

Figure 2 – Time block prequential procedure method with growing window. Blocks of data used for training 

in lilac; blocks of data used for testing in orange. 
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We note that in the blocked prequential evaluation procedure, the temporal order is always 

preserved, i.e., if a block in time is used for testing, then only previous blocks are used for training. 

The procedure continues until all blocks are verified (except the first one). The motivation for the 

growing window approach is to profit from all past data for training both the experts (as described 

above) and the arbiters. This differs from sliding window approaches which try to preserve some 

consistency in the training size of the different repetitions. 

The final step of the ADE methodology consists in predicting the next value of the time series 𝑦𝑡+1 

combining the output of the experts �̂� according to the output of the arbiters ℬ and the recent 

correlation among the experts. Contrary to the original arbitrating architecture, which selects the 

forecaster with the highest confidence as predicted by the arbiters, the ADE approach produces a 

model combination. However, a windowing strategy is applied before aggregation by forming a 

committee of best forecasters trimming and suspending a percentage of recently poor forecasters 

from the combination rule for the upcoming prediction (Jose & Winkler, 2008). If a forecaster is 

predicted by the arbiters to perform poorly in a given observation relative to the other experts, the 

methodology assigns a small weight (a zero weight means the learner is not included) in the final 

ensemble prediction. Formally, ADE selects the Ω% base forecasters (ℳ0
Ω) with the lowest mean 

absolute error (MAE) in the last 𝜆 observations, holding (until the next iteration) the remaining ones. 

The predictions of the meta-level models (ℬΩ) are used to weigh the selected forecasters. The weight 

of the forecaster 𝑀𝑗 ∈ ℬΩ for observation 𝑦𝑡+1, 𝑤𝑡+1
𝑗

, is determined by using the following 

aggregation function on the normalised prediction error produced by the arbiters, i.e., 

𝑤𝑡+1
𝑗
=

𝑚𝑖𝑛-𝑚𝑎𝑥(−�̂�𝑡+1
𝑗
)

∑ 𝑚𝑖𝑛-𝑚𝑎𝑥(−�̂�𝑡+1
𝑗
)𝑗∈ℬΩ

 (2) 

where �̂�𝑡+1
𝑗

 is the prediction made by ℬ𝑗
Ω for the absolute loss that ℳ0𝑗

Ω is expected to produce in 

𝑦𝑡+1, with the min-max scaling function used to normalise the vector of predicted loss into a [0,1] 

scale. The softmax function assigns larger weights to models with smaller forecasting errors, with 

the weights decaying exponentially the larger the error. It is commonly used in classification and 

forecasting exercises (Bravo & Ayuso, 2020, 2021b). 

To model the inter-dependence among forecasters, account for model redundancy, and increase 

model diversity, a sequential re-weighting procedure is implemented by which, first, models are 

ranked sequentially by their decreasing weight and, second, the correlation among the output of the 

forecasters in a window of recent observations is used to quantify their redundancy and reweight 

experts. Intuitively, the higher the correlation between an expert and a higher-ranked forecaster, the 

lower the model weight. In the limiting case of perfect correlation between forecasters, the weight 

becomes zero, and the model is effectively withdrawn from the model combination set. 



Bravo & Ashofteh / Ensemble Methods for Consumer Price Inflation Forecasting

 

 
23.ª Conferência da Associação Portuguesa de Sistemas de Informação (CAPSI’2023) 324 

 

The final ensemble prediction is the weighted average of the predictions made by the individual 

forecasters �̂�𝑗 is computed using a weighted average of the predictions relative to their re-weighted 

importance �̇�𝑡+1
𝑗

 

�̂�𝑡+1 =∑ �̂�𝑡+1
𝑗
∙ �̇�𝑡+1

𝑗

𝑗∈ℬΩ
, (3) 

with ∑ �̇�𝑡+1
𝑗
= 1𝑗∈ℬΩ . 

3. EMPIRICAL STRATEGY 

We compare the performance of the ADE methodology in forecasting United States CPI inflation 

with that of competing state-of-the-art time series model combination approaches. The dataset is 

provided by the US Federal Reserve and comprises 1315 monthly observations from January 1913 

to July 2022 encompassing regimes of low, moderate, and high inflation (Figure 3). The USA 

inflation exhibits both deterministic and stochastic patterns, with the latter being a dominant factor 

in the dynamics of the inflation process.  

