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Abstract Conceptual schemas are the basis to build well-

grounded Information Systems, by representing the main

concepts of a domain of knowledge, as well as the rela-

tionships among them. Since conceptual schemas focus on

the concepts, they are independent of the specific techno-

logical platform used to implement them. This allows a

single conceptual schema to be transformed into different

platform-specific models according to the implementation

requirements. This is a non-trivial process that is crucial for

the performance and maintainability of the system, as well

as for the accomplishment of the domain data require-

ments. Much research has been done on transforming

conceptual schemas into relational data models. Never-

theless, less work has been done on transforming concep-

tual schemas into property graphs, a data structure

indispensable to building appropriate and efficient systems

based on graph databases. The work proposes a systematic

approach to transform conceptual schemas, represented as

UML class diagrams, into property graphs by using a set of

transformation rules and patterns applied in a systematic

way. Besides a practical example used to help the pre-

sentation of the proposed approach, the evaluation has been

done by measuring different quality dimensions such as

semantic equivalence, readability, maintainability, com-

plexity, size, and performance.

Keywords Conceptual data models � Class diagrams �
Property graphs � Graph databases

1 Introduction

The use of Model Driven Development (MDD) strategies

to perform transformations between Platform Independent

Models (PIM) and Platform Specific Models (PSM) is the

basis for building well-grounded Information Systems, and

ensuring the maintenance of the conceptual integrity of the

data that are going to be managed (Pastor et al. 2008). By

conceptual integrity we mean that no inconsistencies are

introduced during the proposed transformation because

what is modeled in the PIM is accordingly represented in

the PSM, synchronizing the different levels of abstraction

that participate in the transformation process. In this work,

we tried to fill the gap found in one of the most important

tasks in any MDD process when moving from PIMs to

PSMs: the model-to-model transformation involving

property graph schemas.

Conceptual schemas are well-known PIMs that repre-

sent the main concepts of a domain of knowledge, as well

as the relationships among them (Pastor and Molina 2007).

Since conceptual schemas focus on the concepts, they are

independent of the specific technological platform used to

implement them. Therefore, a single conceptual schema

can be transformed into different PSMs according to the

technological requirements. This is a non-trivial process

that is crucial for the performance and maintainability of

the system, as well as for the accomplishment of the

domain data requirements. The more aligned with the

requirements the model is, the more efficient the system

will be. This efficiency can be measured not only in terms
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of query performance, but also in terms of the system’s

maintainability (i.e., readability, complexity, and size).

Much research has been done on transforming concep-

tual schemas into relational data schemas. Examples of

these research works are Rahayu et al. (2000), and El

Alami and Bahaj (2018). Nevertheless, less work has been

done on transforming conceptual schemas to property

graph schemas. This is because graph databases have been

designed to be schema-less (unlike relational databases)

and the modeling process has been incorrectly relegated to

the background. If we want to store and query the data in a

way that efficiently addresses the user’s analytical

requirements and be able to update the database as the

requirements change, the use of appropriate modeling

techniques and systematic model transformation methods

must be the key tasks of the design process.

This work intends to be the first step in this direction, by

proposing a systematic approach to transform conceptual

schemas (represented as UML class diagrams) into prop-

erty graphs by using a set of transformation rules and

patterns applied in a systematic way. The transformation

rules guide the process from the identification of the ana-

lytical requirements to the application of the patterns. The

patterns express the several modeling alternatives that can

be used when transforming classes and associations into

nodes and edges of a property graph. We take advantage of

UML Class Diagrams as a well-known and widely used

language to deeply explain the approach proposed. It can

help readers to understand how the concepts that are being

managed can be applied by using design languages and

data structures that are well-known in the Information

Systems community in terms of Model-Driven Develop-

ment. This work also serves as a first step for the gener-

alization to other languages and data structures that we are

considering as future work. For example, other UML dia-

grams such as activity, interaction, or use case diagrams

related to functional aspects.

The research methodology used in this work is the

Design Science Research Methodology for Information

Systems (Peffers et al. 2007; Hevner and Park 2004). This

methodology is divided into six steps: Problem Identifica-

tion and Motivation, Definition of Objectives, Design and

Development, Demonstration, Evaluation, and Communi-

cation. According to this methodology, the main purpose of

this work is to propose a systematic approach to transform

UML Class Diagrams into Labeled Property Graphs

(LPGs), filling the existing gap when performing PIM to

PSM transformations for graph databases. Therefore, the

main objectives to achieve are (1) the identification of the

core constructs used in UML to model a domain of interest,

(2) the proposal of the modeling alternatives (patterns) to

transform each construct into a property graph (considering

the analytical requirements), and (3) the formalization of a

systematic process based on a set of transformation

patterns.

After the systematization of the process and the defini-

tion of the transformation patterns, we present a demon-

stration case to help the reader to understand the process in

a familiar domain (a flight management system). Finally,

the proposed process and transformation patterns are

evaluated by comparing two competing LPGs and mea-

suring different quality dimensions such as semantic

equivalence, readability, maintainability, complexity, size,

and performance. By measuring the semantic equivalence

we ensure that both models preserve their intended

behavior. By measuring the performance, we prove that

models built considering the domain data requirements

lead to more efficient queries. Finally, by measuring the

readability, maintainability, complexity, and size, we show

how aligned are the domain data requirements with the

global maintainability of the system.

To achieve this goal, the paper is structured as follows.

After this introduction, Sect. 2 describes the main charac-

teristics of the UML Class Diagrams and the LPGs. Sec-

tion 3 presents the related work and its limitations. In

Sect. 4 we describe our proposal to transform UML Class

Diagrams into LPGs, and in Sect. 5 we present a practical

example of application. In Sect. 6, an evaluation is per-

formed and Sect. 7 presents the conclusion and future

work.

2 UML Class Diagrams and Labeled Property Graphs

Unified Modeling Language (UML) is a standardized

modeling language developed to help system and software

developers to specify, visualize, and document models,

including the artifacts of software systems and business

modeling (Jacobson and Booch 2021). UML is platform-

independent, which means that the specified models are

independent of the specific technological platform used to

implement the software or business system. Therefore, it is

possible to work at a higher level of abstraction, ensuring

that business functionalities are complete and correct, end-

user needs are met, and system design supports the estab-

lished requirements before coding. There are different

types of diagrams specified in the UML standard (e.g.,

activity diagram, interaction diagram, and class diagram).

