
RESEARCH PAPER

Dynamic Circular Network-Based Federated Dual-View Learning
for Multivariate Time Series Anomaly Detection

Weishan Zhang • Yuqian Wang • Leiming Chen • Yong Yuan • Xingjie Zeng •

Liang Xu • Hongwei Zhao

Received: 24 December 2022 / Accepted: 14 June 2023 / Published online: 31 July 2023

� The Author(s), under exclusive licence to Springer Fachmedien Wiesbaden GmbH 2023

Abstract Multivariate time-series data exhibit intricate

correlations in both temporal and spatial dimensions.

However, existing network architectures often overlook

dependencies in the spatial dimension and struggle to strike

a balance between long-term and short-term patterns when

extracting features from the data. Furthermore, industries

within the business community are hesitant to share their

raw data, which hinders anomaly prediction accuracy and

detection performance. To address these challenges, the

authors propose a dynamic circular network-based feder-

ated dual-view learning approach. Experimental results

from four open-source datasets demonstrate that the

method outperforms existing methods in terms of accuracy,

recall, and F1_score for anomaly detection.

Keywords Multivariate time series � Federated learning �
Graph neural network � Anomaly detection � Deep learning

1 Introduction

Smart city and smart manufacturing processes generate

large amounts of multivariate time-series data that capture

information about the states of corresponding equipment.

There have been efforts to utilize this data and integrate

intelligent mechanisms to predict anomalies for the pur-

pose of preventive maintenance. Mehdiyev et al. (2020)

suggested a multi-stage deep learning approach that utilizes

a classification strategy to predict process events and

address undesired deviations from the required workflow.

Wu et al. (2020) developed an LSTM-Gauss-NBayes

method for anomalous event detection, which extracts

regular time series information using an LSTM block and

detects outliers using the Gaussian Naive Bayes model.

However, these approaches only consider temporal

dimensional features of multivariate time-series data, while

ignoring their spatial dependencies.

To address this limitation, Graph Neural Networks

(GNNs) have been introduced. Jiang et al. (2019) designed

a GCN (Kipf and Welling 2017)-based anomaly detection

model that characterizes different entity attributes and the

structure of associations between attributes as graphs,

enabling the detection of abnormal behaviors of users and

malicious threat groups. Deng and Hooi (2021) introduced

GAT (Velickovic et al. 2018) to model the spatial structure

of multivariate time-series data in their GDN approach.

They also proposed a graph deviation scoring method for

anomaly detection. However, the use of GNNs requires

defining a reasonable edge structure for spatial information

aggregation between different variables. It remains chal-

lenging to apply GNNs to model multivariate time-series

data without an initial spatial structure.

To address this challenge, Deng and Hooi (2021) pro-

posed a spatial structure modeling method based on
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similarities of node embedding vectors. However, the

embedding vectors in their method are randomly generated

and do not take into account the characteristics of each

sensor. Wu et al. (2020b) introduced a directed graph

modeling method that only calculates dependencies

between subsets of nodes to alleviate computational and

memory bottleneck problems. However, this technique

cannot generate different edge structures for different

moments in time. For instance, in the production process of

semiconductor materials, the relation between temperature

and gas volume sensors varies with time, which requires

different weights for the spatial structure corresponding to

the data at different moments in the model training process.

To construct a more robust edge structure, a technique with

greater stability is required.

Additionally, some studies (Mehdiyev et al. 2020; Wu

et al. 2020; Jiang et al. 2019; Deng and Hooi 2021) focus

solely on learning either temporal or spatial features, while

multivariate time-series data from sensors often exhibit

complex dependencies in both dimensions. Therefore, it is

necessary to consider dependencies in both dimensions to

extract features effectively. Oberdorf et al. (2022) proposed

a multi-headed deep neural network that combines CNN,

GNN, LSTM, and MLP networks to predict end-to-end

enterprise process network monitoring. Yu et al. (2018)

introduced a ‘‘sandwich’’ structured spatio-temporal con-

volutional model with a spatial graph convolutional layer

sandwiched between two temporally gated convolutional

layers, which can model both temporal and spatial

dimensions of multivariate time-series data. However,

there is a significant difference in extracting temporal

information with different lengths of sliding windows. For

this reason, a new network architecture is required that can

efficiently extract temporal features and flexibly aggregate

spatial characteristics.

The increasing concerns about data privacy and security

(Baumann et al. 2019) have led to businesses being

unwilling to share their raw data directly, and isolated data

islands (Liang et al. 2020) have become a common prob-

lem for anomaly detection. Traditional centralized learning

is limited by these data silos, leading to poor model per-

formance. To address this, federated learning (McMahan

et al. 2017) has been proposed as a promising paradigm

that enables collaborative modeling between different cli-

ents while protecting data privacy.

This paper proposes a novel approach based on

Dynamic Circular Network and Federated Dual-View

Learning (FDVL-DCN) for anomaly detection. To make

the spatial structure learned from multivariate time-series

data more consistent with realistic scenarios, we propose a

novel edge structure modeling approach that integrates

three aspect information, Change of inter-sensor correla-

tions, Decline of the strength of time-series data influence,

and each sensor’s Features, to learn the relationships

among sensors and encode them as edges in the graph. This

approach is named as CDF-based edge structure modeling.

To better predict future behavior using multivariate time-

series data, we extract features from temporal and spatial

dimensions. A circular network architecture can be used to

address conflicts between long-term and short-term pre-

dictions by adjusting the neural network based on input

data size. To protect data privacy while improving anomaly

detection performance, we introduce the idea of federated

dual-view learning, which integrates the LOSS intervals

recorded during the training of positive and negative view

models to find thresholds and perform anomaly detection to

obtain a higher F1 value.

In summary, the main contributions of the paper are as

follows:

• We propose a more general and interpretable method

for modeling spatial structure, which enables the

flexible application of GNN to multivariate time-series

data without initialized spatial structure.

• We design a new anomaly detection method, which can

protect data privacy. It extracts feature information

from multivariate time series data by integrating

features of both temporal and spatial dimensions and

considers the effect of sliding window length.

• The proposed approach is evaluated using four open-

source datasets, and the experimental results show that

FDVL-DCN outperforms baseline anomaly detection

methods. Further investigations and analysis demon-

strate the generality and effectiveness of the proposed

method as a big data service solution for anomaly

detection.

The structure of this article is as follows: Sect. 2 provides a

literature review on technologies related to graph neural

networks, spatio-temporal feature extraction, anomaly

detection, and federated learning. In Sect. 3, we introduce

our proposed method in detail, which is composed of five

distinct parts: CDF-based Edge Structure Modeling

Approach, Dynamic Circular Network Architecture,

Architecture Design of FDVL-DCN, Anomaly Evaluation

Mechanism, and FDVL-DCN Algorithm as a Software

Service. In Sect. 4, experiments are conducted to verify the

effectiveness of the CDF-based Edge Structure Modeling

Approach, the effectiveness and generality of the Dynamic

Circular Network Architecture, the prediction performance

of DCN, the comparison of anomaly detection performance

between DCN and FDVL-DCN with baseline methods, the

evaluation of model performance in federated and non-

federated scenarios, and the quality measurement of

FDVL-DCN big data as service. Finally, Sect. 5 presents

the conclusion of this article.
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2 Related Work

2.1 Graph Neural Network

In recent years, Graph Neural Networks (GNNs) have

become a successful approach for modeling patterns in

graph-structured data. GNNs assume that a node’s state

depends on its neighbors’ conditions and capture high-level

representations of nodes by passing information from their

neighbors to the node itself. Various kinds of GNNs have

been developed through graph convolution (Kipf and

Welling 2017), graph attention (Velickovic et al. 2018),

message passing (Gilmer et al. 2017), and information

propagation (Klicpera et al. 2019). GNNs and related

variants have shown success in time-dependent problems,

such as video analysis Zhong et al. (2019) and recom-

mendation systems (Schlichtkrull et al. 2018; Lim et al.

