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Abstract. It is well-known that the cost of parcel delivery can be reduced by designing 
routes that take into account the uncertainty surrounding customers’ presences. Thus far, 
routing problems with stochastic customer presences have relied on the assumption that 
all customer presences are independent from each other. However, the notion that demo-
graphic factors retain predictive power for parcel-delivery efficiency suggests that shared 
characteristics can be exploited to map dependencies between customer presences. This 
paper introduces the correlated probabilistic traveling salesman problem (CPTSP). The 
CPTSP generalizes the traveling salesman problem with stochastic customer presences, 
also known as the probabilistic traveling salesman problem (PTSP), to account for potential 
correlations between customer presences. I propose a generic and flexible model formula-
tion for the CPTSP using copulas that maintains computational and mathematical tractabil-
ity in high-dimensional settings. I also present several adaptations of existing exact and 
heuristic frameworks to solve the CPTSP effectively. Computational experiments on real- 
world parcel-delivery data reveal that correlations between stochastic customer presences 
do not always affect route decisions, but could have a considerable impact on route cost 
estimates.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0005. 

Keywords: traveling salesman problem • stochastic vehicle routing • correlation

1. Introduction
The surge of e-commerce has led to a tremendous increase 
in the number of business-to-consumer deliveries, with 
domestic parcel-delivery volumes growing 54% across the 
European Union between 2016 and 2020 (European Com-
mission 2021). In the fulfilment of online orders, the 
so-called “last mile”—the delivery of the order from 
the carrier to the customer’s doorstep—is arguably the 
least efficient and most expensive stage in the delivery 
process (Macioszek 2017). One of the most difficult 
challenges carriers are facing in this stage of the deliv-
ery process is the high number of failed deliveries due 
to absent customers (Mangiaracina et al. 2019). With 
failure rates as high as 3%–50% (Rai, Verlinde, and 
Macharis 2021), failed deliveries give rise to enormous 
amounts of extra emissions (Van Loon et al. 2015), a 
deterioration of service levels (Mangiaracina et al. 
2019), collection and delivery-point expenses (Liu, 
Wang, and Susilo 2019), and costs associated with rede-
livery (IMRG 2018).

Jaillet (1988) was among the first to recognize that effi-
ciency can be gained from accounting for uncertainty 
among customer presences in the design of a route. Jaillet 
(1988) proposes the traveling salesman problem with 
stochastic customers, more commonly known as the 

probabilistic traveling salesman problem (PTSP), a ver-
sion of the traveling salesman problem (TSP) in which 
every customer is only present with some predefined 
probability. He uses a PTSP instance where all customers 
have a 0.5 probability of being present to illustrate that a 
good tour that exploits this information to skip absent 
customers during execution (Figure 1(b)) does not need 
to coincide with a good tour that neglects information 
about uncertainty (Figure 1(a)).

Although the probability estimates for every custo-
mer’s presence can be hard to obtain in the real world, 
evidence shows that demographic characteristics are rea-
sonable predictors of daily customer presences on a joint 
level (Boyer, Prud’homme, and Chung 2009, Van Duin 
et al. 2016). This suggests that the presence patterns of 
customers who possess similar demographic characteris-
tics are likely to follow a similar trend and, thus, correlate 
over time. Because residents in the same neighborhood 
often exhibit similar characteristics (e.g., Schaefer and 
Figliozzi 2021), this correlation could also manifest spa-
tially. For example, the positive interaction between the 
delivery success rates of neighboring customers who 
belong to the same age group (Kübler et al. 2022) implies 
that their presence probabilities could be correlated. Gen-
dreau, Jabali, and Rei (2016) argue that accounting for 
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correlations in the setup of probabilistic routing pro-
blems should warrant more efficient solutions than, for 
example, the ones presented in Figure 1(a) and (b).

In spite of this promising hypothesis, no attempts 
have been made so far to investigate the claim by Jaillet 
(1985, p. 45) that the PTSP can be generalized to a ver-
sion that considers dependencies between customer 
presences. Instead, researchers have always worked 
under the strong assumption that stochastic customer 
presences are independent from each other. As a conse-
quence, (1) how a traveling salesman problem with sto-
chastic and correlated customer presences should be 
modeled; (2) how a traveling salesman problem with 
stochastic and correlated customer presences can be 
solved; and (3) what impact correlation between sto-
chastic customers in a traveling salesman problem has 
on route costs and route decisions remain open re-
search questions.

To answer these questions, this paper introduces a 
novel stochastic optimization problem in which the un-
certain customer presences of a PTSP are dependent. 
I refer to this new stochastic optimization problem as 
the correlated probabilistic traveling salesman problem 
(CPTSP). The CPTSP is a generalization of the PTSP, 
such that their overall objectives and two-stage setups 
are the same. More specifically, the objective of the 
CPTSP is to find the a priori tour along the complete set 
of stochastic customers in the first stage that minimizes 
the expected length of the a posteriori tour along only 
those customers who are present in the second stage, 
while skipping the absent customers. Unlike the PTSP, 
however, the CPTSP also takes into account the correla-
tion between the presences of customers in the evalua-
tion of the length of the tour besides only their marginal 
presence probabilities. Hence, the objective function of 
the CPTSP explicitly captures potential interactions bet-
ween the presences of customers.

The discrete nature of the stochastic customer pre-
sences (either present or absent) elicits several depen-
dence modeling challenges. To address the first research 

question (1), this research focuses on deriving a generic 
and flexible objective function that can model dependen-
cies between stochastic customers with different depen-
dence structures. To this end, the objective function of 
the CPTSP relies on discrete-vine (D-Vine) pair copula 
constructions (PCCs) for the estimation of probabilities 
of jointly correlated customer presences (Panagiotelis, 
Czado, and Joe 2012). I also derive a special form of the 
CPTSP objective function under homogeneous (i.e., equi-
probable and equicorrelated) conditions, which allows one 
to study limiting behavior in a controlled environment.

To address the second research question (2), I demon-
strate how the CPTSP can be solved by adapting existing 
solution techniques that were originally developed for 
the PTSP. First, I modify an adaptation of the integer 
L-shaped method for the PTSP (Laporte, Louveaux, and 
Mercure 1994) to solve the CPTSP to optimality. Second, 
I present two different approximation procedures that 
allow one to evaluate the expected length of a CPTSP 
tour with less computational effort than the quartic com-
plexity required to evaluate the full function. These 
approximation procedures can be directly embedded 
into many existing heuristic methods for the PTSP. I con-
sider probabilistic ant-colony optimization (Bianchi, 
Gambardella, and Dorigo 2002) and 2.5-opt-empirical 
estimation and speedup (2.5-opt-EEs) (Birattari et al. 
2008) to illustrate this notion.

I subsequently use these solution methods to revisit 
the problem instance in Figure 1, while adding a pair-
wise correlation of 0.9 between the presences of cus-
tomers who share different node colors (see Online 
Appendix A for the full details). This experiment reveals 
that a good solution for the CPTSP (Figure 1(c)) admits 
the shape of a gear that coincides neither with the star- 
shaped solution of the PTSP (Figure 1(b)) nor with the 
C-shaped solution of the TSP (Figure 1(a)). Instead, the 
CPTSP solution pulls the PTSP solution toward the TSP 
solution whenever adjacent customers express a higher 
probability of being jointly present (or absent) than they 
would have under the assumption of independence. 