In this work, we use the class diagram, widely used in the

modeling of object-oriented systems. The basic elements of

a class diagram are classes, attributes, and associations

(Sparks 2001). A class describes a set of objects that share

the same features, constraints, and semantics (meaning).

An attribute defines values that can be attached to the

instances of a class. Finally, an association is a relationship

between classes that is used to show that instances of
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classes could be either linked to each other or combined

logically or physically into some aggregation.

A labeled property graph (LPG) is the result of trans-

lating a conceptual view of a domain into an integrated

logical and physical data model. This model includes the

knowledge of the main domain concepts, how they are

related, and the way they should be physically organized in

a graph database. Property graph’s basic elements are

nodes, labels, properties, and relationships (Robinson et al.

, 2015). A node is often used to represent an entity of the

application domain. Nodes can have one or more labels, as

a way of introducing a certain level of classification and

schematization. Nodes contain properties (key-value pairs).

A relationship connects two nodes establishing the

semantic context between them. They have a direction and

a type and can include properties to highlight the charac-

teristics of the relationships. The direction adds meaning to

the representation, although the relationship is navigable in

both directions. Figure 1 shows the differences between the

basic elements of a UML class diagram and a property

graph.

The transformation of UML Class Diagrams into LPGs

is a complex process that must consider the analytical

requirements and must be systematized to help the data

engineer make the right decision for each scenario.

3 Related Work

The research on transforming PIMs into graph databases is

focused on defining meta-models as an intermediate rep-

resentation to facilitate the direct mapping between con-

ceptual model elements and graph database elements. In

Daniel et al. (2016), the authors propose a framework that

translates conceptual schemas expressed using UML Class

diagrams to generate a meta-model that facilitates the

integration of several kinds of graph databases. The pro-

posed meta-model defines a possible common structure for

graph stores, including elements such as vertex, edge, and

property. With this meta-model, the proposed transforma-

tion maps classes to vertices, associations to edges, and so

on. The work of De Virgilio et al. (2014) uses the con-

ceptual representation of the domain expressed in an

Entity-Relationship (ER) model and proposes a strategy for

the identification of a graph data model that minimizes the

number of nodes, as it follows a compact design strategy.

To avoid data inconsistencies that can occur when fol-

lowing compact strategies, the approach analyses all many-

to-many relationships in the ER model. The approach

mainly relies on the analysis of the relationships between

the entities and their aggregation.

The work of Groger et al. (2014) proposes the Deep

Data Warehouse for the flexible integration and enrichment

of warehouse data and unstructured content. The proposed

approach uses information-rich instance-level links that

associate warehouse elements and content items in a graph-

oriented structure. The authors use a conceptual linking

model to obtain a logical schema that facilitates the direct

mapping of links using properties on the edges of a prop-

erty graph. In Akid et al. (2022), the authors propose a set

of rules to convert a multidimensional data model into a

graph data model, suggesting a set of rules that enable the

identification of two graph models having a star-like or a

snowflake-like schema. The approach maps multidimen-

sional data concepts (such as facts and dimensions) into

graph concepts, transforming fact tables into fact nodes,

dimension tables into dimension nodes, and relationships

between fact and dimension tables into edges between the

fact and dimension nodes. The works of Castelltort and

Laurent (2014), Sellami et al. (2020), and Gómez et al.

(2020) also address the proposal of rules or similar

approaches to transform multidimensional data models into

graph-oriented data models. Abdelhedi et al. (2017) pro-

pose an approach based on transformation rules to translate

UML conceptual models into NoSQL physical models,

such as column, document, or graph implementations. In

Fig. 1 Basic elements of a

UML class diagram and a

labeled property graph

123

A. León et al.: Model-to-Model Transformation, Bus Inf Syst Eng 66(1):85–110 (2024) 87



this approach, a generic target meta-model is proposed,

which includes common features of these three NoSQL

physical models, allowing the transformation between a

source and a target meta-model. Nevertheless, the experi-

mental work evaluated the physical model implemented in

column and document data stores, but not in graph

databases.

Regarding automated tools, diverse tools have been

proposed for translating models into different structures,

including graph-based structures (Ziemann et al. 2005;

Huang et al. 2016; Karagiannis and Buchmann 2018;

Burzynski and Karagiannis 2020). More recently, the work

of Smajevic et al. (2021) transforms ArchiMate models

into knowledge graphs, providing a set of queries on the

knowledge graph representation to detect Enterprise

Architecture Smells, and the work of Glaser et al. (2022)

introduces a method for model-based Enterprise Architec-

ture Knowledge Graph construction, highlighting how

ArchiMate models can be further enriched by Enterprise

Architecture-specific and graph characteristics-based

knowledge.

All these works agree on considering conceptual models

useful to get a shared understanding of a domain. Never-

theless, they do a direct mapping between classes or enti-

ties to nodes (or vertices). Since the approaches tend to do

a direct mapping between concepts, we consider that this is

a gap in the literature, as different data models can repre-

sent the same application domain, but with different

degrees of efficiency and efficacy when considering the

analytical requirements to be met. Our proposal fills this

gap, allowing the transformation to an LPG that is designed

to ensure the performance and maintainability of the sys-

tem, as well as the accomplishment of the domain data

requirements. This last characteristic is a key contribution

of the approach proposed in this paper, as it considers not

only the semantics of the conceptual schema but also the

role of each concept or entity in this schema, enhancing the

analytical value of the property graph when supporting

decision-making activities. Also, our work is based on a

pattern-driven approach that formalizes the modeling

concepts and the different possible transformations. A

pattern is here understood as a formalization of a problem

that arises in a specific context, the proposal of a solution

and when the solution can be applied (Blaha 2010). As

advantages of this approach, conceptual data modeling

based on patterns allows (1) reusability, as patterns can be

reused; (2) knowledge transfer, as patterns capture design

and development knowledge; (3) standardization, as pat-

terns provide a standardized solution; (4) quality, as pat-

terns improve uniformity and documentation; and (5) ease

abstraction (Albdaiwi et al. 2014).