2020).

However, these methods require initialized edge struc-

tures, making it challenging to apply GNN to multivariate

time series data without an initial spatial structure.

2.2 Spatio-Temporal Feature Extraction

Spatio-temporal neural networks have shown success in

various fields, and for extracting spatio-temporal features

of multivariate time series data, GNN can capture spatial

dependencies between nodes, while deep learning approa-

ches such as convolutional neural networks (Wang et al.

2019) can capture temporal dependencies. This type of

neural network was initially proposed to solve the problem

of traffic prediction (Zhao et al. 2020; Chen et al. 2020)

and skeleton-based action recognition (Shi et al. 2019; Yan

et al. 2018), and its effectiveness has been proved for

multivariate time series forecasting problems (Cao et al.

2020).

Spatio-temporal neural networks improve the extraction

capability of multivariate time series data by considering

both temporal and spatial dimensions. However, the

existing architecture needs to balance the effectiveness of

both long-term and short-term forecasts.

2.3 Anomaly Detection

Anomaly detection aims to detect unusual samples which

deviate from the majority of the data, traditional methods

for anomaly detection include linear-model-based approa-

ches (Shyu et al. 2003), distance-based strategies (Hau-

tamäki et al. 2004; Sugiyama and Borgwardt 2013),

Proximity-based approaches (Goldstein and Dengel 2012;

Liu et al. 2008), probabilistic based approaches (Li et al.

2022), but they may not work well on multivariate time

series due to their inability to capture spatial-temporal

dependencies. Deep learning methods have improved high-

dimensional datasets anomaly detection, including gener-

ative adversarial networks used in Liu et al. (2020), dis-

entangled representations in variational autoencoders

utilized in Burgess et al. (2018), hypersphere mapping by a

neural network in Ruff et al. (2018), an enhanced algorithm

for intelligent anomaly detection in imbalance learning

proposed in Zhou et al. (2022), an imbalanced detection

method based on DTW (Dynamic Time Warping) over-

sampling and improved KNN in Langfu et al. (2023), a

group anomaly detection method based on clustering

algorithms, KNN, and pattern mining frameworks in Bel-

hadi et al. (2021), and a comprehensive anomaly detection

algorithm that utilizes decomposition methods, deep neural

networks, and evolutionary computation to address

anomalies in the Internet of Everything in Djenouri et al.

(2021).

However, these methods only capture dependencies on a

single dimension.

2.4 Federated Learning

Federated learning (McMahan et al. 2017) is a decentral-

ized architecture that uses a central server to train a shared

global model from decentralized data spread across many

different clients. It has been used in various domains due to

increasing data privacy concerns. Zhang et al. (2022)

proposed an efficient semi-asynchronous federated learning

framework for predicting the power generation of photo-

voltaic power plants, while Zhang et al. (2021) designed a

dynamic fusion method to improve the communication

efficiency and model performance of federated learning.

Zhou et al. (2022b) developed a 2-dimensional federated

learning framework to address insufficient training data

and insecure data sharing in Cyber-Physical-Social Sys-

tems, while Zhou et al. (2021) proposed a multi-layer

heterogeneous model selection and aggregation scheme for

6 G supported vehicular networks.

To improve federated learning for anomaly detection,

one approach is to train positive view and negative view

models separately.

3 Conceptual Framework

The FDVL-DCN framework focuses on multivariate time

series anomaly detection and multi-client collaborative

modeling while protecting data privacy. Figure 1 shows

each client’s general architecture of the DCN. We use

Xtrain ¼ xt1; xt2 . . . xtwf g and Xtar ¼ xtwþ1f g to

represent the characteristics of N variables at historical W

time steps and W þ 1 moments respectively. Unlike tra-

ditional unsupervised anomaly detection methods, local
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models are trained separately using Xtrain and Xtar from

normal and abnormal data, and the positive view and

negative view model parameters are transmitted to the

server node for federated learning-based model fusion and

distribution. Test data represented as Xtest ¼
st1; st2 . . . stwf g with corresponding labels Xlabel ¼
labeltwþ1f g are used to evaluate the predicted W þ 1 time

step data with an anomaly detection mechanism, and the

final output is a binary label indicating whether the data of

each predicted time step is anomalous, where 1 represents

abnormal and 0 represents normal. The evaluation metrics

include Precision, Recall, and F1 score. Details of the

FDVL-DCN framework are elaborated upon in the

following.

3.1 CDF-Based Edge Structure Modeling Approach

As the correlation between sensor characteristic values can

approximately reflect the spatial dependence relationships

between sensors, we first abstract different variables of

multivariate time-series data in the spatial dimension into

different nodes in a graph, and abstract the numerical

values of each node in the temporal dimension as the

current node’s characteristic value. Then, we model the

spatial structure of multivariate time-series data by con-

sidering three factors: Change of inter-sensor dependen-

cies, Decline of time-series data impact strength, and each

sensor’s Features. The detailed process is as follows.

Firstly, we consider the inherent Features of different

sensors and define the features of m variables on the time

series t as:

T ¼ t1, t2 . . . tmf g; ð1Þ

and then normalize each variable in Equation 1 separately:

ti ¼ ti
MAX tið Þ i 2 ð1;mÞ: ð2Þ

Next, to address the issue of time-series data impact

strength Decline, we generate len tið Þ sets of weight coef-

ficients corresponding to different time points within the

interval [0.7, 1] using the linspace function based on the

length of the time series, and denote them as ts weight:

ts weight ¼ linspace 0:7; 1; len tið Þð Þ i 2 ð1;mÞ:
ð3Þ

The process of calculating the dependencies among dif-

ferent variables can be expressed as:

re ¼ jT j � T|j j � ts weight; ð4Þ

where T comes from Eq. 1 normalized by Eq. 2, and

ts weisht comes from Eq. 3, expanding the weight matrix

re, which is the result of the calculation of Eq. 4, can be

expressed as:

re ¼

r11 r12 � � � r1m

r21 r22 � � � r2m

� � � � � � � � � � � �

rm1 rm2 � � � rmm

2
666664

3
777775
: ð5Þ

The element rmm in Eq. 5 represents the correlation

coefficient between node m and node n, we filter out

neighboring nodes that are weakly correlated with the

current node based on the set threshold. The final adjacent

nodes of each node are shown in Eq. 6. Finally, to address

the issue of Change of inter-sensor dependencies, we apply

the above algorithm at different time points to model the

spatial structure of multivariate time series data.

re ¼

r1a r1b � � � r1c

r2d r2e � � � r2f

� � � � � � � � � � � �

rmg rmh � � � rmi

2
666664

3
777775

a;b;c;d;e; f ;g;h; i 2 ð1;mÞð Þ ð6Þ

Algorithm 1 describes the process of the CDF-based edge

structure modeling, where X represents the multivariate time

Fig. 1 Flowchart of the FDVL-DCN on each client node
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series data input to the model at time t, startedge and endedge
are parameters used to define the starting and ending points of

the edge, and Edgeindex is the spatial structure relation matrix

corresponding to X. The function splice(X, z) merges data X

in z dimensions. The time complexity of this algorithm is

Oðn log nÞ, and the space complexity is Oðn2Þ, where n rep-

resents the number of sensors.