Figure 1. Differences Between Good TSP, PTSP, and CPTSP Tours 

(a) (b) (c)

Notes. (a) Good TSP tour. (b) Good PTSP tour. (c) Good CPTSP tour.

Wissink: TSP with Stochastic and Correlated Customers 
1322 Transportation Science, 2023, vol. 57, no. 5, pp. 1321–1339, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
5.

10
8.

24
5.

13
2]

 o
n 

04
 F

eb
ru

ar
y 

20
24

, a
t 0

4:
40

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Analogous to the conjecture posed by the star-shaped 
PTSP solution, the uniqueness of the gear-shaped CPTSP 
solution illustrates that neglecting dependencies could 
lead to different, suboptimal outcomes. This evidence in 
support of the hypothesis by Gendreau, Jabali, and Rei 
(2016) also raises the question of how sensitive routes are 
to correlation in different settings.

To answer the last research question (3), I therefore 
conduct a number of computational experiments that 
highlight the impact of various degrees of dependence 
on the expected length of a tour, algorithmic perfor-
mance, and route decisions. I find that the marginal effect 
of correlation on the expected length of a tour tends to 
grow with increasing correlation, reflecting the construct 
that correlation induces uncertainty about the need to 
visit multiple stochastic customers jointly. The integer 
L-shaped method generally yields the best solutions 
within 600 CPU seconds, regardless of the dependence 
structure and intensity of dependence. In many cases, 
however, a CPTSP adaptation of probabilistic ant-colony 
optimization delivers only marginally inferior results in 
just a fraction of the computation time. A last computa-
tional experiment illustrates the practical value of the 
CPTSP in a last-mile parcel-delivery problem with deliv-
ery cancellations. Using real-world parcel-delivery data 
for an area in Amsterdam, Netherlands, I show that cor-
relation has a noticeable effect on route cost estimates, 
but does not lead to different route decisions.

To the best of my knowledge, the research presented 
in this paper is the first to integrate and study dependen-
cies between discrete random variables in a stochastic 
routing problem. Specifically, the main contributions 
that result from addressing the research questions are as 
follows. (1) This research derives a novel generic and 
computationally efficient expression for the expected 
length of a Hamiltonian tour, where the presences of the 
nodes (i.e., customers) in a graph are both stochastic and 
correlated. The CPTSP is proposed by embedding this 
expression in the objective function of the two-stage sto-
chastic program with recourse for the PTSP. This paper 
also proves a number of properties about the behavior 
of stochastic customer dependencies for the CPTSP in 
homogeneous settings. (2) This study proposes several 
new adaptations of solution approaches, both exact and 
heuristic in nature, to solve the CPTSP. (3) This paper 
applies these solution approaches to demonstrate the 
impact and practical value of modeling dependencies 
between stochastic customer presences in a CPTSP un-
der both stylized and practical conditions.

The remainder of this paper is organized as follows. 
Section 2 surveys the relevant literature in the field. Sec-
tion 3 discusses the mathematical setup of the CPTSP. I 
also derive an expression for its objective function in this 
section—that is, the expected length of a tour along sto-
chastic and correlated customers. Section 4 describes and 
characterizes the generic probability mass function (pmf) 

incorporated by the expected length. It is followed by a 
discussion of a computationally more attractive method 
to compute the pmf of the CPTSP using D-Vine PCCs in 
Section 5. Section 6 formalizes the homogeneous CPTSP 
and derives several properties. Sections 7 and 8 propose 
exact and approximate methods, respectively, to solve 
the CPTSP. Section 9 describes a number of computa-
tional experiments that demonstrate the impact of differ-
ent dependence structures and intensities on the route 
costs and route decisions produced by different solution 
approaches, along with a more practical application of 
the CPTSP. Finally, Section 10 concludes.

2. Literature Review
The CPTSP has its roots in the stochastic vehicle-routing 
literature. Stochastic vehicle routing is a relatively young 
area of research that can be traced back to the introduc-
tion of the vehicle-routing problem (VRP) with stochastic 
demands in 1969. The field was developed as a straight-
forward extension from deterministic routing problems, 
most notably the TSP (Dantzig, Fulkerson, and Johnson 
1954) and the VRP (Dantzig and Ramser 1959), nour-
ished by the simultaneous development of stochastic 
programming and stochastic-dynamic programming.

Stochastic routing problems are among the most 
studied topics of the overarching optimization branch 
known as stochastic mixed-integer programming. The 
most commonly encountered stochastic components in 
the routing literature are stochastic demands (Tillman 
1969), stochastic travel or service times (Kao 1978, Leipälä 
1978), and stochastic customer presences (Jaillet 1985, 
1988). Comprehensive overviews of the body of literature 
devoted to stochastic routing appeared in Gendreau, 
Jabali, and Rei (2014), Berhan et al. (2014), and Oyola, 
Arntzen, and Woodruff (2017, 2018). Driven by the in-
creasing availability of bigger data sets, more computa-
tional power, and the realization that many real-world 
routing problems are inherently stochastic in nature, the 
body of literature devoted to stochastic routing problems 
is rapidly growing.

Not surprisingly, extensions of the TSP with uncorre-
lated stochastic customers are abundant. For example, 
Beraldi et al. (2005) consider the probabilistic pickup and 
delivery TSP, in which some customer requests have to 
be fulfilled prior to serving other customers. Tang and 
Miller-Hooks (2007) study the probabilistic generalized 
TSP, where each stochastic customer is assigned to a 
cluster, and each cluster must be traversed at least once. 
Campbell and Thomas (2008) develop the PTSP with 
deadlines, in which late arrivals are penalized. Voccia, 
Campbell, and Thomas (2013) subsequently enhance this 
problem to also penalize early arrivals and name it the 
PTSP with time windows accordingly. Zhang et al. 
(2018) propose a version of the PTSP where a profit is 
made from every customer visit, such that both profit 
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maximization and travel-time minimization are part of 
the objective.

In contrast to extensions of the PTSP, generalizations 
of the PTSP are scarce. Undoubtedly the best-known 
generalization of the PTSP is the case with multiple vehi-
cles, referred to as the VRP with stochastic customers 
(Bertsimas 1988). Other, lesser-related variations on the 
PTSP that deserved considerable attention include the 
VRP with both stochastic demands and customers (Bert-
simas 1992); the dynamic VRP with time windows and 
stochastic customers (Bent and Van Hentenryck 2004); 
the courier delivery problem with uncertain customer 
presence and service times (Sungur et al. 2010); and the 
vehicle-routing and districting problem with stochastic 
customers (Lei, Laporte, and Guo 2012). None of these 
related problems, nor their extensions, accommodate de-
pendencies within the stochastic customer component.

In an invited review for the 50th anniversary of Trans-
portation Science, Gendreau, Jabali, and Rei (2016) raise 
the concern that only a few researchers consider depen-
dence between the stochastic components of routing pro-
blems—whereas, in reality, the uncertain components of 
stochastic routing problems often maintain complex rela-
tionships. That is, only a small number of specific cases 
have been investigated in the literature prior to 2016. 
Most notably, Golden and Yee (1979) and Stewart and 
Golden (1983) study correlations between stochastic de-
mands in a chance-constrained setup of the VRP under a 
set of special conditions. Furthermore, Toriello, Haskell, 
and Poremba (2014) consider stochastically correlated 
travel times in a dynamic version of the TSP, and Letch-
ford and Nasiri (2015) study a Steiner TSP with stochastic 
and correlated road-traversal cost.