4 From UML Class Diagrams to Property Graphs

As described in the related work section, there is a ten-

dency to make a direct association between classes and

nodes, attributes and properties, associations and relation-

ships. Nevertheless, we believe this is not the best approach

since the aim and the level of abstraction of both diagrams

are different. Class Diagrams do not consider the perfor-

mance of the system but focus on providing a sound

structure to the data. Property Graphs structure the data

based on the representation provided by the class diagrams

but must ensure that the system is as efficient as possible in

terms of query performance, data storage, and scalability.

This requires following a series of steps, applied in a sys-

tematic way, to transform the Class Diagram into the most

appropriate Property Graph.

4.1 The Transformation Process

A model-to-model transformation process is commonly

based on identifying the elements of the original model that

must be transformed, and on applying a pattern to represent

them according to the destination model specifications. The

fulfillment of the analytical requirements is a key aspect of

our proposal and determines how the original elements are

going to be transformed. To such an aim, the analytical

requirements must be clear from the beginning, and the

identification of the analytical characteristics of the original

elements must be done before the application of the

transformation patterns. According to this, the transfor-

mation process proposed in this work follows a series of

systematic steps: (1) Identification of the analytical

requirements, (2) Identification of the analytical classes, (3)

Identification of the most adequate patterns, (4) Applica-

tion of the patterns, and (5) Model refinement.

4.1.1 Identification of the Analytical Requirements

The identification of the analytical requirements is guided

by the queries to be supported. This means that the trans-

formation process is guided by the objective of obtaining a

graph data model that considers the decision-making needs

for an application domain that is modeled using UML

Class Diagrams principles and concepts. Therefore, the

main objective of this step is to get a shared understanding

of the main concepts described in the Class Diagram and to

clarify the queries the system must answer. For example, in

a flight management system (FMS), the main concepts

represented in a Class Diagram could be Flight, Booking,

Passenger, and Airline. One of the interesting queries to be

solved could be which are the flights operated by Airline

X? The different queries will determine the analytical
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importance of each element of the Class Diagram and,

therefore, the structure of the resulting property graph.

4.1.2 Identification of the Analytical Classes

Once the analytical requirements are clear, and the main

concepts involved are determined, the classes and attributes

of the Class Diagram that correspond to these concepts

must be identified and classified according to the following

analytical characteristics, proposed in the work of Galvão

et al. (2020):

1. Classes with high analytical value (C1): classes

involved in the defined queries pointing to the main

business processes with the key activities of the

domain. In the FMS example, an analytical class could

be Flight considering the query specified in the

previous example.

2. Classes with high cardinality (C2): classes with

increasing data volume, challenging the querying

capabilities of a specific data structure. This informa-

tion considers the number of instances expected for

each class.

3. Classes with frequent access patterns (C3): classes

frequently used, along with C1 classes, for answering

the most common application domain queries. These

classes are commonly involved in joining multiple

domain entities. In the previous example, Airline could

be classified as C3.

As can be seen, the analytical importance of each class is

highly dependent on the defined queries, the application

domain, and the background knowledge of the data engi-

neering about the data and its evolution, in terms of vol-

ume. For the proposed approach, C1 and C3 classes are

semantically different as C1 classes are usually queried to

analyze the main business indicators or activities of the

domain (what happened or is happening?), such as how

many flights...? or which flights...?, while C3 classes are

used to add semantics to these queries (when or where

happened?). For example, how many flights went to Airport

JFK on Jan 21, 2021?. This distinction is relevant in the

model refinement step of the approach. C1 classes are

meant to be the key concepts highlighted in the property

graph. They should maintain their existence and relevance

as the central nodes of the property graph, while C3 classes

leave room for later optimization of the property graph by

the data engineer considering, for instance, data volume

issues. As an example, two different nodes could be

merged into one node if this increases the overall perfor-

mance of the system or better fits other systems’ require-

ments. These concerns with the main concepts of the

domain, as well as the associated data volume, guide the

transformation process for the identification of an effective

and efficient property graph.

4.1.3 Identification of the Most Adequate Patterns

Once the analytically relevant classes have been identified,

a set of systematic tasks can be applied, supported by the

transformation patterns described afterwards in this work:

1. Represent C1 classes as nodes and the relationships

with other C1 classes.

2. Represent C2 classes as nodes and the relationships

with C1 and other C2 classes.

3. Represent C3 classes as nodes and the relationships

with C1, C2, and other C3 classes.

4. Represent all the remaining classes and their associ-

ations with the other classes.

These steps consider that C1 classes should guide the

identification of the property graph and its main concepts,

C2 classes follow these introducing performance concerns

in the transformation processes, and C3 classes comple-

ment the main key concepts of the domain. The remaining

classes leave room for optimization and refinements. This

iterative process ensures that the concepts are handled by

their increasing importance in the domain and contributes

to the final goal of identifying a valuable and efficient

property graph.

4.1.4 Application of the Patterns and Model Refinement

This step consists of the application of the patterns to the

Class Diagram, according to the tasks defined in the pre-

vious step, in order to obtain the first version of the LPG.

This preliminary version helps to get an idea of how the

data will be represented in the database, and how the

queries can be solved. Once the LPG is defined, the next

step is to test how suitable it is for answering the queries.

Robinson et al. (2015) describes two techniques that can be

applied here. The first technique is just to check that the

graph reads well. If navigating the graph from a start to an

end node we can read off sentences that make sense, the

model can be considered reasonably correct. The second

technique is to validate that the graph supports the kinds of

queries expected to be run on it. If the queries to address

the defined use cases can be built (using any graph query

language) the graph fits its purpose. This step intends to

identify if improvements can be done, as the process is

aimed to be as automatic as possible but does not exclude

the need for expert validation. This is even more relevant in

complex domains or extensive data systems.
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4.2 Transformation Patterns

In this work, we are using the main constructs of UML to

define the most common situations that could appear when

modeling the complexity of any domain. Taking as a basis

the UML specification, we have identified basic patterns

such as aggregations, compositions, specializations, etc.,

and we have combined them with the basic possibilities

derived from the cardinality options (removing redundan-

cies produced by equivalences between patterns). This

allowed us to define the patterns proposed in this sec-

tion. The defined patterns have been grouped according to

their semantics and include an example of application.