In the next section, we will design the dynamic circular

network for information extraction.

3.2 Dynamic Circular Network Architecture

Traditional prediction methods often consider the features of

multivariate time series data only in the temporal or spatial

dimension, but single-dimensional feature extraction often

fails to achieve the desired predictive effect. At the same

time, different lengths of sliding windows have a significant

impact on the predictive performance of traditional methods.

When the sliding step length is too long, the proportion of

early features that are forgotten is more significant, making it

difficult for the model to effectively capture these features.

When the sliding step length is too short, there may not be

enough information within the sliding window to form

effective patterns for predicting future behavior. The selection

of the sliding step length usually depends on the size of the

dataset. For larger datasets, different lengths of sliding steps

can be tested independently and the best one can be chosen.

However, for smaller datasets, traditional methods must adopt

shorter sliding steps to process the data. Our proposed DCN

can simultaneously consider the feature dependencies of both

temporal and spatial dimensions, while also addressing the

conflict between long-term and short-term predictions. Even

if a large sliding step is set for smaller datasets, DCN can

cyclically extract spatio-temporal information using smaller

steps. Figure 2 presents the overall architecture of DCN.

Based on the length of input data in the temporal dimen-

sion(lenðtemporal lenÞ), STNBlock dynamically combines

the temporal feature extraction module, spatial feature

extraction module, Linear layer, Batch-Normalization (BN)

layer, ReLU layer, and Dropout layer. DCN consists of sev-

eral STNBlock, as shown in Algorithm 2. The details of the

temporal and spatial feature extraction modules are described

below.

3.2.1 Temporal Feature Extraction Module

In temporal feature extraction module, we first use Bi-

LSTM to extract the temporal-dimensional features of the

multivariate time series data. The specific extraction pro-

cess is shown in Eq. 7:

it ¼ sigmoid Wiixt þ bii þ Whihðt�1Þ þ bhi
� �

;

ft ¼ sigmoid Wifxt þ bif þ Whfhðt�1Þ þ bhf
� �

;

gt ¼ tanh Wigxt þ big þ Whghðt�1Þ þ bhg
� �

;

ot ¼ sigmoid Wioxt þ bio þ Whohðt�1Þ þ bho
� �

;

ct ¼ ft � cðt�1Þ þ it � gt;

ht ¼ ot * tanh ctð Þ;
ð7Þ

where xt represents the input data at time t, Wxx and bxx are

trainable weight matrices, it, ft, gt, and ot represent the

input gate state, forget gate state, input value, and output

gate state, respectively, while ct represents the cell state at
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time t, and ht represents the output of the model at time t,

which is a combination of input information from previous

time steps up to t.

We define h as the output consisting of ht at time period

t, which can be represented as:

h ¼ ht�1; ht�2 � � � htf g: ð8Þ

Then, we apply the attention mechanism to further opti-

mize the information h extracted in Equation 8, and the

learning process can be summarized as:

Set rðlÞ �BernoulliðpÞ;

h
�

¼ rðlÞ � h;
ð9Þ

Set attq ¼ h
�
; attk ¼ attv ¼ h;

a ¼ attq � attk
|

� �
=sqrt dimðattq

� �� �
Þ;

att
�

¼ attv � a:

ð10Þ

In Eq. 9, Bernoulli(p) is a Bernoulli distribution with

probability p, representing the dropout operation on the

output of the LSTM. Equation 10 represents the soft

attention operation. We refer to the combination of Bi-

LSTM and Soft-Attention as Bi-AttLSTM. Through these

operations, the features of the multivariate time-series data

at time period t can be represented by att
�

in the temporal

dimension.

3.2.2 Spatial Feature Extraction Module

Graphs are often used to represent data with ‘‘many-to-

many’’ logical relationships and model complex relation-

ships among different entities. Typically, Graph Neural

Networks (GNN) assume that each node’s state is influ-

enced by its neighbors. By aggregating information from

each node’s neighbors, the model captures the spatial

dependence of each node. In Eq. 11, we define the features

of n nodes in the specified temporal dimension as X:

X ¼ x1
�
; x2

� � � � xn
�n o

|

; ð11Þ

when the model is trained, each input usually consists of

batch sets of X. We stitch it in the temporal dimension, as

in Eq. 12:

Fig. 2 Dynamic circular network architecture
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xi ¼
Xbatch
1

� xi
�

i 2 ð1; nÞ; ð12Þ

where � denotes concatenation, and the final input data to

the model can be expressed as Xinput, as in Eq. 13:

Xinput ¼ x1; x2 � � � xng|:f ð13Þ

Classical convolutional networks are only applicable to

ordered or dimensionally fixed data and cannot be applied

to graph-structured data. To extend the convolution oper-

ation to graph-structured data, we must convert it from the

spatial domain to the spectral domain for processing, as per

graph theory and the convolution theorem. In Eq. 14, U

and k represent the eigenvectors and eigenvalues of the

Laplacian matrix, respectively, corresponding to the

learned graph structure:

U ¼ u1
!
; u2

! � � � un
!� �

;

k ¼ k1; k2 � � � knð Þ:
ð14Þ

The essence of the Fourier inverse transform is to represent

any function as a linear combination of several orthogonal

basis functions. As the eigenvectors of the Laplace matrix

are n linearly independent and orthogonal vectors in an n-

dimensional space, they can form a set of bases. Therefore,

the graph Fourier inverse transform uses the eigenvectors

of the Laplace matrix as basis functions. The signal on the

graph can be represented by Eq. 15, which completes the

transition from the spatial domain to the spectral domain

for signals on the graph.

Xinput ¼ x
^
k1ð Þ u1

! þ x
^
k2ð Þ u2

! þ � � � þ x
^
knð Þ un

!

ð15Þ

the expansion of Eq. 15 can be expressed as:

Fig. 3 Federated positive-view and negative-view model fusion strategy
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x1

x2

..

.

xn

0
BBBBBB@

1
CCCCCCA

¼ u1
!

u2
! � � � un

!
� �

x
^
k1ð Þ

x
^
k2ð Þ

..