Partially inspired by the observation from Gendreau, 
Jabali, and Rei (2016), a few notable papers recently em-
erged that do address generic cases of correlation between 
stochastic components. As far as stochastic demands are 
concerned, Gounaris et al. (2016) explore correlations bet-
ween the uncertain demands of a robust capacitated VRP; 
Dell’Amico et al. (2018) investigate a bike-sharing rebalan-
cing problem with correlations among stochastic demands; 
and Dinh, Fukasawa, and Luedtke (2018) formulate an-
other, more general chance-constrained version of the VRP 
with stochastic demands that features correlations. Among 
the papers in the stochastic travel times domain, Köster 
et al. (2018) extend the dynamic TSP with stochastic and 
correlated travel times from Toriello, Haskell, and Por-
emba (2014) to the dynamic VRP; Rajabi-Bahaabadi et al. 
(2021) analyze a VRP with correlated stochastic travel 
times and soft time windows; Rostami et al. (2021) propose 
branch-price-and-cut algorithms for another variant of the 
VRP with stochastic and correlated travel times; and 
Bakach et al. (2021) examine a VRP with correlated stochas-
tic travel times and makespan objectives.

It is striking that dependence in the last remaining 
major stochastic component, customer presences, has 

not yet been investigated, even though many real-world 
problems in logistics and transportation are character-
ized by dependencies between uncertain customer 
presences (Gendreau, Jabali, and Rei 2016). Instead, the 
PTSP—along with the rest of the literature concerning 
stochastic customers—has always been investigated 
while assuming independently distributed Bernoulli vari-
ables associated with each individual customer’s presence 
(success) or absence (failure).

Recent advances in distributionally robust optimi-
zation (DRO) provide several practical tools to solve 
routing problems with potential dependencies between 
uncertain components (Delage and Ye 2010), including 
stochastic customer presences (Carlsson, Behroozi, and 
Mihic 2018). In contrast to stochastic programming, DRO 
does not rely on an exact analytical representation of the 
objective function. Instead, DRO relies on possibly corre-
lated samples from an unknown empirical distribution. 
It uses these samples to target chance-constrained ver-
sions of stochastic problems (Gendreau, Laporte, and 
Séguin 1996, Rahimian and Mehrotra 2019). Unlike sto-
chastic programs with recourse, chance-constrained pro-
grams do not allow recourse actions to take place once 
the stochastic outcomes are observed (Ghosal and Wiese-
mann 2020), such as skipping absent customers in the 
second stage of a PTSP. Although DRO forms a promis-
ing direction to address modeling challenges involving 
stochastic dependence in routing problems, redesigning 
some of DRO’s core elements to facilitate recourse ac-
tions is beyond the scope of this research.

Yet, the alternative challenges that arise if one seeks to 
model dependence between discrete valued variables 
explicitly (Molenberghs and Verbeke 2005, Nikoloulo-
poulos 2013) are also far from trivial. Because stochastic 
travel times and stochastic demands are traditionally 
modeled as continuous variables, rather than discrete 
variables, these challenges did not emerge previously 
in the routing domain. As a consequence, the concepts 
from other routing problems with stochastically corre-
lated components cannot simply be adapted to routing 
problems with stochastic customer presences. This may 
have contributed to the persistence of the research gap 
described above. To fill this gap, the next sections derive 
a novel analytical framework to model dependence 
between stochastic customer presences in a two-stage 
stochastic program with recourse for the TSP.

3. Problem Formulation
Because the CPTSP is a generalization of the PTSP, it also 
shares most of its problem definition (Jaillet 1988). Con-
sider a routing problem in which a Hamiltonian tour 
needs to be determined through a set of customers. Every 
customer in the set is only present with some known 
probability, which can be correlated with the probabilities 
that other customers are present. Hence, only a subset of 
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the customers are present in any given instance of the 
problem, whereas the remaining customers are absent. 
Only present customers require a visit. As in the TSP, all 
customers who require a visit should be visited no more 
than once.

The problem is set up according to the following two- 
stage stochastic program with recourse (Laporte and Lou-
veaux 1993). In the first stage of the problem, an a priori tour 
τ�along all n customers in the set N needs to be constructed, 
where n :� |N | . In the second stage, the tour is modified to 
account for only those customers who are present and 
require a visit. More specifically, when the subset S ⊆N of 
customers along τ�who are present is revealed in this stage, 
the customers in N \ S who are absent must be skipped. 
Those in S must be visited in the same order as they appear 
in the a priori tour. The resulting tour is referred to as the a 
posteriori tour. The objective of the CPTSP is to find the a 
priori tour τ�along all customers in N that minimizes the 
expected length of the a posteriori tour along the customers 
in S, given the joint probabilities of the customers’ pre-
sences and their dependence structure.

The problem can be mathematically formulated as fol-
lows. Following common assumptions in the PTSP (e.g., 
Jaillet 1985, 1988, and Laporte, Louveaux, and Mercure 
1994), assume a symmetric CPTSP where the triangle 
inequality holds. Given a complete, symmetric, and 
undirected graph G � (N, E), an instance of the CPTSP is 
defined on G with the following elements: 

N is a set of nodes or customers with cardinality 
n :� |N | ;

E is the set of edges {(i, j) : i, j ∈N, i ≠ j}, where (i, j) 
denotes the edge connecting customers i and j;

D denotes a symmetric distance matrix with ele-
ments dij ∈D, 1 ≤ i, j ≤ n, where dij corresponds to the 
distance of the edge (i, j) ∈ E between customers i and j;

Y � (Y1, : : : , Yn) is a vector of Bernoulli random vari-
ables taking realizations y � (Y1 � y1, : : : , Yn � yn), where 
Yi�1 if customer i is present (and requires a visit) and 
Yi�0 if customer i is absent (and does not require a visit);

S � {i : Yi � 1, i ∈N} is the subset of customers in N 
who are present and require a visit;
τ�� (1, : : : , n, 1) is a tour along all customers in N, 

and L(τ) denotes its length;
x is a set of binary variables x � (xij), assuming xij�1 

if (i, j) is on τ�and xij�0 otherwise.
The stochastic program of the CPTSP can then be writ-

ten as:
min
τ

E[L(τ)], (1a) 

s:t:
X

i<j
xij +

X

j>i
xij � 2, i ∈ N, (1b) 

X

i,j∈S
i<j

xij≤ |S |�1, S⊂N; 3≤ |S | ≤n�3, (1c) 

xij ∈{0,1}, i,j∈N: (1d) 

The Objective Function (1(a)) seeks the a priori tour τ�
along all customers in N whose expected length E[L(τ)]
with respect to the probability of any random subset S ⊆
N occurring is minimal. It is subject to the same degree 
Equations (1(b)), Subtour Elimination Constraints (1(c)), 
and Integrality Constraints (1(d)) as the TSP and PTSP 
to ensure that each customer is visited exactly once 
(Laporte, Louveaux, and Mercure 1994).