 

Figure 3 – Consumer Price Index, USA 1950-2022 

To account for trend and check for stationarity, we use the Kwiatkowski-Phillips-Schmidt-Shin 

(KPSS) unit root test (Kwiatkowski et al. 1992) and apply the required difference operators to ensure 

trend-stationarity. The optimal embedding dimension (𝐾) is estimated using the method of False 

Nearest Neighbours (Kennel et al., 1992) setting the tolerance of false nearest neighbours to 1%. 

Following Cerqueira et al. (2019), the base forecasters and the metalearning models use a feature set 

that includes the embedding vector (past 𝐾 values) and several characteristics summarising the 

overall structure of time series: (i) Local trend, (ii) Skewness, (iii) Mean, (iv) Standard deviation, 
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(v) Serial correlation, (vi) Long-range dependence using a Hurst exponent estimation with wavelet 

transform, (vii) Chaos, using the maximum Lyapunov exponent. The final representation of the 

feature set and target value is as follows: 

𝑌[𝑛,𝐾] =

(

 
 

𝑦1 𝑦2 ⋯ 𝑦𝐾−1 𝑦𝐾 𝑆𝑡𝑟𝑒𝑛𝑑1 … 𝑆𝑐ℎ𝑎𝑜𝑠1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑦𝑖−𝐾+1 𝑦𝑖−𝐾+2 … 𝑦𝑖−1 𝑦𝑖 𝑆𝑡𝑟𝑒𝑛𝑑𝑖 ⋯ 𝑆𝑐ℎ𝑎𝑜𝑠𝑖
⋮ ⋮ ⋮ ⋮ 𝑦𝑖 ⋮ ⋮ ⋮

𝑦𝑛−𝐾+1 𝑦𝑛−𝐾+2 ⋯ 𝑦𝑛−1 𝑦𝑛 𝑆𝑡𝑟𝑒𝑛𝑑𝑛 ⋯ 𝑆𝑐ℎ𝑎𝑜𝑠𝑛

|

|

𝑦𝐾+1
⋮
𝑦𝑖+1
⋮

𝑦𝑛+1)

 
 

 

Considering the first row as an example, the purpose is to forecast 𝑦𝐾+1 using as features the 

previous 𝐾 values of the time series {𝑦1, 𝑦2, … , 𝑦𝐾} along with the corresponding embedded vector 

summary statistics {𝑆𝑡𝑟𝑒𝑛𝑑1 , … , 𝑆𝑐ℎ𝑎𝑜𝑠1}. The approach can easily be extended to include other 

(external) attributes. At the meta-level, the target value is replaced by the absolute loss of a predictive 

model in that observation. 

The forecasting accuracy of base-learners and model combination approaches is evaluated using the 

root mean squared error (RMSE). In addition, to draw inferences about the differences in model 

forecasting performance, we implemented a two-step procedure using two post-hoc non-parametric 

tests. First, the Friedman test (1940) is used to test the null hypothesis that all the forecasters have 

equivalent performance and, therefore, equal expected average rankings. The test compares the 

average rankings of the 𝑚 models across each of the 𝑁 samples or datasets and is based on the 

following test statistic measuring the probability of the observed rankings under the null hypothesis. 

𝜒𝐹,𝑚−1
2 =

12𝑁

𝑚(𝑚 + 1)
[∑ 𝑅𝑗

2 −
𝑚 + 1

2𝑗
], (4) 

where 𝑅𝑗
2 is the average rank assigned to method 𝑗 after applying the methods to 𝑁 different times 

series and the statistic is distributed according to a chi-square distribution with 𝑚 − 1 degrees of 

freedom. In the second step, if the null hypothesis is rejected at the selected significance level (𝛼 =

5% in this study), the post-hoc Nemenyi test is used to compare all forecasters to each other. The 

Nemenyi test is based on a critical difference between the mean rankings among all the models 

(comparing pairs of models). This measure is computed as 

𝐶𝐷𝑁𝑒𝑚𝑒𝑛𝑦𝑖 = 𝑞𝛼,𝑚 ∙ √
𝑚(𝑚 + 1)

12𝑁
, (5) 

where 𝑞𝛼,𝑚 is the critical value based on the Studentized range statistic divided by 2. 

The estimation method considers a repeated holdout procedure (learning plus testing cycle) in 25 

randomly selected testing periods using different but overlapping observations. In our experiment, 
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each repetition uses 50% of the time series size for training and a lookforward window of 36 months 

for testing. 