.

x
^
knð Þ

0
BBBBBBB@

1
CCCCCCCA
; ð16Þ

where x
^
is the representation of Xinput in the spectral

domain, for the convenience of writing, the graph Fourier

inverse transform (Eq. 16) is abbreviated as:

Xinput ¼ Ux
^
: ð17Þ

Inverse Eq. 17 to obtain the graph Fourier positive trans-

form (Eq. 18) as follows:

x
^ ¼ U|Xinput: ð18Þ

Let the convolution kernel be represented as g in the spatial

domain and g
^
in the spectral domain, then the convolution

operation in the spectral domain can be defined as:

CðxÞ � CðgÞ ¼ x
^ � g

^ ¼ U|x � U|g; ð19Þ

in Eq. 19, � is the hadamard product, and C is the graph

Fourier positive transform. The convolution result in the

spectral domain is inverted to obtain the convolution result

in the spatial domain. The convolution of x with the con-

volution kernel g is denoted by x � Gg. Equation 20 shows

the complete convolution operation in the spatial domain,

x � Gg ¼ C�1 CðxÞ � CðgÞð Þ ¼ U U|x� U|gð Þ ð20Þ

where C�1 is the graph Fourier inverse transform, by the

above operation, the multivariate time-series data can be

convolved in the spatial dimension.

3.3 Architecture Design of FDVL-DCN

Federated learning is comprised of two main components:

a central server and clients. The central server initiates a

machine learning job, such as specifying the model archi-

tecture, and coordinates the federated learning process.

Meanwhile, clients use their local data and computational

resources to train the specified local models. The structure

of the federated positive view and negative view model

fusion mechanism is illustrated in Fig. 3, which follows a

specific workflow.

To start, a job creator initializes the model training job,

setting the fusion policy and number of iteration rounds,

and configures an initial wait time for a client to return

model updates. After successful initialization, the central

server exposes its IP address and port number for the

running federated job service to the client. Each partici-

pating client accesses the resources of the central server via

IP address and port number to download the job (Job), the

initial model structure (ModelArchitecture), and the sliding

window’s temporal dimension step (Temporal). Addition-

ally, the multivariate time-series data collected by local

sensors are preprocessed by the data preprocessor in the

client (OriginalFeatures), which includes tasks such as

dimensionality reduction and missing value processing.

The client part of Algorithm 3 describes in details the

model training and model interaction process.
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Firstly, the cleaned data is passed through the CDF-

based edge structure modeling module to construct the

initial spatial structure (EdgeIndex) of the multivariate

time-series data.

Secondly, each client builds the DCN architecture based

on the length of the sliding window it receives from the

server, then trains the positive view (PositiveModel) and

negative view (NegativeModel) model separately through

the model trainer. After completing the specified training

rounds, the model trainer uploads the training time

(TrainingTime) to the central server.

After each round of training, each client evaluates the

model trained in the current round and the previous version

of the model by comparing the magnitude of the Loss value

during the training process. If the model trained in the

current round performs better (Loss), the client sends a

model upload request to the central server and waits for the

global model sent down by the server to update the local

model. Otherwise, the client will request not to upload the

model update for this round. Clients that do not complete

the specified number of iteration rounds within the current

wait time are not allowed to participate in the current round

of aggregation.

The server part of Algorithm 3 describes in details the

process of model processing. Firstly, the aggregation

scheduler updates the waiting time (WaitingTime) based on

the training time (TrainingTime) received from participat-

ing clients. Secondly, after the set waiting time, the central

server accesses the positive view and negative view model

in the buffer pool and completes the weight aggregation of

the positive view and negative view model using the

FedAvg (McMahan et al. 2017) algorithm. Finally, the

aggregation scheduler on the central server sends the

aggregated global model back to each client for a new

round of training.
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The above process is iterated until the specified training

rounds are completed or the model reaches certain recog-

nition accuracy.

3.4 Anomaly Evaluation Mechanism

The goal of our work is to predict whether the state values

are abnormal. The predicted and actual values of the m-

dimensional multivariate time-series data at the moment t

are given in Equation 21:

y predict ¼ y0t1; y0t2 � � � y0tm
� �

;

y true ¼ yt1; yt2; � � � ytmf g:
ð21Þ

To evaluate the error between the predicted and actual

values, we introduce the MSE function, as in Eq. 22:

1

m

Xm
i¼1

yti � y0ti
� �2

: ð22Þ

When applying federated learning to supervised anomaly

detection, it is a pressing issue to enable all participants to

find the critical threshold that suits their own devices for

distinguishing normal and anomalous data. Therefore,

during the training of the federated positive view and

negative view models, we recorded the loss intervals cor-

responding to the positive view and negative view model,

respectively. The loss interval corresponding to the positive

view model was obtained by training all normal data. The

loss interval corresponding to the negative view model was

obtained by training all abnormal data. We consider that

there is a threshold within the merged set of these two

intervals such that the loss greater than this threshold is the

category to which the right endpoint of the merged interval

belongs, and the loss less than this threshold is the category

to which the left endpoint of the merged interval belongs

(in our training process, there is no case that one interval

contains another interval or the two intervals overlap).

Therefore, after we merge the two loss intervals, we take

10-50 values of equal distance within the merged interval

as the reference threshold. Then the test set is input into the

federated positive view model, and the corresponding F1

values under each threshold are recorded separately.

Finally, the corresponding threshold with the highest F1

value is set as the best threshold. The significance of

training federated negative view model in this process is to

obtain the LOSS range of abnormal data, so as to combine

with the LOSS range of federated positive view, and find

the best segmentation point to distinguish normal and

abnormal data.

3.5 FDVL-DCN Algorithm As a Software Service

To simplify the use of FDVL-DCN, we encapsulate the

main modules as software services using the concept of big

data as a service. The dependencies among various mod-

ules are depicted in Fig. 4 utilizing a package diagram,

where FL stands for Federated Learning, FDVL stands for

Federated Dual-View Learning, and DCN stands for

Dynamic Circular Network. Specifically, the spatial struc-

ture modeling service and DCN service help to initialize

suitable models, while the FDVL service improves model

performance while maintaining data privacy. The anomaly

detection service can help to avoid anomalies and reduce

losses, and the specific application scenarios are in the

domain service. This design ensures efficient data analysis

and enables users to make prompt decisions using FDVL-

DCN.

4 Evaluations

This section introduces the experimental details, including

data sources, experimental setup, and evaluation metrics.

Then, we evaluate our model with the baseline model.

Moreover, we assess the generality of our model and the

function of each component in our model.

4.1 Datasets

The proposed model was evaluated on four datasets: a

revised version of the KDD’99 dataset, NSL-KDD,1 the

Safe Water Treatment dataset, SWaT,2 the Curiosity Mars

Rover spacecraft telemetry dataset, MSL,3 and the Semi-

conductor Microelectronics Manufacturing dataset,

Wafer.4 A summary of the dataset statistics is provided in

Table 1. More information about datasets is as follows.

NSL-KDD The dataset was used in the 1999 KDD

competition and includes 43 features. The first 9 columns

represent essential features of TCP connections, while

columns 10 to 22 contain content features of these con-

nections. Columns 23 to 31 present time-based network

traffic statistics based on a 2-second time window, and

columns 32 to 41 show host-based network traffic statistics.