The challenge in the formulation of the CPTSP lies in 
finding a suitable expression for the expected length, 
E[L(τ)]. Given a pmf p(y) � Pr(Y1 � y1, : : : , Yn � yn) of 
all customers in N, I derive in Online Appendix B.1 that 
the general expression for the expected length of a 
CPTSP tour τ�is given by

E[L(τ)] �
Xn�1

i�1

Xn

j�i+1
dijp(y∗ij) +

Xn

j�2

Xj�1

i�1
djip(y∗ji): (2) 

Here, p(yij) � Pr(Yi � yi, : : : , Yj � yj) denotes the pmf 
associated with the random variables Yij � (Yi, : : : , Yj) of 
the customers on path (i, : : : , j) of τ, and y∗ij is a specific 
realization of Yij equal to

y∗ij �

(1, 1) if m � 2,
(1, 0, 1) if m � 3,
(1, 0, 0, 1) if m � 4,
: : : : : :

(1, 0, 0, : : : , 0, 1) if m � n:

8
>>>><

>>>>:

(3) 

That is, p(y∗ij) is the probability that customer j needs to 
be visited immediately after i, while all the customers i+
1, : : : , j� 1 that lie in between i and j on τ�are skipped. 
The cardinality m of the path (i, : : : , j) is given by 
m � (j� i) mod n+ 1, with “mod” the modulo operator. 
For ease of notation, I assume throughout the rest of this 
paper that k :� k mod n for any k ∈ (i+ 1, : : : , j+m� 2)
if k > n. The Equation (2) applies the law of total expecta-
tion to sum over all possible combinations of y∗ij, such 
that each distance term is multiplied by its probability of 
occurring (cf. Bertsimas and Howell 1993).

The pmf p(yij) can be obtained from p(y) by marginal-
izing over every yr ∈ y : r ∉ (i, : : : , j) corresponding to the 
presences of all customers 1, : : : , i� 1, j+ 1, : : : , n beyond 
those on path (i, : : : , j). That is,

pij(yij) �
X

y1�0,1
: : :

X

yi�1�0,1

X

yj+1�0,1
: : :

X

yn�0,1
p(y) � p(yij), 

where pij(yij) denotes the pmf of the presences of custo-
mers i, : : : , j. For the second equation to hold, p(y) must 
be “reproducible” (Fitzmaurice, Laird, and Rotnitzky 
1993): Subsets yij of y share the same distribution as y, 
now defined on yij. Consequently, pij(yij) does not de-
pend on customers beyond path (i, : : : , j). Every joint 
probability associated with a particular tour segment can 
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therefore be treated separately and with less computa-
tional effort. It also allows us to express Equation (2) as a 
sum of n(n� 1) independent terms.

4. The Probability Mass Function of 
a CPTSP

The joint pmf p(y) used by the CPTSP Objective Function 
(2) should be appealing from both a theoretical and a 
practical perspective. That is, the pmf should not only be 
reproducible (i), but it should ideally also take marginal 
probabilities from Bernoulli distributed customer pre-
sences as input (ii), reduce to the same pmf as the pmf 
embedded by the PTSP in the case of independence (iii), 
and be scalable to higher dimensions without the need to 
compromise on estimation accuracy (iv).

All four properties are satisfied by only a small number 
of multivariate discrete distributions, which belong to a 
category known as marginal models—see Agresti (2013) 
for an overview. Marginal models that satisfy (i)–(iv) 
include the well-researched Bahadur model (Bahadur 
1961) and several copula models (Nelsen 2006). Unfortu-
nately, many of these remaining candidates, including 
the Bahadur model, suffer from tight bounds on the 
range of permitted correlations in higher dimensions 
(Declerck, Aerts, and Molenberghs 1998, Nikoloulopou-
los 2013). Consequently, many CPTSP instances, even of 
small size, cannot be described by such models.

Not surprisingly, the select remaining group that does 
not suffer from such limitations—namely, copulas—has 
become increasingly popular in a number of fields over 
the last few decades, most notably in mathematical 
finance (Cherubini, Luciano, and Vecchiato 2004). Even 
though copulas were originally intended to be used with 
continuous variables only, many of their properties still 
remain valid when the marginal variables, like in our 
case (ii), describe discrete-valued events (Genest and 
Neálehová 2007). Consequently, applying copulas to dis-
crete variables has become increasingly common (see Joe 
1997, Song 2007, and Nikoloulopoulos 2013 for details).

Copulas can be used by the CPTSP in the following 
way. Sklar’s (1959) theorem states that every multivariate 
cumulative density function (cdf) can be written in terms 
of its marginal probabilities and a copula function. Let 
us consider the vector of random variables Yij with 
Bernoulli-distributed marginal cdfs Fr(yr) � Pr(Yr ≤ yr)

—that is,

Fr(yr) �

0 if yr < 0,
1� pr if 0 ≤ yr < 1,
1 if yr ≥ 1,

8
<

:
(4) 

where pr � Pr(Yr � 1) denotes the marginal probability 
that customer r is present and 1� pr � Pr(Yr � 0) des-
cribes the probability that the customer is absent. Ap-
plying the probability integral transformation to each 
Yr ∈ Yij yields the random vector U � (Ui, : : : , Uj) �

(Fi(Yi), : : : , Fj(Yj)) with uniformly distributed marginals 
ur ~ Ur(0, 1). A copula describes the joint cumulative dis-
tribution of Yij in terms of its probability integral trans-
formed set U:

C(ui, : : : , uj) � Pr(Ui ≤ ui, : : : , Uj ≤ uj)

� Pr(Yi ≤ F�1(ui), : : : , Yj ≤ F�1(uj)), (5) 

where the second equation follows from applying the 
transformation Yr � F�1(Ur) on each Ur.

A common way to derive a joint pmf—for example, 
p(yij)—from the cdf above is by taking finite differences 
(Panagiotelis, Czado, and Joe 2012):

p(yij) �
X

ki�0,1
: : :
X

kj�0,1
(�1)ki+⋯+kj Pr(Yi ≤ yi� ki, : : : , Yj ≤ yj� kj)

�
X

ki�0,1
: : :
X

kj�0,1
(�1)ki+⋯+kj C(Fi(yi� ki), : : : , Fj(yj� kj)):

Because this expression grows exponentially in m, it 
clearly does not meet property (iv). Yet, in our special 
case, where yij � y∗ij, the computational burden can be 
relaxed by using that, by definition, C(ui, : : : , uj) � 0 
if ur � 0 : r ∈ {i, : : : , j}; and C(1, ui, : : : , uj) � C(ui, : : : , uj, 
1) � C(ui, : : : , uj). Therefore,
p(y∗ij) �

pi + pj� 1+C(1� pi, 1� pj) if m � 2,
1� pi+1�C(1� pi, 1� pi+1)�C(1� pi+1, 1� pj)

+C(1� pi, 1� pi+1, 1� pj) if m � 3,
C(1� pi+1, : : : , 1� pj�1)�C(1� pi, : : : , 1� pj�1)

�C(1� pi+1, : : : , 1� pj) +C(1� pi, : : : , 1� pj) otherwise:

8
>>>>>><

>>>>>>:

(6) 

The case m� 2 reduces to C(pi, pj) for copulas that main-
tain the survival copula link Ĉ(pi, pj) � pi + pj� 1+
C(1� pi, 1� pj) (Nelsen 2006). One can easily verify that 
(6) also satisfies property (iii)—see Online Appendix B.2.