The initial model space ℳ0 considered in this study is summarised in Table 1. The set of base 

forecasters includes Gaussian processes (Karatzoglou et al., 2004), Support Vector Regression 

(Karatzoglou et al., 2004), Projection pursuit regression (R Core Team,  2022), Multi-layer 

perceptron (Venables and Ripley, 2002), Multivariate adaptive regression splines (Milborrow, 

2012), Generalized boosted regression (Ridgeway, 2022), Random Forest (Wright, 2023), Principal 

components regression (Mevik et al., 2023), Partial least squares regression (Mevik et al., 2023) and 

Cubist Rule-based regression (Kuhn et al., 2023). We consider alternative parameter settings for 

each of the individual forecasters, totalling 52 different base learners. 

 

ID Algorithm Parameter Value 

GP Gaussian processes  

(Karatzoglou et al., 2004) 

Kernel {Linear, RBF, Polynomial, Laplace} 

SVR Support Vector Regression  

(Karatzoglou et al., 2004) 

Kernel {Linear, RBF Polynomial, Laplace} 

Cost  {1, 5, 10} 

  {0.001, 0.01} 

PPR Projection pursuit regression  

(R Core Team,  2022) 

No. terms 

Method 

{2, 5, 10} 

{Super smoother, spline} 

MLP Multi-layer perceptron  

(Venables &  Ripley, 2002) 

Hidden units 

Decay 

{5, 10, 15, 30} 

{0.01, 0.05} 

MARS Multivariate adaptive regression splines 

(Milborrow, 2012) 

Degree 

No. Terms 

Forward thresh. 

{1, 3, 5} 

{7, 15, 30} 

{0.001} 

GLM Generalised linear regression models 

(Friedman et al., 2010) 

Penalty mixing 

Distribution 

{0, 0.25, 0.5, 0.75, 1} 

{Gaussian} 

GBR Generalized boosted regression  

(Ridgeway, 2022) 

Depth 

Distribution 

Shrinkage 

No. Trees 

Learning rate 

{5, 10, 15} 

{Gaussian, Laplace} 

{0.1, 0.01} 

{500, 1000} 

{0.1} 

RF Random Forest (Wright 2023) No. trees {500, 1000} 

PCR Principal components regression  

(Mevik et al., 2023) 

Default  

PLS Partial least squares regression  

(Mevik et al., 2023) 

Method {Kernel PLS, Sijmen de Jong’s 

SIMPLS, Principal Component 

Regression} 

RBR Cubist Rule-based regression  

(Kuhn et al., 2023) 

No. iterations {1, 5, 15} 

Table 1 – Summary of the base forecasters 



Bravo & Ashofteh / Ensemble Methods for Consumer Price Inflation Forecasting

 

 
23.ª Conferência da Associação Portuguesa de Sistemas de Informação (CAPSI’2023) 327 

 

The Random Forest model was used as a meta-learner. The time-blocked prequential procedure was 

run with 10 folds (𝛽 = 10) using Pearson’s correlation function for the sequential re-weighting of 

experts. For each prediction, the selected model space (committee) considers 50% of the experts 

with the best performance in the last 50 observations, i.e., Ω = 0.5;  λ = 50. These values were 

selected following the analysis of Cerqueira et al. (2019) on the sensitivity of ADE to different 

combinations between Ω and λ. 

The performance of the ADE methodology in inflation forecasting is compared with that of the 

following state-of-the-art approaches: (i) Stacking for times series (Wolpert, 1992); (ii) Arbitrating 

(Ortega et al., 2001); (iii) Simple: model ensemble with individual forecasters averaged using an 

arithmetic mean (Timmermann, 2008); (iv) SimpleTrim: Simple average of base forecasters with 

model trimming, with Ω% of the best past performing models are selected to take part in the 

ensemble committee; (v) LossTrain: static weighted average of forecasters, with weights defined 

according to the performance of experts in the training set; BestTR: forecasting approach that selects 

the best performing model in the training data; (vi) EWA: forecast combination method based on an 

exponentially weighted average of experts; (vii) FixedShare: the fixed share approach adapted for 

identifying the best forecaster across a time series (Cesa-Bianchi and Lugosi, 2006); (viii) MLpol: 

the polinomially weighted average forecast combination (Cesa-Bianchi and Lugosi, 2006); (ix) 