The last two columns indicate if the traffic is normal or an

1 https://www.unb.ca/cic/datasets/nsl.html (accessed 21 Dec 2022).
2 https://drive.google.com/drive/folders/1ABZKdclka3e2NXBSxS9

z2YF59p7g2Y5I?usp=sharing (accessed 26 April 2022).
3 https://github.com/d-ailin/GDN/tree/main/data/msl (accessed 15

Mar 2022).
4 https://www.cs.ucr.edu/*eamonn/time_series_data_2018/ (ac-

cessed 23 April 2022).
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attack and provide a score indicating the severity of the

traffic input.

SWaT The Singapore Public Utilities Commission

developed the Water Treatment Testbed dataset, which

represents a scaled-down version of a modern cyber-

physical system. It combines digital and physical elements

to monitor and control system behavior, making it ideal for

critical areas such as power plants and the Internet of

Things (IoT) that require protection against malicious

attacks. The dataset contains 51 features, with one sensor

data generated every second. The training set covers the

period from December 22, 2015, at 16:00, to December 28,

2015, at 10:00, while the test set spans from December 28,

2015, at 10:00, to January 2, 2016, at 15:00.

MSL The MSL dataset contains real spacecraft telemetry

and anomalies recorded by the Curiosity Mars rover. All

data has been anonymized based on timestamps, with all

telemetry values pre-scaled between (-1, 1) using mini-

mum/maximum values in the test. Additionally, channel

IDs have been anonymized, with the first letter indicating

the channel type (e.g., P denotes power, R denotes radia-

tion). Despite these measures, the dataset is still useful for

research purposes.

Wafer The Wafer dataset comprises measurement data

collected by various sensors during the processing of sili-

con wafers for semiconductor manufacturing. Domain

experts analyze the data in real-time and assign a label of

either normal or abnormal at each moment. The dataset

includes 7164 records with 152 features.

4.2 Evaluation Metrics

Data imbalance is a common issue in anomaly detection

because equipment typically operates correctly. To

Fig. 4 The dependency relationships between different software services in the FDVL-DCN algorithm

Table 1 Statistics of the four datasets used in experiments

Datasets Features Train Test Anomaly ratio (%)

NSL-KDD 41 67343 22544 23.1

SWaT 51 496800 449919 12.1

MSL 27 1566 2050 29.8

Wafer 152 6164 1000 9.7
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comprehensively evaluate the model, we employ Preci-

sion, Recall, and F1 Score metrics, as shown in Equa-

tion 23, to assess the performance of our method and the

baseline model:

precision ¼ TP

TPþ FP
;

recall ¼ TP

TPþ FN
;

F1 ¼ 2TP

2TPþ FPþ FN
;

ð23Þ

where TP (True Positive), TN (True Negative), FP (False

Positive), and FN (False Negative) are the number of true

positives, true negatives, false positives, and false nega-

tives separately. In practical application scenarios, a higher

precision rate helps to operate more efficiently, as a low

percentage of false positives helps to reduce the overall

system inspection cost. On the other hand, a higher recall

rate indicates that abnormalities can be captured more

efficiently, which allows one to respond and handle

anomalies before they occur.

4.3 Experimental Setup

We implemented our approach in PyTorch version 1.8.1

and CUDA version 11.1 and experimented with different

tasks based on the GFL Hu et al. (2020) and a self-written

federated learning framework, and the software finally

packaged with Docker. The specific details are shown in

Table 2.

The original data is processed by sliding window and

sliding step. The features in the sliding window are

extracted in spatial and temporal dimensions, and the next

row of data in the sliding window is used as the label.

Then, the sliding window and label are sequentially shifted

back into the sliding step. The extracted features and labels

are trained with mean square error (MSE) and SGD opti-

mizer in the federated scenario. The data is split so that

each client’s data satisfies non-independent identical dis-

tribution (Non-IID). Table 3 shows the proportion of pos-

itive and negative labels of the dataset in each client node.

4.4 Baselines

We compare the performance of our proposed method with

ten popular anomaly detection methods, as follows.

• GDN This method uses graph neural networks to model

multivariate time-series data and proposes a graph

deviation scoring mechanism to detect anomalies. Deng

and Hooi (2021)

• PCA Principal Component Analysis finds a low-

dimensional projection that captures most of the

variance in the data. The anomaly score is the

reconstruction error of this projection. Shyu et al.

(2003)

• KNN K Nearest Neighbors uses each point’s distance to

its kth nearest neighbor as an anomaly score. Hau-

tamäki et al. (2004)

• Sampling This method takes a small set of samples

from a given set of objects, followed by measuring the

outliers of each object by the distance from the object

to its nearest neighbor in the sample set. Sugiyama and

Borgwardt (2013)

• HBOS HBOS computes each feature dimension as a

separate histogram, using an improved discrete plain

Bayesian probability model to detect anomalies. Gold-

stein and Dengel (2012)

• IForest Isolation Forest constructs an itree set for a

given dataset and marks the instances on the itree with

shorter average path lengths as exceptions. Liu et al.

(2008)

Table 2 Details of the

hardware and software

parameters used in the

experiment

Parameters Details

Server Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, GeForce RTX 3080

Client Intel(R) Core(TM) i7-10700 CPU @ 3.80GHz, GeForce RTX 3090

Learning rate 1 � 10�2

The number of training rounds 100

Batch sizes NSL-KDD(40), SWaT(250), MSL(15), Wafer(80)

Topk NSL-KDD(200), SWaT(300), MSL(100), Wafer(1000)

Sliding steps NSL-KDD(8), SWaT(1), MSL(1), Wafer(4)

Table 3 Proportion of positive and negative labels in different client

nodes

Client Datasets

NSL-KDD SWaT MSL Wafer

Client1 3.9:1 7.3:1 2.0:1 9.3:1

Client2 3.1:1 5.1:1 1.5:1 7.5:1

Client3 2.6:1 4.8:1 1.2:1 6.9:1
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• ECOD ECOD uses empirical cumulative distribution

functions for outlier detection. Li et al. (2022)

• MO_GAAL This method uses multiple generators and

discriminators to learn the data distribution and detect

anomalies, respectively (Liu et al. 2020).

• Beta-VAE Beta-VAE facilitates understanding the

entangled representation by controlling the increase in

potential posterior coding power during training com-

bined with better reconstruction fidelity. Burgess et al.

(2018)

• DeepSVDD This method trains a neural network to map

most data into a hypersphere with center c and radius R

as the minimum volume. Examples that do not belong

Table 4 Performance comparison of DCN under different edge structure modeling methods

Method Datasets

NSL-KDD SWaT MSL Wafer

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Normal DCN 1.000 0.615 0.766 0.613 0.949 0.744 1.000 0.775 0.873 1.000 0.902 0.949

Randomly initialized graph structure 1.000 0.591 0.712 0.588 0.926 0.701 0.501 0.503 0.498 1.000 0.375 0.545

Stable and invariant graph structure 1.000 0.588 0.711 0.601 0.933 0.729 0.497 0.504 0.501 1.000 0.429 0.600

Bold font represents the superiority of the proposed DCN compared to traditional methods in terms of three evaluation metrics across four

datasets

Fig. 5 Loss curves of different edge structure modeling methods on NSL-KDD, SWaT, MSL, and Wafer

123

W. Zhang et al.: Dynamic Circular Network-Based Federated, Bus Inf Syst Eng 66(1):19–42 (2024) 31



Fig. 6 Results of CDF-based edge structure modeling for some time periods in the four datasets

Fig. 7 Loss curves of different sliding windows on NSL-KDD, SWaT, MSL, and Wafer
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to this hypersphere are marked as anomalies. Ruff et al.