5. Discrete-Vine Pair Copula 
Constructions

The computation of the right-hand side (rhs) of (6) is 
straightforward as long as the copulas attain a closed- 
form expression. This is indeed the case for a distinct 
number of multivariate copulas that belong to the Ar-
chimedean copula family (Nikoloulopoulos 2013). The 
expected length of a Tour (2) can, in such case, be com-
puted in 4n(n� 1) steps. The downside to the members 
of this copula family, excluding the copulas that only 
admit narrow ranges of dependence, is that these permit 
only a single homogeneous measure of association to be 
specified (Denuit and Lambert 2005, Nešlehová 2007, 
Nikoloulopoulos 2013). Even though the CPTSP under 
such equicorrelated conditions allows us to derive some 
useful properties (see Section 6), it has limited practical 
value.

Wissink: TSP with Stochastic and Correlated Customers 
1326 Transportation Science, 2023, vol. 57, no. 5, pp. 1321–1339, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
5.

10
8.

24
5.

13
2]

 o
n 

04
 F

eb
ru

ar
y 

20
24

, a
t 0

4:
40

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Elliptical copulas, like the Gaussian copula used for the 
example of the good CPTSP tour in Figure 1(c) (see Online 
Appendix A), do allow for the specification of dependence 
structures beyond equicorrelated conditions alone. How-
ever, elliptical copulas do not bear a closed-form expres-
sion. Consequently, (6) would require the evaluation of an 
m-dimensional integral. This task becomes especially chal-
lenging when the size n of a CPTSP instance, and, therefore, 
the dimensions m ≤ n of the copulas in (6), grows (Smith 
and Khaled 2012). Property (iv) would soon be violated.

In order to avoid the repeated evaluation of high- 
dimensional integrals for elliptical copulas, we must 
resort to a strategy that decomposes p(y∗ij) into a series of 
smaller conditional probabilities. Panagiotelis, Czado, 
and Joe (2012) propose a decomposition that, when 
applied to p(y∗ij), takes the form

p(y∗ij)�Pr(Yi�1 |Yi+1�0, : : : ,Yj�1�0,Yj�1)
×Pr(Yj�1 |Yi+1�0, : : : ,Yj�1�0)

×
Yj�2

r�i+1
Pr(Yr�0 |Yr+1�0,: : : ,Yj�1�0)

×Pr(Yj�1�0): (7) 

The structure on the rhs, which is effectively the result of 
repeatedly applying Bayes’ theorem to p(y∗ij), is known 
as a D-vine. The first two terms correspond to the condi-
tional probabilities of the present customers on either 
two ends of (i, : : : , j), whereas the last two terms corre-
spond to the probabilities of every absent customer 
r ∈ {i+ 1, : : : , j� 1}, conditional on a collapsing series of 
all the other absent customers until none remain. The 
conditional probability terms Pr(Ya � ya |V � v) on the 
rhs of (7), with V indicating the set of conditioned vari-
ables and v its corresponding set of realizations, can be 
calculated with PCCs. Specifically, Panagiotelis, Czado, 
and Joe (2012) show that

Pr(Ya � ya |V � v) �

"
X

ka�0,1

X

kb�0,1
(�1)ka+kb CYa, Vb |V\b

(FYa |V\b(ya� ka |v\b), FVb |V\b (vb� kb |v\b))

#

=Pr(Vb � vb |V\b � v\b), (8) 

where FA |B(a |b) � Pr(A ≤ a |B ≤ b), Vb denotes an ele-
ment of V, V\b denotes its complement, and CA, B |C 
(u1, u2) denotes a bivariate copula density for variables A 
and B conditional on C, evaluated at u1 and u2. Every 
FA |B(a |b) can be computed as
FYa |Vb , V\b (ya |vb, v\b)

� [CYa, Vb |V\b(FYa |V\b(ya |v\b), FVb |V\b(vb |v\b))

�CYa, Vb |V\b(FYa |V\b(ya |v\b), FVb |V\b(vb� 1 |v\b))]

=Pr(Zk � zk |Z\k � z\k): (9) 

For computational details and implementation, see Pana-
giotelis, Czado, and Joe (2012).

The evaluation of a d-dimensional pmf using (8) requires 
the evaluation of d(d� 1)=2 bivariate copulas at four dif-
ferent points, resulting in a total of 2d(d� 1) evaluations. 
However, because the random variables Yr in (7) are Ber-
noulli distributed according to (4), the number of evalua-
tions can be significantly reduced by observing that 
many terms in (8) and (9) vanish when Yr�0. Therefore, 
(7) only requires m(m� 1)=2+ 5 bivariate copula evalua-
tions in total. The evaluation of the expected length of a 
Tour (2) with D-Vine PCCs then takes a total of (n4 +
59n2� 60n)=12 bivariate copula evaluations.

To the best of my knowledge, D-Vine PCCs are the 
only discrete model that satisfies properties (i)–(iv) with-
out imposing strong restrictions on the dependence struc-
ture. In fact, D-Vine PCCs offer substantial flexibility in 
the dependence structure by admitting a plethora of dif-
ferent copulas. Moreover, D-Vine PCCs allow a different 
bivariate copula to be specified for every relationship 
(Panagiotelis et al. 2017). This also enables multiparameter 
specifications of Archimedean copulas through a combi-
nation of heterogeneous single-parameter copulas as the 
building blocks of the D-Vine structure. Despite their 
O(n2) computational complexity, D-Vine PCCs therefore 
provide an attractive alternative to estimating (7) with 
finite differences or numerical approaches.

6. The Homogeneous CPTSP
Analogous to the homogeneous PTSP (Jaillet 1988), refer-
ring to the PTSP under equiprobable conditions, I intro-
duce the term homogeneous CPTSP to refer the CPTSP 
under both equiprobable and equicorrelated conditions. 
Let R ∈ [�1, 1]n×n denote an n×n symmetric and posi-
tive semidefinite correlation matrix containing zero- 
order pairwise correlation coefficients ρij ∈ R, 1 ≤ i, j ≤ n, 
which describe the dependence between the presences of 
customers i and j. If the marginal variables Yi ∈ Y associ-
ated with the customer presences are dependent and 
identically distributed (d.i.d.), then the CPTSP is said to 
be homogeneous. This means that all customers share 
the same probability of occurrence, say, pi :� p, for all 
i � {1, : : : , n}, and all off-diagonal elements of R assume 
the same value, say, ρij :� ρ, for all i ≠ j.

Under such homogeneous conditions, the expression 
for the expected length (2) of a tour τ�reduces to

Eρ[L(τ)] �
Xn�2

r�0
α(r, p,ρ)

Xn

j�1
dj, (j+r)mod n+1, (10) 

where

α(r, p,ρ) �

2p� 1 + Cρ(1� p, 1� p) if r � 0,

Cρ(p, p) × Pr(Y1 �⋯� Yr � 0 |Yr+1

� Yr+2 � 1,ρ) if 1 ≤ r ≤ n� 2,

8
>><

>>:

(11) 
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and Cρ(ui, uj) denotes a bivariate copula evaluated at ui 
and uj assuming correlation ρ. The proof for (10) can be 
found in Online Appendix C.1.