OGD: An approach based on online gradient descent (Zinkevich, 2003); (x) ARIMA: Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model. The ARIMA model is one of the 

most commonly used time series forecasting approaches, with remarkable forecasting accuracy and 

efficiency in multiple domains, including inflation forecasting (Stock and Watson, 2007); (xi) 

SNAÏVE: approach in which each forecast 𝑦𝑡+1 is set to be equal to the last observed value from the 

same season 𝑦𝑡+1−𝑚, where 𝑚 is the seasonal period. Particularly, for monthly time series, we use 

the value from the previous year; (xii) ExpSmoothing: The exponential smoothing state space model 

(Hyndman and Athanasopoulos, 2021). 

In addition, we investigated the performance of four variants of ADE: (i) ADE-SB: a variant of ADE 

in which at each time point the best performing model (the one with the lowest predicted loss) is 

selected to make a prediction; (ii) ADE-ALLM: A variant of ADE without the formation of a 

committee, i.e., with Ω = 100%; (iii) ADE-v0: variant of ADE with linear re-weighting of the 

output of the arbiters instead of the softmax-type function and no sequential re-weighting; (iv) ADE-

noSR: A variant of ADE in which there is no sequential reweight of the experts. 

4. RESULTS 

As an exploratory analysis, Figure 4 shows the distribution of the RMSE of each base learner across 

the 25 randomly selected testing periods. Figure 5 shows the distribution of the corresponding rank, 
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together with the Friedman test p-value and the Nemenyi test critical difference. A rank of 1 for a 

given learner means the model was the best-performing one in a specific testing period.  

 

Figure 4 – Distribution of RMSE of the base learners across the testing periods 

The findings show that the distribution of the base learners is wide, with generalised linear regression 

models, gaussian processes, partial least squares regression, and principal components regression 

among the experts with low mean rank. However, as expected, not all models perform the same, and 

the critical difference between the mean rankings among all the models is high. This is not a major 

concern for approaches such as ADE since the trimming procedure used to form the committee 

before aggregation excludes the worst performers in the model combination used for forecasting. 

In Figure 6, we show the boxplot of the distribution of the RMSE error of ADE and its variants and 

competing state-of-the-art approaches for forecast combinations across the testing periods. Figure 7 

compares the average rank of ADE and its variants, together with the corresponding Friedman test 

p-value and the Nemenyi test critical difference. 

The experiment findings show, first, that the standard seasonal autoregressive integrated moving 

average (SARIMA) model exhibits the best average rank relative to ADE and competing state-of-

the-art model combination methods. The SARIMA is considerably better compared to all other 

approaches. Second, the results show that the ADE methodology presents a better average rank 

compared to competing widely used model combination approaches, including the original 

Arbitrating approach, Stacking, Simple, Fixed Share, or OGD. The results of this experiment in 

Figure 7 show that, except for the SARIMA model, ADE outperforms all other approaches, most in 

a statistically significant way.  
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Figure 5 – Distribution of rank of the base learners across the testing periods. 

The results suggest that relative to the original Arbitrating architecture, the ADE represents a 

considerable improvement in CPI inflation forecasting (the average rank of ADE is 5.26 against 9.76 

of Arbitrating), suggesting that using the training set to generate out-of-bag predictions, using them 
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to compute an unbiased estimate of the loss of each base-learner and adopting a blocked prequential 

procedure contributes to improving the forecasting performance. 

 

Figure 6 – Distribution of RMSE of ADE and state-of-the-art approaches for forecast combination. 

Among the model combination approaches, the Simple averaging approach preceded by a selection 

of a percentage of recent best past performing models presents the lowest average ranks, which 

suggests that simple average aggregation coupled with model selection performs poorly in CPI 

inflation forecasting. In this case, the use of a windowing approach by which weights are computed 

based on model performance in a window of past recent data does not pay off. 

The alternative dynamic ensemble method MLpol, a polynomially weighted average forecaster 

based on regret minimization exhibits remarkable performance, with an average rank only topped 

by ADE and some of its variants. The online gradient descent regret minimization approach OGD 

evidences an interesting performance outperforming consolidated ensemble methods such as 

Arbitrating or Stacking. 

Figure 8 displays the summary results of testing the statistical significance of the forecasting 

accuracy differences between alternative forecasters using the Friedman and Nemenyi non-

parametric tests. All tests were performed for a 95% confidence level.  