(2018)

4.5 Experiment Results

4.5.1 Validation of CDF-Based Edge Structure Modeling

To evaluate the effectiveness of our CDF-based edge

structure modeling approach, we made modifications to

DCN in the following ways.

• Replacing the CDF-based edge structure modeling

module with randomly initialized graph structures.

• Replacing the CDF-based edge structure modeling

module with stable and invariant graph structures(Edge

structure modeling method in Deng and Hooi (2021)).

The randomly initialized graph structure is equivalent to

randomly generating different neighbor nodes for each

sensor node at different moments. However, not all of these

neighbor nodes are associated with the current sensor node,

so in this case, the sensor nodes learn a large fraction of

noise weights, and the presence of this noise guides the

model to train in a direction that deviates from the objec-

tive function, which in turn produces large deviations in the

current sensor’s prediction of future moment behavior.

Although the stable and invariant graph structure learns the

dependencies of different sensor nodes at the initial

moment, as described in Sect. 1, the method is not very

different from the random initialized graph structure when

faced with the topology that changes over time. Our pro-

posed CDF-based edge structure modeling approach can

model the inter-sensor topology at different moments. A

correct and appropriate graph structure enables the GNN to

play a positive role in the model training process, which

helps the model predict the behavior at future moments

with low LOSS values. As seen in Table 4 and Fig. 5, the

CDF-based edge structure modeling approach dominates

the anomaly detection evaluation metrics for all four

datasets compared to the two methods mentioned above,

while the models using this approach have faster conver-

gence and smaller LOSS values, which validates the

necessity of this component.

Figure 6 displays the edge structures learned by our

proposed CDF-based edge structure modeling method for

NSL-KDD, SWaT, MSL, and Wafer datasets at different

time nodes. The computation time for modeling the edge

structure on an NVIDIA Geforce RTX 3090 device is 0.4 s

for NSL-KDD, 0.45 s for SWaT, 0.02 s for MSL, and 3 s

for Wafer when the sliding window length is 9. Each

vertical number in the figure corresponds to a sensor, and

each horizontal column represents the topk sensors that are

associated with the current sensor.

4.5.2 Generalization Capabilities of the Dynamic Circular

Network Architecture

To verify the generalization capabilities of the dynamic

circular network architecture proposed in the above

Table 5 Performance comparison of DCN with different sliding windows

Length Datasets

NSL-KDD SWaT MSL Wafer

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

slideWin:5 1.000 0.634 0.766 0.620 0.965 0.757 1.000 0.774 0.871 1.000 0.889 0.941

slideWin:9 1.000 0.598 0.749 0.613 0.949 0.744 1.000 0.775 0.873 1.000 0.902 0.949

slideWin:13 1.000 0.579 0.742 0.612 0.949 0.744 1.000 0.775 0.873 1.000 0.943 0.958

slideWin:17 1.000 0.633 0.776 0.603 0.966 0.743 1.000 0.771 0.870 1.000 0.889 0.941

slideWin:21 1.000 0.593 0.716 0.581 0.956 0.723 1.000 0.756 0.853 1.000 0.879 0.933

Table 6 Percentage decrease in LOSS for dynamic circular network architecture compared to normal architecture

Architecture Datasets

NSL-KDD (%) SWaT (%) MSL (%) Wafer (%)

slideWin:3 (No circulation) 2.3 96.7 25.7 4.1

slideWin:9 (No circulation) 2.3 98.0 25.6 4.1
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method, we used different lengths of sliding windows to

extract the spatio-temporal features of the multivariate

time-series data. The sampling frequencies are set to 5, 9,

13, 17 and 21. Figure 7 shows the convergence speed and

trend of the four datasets at different sampling frequencies.

This verifies the effectiveness and generality of the

dynamic circular network architecture. The final anomaly

detection results at different frequencies are shown in

Table 5, which shows that the differences in the evaluation

metrics on the four data sets are not significant at the first

four sampling frequencies. However, when the sampling

frequency is 21, the three evaluation metrics on the four

data sets are reduced, but the effect is still better than most

baseline methods.

4.5.3 Effectiveness of the Dynamic Circular Network

Architecture

To validate the effectiveness of our proposed dynamic

circular network architecture, we chose the network

architecture without the cyclic idea for comparison

experiments, where sliding step lengths were set to 3 and 9,

respectively. As stated in Sect. 3.2, smaller sliding steps

are insufficient to extract effective behavioral patterns.

Bigger sliding steps ignore the behavioral features at earlier

moments. The two traditional network architectures have

higher loss values than our proposed DCN on the four

datasets, with the most significant difference in loss on the

swat dataset. The specific decline rates are shown in

Table 6, which further validates the effectiveness of the

dynamic circular network architecture. Figure 8 illustrates

the experimental results.

Fig. 8 Loss curves of different model architecture on NSL-KDD, SWaT, MSL, and Wafer
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Fig. 9 Comparison of actual and predicted values

Table 7 Impact of sliding steps on assessment metrics

Length Datasets

NSL-KDD SWaT MSL Wafer

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

slideStride:1 0.992 0.572 0.725 0.603 0.952 0.738 1.000 0.736 0.853 1.000 0.889 0.940

slideStride:5 1.000 0.598 0.749 0.613 0.949 0.744 1.000 0.754 0.859 1.000 0.878 0.938

slideStride:8 1.000 0.661 0.796 0.597 1.000 0.737 1.000 0.732 0.850 1.000 0.891 0.960

slideStride:10 1.000 0.625 0.769 0.667 1.000 0.800 1.000 0.726 0.848 1.000 0.874 0.920

Bold font highlights the extreme values of different evaluation metrics for each dataset at different sliding window sizes (multiple occurrences of

the same extreme value for different evaluation metrics within a dataset are not shown in bold)
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Table 8 Anomaly detection results of different models on NSL-KDD, SWaT, MSL, and Wafer

Method Datasets

NSL-KDD SWaT MSL Wafer

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

PCA 0.726 0.520 0.610 0.153 0.906 0.261 0.781 0.800 0.867 0.037 0.031 0.034

KNN 0.805 0.494 0.612 0.235 0.683 0.392 0.843 0.956 0.831 0.588 0.783 0.695

Sampling 0.673 0.122 0.207 0.678 0.701 0.690 0.852 0.726 0.801 0.508 0.901 0.634

HBOS 0.858 0.546 0.671 0.313 0.742 0.441 0.781 0.976 0.870 0.103 0.113 0.108

ECOD 0.870 0.562 0.687 0.587 0.709 0.642 0.837 0.311 0.453 0.339 0.412 0.372

MO_GAAL 0.153 0.906 0.261 0.153 0.896 0.251 0.773 0.972 0.841 0.293 0.311 0.302

IForest 0.731 0.534 0.621 0.297 0.772 0.394 0.827 0.733 0.801 0.548 0.803 0.676

Beta-VAE 0.776 0.570 0.660 0.153 0.906 0.261 0.781 0.868 0.871 0.304 0.323 0.312

DeepSVDD 0.791 0.313 0.449 0.379 0.495 0.261 0.781 0.969 0.861 0.386 0.629 0.478

GDN 0.570 1.000 0.725 0.956 0.623 0.740 0.813 0.976 0.873 0.128 0.589 0.210

DCN 1.000 0.598 0.749 0.613 0.949 0.744 1.000 0.775 0.873 1.000 0.902 0.949

FDVL-DCN 1.000 0.661 0.796 0.837 0.828 0.833 1.000 0.583 0.737 0.964 0.739 0.809

Bold font is used to emphasize the superior performance of the proposed DCN and FDVL-DCN compared to the other ten baseline algorithms in

terms of different evaluation metrics across four datasets

Fig. 10 Loss curve under different models on NSL-KDD, SWaT, MSL, and Wafer
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Fig. 11 Loss curve under different scenarios