The probability on the rhs of α(r, p,ρ) can be com-
puted efficiently with (6) for copulas with a closed-form 
expression or with (7)–(9) otherwise. In particular, if we 
choose the popular bivariate Gaussian copula C(ui, uj) �

Φρij
(Φ�1(ui),Φ�1(uj)) to describe dependence between 

customer presences in the homogeneous CPTSP, then

α(r, p,ρ) �
Z ∞

�∞

Φ
Φ�1(p)� ffiffiffi

ρ
√ M

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p

 !" #2

1�Φ
Φ�1(p)� ffiffiffi

ρ
√ M

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p

 !" #r

φ(M)dM, 

for all 0 ≤ r ≤ n� 2, where φ(x) denotes the probability 
density function of the univariate standard normal dis-
tribution, Φ(·) the cdf of a univariate standard normal 
distribution, and Φρ(·, ·) its bivariate extension with cor-
relation coefficient ρ. The generic structure of this result 
is known as a Bernoulli mixture model. These models are 
commonly employed by financial risk managers to esti-
mate credit defaults (Gordy 2000, Frey and McNeil 2003). 
The specific result above follows from the observation 
that the expected number of customer presences, as the 
expected number of credit defaults, admits a Binomial 
representation (see Laurent and Gregory 2005 for a proof).

The expected length of the Homogeneous CPTSP (10) 
has a structure that is similar to the weight-form notation 
of the homogeneous PTSP. In fact, the expected length of 
the tour τ�according to the homogeneous PTSP, where 
all random variables Yi ∈ Y are independently and iden-
tically distributed (i.i.d.), can be obtained by setting ρ�0 
in α(r, p,ρ). Then, it follows that α(r, p, 0) � p2(1� p)r for 
all 0 ≤ r ≤ n� 2, 0 ≤ p ≤ 1. This matches exactly with the 
results of the weights for the homogeneous PTSP (Jaillet 
1988). Consequently, the expected length of the homoge-
neous CPTSP is identical to the expected length of the 
homogeneous PTSP when there is no correlation (ρ�0):

E0[L(τ)] �
Xn�2

r�0
p2(1� p)r

Xn

j�1
dj, (j+r)mod n+1:

This result is not surprising, given the equivalence of 
the heterogeneous PTSP and the heterogeneous CPTSP 
under independence (see Section 4 and Online Appendix 
C.1 for a proof). The homogeneous (C)PTSP is, after all, a 
special case of the heterogeneous (C)PTSP.

Further, to ρ� 0, the limiting cases of ρ�also provide 
useful insights on the behavior of the expected length 
under homogeneous conditions (see Online Appendix 
C.2 for proofs). First, as ρ→ 1, we find limρ→1α(0, p,ρ) �
p and limρ→1α(r, p,ρ) � 0 for all 1 ≤ r ≤ n� 2. As a 
result,

lim
ρ→1

Eρ[L(τ)] � pL(τ), 

where L(τ) �
Pn

j�1 dj, jmod n+1 denotes the deterministic 
length of tour τ. Intuitively, there are only two possible 
outcomes when all customer presences share perfect pos-
itive correlation (ρ�1): Either a customer is present, and, 
consequently, all other customers must also be present; 
or a customer is absent, and all other customers must 
also be absent. The former event occurs with probability 
p and results in a tour of length L(τ) along all customers. 
The latter event occurs with a probability 1� p and 
results in a tour along no customers with length zero. 
Combining these two events yields the expression above.

Along similar lines, as ρ→�1, we find

lim
ρ→�1

Eρ[L(τ)] � (p� 1 mod p)
Xn

j�1
dj, (j+⌊1�p

p ⌋) mod n+1

+(1 mod p)
Xn

j�1
dj, (j+⌊1p⌋) mod n+1:

(12) 

This result can be interpreted as follows. Consider a 
homogeneous customer presence probability p � z�1, 
z ∈ N+, and a subset Z ⊂N of z � |Z | ordered customers 
on τ�whose presences are perfectly negatively correlated. 
Then, there is a z�1 � z�1� 1 mod z�1 probability that 
the first customer is present, whereas the perfect negative 
correlation mandates that the subsequent z� 1 � ⌊z(1�
z�1)⌋ remaining customers are absent. This logic is ex-
pressed through the first term on the rhs of (12) for any 
possible subset Z over τ�by setting p � z�1. The second 
term on the rhs then vanishes. The same relationship can 
also be obtained through the second term on the rhs of 
(12) by setting p � limγ↑1(z� 1+ γ)�1. Then, the first 
term on the rhs vanishes. For more general probabilities 
of p, say, z′�1 with z′ ∈ R, (12) prescribes that the 
expected length can be expressed as a linear combination 
of the expected length for p � ⌊z′⌋�1 and the expected 
length for p � ⌈z′⌉�1. These expected lengths are associ-
ated with all possible subsets Z that contain exactly ⌊z′⌋
and ⌈z′⌉ consecutive and perfectly negatively correlated 
customers on τ, respectively.

As a final result on limiting cases, observe that 
α(0, 1,ρ) � 1 and α(r, 1,ρ) � 0 for all 1 ≤ r ≤ n� 2. There-
fore, the expected length of τ�according to the homoge-
neous CPTSP is equal to its length according to the TSP 
whenever p�1:

Eρ[L(τ) |p � 1] � L(τ):

This obviously matches the result of the heterogeneous 
CPTSP when pi� 1 for all i ∈ {1, : : : , n}.

Unfortunately, the limiting cases do not automatically 
induce boundaries with respect to Eρ[L(τ)]. Because 
α(r, p,ρ) is neither strictly increasing in ρ�nor strictly 
decreasing in ρ�for any given combination of r ≥ 1 and p, 
the expected length does not naturally gravitate toward 
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the results for ρ→61. Instead, Eρ[L(τ)] satisfies the 
boundaries derived by Jaillet (1985) for general pmfs to 
describe stochastic customer presences:

Eρ[L(τ)] ≤ L(τ) × (1�Pr(Y1 �⋯� Yn � 0)

�nPr(Y1 � 1, Y2 �⋯� Yn � 0)),

Eρ[L(τ)] ≥ L(τ∗TSP) × (p�Pr(Y1 � 1, Y2 �⋯� Yn � 0)), 

where τ∗TSP denotes the optimal TSP tour. For the special 
case of the Gaussian copula, the joint probabilities on the 
rhs are given by

Pr(Y1 �⋯� Yn � 0) �
Z ∞

�∞

1�Φ
Φ�1(p)� ffiffiffi

ρ
√ M

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p

 !" #n

φ(M)dM, 

and

Pr(Y1 � 1, Y2 �⋯� Yn � 0) �
Z ∞

�∞

Φ
Φ�1(p)� ffiffiffi

ρ
√ M

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p

 !

1�Φ
Φ�1(p)� ffiffiffi

ρ
√ M

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p

 !" #n�1

φ(M)dM, 

by virtue of the same binomial properties that are ex-
plored for α(r, p,ρ), 0 ≤ r ≤ n� 2 (Laurent and Gregory 
2005).

7. An Exact Algorithm for the CPTSP
The integer L-shaped method (Laporte and Louveaux 
1993) is a stochastic variant of the branch-and-cut algo-
rithm developed to solve two-stage stochastic mixed- 
integer programs to optimality. The version of the integer 
L-shaped method for the PTSP proposed by Laporte, 
Louveaux, and Mercure (1994) can be adapted to the 
CPTSP as follows.

In line with Laporte, Louveaux, and Mercure (1994), 
let us rewrite the expected length in (1(a)) as

E[L(τ)] �
Xn�1

i�1

Xn

j�i+1
dijxij � E[Q(x, y)], (13) 

where Q(x) � E[Q(x, y)] denotes the recourse function. 
That is, for any given a priori tour of length 

Pn�1
i�1 Pn

j�i+1 dijxij, the function �Q(x) corresponds to the dis-
tance reduction that results from skipping customers in 
the a posteriori tour. To solve (13) efficiently, its expected 
value �E[Q(x, y)] is replaced with an approximation θ, 
the lower bound of which is gradually updated through 
optimality cuts in the branching process. The entire pro-
cedure is described in greater detail by the following 
algorithm. 