When the analytical importance of the classes is relevant

for the selection of the most adequate pattern (C1, C2, or

C3 classes), the classes are highlighted with the ‘‘circled

A’’ symbol. This symbol does not belong to the UML class

diagram standard and is used in this paper to express this

additional property of the class.

The patterns next proposed were specifically defined to

address the transformation process proposed in this paper

and benefit from considering the analytical context of the

domain and the associated requirements, as these are rel-

evant to the identification of LPGs. This analytical context

has already shown to be useful in modeling big data

warehouses as highly performant analytical systems (Gal-

vão et al. 2020), with the entities of the domain being

classified as entities with high analytical value, entities

with high cardinality, and entities with frequent access

patterns. In the work of Galvão et al. (2020), three mod-

eling rules allow this classification and, afterwards, the

defined patterns allow the identification of the elements

available in a big data warehouse, such as analytical

objects, complementary analytical objects, special objects,

materialized objects, and their corresponding analytical or

descriptive families (Santos and Costa 2020). Starting by

the identification of the analytical classes (Sect. 4.1.2), the

identification of the most adequate patterns (Sect. 4.1.3)

follows an iterative process that contributes to the identi-

fication of a valuable LPG by the application of the

transformation patterns.

The transformation patterns proposed here have a strong

conceptual background. This means that it is important to

determine how expressiveness, at the different levels of

abstraction, must be managed. At the ‘‘problem space’’

level (a UML Class Diagram in our case), we identify

conceptual modeling patterns that describe what modeling

construct must be used to specify the problem under

analysis. At the ‘‘solution space’’ level (an LPG in our

case), we define the lower-level solution that better repre-

sents the concepts with the expressiveness that the tech-

nological solution that we use provides. This constitutes the

core of a future conceptual model compiler.

When moving from different levels of abstraction, it is

common that different conceptual representations can

result in the same data structure. This is because the con-

ceptual representation is intended to provide context to the

data and ensure the correct understanding of the domain

knowledge, while the platform-specific representations are

intended to ensure data integrity and meet the analytical

requirements. The transformation approach presented in

this work tries to merge the advantages of both perspec-

tives allowing the correct evolution and adaptability of the

system to the changes. The groups of patterns defined in

this work are: Class Patterns, Navigability Patterns, Car-

dinality Patterns, Generalization Patterns, and Special

Patterns.

4.2.1 Class Patterns (CP)

Classes and nodes are used to describe the entities of a

domain that share the same features, constraints, and

semantics (meaning). The class pattern must be used when

a direct equivalence between a class and a node is required.

For example, when representing classes with analytical

importance as the ones identified as C1, C2, and C3. In this

case, the class is represented by a node, the name of the

class is the label of the node, and the attributes of the class

are the properties of the node (Fig. 2).

4.2.2 Navigability Patterns (NP)

Navigability represents how the entities of a domain can be

accessed from other entities along their associations.

Because of the different possibilities to describe the navi-

gability in UML Class Diagrams, the structure could have

different representations in the corresponding property

graph. According to this, three different navigability pat-

terns have been identified, represented by the associations

between classes and the relationships between nodes: NP1

(Fig. 3), NP2 (Fig. 4), and NP3 (Fig. 5).

The NP1 pattern represents a directed association from

class A to class B. This is transformed as a directed graph

relationship from node A to node B. In the NP2 pattern,

both representations can be considered equivalent even

though semantically they are not. In the first case, there is a

bidirectional association whose navigability has been

explicitly specified. In the second case, the navigability is

not specified which means that could be any direction or

both. It is a common practice to use this second repre-

sentation as equivalent to the first. This is why we have

considered both options in the same pattern. Nevertheless,

in the property graph, the direction of the relationship must

be defined, even though it has no implications on the graph

database, where nodes can be accessed from any other node

by default.
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Fig. 2 Description and example

of the class pattern (CP)

Fig. 3 Description and example of the NP1

Fig. 4 Description and example of the NP2
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Some types of navigation represent intrinsic restrictions

that the database must implement to ensure data integrity.

For example, NP3 defines that class B can be accessed

from class A, but class A cannot be accessed from class B

(Fig. 5). This restriction must be internally implemented by

the system and is represented as a note in the property

graph.

4.2.3 Cardinality Patterns (CdP)

Cardinality is a definition of an inclusive interval of non-

negative integers to specify the allowable number of

instances of a described element (attributes of a class, or

associations between classes). Common multiplicity

bounds are zero or more instances (*), at least one instance

(1..*), exactly one instance (1), and at least m but no more

than n instances (m..n). In this work, we are focusing on

describing the cardinalities of the associations between

classes. We also include in this subsection the n-ary asso-

ciations. In the CdP1 pattern (Fig. 6), each instance of A

can be associated with zero or more instances of B, and

vice versa.

To simplify the representation, from now on the UML

schemas will not consider the direction of the navigability.

Since it is mandatory to define the direction in a property

graph, it will be represented from left to right by default.

Considering that the default cardinality of a relationship in

a property graph is ‘‘zero to many’’, the result is equivalent

to NP2. In the example, different instances of an Airplane

can be associated with zero or more instances of an Airport

and vice versa.

In the CdP2 pattern (Fig. 7), an instance of A must be

related to at least one instance of B. Nevertheless, the

property graph does not provide any representation of the

‘‘one to many’’ cardinality. In the example, we can see how

there are no instances of the Airplane node that are not

associated with at least one instance of the Airport node.

However, there can be instances of the Airport node that

are not associated with any instance of the Airplane node.

The application that uses the graph database is responsible

for implementing the constraints to ensure consistency

according to the UML definition.