Table 9 Experimental details

of the federated dual-view

learning and federated single-

view learning

Datasets Details

batch topk slide_stride local_eopch number of fusions

NSL-KDD 40 200 4 100 3

SWaT 240 100 1 100 3

MSL 15 30 1 20 3

Wafer 80 1000 4 20 3

Table 10 The ratio of increase in time consumption of federated dual-view learning compared to federated single-view learning(in seconds)

Methods Datasets

NSL-KDD SWaT MSL Wafer

FDVL 520 ("4%) 116210 ("2.5%) 80 ("7.5%) 1740 ("1.6%)

FDVL 500 113410 74 1713
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4.5.4 Validation of Model Prediction Accuracy

To test the prediction effectiveness of the proposed method

for multivariate time-series data, we plotted the compar-

ison curves of predicted and actual values of all batch of a

sensor in the training process for each of the four datasets.

The details are shown in Fig. 9. We can see that the pre-

dicted and actual values are approximated as the batch

gradually increases, which indicates that the prediction

effect of our proposed method is gradually enhanced and

can help us in the next step of anomaly detection.

4.5.5 Impact of Sliding Steps on Assessment Metrics

To evaluate the impact of sliding steps on the evaluation

metrics, we tested our method using sliding steps of lengths

1, 5, 8 and 10. The final anomaly detection results for

different sliding steps are shown in Table 7. It is observed

that for the MSL dataset, there were no significant differ-

ences between the different slide step lengths with regards

to the evaluation metrics. For NSL-KDD and Wafer data-

sets, the best performance was achieved at slide step length

8, while SWaT performed best at slide step length 10.

Thus, varying the sliding step size had some influence on

our method’s performance.

4.5.6 Comparisons with Baseline Methods

The baseline methods include Linear Model, Proximity-

based, Outlier Ensembles, Probabilistic, and Neural Net-

works. PCA cannot intervene in the process by parametric

methods, and the principal elements derived in the case of

non-Gaussian distribution may not be optimal. KNN

algorithm has low prediction accuracy for rare categories

when dealing with sample imbalance problems. HBOS

algorithm is challenging to handle high-dimensional issues,

and the algorithm requires a priori conditions that features

are independent of each other. The IForest algorithm is not

good at dealing with relatively local sparse points and is

also unsuitable for high-dimensional data. Sampling causes

the classifier to lose important information about the

unsampled classes because the sample set is less than the

original set of samples. ECOD algorithm is less effective in

datasets with data bias. Beta-VAE, MO_GAAL, and

DeepSVDD all reconstruct time series on a point-by-point

basis without capturing spatial dimension dependencies,

limiting the model’s capability and detection performance.

GDN does not capture the dependence of multivariate

time-series data in the temporal dimension. At the same

time, the graph structure information presented by this

method cannot change dynamically with the input data,

which limits the persuasiveness of the model to some

Table 11 The improvement ratio of anomaly detection F1 values of federated dual-view learning compared to federated single-view learning

Methods Datasets

NSL-KDD SWaT MSL Wafer

FDVL (F1) 0.766 ("7.4%) 0.833 ("23.8%) 0.737 ("17.2%) 0.809 ("61.8%)

FPVL (F1) 0.713 0.673 0.629 0.5

Table 12 Percentage improvement in F1 values for DCN and FDVL-DCN compared to conventional methods

Method Datasets

NSL-KDD SWaT MSL Wafer

DCN (%) FDVL-DCN (%) DCN (%) FDVL-DCN (%) DCN (%) FDVL-DCN (%) DCN (%) FDVL-DCN (%)

PCA "22.8 "30.5 "185.1 "219.2 "0.7 #15.0 "2691.2 "2279.4
KNN "22.39 "30.1 "89.8 "112.5 "5.1 #11.3 "36.5 "16.4
Sampling "261.8 "284.5 "7.8 "20.7 "9.0 #8.0 "49.7 "27.6
HBOS "11.6 "18.6 "68.7 "88.9 "0.3 #15.3 "778.7 "649.1
ECOD "9.0 "15.9 "15.9 "29.8 "92.7 "62.7 "155.1 "117.5
MO_GAAL "187.0 "205.0 "196.4 "231.9 "3.8 #12.4 "214.2 "167.9
IForest "20.6 "28.2 "88.9 "111.4 "9.0 #8.0 "40.4 "19.7
Beta-VAE "13.5 "20.6 "185.1 "219.2 "0.2 #15.4 "204.2 "159.3
DeepSVDD "66.8 "77.3 "185.1 "219.2 "1.4 #14.4 "98.5 "69.2
GDN "3.3 "9.8 "0.5 "12.6 "0.0 #15.6 "351.9 "285.2
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extent. The limitations of the above approaches are that

they either do not consider feature-level correlations or do

not explicitly address them. Our model not only captures

dependencies in the temporal dimension but also deals with

correlations in the spatial dimension in a coordinated

manner. It is experimentally verified that the above joint

treatment is effective in modeling dependencies on multi-

variate time series.

Table 8 shows the anomaly detection results of DCN

and other baseline methods on datasets NSL-KDD, SWaT,

MSL, and Wafer for the three evaluation metrics. In the

MSL dataset, the F1 values of some baseline machine

learning methods are close to our proposed method. As

seen from Table 1, the MSL dataset has the highest per-

centage of anomalies in the four datasets, so performing

anomaly detection on this dataset is close to executing a

common binary classification problem. Some traditional

machine learning methods can also show better results. On

the remaining three datasets, our method outperforms the

baseline model. Thus, our process improves the evaluation

metrics for anomaly detection compared to the baseline

machine learning approach. That is, the time consumed is

necessary. Although GDN does not explicitly model the

dependence of multivariate time-series data in the temporal

dimension, it treats the sensor data in the temporal

dimension as sensor features and projects these features to

high-dimensional processing and captures the spatial

dependence using GAT, which can also model the features

of multivariate time-series data in the temporal dimension

to some extent. In both NSL-KDD and SWaT datasets,

DCN and GDN significantly improve over the traditional

models because the traditional methods focus only on the

dependence of multivariate time-series data in the temporal

dimension. Also, GDN models the dependence of multi-

variate time-series data in the temporal dimension in an

implicit way. Therefore, the improvement effect of DCN

over GDN on these two datasets is not as significant as the

traditional approach. However, DCN has a significant

improvement over GDN on the Wafer dataset. This is

because Wafer is more unbalanced and has higher

Table 13 Software Quality Metrics

Quality requirements Quality

characteristics

Quality sub-

characteristics

Direct metrics Metric description

Software will run on multiple

platforms and operating

systems currently in use by

users

Portability Hardware

independency

Hardware dependency None

Software

independency

Software dependency Runs on Windows, CentOS, Ubuntu, etc.