Step 1. Set the current iteration index ν :� 0 and the 
objective value of the best solution found thus far to 
z �∞. The list of subproblems only contains the ini-
tial problem: minxν ,θν

Pn�1
i�1
Pn

j�i+1 dijxνij +θ
ν, subject to 

(1(b)), 0 ≤ xνij ≤ 1, and θν ≥ L. The initial upper bound L 
on the distance reduction approximation θν�can be 
obtained by solving the auxiliary mixed-integer prob-
lem (L.9)– (L.13) in Laporte, Louveaux, and Mercure 
(1994). This auxiliary problem remains unchanged for 
the CPTSP.

Step 2. Select a subproblem from the list. If none 
exists, stop.

Step 3. Update ν :� ν+ 1. Solve the νth subproblem 
and denote its optimal solution by (xν,θν).

Step 4. If 
Pn�1

i�1
Pn

j�i+1 dijxνij +θ
ν ≥ z, fathom the cur-

rent problem and return to step 2.
Step 5. Check if a Subtour Elimination Constraint 

(1(c)) is violated. If a subtour can be identified, aug-
ment the problem accordingly with a subtour elimina-
tion constraint and return to step 3.

Step 6. Check if xν�is integral. If one or more Inte-
grality Constraints (1(d)) are violated, select the most 
fractional variable (Tang and Miller-Hooks 2007). Cre-
ate two new subproblems by branching on the selected 
variable and add these subproblems to the list. Then, 
return to step 2.

Step 7. Use (2) to compute the expected length zν :�

E[L(τ)] of the current solution xν. If zν < z, set z :� zν.
Step 8. Calculate the true expected recourse costs 

Q(xν) using (13). If θν ≥Q(xν), fathom the current sub-
problem and return to step 2.

Step 9. Impose the optimality cut (Laporte, Lou-
veaux, and Mercure 1994):

θ ≥ 1=2(Q(xν)� L)
X

(i, j)∈Eν
xij � n

0

@

1

A +Q(xν), (14) 

where Eν � {(i, j) ∈ E : xνij � 1}. Return to step 3.
The proofs on the validity of the upper bound L on θ�in 

step 1 and the optimality cut in step 9 remain unchanged 
from the ones proposed by Laporte and Louveaux (1993) 
and Laporte, Louveaux, and Mercure (1994). The same 
holds for the logic surrounding the derivation of addi-
tional lower bounding functionals (L.14) – (L.20) on Q(xν), 
presented by Laporte, Louveaux, and Mercure (1994). 
However, these lower-bounding functionals need to be 
adapted to take potential dependencies between customer 
presences into account. Online Appendix D presents the 
updated versions of these valid inequalities that can be 
used in conjunction with the optimality cuts presented in 
step 9 to speed up convergence. The algorithm may possi-
bly converge even faster by exploiting some of the call-
back routines featured by modern solvers to separate 
optimality cuts on the fly and, thus, makes a manual 
implementation of every step above redundant.
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8. Heuristic Procedures for the CPTSP
The O(n4) computational effort required to evaluate the 
objective function of the CPTSP can be reduced by 
sacrificing some of its estimation accuracy (iv). Embed-
ding an approximation of the “real” objective function in 
a solution method enables faster computation times, 
albeit a global optimum to the original problem can no 
longer be guaranteed. As a consequence, the solution 
method becomes heuristic by design. The generic ap-
proximation methods proposed below can be used in 
combination with several existing heuristic methods for 
the PTSP, of which I discuss two well-studied cases: the 
probabilistic ant-colony system (Bianchi, Gambardella, 
and Dorigo 2002) and 2.5-opt-EEs (Birattari et al. 2008).

8.1. A Priori Approximation
A first approach to reduce the computational burden of 
repeatedly evaluating the expected length of the CPTSP 
targets the Length Expression (2) directly. The reduction is 
accomplished by relaxing the contributions of both stoch-
astic terms and dependence terms to the objective function.

The stochastic contributions to the expected length are 
formed by the weighted distance terms between any two 
consecutive present customers on the a priori tour in (2) 
for the heterogeneous CPTSP and (10) for the homoge-
neous CPTSP. As the number of intermediary absent 
customers between two present customers in the a priori 
customer sequence increase—that is, if the dimensional-
ity m of y∗ij in (3) grows—the associated probability p(y∗ij)
tends to decline until it eventually becomes negligible. A 
common approach to reduce the O(n2) computational 
complexity of the double summation in (2) and (10) is 
therefore to restrict its attention to only those probability 
terms p(y∗ij) for which m ≤ κ, where κ ≤ n denotes some 
predefined truncation level (see, e.g., Tang and Miller- 
Hooks 2004 and Campbell and Thomas 2009). Computa-
tional experiments on the generalized PTSP show that 
accurate approximations of the objective function can be 
achieved for truncation levels as little as κ�4 (Tang and 
Miller-Hooks 2004), while decreasing the computational 
burden of the double summation from O(n2) to O(κn).

The contributions of dependencies between stochastic 
presences to the Objective Function (2) are given by the 
D-Vine (7). Each conditional probability term Pr(Ya �

ya |V � v) in the product represents another order of de-
pendence, also known as a tree. Truncating trees beyond 
λ�implies that independence copulas are assumed for 
all terms |V | > λ, where 1 ≤ λ ≤m� 2 (Brechmann, 
Czado, and Aas 2012). Panagiotelis, Czado, and Joe 
(2012) suggest that accurate approximations can already 
be achieved for truncation levels as low as λ�2, while 
decreasing the computational complexity of the D-vine 
from O(m2) to O(λm).

Combining the two forms of truncation reduces the 
total number of required computations for (2) to (κ+ 1)

(λ2(1� 2n) + 24n+λ(2n+ κ+ 1)� 12)=2, which scales 
according to O((κλ2 + κ+λ)n) in the total number of 
customers n. The expected length embedded in the Ob-
jective Function (1(a)) can thus be approximated by

E[L(τ)] ≈
Xn�1

i�1

Xmin{i+κ�1,n}

j�i+1
dijp̃(y∗ij) +

Xn

j�2

Xj�1

i�max{1, j�κ+1}
djip̃(y∗ji),

(15) 

where each probability approximation p̃(y∗ij) is calculated 
in the usual way through (7)–(9), while assuming inde-
pendence copulas for all terms where |V | > λ.