The CdP3 pattern (Fig. 8) represents a more restrictive

case of the CdP2 pattern. In this case, an instance of A must

be associated with one - and only one - instance of B

(CdP3-A), or can be associated at most with one instance of

B (CdP3-B). The representation in the property graph does

not allow the possibility of representing these cardinalities,

thus the resulting model is the same as CdP2. The appli-

cation that uses the database should implement the corre-

sponding constraints. When only one class has analytical

relevance (CdP3-C), the resulting property graph merges

the classes in the node that has the analytical relevance.

When the cardinality allows only one instance of each

class, their analytical relevance is important as can be seen

in Fig. 9. The CdP4-A pattern is useful if both classes have,

or do not have, analytical relevance. When only one class

has analytical relevance (CdP4-B), the resulting property

graph merges the classes in the node that has the analytical

relevance.

An n-ary association relates three or more classes

(CdP5). The multiplicity of n-ary associations defines how

the relationships between classes are represented in the

property graph (Fig. 10).

4.2.4 Generalization Patterns (GP)

Generalization is a binary association between a more

general classifier (superclass) and a more specific classifier

(subclass). Generalizations can have 4 different constraints:

Fig. 5 Description and example of the NP3
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(1) Incomplete: there could be instances of the general

classifier that could not be classified as any of the specific

classifiers; (2) Complete: every instance of the general

classifier is also at least one instance of the specific clas-

sifiers; (3) Disjoint: no instance of any specific classifier

may also be an instance of another specific classifier; and,

(4) Overlapping: an instance of the general classifier may

also be an instance of more than one of the specific clas-

sifiers. These constraints are usually represented as pairs

(e.g., complete/disjoint, incomplete/overlapping). The

incomplete/disjoint pair means that superclass A cannot be

specialized into subclasses A1 and A2 at the same time.

Fig. 6 Description and example of the CdP1

Fig. 7 Description and example of the CdP2
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The incomplete/overlapping pair means that the superclass

A can be specialized into the subclasses A1 and A2 at the

same time.

The incomplete restriction (Fig. 11) leads to the same

pattern independently of the disjoint or overlapping

restriction. The complete/overlapping pair (Fig. 12) means

that the superclass must be specialized into one or both

subclasses. And, finally, the complete/disjoint pair repre-

sented in Fig. 13 means that the superclass A must be

specialized into the subclass A1 or the subclass A2, but not

both.

4.2.5 Special Patterns (SP)

This subsection includes special UML representations such

as aggregations, compositions, and association classes. The

aggregation is a binary association that represents a

whole/part relationship (SP1) as can be seen in Fig. 14.

The composition is a kind of association where the com-

posite object has sole responsibility for the existence and

storage of the composed objects (SP2). As can be seen in

Fig. 15, two cases are identified, depending on the ana-

lytical relevance of the classes. When implementing a

composition, a restriction must be also implemented to

Fig. 8 Description and example of the CdP3
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ensure that if the whole class is removed the part(s) must

also be removed (SP2-A).

Finally, the association classes are used to add attributes,

operations, and other features to associations (SP3) as

represented in Fig. 16. The first case of the SP3 is used

when the association class is not associated with any other

class and does not have analytical importance. This means

that the attributes can be represented as properties of the

relationship between the other nodes (SP3-A). If the

association class is associated with any other class (SP3-B)

or has analytical importance (SP3-C), it must be repre-

sented as a node to maintain the relationship with other

nodes.

5 Practical Example: Flight Management System

This section describes how the transformation rules and

patterns can be applied to a practical example: a flight

management system. A flight is defined by a number and a

date and corresponds to a route from an origin airport to a

destination airport. There may be several flights that share

the same origin and destination airports. An airport has a

name and is located in a city of a country. An airplane is

assigned to a flight and it is defined by a license number.

Airports have a number of baggage belts where a customer

can collect the baggage when the airplane arrives at the

destination airport. Customers are described by their

passport number, name, and surname. They make reser-

vations for specific seats on specific flights. A flight has a

crew, composed of a pilot, a co-pilot, and a varying number

of cabin crew members. Crew members are identified by a

crew id, name, and surname. Pilots and co-pilots are

defined by their license number and the number of flight

hours. The cabin crew is also identified by the role they

have. Crew members work for an airline. A flight is

operated by an airline. An airline can operate more than

one flight and is defined by its name. The airline is in

charge of registering the operation status of a flight. This

register includes the date, the hour, and the status (board-

ing, closed, departure, arrival, etc.).

Fig. 9 Description and example of the CdP4
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5.1 Identification of the Analytical Requirements

and the Analytical Classes

Following the steps defined for the transformation rules, we

start with the definition of the analytical requirements,

expressed by the queries to be answered. In this example,

we act as experts in the domain, and based on our expe-

rience we have defined some examples of interesting

queries:

• Q1: Identify the flights to specific airports.

• Q2: Identify flights that go to the same airport.

• Q3: Find flights that depart at some date at a specific

airport and go to a given location on a specific date.

• Q4: Identify the flights performed by a specific crew

member.

• Q5: Identify which airplanes usually perform a specific

route.

• Q6: Find the baggage belt of a specified flight;

• Q7: Identify the rate of delayed flights (status =

delayed) in a specific route.

• Q8: Identify the airlines with the higher rate of delayed

flights (status = delayed).

• Q9: Identify the customer of each seat in a specific

flight.

• Q10: Find the crew members of a specific flight.

In these queries, the key concepts have been highlighted in

bold. In summary, we can conclude that the most relevant

concepts for analytics are flights and airports because they

appear in most queries. Additional interesting concepts are

location, crew member, airline, airplane, baggage belt,

customer, seat, status, and date. The route is used as a

synonym for flight. Using the description of the domain

and the above-described queries, we have defined the

corresponding UML Class Diagram depicted in Fig. 17.

According to the requirements, the following classes

have been identified as having analytical interests:

• Flight and Airport are the classes with the higher

analytical value (C1) and are present (one of them, at

least) in all the defined queries (C3). The number of

airports is not expected to be high, but the number of

Fig. 10 Description and example of the CdP5
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flights managed by the system is expected to be much

larger (C2).

• Crew Member is a class used to answer two queries that

aggregate flights by a crew member and vice versa

(C3). Nevertheless, it is not expected to have a huge

volume of crew members but it has analytical impor-

tance like other classes such as Airport and Flight have.