The Friedman test null hypothesis that the forecasters have similar performance is rejected. The 

ADE approach and its variant ADE_noSR are the only two forecasting approaches for which we 

cannot reject the null hypothesis that they exhibit similar performance when compared to the top 

forecaster seasonal ARIMA method at a 95% confidence level. 
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Figure 7 – Distribution of rank of ADE and state-of-the-art approaches across the testing periods. 

 

Figure 8 – Statistical significance of accuracy differences using Friedman and Nemenyi non-parametric tests 

Regarding the performance of ADE against its variants, Figure 9 displays the average rank of ADE 

and its variants. The results of this experimental study in inflation forecasting show that ADE 

exhibits a solid advantage over the performance of ADE methodology excluding model selection, 
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i.e., including all models in the ensemble committee (ADE-ALLM). The findings also show that the 

ADE methodology benefits from combining the base learners as opposed to selecting the best 

forecasting model at each iteration (ADE_SB). 

 

Figure 9 – Boxplot of the average rank of ADE and its variants. 

Moreover, the forecasting accuracy metrics of ADE are also superior to ADE-v0, which circumvents 

the weighting step of the procedure by considering a simple linear re-weighting of the output of the 

arbiters and bypasses the sequential re-weighting step instead of considering the softmax 

aggregation function. This conclusion differs from Cerqueira et al. (2019), which concluded that the 

use of the softmax function does not improve the results over a linear transformation. 

The findings also suggest that bypassing the sequential re-weighting of the experts according to the 

recent correlation between their performance does not contribute to improving the methodology’s 

accuracy in CPI inflation forecasting. However, like Cerqueira et al. (2019), we note that the 

sequential re-weighting procedure does not jeopardise the overall performance of ADE performance. 

Finally, the results of the Friedman and Nemenyi non-parametric tests reported in Figure 8 suggest 

that the ADE methodology excluding model selection (ADE_AALM) is the only ADE variant that 

exhibits statistically significant different performance when compared to ADE at a 95% confidence 

level. 

5. CONCLUSIONS 

Forecasts of key macroeconomic variables such as inflation, GDP growth, unemployment, or 

money supply, by national and supranational institutions are critical inputs for short- and central 
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bank monetary policy assessment, long-term government fiscal planning, and business decision-

making. The forecasting exercise in economics is a difficult challenge, partially because of 

conceptual (model) uncertainty. Model combination and metalearning strategies can be an 

alternative to classical univariate and multivariate time series methods, Philips-curve type of 

inflation models, anchored and unanchored inflationary expectations models, dynamic stochastic 

general equilibrium (DSGE) models, or survey-based methods. 

This paper investigates the predictive accuracy of a metalearning strategy called Arbitrated 

Dynamic Ensemble in inflation forecasting using United States data. The forecasting 

performance of ADE is compared with benchmark univariate time series models and benchmark 

state-of-the-art ensemble and metalearning strategies including Stacking, Arbitrating, weighted 

adaptive combinations of experts, or computing a simple average of base forecasters with model 

trimming. The model space of base learning algorithms considered in the ensemble includes both 

statistical learning and machine learning methods. Different parameter specifications are considered 

for each of the individual forecasters, adding up to 52 different base learners. 

The findings show the SARIMA model exhibits the best average rank relative to the second ADE 

and competing state-of-the-art model combination and metalearning methods, confirming previous 

research validating the use of univariate time series models in inflation forecasting. The ADE 

methodology presents a better average rank compared to widely used model combination 

approaches, including the original Arbitrating approach, Stacking, Simple averaging, Fixed Share, 

or weighted adaptive combination of experts. The results confirm that the use of the ADE 

metalearning approach in inflation forecasting benefits from combining the base experts as opposed 

to selecting the best forecasting model at each iteration or using all experts. The findings also suggest 

that the method is sensitive to the aggregation (weighting) mechanism. 

Several research avenues can be triggered from this first experiment using model combinations 

and metalearning strategies in inflation forecasting. First, to validate these preliminary results, 

we plan to extend the analysis to other measurements of inflation and datasets. Second, the 

inclusion of additional covariates in the feature set used to calibrate the experts and the 

metalearning strategies accounting for the macroeconomic determinants of inflation (cost push, 

demand push, monetary policy, fiscal policy, expectations) will be explored. Third, further 

research should be conducted to investigate the sensitivity of the ADE results to the aggregation 

method. 
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