Ease of

installation

The ease of installing

software successfully

This software can be installed by simply starting

the installation program through the command

line. Configuring the language environment and

installing related dependency packages will take

approximately an hour.

Compatibility Environmental

changes

The number of environment variables that must

be modified after software installation is 0.

Software will be reliable Reliability Defectlessness Test coverage Statement coverage: 100% Branch condition

coverage: 100% Path coverage: 100%

Review coverage All code in the software has been reviewed.

Availability Percentage of software

available

99.9%

Software will be functionally

robust

Functionality Completeness Test coverage Branch condition coverage: 100%

Reusability Partial function

modification

Modifying a single function point will not affect

the regular operation of other function points.

Software will be easy to use Usability Comprehensibility The understandability

and clarity of the

system prompt

information

Software can help users accurately understand

the current real status of the system and guide

them for further operations. New users typically

require one hour to learn the software’s

functionality.

Ease of learning Availability of online

assistance

The software has an online help manual. New

users typically require half an hour to learn the

basic functionality of operating the software.

Ease of operation Ease of use of the

software for users

The software interface is simple to operate and

has shortcut keys, without too many complicated

steps.
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dimensionality than NSL-KDD, SWaT and MSL, as shown

in Table 1. Therefore, DCN can achieve accurate anoma-

lous event detection and localization even in highly

unbalanced and high-dimensional attack scenarios while

demonstrating the effectiveness of capturing spatio-tem-

poral features of multivariate time-series data in an explicit

manner. Finally, DCN can also better balance the two

remaining evaluation metrics while maintaining higher F1

values.

We also evaluated our model in the federated scenario

by dividing the dataset multiple times for experimental

validation. The results show that our model’s performance

improves on NSL-KDD and SWaT datasets. However, on

MSL and Wafer datasets, the three evaluation metrics of

FDVL-DCN are generally lower than in the non-federated

scenarios, the reasons are:

1. There are more or fewer differences between the

manually divided dataset and the actual case.

2. Uneven distribution of anomalies in MSL and Wafer

datasets.

3. MSL and Wafer have less anomalous data than NSL-

KDD and SWaT, and it is difficult for the trained

model to learn the information of anomalies.

Overall, our proposed method exhibits higher performance

compared to the baseline models.

4.5.7 Loss Curves of Different Models

In order to compare the trend of LOSS curves generated by

different methods in a clear and explicit manner, we use

Eq. 24 to normalize the LOSS values of all methods,

mapping them to the same interval,

Y ¼ a þ b� a

Xmax � Xmin
X � Xminð Þ ð24Þ

where X is the list of loss function values before mapping,

Y is the list of loss functions after mapping. Xmax is the

maximum value in this set of data X, Xmin is the minimum

value in this set of data X. As shown in Fig. 10, our pro-

posed method exhibits a faster convergence rate than other

baseline methods while maintaining a stable convergence

state after reaching convergence. This normalization

approach enables us to effectively compare the perfor-

mance trends of different models.

4.5.8 Comparison of LOSS Curves in Federated and Non-

Federated Scenarios

To compare with the LOSS curves in the non-federated

scenario, we selected the model after the first round of

fusion in the federated scenario and tested it on the training

set to obtain the corresponding LOSS curves. The

comparison results are shown in Fig. 11. After fusing

model parameters from different nodes, it can be seen that

the new model can predict the behavior of future moments

with minor LOSS, improving the model’s performance.

4.5.9 Time Consumption Evaluations

We evaluated the time consumption of Federated Dual-View

Learning(FDVL) and Federated Positive-View Learn-

ing(FPVL), the detailed parameters of the training are shown

in Table 9, and the comparison results are shown in Table 10.

It can be seen that compared to FPVL, the training time

increased by 3.9% on average. Federated Negative-View

Learning(FNVL) plays only an auxiliary role in FDVL, and

the number of negative samples is much smaller than the

number of positive samples in the real scenario, so the quality

of the negative-view model is also much lower than the

quality of the positive-view model. All we need is the range

of the anomaly interval corresponding to the negative-view

model. So it is undesirable to train an FNVL alone, and it is

not meaningful to compare the time consumption of FNVL

and FDVL alone. In contrast, compared to the FPVL, FDVL

increases the time on the four datasets by 4%, 2.5%, 7.5%,

and 1.6%, respectively. The F1 values increases by 7.4%,

23.8%, 17.2%, and 61.8% respectively, as shown

in Table 11 (Calculation of the above time growth rate per-

centage and F1 value growth rate percentage: (FDVL -

FPVL) / FPVL). In general, the increased time for training is

within a manageable range, but it helps us to detect anomalies

more effectively.

4.5.10 Quality Metrics FDVL-DCN Big Data as Service

The software service corresponding to non-federated sce-

narios (DCN) and federated scenarios (FDVL-DCN) sig-

nificantly improves anomaly detection evaluation metrics

compared to traditional methods. Table 12 shows the

specific percentage improvement in F1 values. Addition-

ally, the software service was evaluated regarding func-

tionality, reliability, ease of usage, efficiency,

maintainability, and portability, as detailed in Table 13.

From these two tables, it can be verified that the software

service corresponding to FDVL-DCN improves the mod-

el’s performance and can help make more accurate

decisions.

5 Conclusions and Future Work

This paper proposes a dynamic circular network architec-

ture and a general modeling approach for multivariate

time-series data spatial structures while combining both

with federated dual-view learning for anomaly detection
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and finally encapsulating the main components in FDVL-

DCN as a software service to improve usability. Compar-

ative experiments of ten machine learning models and

multi-angle model parameters show that FDVL-DCN has

better anomaly detection performance while protecting the

privacy of each participant. The multifaceted software

quality metrics show that the software service corre-

sponding to FDVL-DCN possess some robustness. In the

future, we can improve the federated fusion algorithm, the

aggregation method of spatial weights in BI-GCN, and the

anomaly detection algorithm to obtain further

improvements.
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Hautamäki V, Kärkkäinen I, Fränti P (2004) Outlier detection using

k-nearest neighbour graph. In: ICPR 2004, Cambridge, UK,

August 23-26, IEEE Computer Society, pp 430–433

Hu Y, Xia W, Xiao J, Wu C (2020) GFL: a decentralized federated

learning framework based on blockchain. arXiv:2010.10996

Jiang J, Chen J, Gu T, Choo KR, Liu C, Yu M, Huang W, Mohapatra

P (2019) Anomaly detection with graph convolutional networks

for insider threat and fraud detection. In: MILCOM 2019,

Norfolk, VA, USA, November 12-14, IEEE, pp 109–114

Kipf TN, Welling M (2017) Semi-supervised classification with graph

convolutional networks. In: ICLR 2017, Toulon, France, April

24-26, Conference Track Proceedings, OpenReview.net
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