The specializations (Pilot, Co-pilot, and CabinCrew)

are not considered to have analytical value because they

do not participate in any query.

• Status is expected to have a high volume of instances

(C2) and a high analytical value (C1) since there are

two queries that aggregate flights and airlines by status.

Moreover, from a management perspective (e.g., airline

or customer) it could be relevant to have performance

indicators to measure how well, or not, an airline or

route is performing.

• The Airline is not expected to have a high volume of

instances, nevertheless, it is frequently accessed (C3) to

answer queries that relate to Flight and CrewMember,

or to address the performance indicators previously

mentioned.

• Customer is a class that is expected to have a high

volume of instances (C2).

• Airplane, Location, Seat, and Baggage Belt are not

expected to have a high number of instances, they only

appear in one query, and they are not one of the main

concepts of the domain. Therefore, they are not

considered to have analytical importance.

All these classifications are dependent on the analytical

context and, therefore, guide the transformation process to

a property graph that efficiently represents the application

domain.

5.2 Identification and Application of the Most

Adequate Patterns

In this subsection, we explain how the different patterns

were applied according to the analytical relevance of each

class. The first step requires to represent C1 classes as

nodes and their relationships with other C1 classes. To

highlight their importance in the application domain,

Flight, Status, and Airport classes will be represented as

nodes (pattern CP1). As these three classes are directly

related in the UML Class Diagram, the navigability

Fig. 11 Description and example of the GP1
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patterns must be considered (in this case pattern NP1). Any

constraint must also be specifically described (Fig. 18).

The Status class belongs to a tertiary relationship (with

Flight and Airline), so the applied pattern is CdP5 (Airline

Fig. 12 Description and example of the GP2

Fig. 13 Description and example of the GP3
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Fig. 14 Description and example of the SP1

Fig. 15 Description and example of the SP2
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has not been defined yet so it is temporarily represented as

a grey node) (Fig. 19).

The second step requires representing C2 classes as

nodes and their relationships with C1 and C2 classes. In

this example, Customer is represented by a node (pattern

CP1) with specified navigability in the association with

Flight (pattern NP1) (Fig. 20).

In the third step, the C3 classes are represented as nodes,

establishing their relationships with C1, C2 and other C3

classes. In this example, Airline is a frequent access class.

Therefore, it is represented as a node and takes part in the

tertiary relationship with Status and Flight (pattern CdP5).

The NP1 pattern is used to represent the binary association

between CrewMember and Airline and the associations

between Flight and the CrewMember specializations

Fig. 16 Description and

example of the SP3
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Fig. 17 Analytical classes identified according to the analytical requirements

Fig. 18 Transformation of the

relationships between airport

and flight

Fig. 19 Transformation of the relationships between status and flight
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(Fig. 21). The CrewMember class includes a specialization

therefore, the pattern used is GP3 (Fig. 22). Flight and

Airport, also classified as C3, are not explained here since

they have been already identified in previous steps.

Finally, step 4 requires to represent all the remaining

classes and their associations with other classes. In this

example, the classes that do not have analytical relevance

are Seat, Location, Airplane, and BaggageBelt. Seat is

represented as an association class. Since it does not have

associations with any other class, the pattern selected is

SP3-A. The attribute of the Seat class (seat_number) is

added to the association previously created between Cus-

tomer and Flight (Fig. 23).

According to the multiplicity of the association between

Location and Airport, the pattern selected is CdP4-B. The

attributes of Location (city and country) are added as

properties to the Airport node. A constraint has been

defined to ensure that the location is always defined (either

by the city or the country) (Fig. 24). For Airplane,

according to the multiplicity of the association between

Airplane and Flight, and the fact that Flight is the class

with analytical value, the pattern selected is CdP3-C

(Fig. 25).

The BaggageBelt class is associated with Airport by

composition, and with Flight by a binary association. The

Fig. 20 Transformation of the relationships between customer and

flight

Fig. 21 Transformation of the relationships between airline, status, flight, and CrewMember

Fig. 22 Transformation of the relationships between CrewMember, Pilot, Co-Pilot, and CabinCrew
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patterns selected are SP2-A (between Airport and Bag-

gageBelt), NP1 (between Flight and BaggageBelt), and

CdP3-A (between Flight and BaggageBelt). The corre-

sponding constraints have been also added to the property

graph (Fig. 26).

After the selection of the most adequate patterns, the

resulting property graph is shown in Fig. 27.

The last step of the process is model refinement, where

the user checks the resulting graph in case additional

transformations are required. In this case, the resulting

graph is adequate to answer the queries and we do not

consider additional modifications are required.

6 Evaluation

This section evaluates the differences between the appli-

cation of a classical approach and the approach proposed in

this work. By classical approach, we mean the direct

equivalence between nodes and associations and classes

and relationships done by the already available solutions.

The evaluation is based on the assessment of different

dimensions to (1) prove that the resulting LPG is seman-

tically equivalent to the original model and still preserves

its original behavior, and (2) verify that the proposed

approach highlights certain model characteristics that

enhance the overall quality of the model.

To verify that the model obtained using the approach

proposed in this work is equivalent to the original UML

model, we measure the semantic equivalence between both

models. To verify that the proposed approach improves the

quality of the resulting model, we compare the readability,

maintainability, complexity, size, and performance of two

LPGs; one LPG obtained using the classical approach

(Fig. 28) and another LPG obtained using the proposed

approach (Fig. 27). Both models are obtained using the

UML Class Diagram used as an example in Sect. 5.

The LPG shown in Fig. 28 has been obtained using a

direct transformation where a node represents a UML class,

and each UML association is represented using a rela-

tionship between nodes.

6.1 Semantic Equivalence

After transforming the UML model, proving that the

resulting LPG is semantically equivalent to the original

model, and still preserves its original behavior, is crucial.

In general, for two models to be semantically equivalent,

they must have the same observable output when executed

under identical inputs. Therefore, in this example, we

measure the semantic equivalence of both models (the

original UML and the resulting LPG) by performing the

same queries and verifying that they can be solved. The

queries to be solved are extracted from the analytical

requirements, previously presented in Sect. 5.1.

As shown in Fig. 29, all the queries can be solved in the

resulting LPG, navigating through the marked paths to

Fig. 23 Transformation of the relationships between seat, customer,

and flight

Fig. 24 Transformation of the

relationships between location

and airport

Fig. 25 Transformation of the

relationships between airplane

and flight
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access the relevant nodes and their attributes. This confirms

that the resulting LPG complies with the analytical

requirements and is semantically equivalent to the UML

Class Diagram.

6.2 Model Quality Comparison

The classical transformation approach makes the direct

correspondence between classes and nodes, and between

associations and relationships. This means that this clas-

sical approach does not consider the most efficient trans-

formation according to the analytical value of each class.

Therefore, the resulting property graph would have ‘‘less’’

Fig. 26 Transformation of the relationships between Baggage belt, Airport, and Flight

Fig. 27 Resulting property graph
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quality to fulfill the analytical requirements. To demon-

strate that the proposed approach produces a model with

higher quality and more aligned with the analytical

requirements, we measure different metrics over both

models and compare the results.

Fig. 28 Labeled property graph

obtained using the classical

approach

Fig. 29 Paths to solve the queries that satisfy the analytical requirements
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6.2.1 Size and Readability

The size of an LPG can be expressed in terms of the

number of nodes or the number of relationships, as these

are the two main components of the graph. Some LPGs

may have a high number of nodes, which will naturally

lead to a high number of relationships, increasing the

complexity of the queries to achieve a certain knowledge

requirement, the clarity of the resulting model, and its

maintainability. The size of the model also impacts its

readability, commonly described as the degree to which a

schema represents the modeled domain in a natural and

clear way, with the aim of being self-explanatory to the

user (Ehrlinger et al. 2019).

In this example, the model obtained using the proposed

approach has four nodes and four relationships less than the

model obtained using the classical approach, corresponding

to a decrease of 28.5% and 22%, respectively. This will

impact the readability and maintainability of the model.

6.2.2 Maintainability

When a change is performed on one part of the system, it

may impact the way the analytical requirements are ful-

filled (e.g., when executing the queries to extract the

required knowledge). The maintainability of a model can

be measured by estimating the average change impact of

any potential change applied to the model (Almasri et al.

2017). This measure gives a better understanding of how

easy or difficult the maintenance of the model is. The

smaller the average change impact is, the easier it is to

maintain the model.

An approach to identifying the impact of a change in an

LPG can be measured by estimating the average number of

queries affected by changes in any relationship of the

model. These changes can be adding, removing, or editing

relationships. Although we mainly focus on modifications

applied to relationships, modifications applied to the nodes

are inherently considered in our approach. For example,

when a new node is added, either new relationships are

added to link the new node to other nodes in the model, or

existing relationships will change their originating/termi-

nating node to connect the new node to other nodes in the

model. Considering this approach, we have measured the

number of changes that may affect each query as the

number of relationships involved in solving it. For exam-

ple, to solve query 1 in the graph shown in Fig. 27, the

Flight and Airport nodes, and the TO relationship, are

involved. Any change in this relationship will affect the

query and, therefore, the change impact, in this case, is 1.

The higher number of relationships required to solve a

query, the more prone to change impact the query is and,

therefore, the more complex to maintain.

Comparing both models (Table 1), we see how the

average change impact has decreased from 2.4 to 1.9

(20.8%). This means that the proposed model is more ease

to maintain than the one obtained following the classical

approach. Although for three queries there is an increase of

the change impact, globally the current approach maintains

(for three queries) or decreases (for four queries) the

change impact. The proposed approach decreases the

transition density by 50% in Q9 and Q10 and by 33.3% in

Q3 and Q5.

6.2.3 Complexity

The complexity of an LPG can be measured by estimating

the model’s transition density. The model’s transition

density was first defined by Almasri et al. (2022) as the

average number of transitions per state (num_ransitions/

num_states) in an Extended Finite State Machine (EFSM).

Considering the path to solve a specific query as a EFSM

where the nodes and relationships establish the route to get

the required result, we can approximate the complexity of

an LPG through the calculation of the query complexity of

each of the queries that are required to fulfill the analytical

requirements. For example, in the proposed approach, two

nodes and one relationship are required to solve query 1.

Therefore, the complexity of the portion of the model

required to solve this query is 0.5.

Comparing both approaches (classical and proposed),

Table 2 shows how the overall transition density has

decreased from 0.771 to 0.692 (10%). This means the

proposed model is less complex than the one obtained

following the classical approach. Also, it is important to

highlight that, according to this metric, no query increases

its complexity, maintaining (in 7 queries) or decreasing (in

3 queries) the transition density. In Q10, the proposed

approach decreases the transition density by 37,5%.

6.2.4 Performance

The performance of an LPG can be measured in terms of

the time each query takes to finish. To such an aim, we

have executed a benchmark to measure the query perfor-

mance of both models in three different datasets with

increasing sizes and representing the same data. The aim of

this benchmark is twofold: (1) to ensure that reducing the

size of the model does not increase the execution time and

(2) to prove that the proposed approach enhances the per-

formance of the queries, especially those involving

grouping or long paths. The benchmark has been executed

in an Intel Core i7 machine with 8GB of RAM, Windows

10, and Neo4J 5.2. Each query has been executed 100 times

and the final query execution time is the average time of

the several runs, removing the first run as this is affected by
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the Cypher query planner. The size of each dataset (number

of nodes and relationships) is represented in Table 3.

According to the queries defined as requirements and the

differences between the classical approach and the one

proposed in this work, the queries can be divided into two

groups: (1) queries where the subgraph required to answer

the query is the same in both approaches, and (2) queries

where the subgraph required to answer the query is smaller

in the proposed approach. The queries of the first group are

Q1, Q2, Q6, Q7, and Q8. The queries whose associated

paths are reduced are Q3, Q4, Q5, Q9, and Q10. As can be

seen in Fig. 30, there are no significant differences in the

execution times of the queries with the same subgraph (Q1,

Q2, Q6, Q7, and Q8), with the proposed approach reducing

by a maximal average difference of 1,76% in DS2. Nev-

ertheless, it is worth mentioning that for the queries where

the subgraph is shorter, the proposed approach reduces the

processing time by a maximal average difference of

15,03% for DS3. As can also be seen in the chart, as the

size of the dataset increases, the average time variation also

increases, which means that with increasing datasets the

proposed approach tends to be even more efficient than the

classical one.

Fig. 31 provides an overview of the average time vari-

ation by query for all datasets, highlighting the time vari-

ation between the classical and the proposed approach. As

shown in this chart, the most significant average time

variation is produced in queries Q3, Q9, and Q10. These

are queries where transition density has been reduced by

33% or 50%.

An increment of 0.84% in the average time has been

observed in Q2. Since the datasets for the classical and

proposed approaches contain the same data, and Q2 is the

same in both approaches, the difference is the number of

attributes of Airport. In the proposed approach, Airport has

two more attributes, corresponding to Location. Never-

theless, other nodes such as CrewMember have more

attributes too and the corresponding queries are not

penalized. Therefore, we conclude that this is not the cause

of the difference in time measurement and is so small that

does not affect the overall comparison between models.

In most of the queries and workloads, the proposed

approach obtains better processing times, especially for

DS3, with 190.000 nodes and 205.000 relationships, where

the differences between the processing times of the affec-

ted queries are more expressive (Fig. 32). This corrobo-

rates the hypothesis stated to run this benchmark:

considering the analytical requirements, the proposed

approach not only produces an LPG that maintains the

execution times but also improves the performance of some

queries.

7 Conclusion and Future Work

This work proposes a systematic approach to transform

conceptual schemas, represented as UML Class Diagrams,

into LPGs by using a set of transformation rules, patterns,

and steps applied in a systematic way. The approach was

applied to a demonstration case and validated by compar-

ing two competing LPGs and measuring different quality

dimensions (semantic equivalence, readability, maintain-

ability, complexity, size, and performance). According to

the results, the obtained LPG is not only semantically

equivalent but also enhances the above-mentioned

Table 1 Comparison of the average change impact between both LPGs

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Average impact

Classical 1 1 3 1 3 1 3 1 2 6 2.4

Proposed 1 1 2 2 2 1 4 2 1 3 1.9

Table 2 Comparison of the average change impact between both LPGs

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Average Complexity

Classical 0.5 0.5 1 0.67 1 0.5 1 0.67 0.67 1.2 0.771

Proposed 0.5 0.5 1 0.5 1 0.5 1 0.67 0.5 0.75 0.692

Table 3 Dataset size (nodes and relationships) used in the benchmark

Dataset name Num. nodes Num. relationships

DS1 1900 2050

DS2 19,000 20,500

DS3 190,000 205,000
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Fig. 30 Average time variation between queries whose length subgraph has been affected and those whose length subgraph is the same

Fig. 31 Average time variation by query for all datasets

Fig. 32 Average time variation in DS3 for queries whose subgraph length is reduced
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characteristics which produce a model easier to understand

and maintain and more aligned with the analytical

requirements. The set of patterns presented covers cases

that commonly appear in Class Diagrams. Nevertheless,

when moving from different levels of abstraction, multiple

transformation options for one pattern may arise. The

identification of such situations and the selection of the

transformation strategy are important aspects of this

approach, which we tried to accomplish by adding the

evaluation of the analytical importance of each class. This

guides the selection of the most suitable transformation by

adding some context that only the user can establish.

Nevertheless, the experience of the designer must be con-

sidered and the final decision, if more than one solution is

available, must rely on him. This is a strategy followed by

different transformation tools, that cannot solve conflicts

and allow the user to decide which is the best option in

these situations.

Due to the importance of the analytical relevance of

each component, this set of patterns must be tested and

refined by their application in different and complex

knowledge domains. Different domains, with the corre-

sponding class diagrams representing the domain’s con-

cepts, to be able to cover the whole set of proposed

transformation patterns and have different sequences and

combinations of the patterns to apply. Complex domains,

with highly interconnected data, to ease the adoption of

graph approaches for the storage and processing of data

whose value derives from the efficient analysis of those

relationships, a characteristic of graph-based data systems.

An additional business-oriented domain model was already

identified as useful to complement the demonstration case

shown in this paper, as covers different domain concepts

and patterns to apply, and a health-oriented domain model

for the omics field, due to the complexity of the underlying

data. Furthermore, with the application of the set of pat-

terns proposed in this work in multiple situations, we open

the door to enriching the knowledge about its suitability

and also the opportunity of refining the transformations to

automate them as much as possible. The systematization

and automation of the transformation process increase the

value of conceptual models as platform-independent

models that can be transformed into different platform-

specific models according to the analytical requirements.

The proposed systematization helps data engineers in the

complex process of model transformation, increasing the

maintainability and evolution of Information Systems.
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Ehrlinger L, Huszar G, Wöß W (2019) A schema readability metric

for automated data quality measurement. DBKDA, p 12

El Alami A, Bahaj M (2018) The migration of a (conceptual object

model com conceptual data model cdm, unified modeling

language uml class diagram...) to the object relational database

ordb. MAGNT Res Rep 2(4):318–32

Galvão J, Leon A, Costa C, Santos MY, Pastor O (2020) Towards

designing conceptual data models for big data warehouses: the

genomics case. In: Themistocleous M, Papadaki M, Kamal MM

(eds) Information systems. Springer, New York, pp 3–19

Glaser PL, Ali SJ, Sallinger E, Bork D (2022) Model-based

construction of enterprise architecture knowledge graphs. In:

Almeida JPA, Karastoyanova D, Guizzardi G, Montali M, Maggi

FM, Fonseca CM (eds) Enterprise design, operations, and

computing, vol 13585, Springer International Publishing, New

York, pp 57–73, doi: https://doi.org/10.1007/978-3-031-17604-

3_4

Groger C, Schwarz H, Mitschang B (2014) The deep data warehouse:

link-based integration and enrichment of warehouse data and

unstructured content. In: 2014 IEEE 18th international enterprise

distributed object computing conference. IEEE, pp 210–217.

https://doi.org/10.1109/EDOC.2014.36
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