The approximate form of the expected length can be 
embedded by solution methods that directly target the 
objective function. Ant-Colony Systems (ACS) are one 
such flexible and competitive class of metaheuristic solu-
tion methods that rely on the repeated evaluation of the 
objective function (Dorigo and Gambardella 1997). ACS, 
like most metaheuristics, can be used to handle a wide 
variety of problems with only minor adjustments to their 
design. The probabilistic ant-colony system (pACS) 
metaheuristic (Bianchi, Gambardella, and Dorigo 2002) 
is a well-known example of such an adaptation of ACS 
for the PTSP. The pACS metaheuristic is known to pro-
duce competitive results relative to other state-of-the-art 
methods that are capable of handling stochastic settings, 
including particle-swarm optimization (Marinakis and 
Marinaki 2010, Marinakis, Marinaki, and Migdalas 2015), 
memetic algorithms (Liu 2008, Balaprakash et al. 2010), 
and methods relying on empirical estimation heuristics 
(see below). Replacing the expected length from the PTSP 
in the pACS heuristic by the exact objective function 
of the CPTSP (1(a)) or its Approximate Form (15) straight-
forwardly extends ACS to the CPTSP. No further modi-
fications to the original setup of pACS by Bianchi, 
Gambardella, and Dorigo (2002) need to be made for the 
CPTSP. I refer to the metaheuristic that results as the cor-
related probabilistic Ant-Colony System (cpACS) meta-
heuristic. Note that the cpACS heuristic is a generalization 
of the pACS heuristic, as it reduces to the pACS heur-
istic under the assumption of independent customer 
presences.

8.2. A Posteriori Approximation
An alternative way to reduce the computational burden 
of the CPTSP objective function is to approach the prob-
lem from an a posteriori, rather than a priori, perspective. 
That is, rather than targeting the objective function 
directly in the search for the optimal a priori tour, a good 
a priori tour may also be reconstructed from a sample of 
a posteriori tour realizations. (Note that these tour reali-
zations can be equally derived from customer realiza-
tions and a given a priori tour because the two-stage 
setup of the (C)PTSP implies that all customers must be 
visited in the same order.) A posteriori realizations can 
be obtained by simulating directly from the objective 
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function or by simply drawing from an empirical distri-
bution of already observed (real-world) realizations. The 
latter procedure, like DRO, eliminates the need for any 
knowledge or assumptions about the stochastic process 
that drives the customer presences altogether (Carlsson, 
Behroozi, and Mihic 2018).

The empirical estimation and speedup feature of the 
2.5-opt local search framework proposed in Birattari et al. 
(2008) is such a well-known estimation-based algorithm 
for the PTSP. EEs involves the deterministic evaluation 
of so-called “deltas” for a sample of customer realiza-
tions. That is, EEs essentially performs sample average ap-
proximation (Kleywegt, Shapiro, and Homem-de Mello 
2002), as each delta refers to the average difference in the 
lengths of the implied a posteriori tour realizations that 
results from manipulating the order of customers on the a 
priori tour. A candidate perturbation that manipulates 
the order of the customers on the a priori tour—for exam-
ple, a k-opt candidate move—is accepted whenever the 
delta evaluation yields a reduction in the average length 
of the sampled a posteriori tours. By only relying on sam-
ples, EEs avoid the need to repeatedly evaluate the com-
putationally expensive CPTSP objective function.

EEs can also be applied to the CPTSP—for example, 
by simulating correlated Bernoulli distributed customer 
presences and absences from the copula that describes 
their relationship. Sampling from most copulas does not 
require great computational effort. For example, a sam-
ple from a Gaussian copula can easily be obtained by 
drawing from a multivariate normal cumulative distribu-
tion and transforming the results to Bernoulli-distributed 
outcomes using the inverse of (4), given by F�1

r (ur) � 0 
if 0 ≤ ur < 1� pr, and F�1

r (ur) � 1 otherwise. For details 
on generic copula sampling procedures and a specific 
D-Vine PCC sampling procedure, I refer to Cherubini, 
Luciano, and Vecchiato (2004) and Panagiotelis, Czado, 
and Joe (2012), respectively. Even though a single sample 
can often be quickly generated, beware that the total 
number of a posteriori samples required to obtain an 
accurate estimate of the expected a priori tour length 
could still be substantial. Therefore, even for medium- 
sized problem instances and seemingly simple depen-
dence structures, the total computational burden may 
rapidly increase. The same observation applies to sam-
ples bootstrapped from an empirical distribution.

Besides adapting the sampling procedure for multi-
variate, rather than univariate, distributions, no further 
modifications to the EEs framework from Birattari et al. 
(2008)—nor the rest of their 2.5-opt-EEs algorithm— 
need to be made for the CPTSP. On the one hand, 2.5- 
opt-EEs produce competitive results relative to other 
methods that involve settings with stochastic customer 
presences (see, e.g., Birattari et al. 2008, Balaprakash et al. 
2010, and Li 2017), including pACS. On the other hand, 
its combination with the EEs feature ensures computa-
tionally efficient evaluation of potentially improving 2.5- 

opt candidate moves without the need to compute the 
objective function.

9. Computational Experiments
The computational experiments in this section illustrate 
the value and the significance of modeling dependencies 
between stochastic customers. Section 9.1 shows the gen-
eral behavior of expected tour-length estimates versus 
varying degrees of correlation between stochastic custo-
mers in a controlled environment. A second series of 
experiments in Section 9.2 illustrate the impact of differ-
ent dependence intensities and structures on algorithmic 
performance. Section 9.3 demonstrates how the CPTSP 
can be applied in practical industry applications where 
potential dependencies between customer presences play 
a role.

9.1. The Impact of Dependence on the Expected 
Length of a Tour

The uniqueness of the CPTSP solution (see Figure 1) 
implies that the expected length estimates of a tour 
under the assumption of independent customer pre-
sences can be significantly different from the same esti-
mates under correlated customer presences. The results 
in Figure 2 strengthen this notion. This figure shows the 
expected length of a tour under independence relative to 
the expected length of that tour under customer depen-
dencies (vertical axis) for various homogeneous correla-
tions ρ�of the Gaussian copula (horizontal axis). The 
names kroA100, d198, and rat783 refer to three well- 
known instances obtained from TSPLIB (http://comopt. 
ifi.uni-heidelberg.de/software/TSPLIB95/) of varying 
degrees of customer dispersion and sizes, loosely based 
on a common selection for PTSP experiments (e.g., Bala-
prakash et al. 2010, Marinakis and Marinaki 2010, and 
Gambardella, Montemanni, and Weyland 2012). A good 
tour for each of these instances is generated with the Con-
corde algorithm (Applegate 2006) and retained through-
out the calculations of the expected length, such that all 
differences in the expected length can be attributed to the 
impact of correlation, rather than algorithmic perfor-
mance. The expected length of each tour and for every 
instance is calculated over a homogeneous set of proba-
bilities equal to p� 0.1, p� 0.5, and p� 0.9, respectively.

The results in Figure 2 show that large positive correla-
tions have a bigger impact on the relative expected 
length than large negative correlations. The marginal 
effect of correlation on expected length dissipates toward 
the negative end of the scale, whereas the marginal effect 
for positive correlations tends to increase. This trend 
reflects the expected behavior of intensifying depen-
dence under most copulas (Plackett 1954, Xiao and Zhou 
2019). Overall, the expected lengths of the tested tours 
show deviations ranging from �69.96% to +6.78% ver-
sus their expected lengths under independence, with an 
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average difference of �6.82%. Tests to evaluate the sig-
nificance of the impact of correlation on the expected 
length (not reported here) reveal that dependence has a 
significant impact on the expected length at the 1% confi-
dence level for each of the tested scenarios.

The generally negative relationship between the weights 
α(r, p,ρ) and α(r, p, 0) of each distance term in (10) results 
in a diminishing expected length with intensifying correla-
tion. Intuitively, this negative trend can also be explained 
by the previously derived results on the limiting cases: 
Correlation induces uncertainty with respect to the joint 
outcome of customers’ presences. For example, the pro-
portional impact of a 0.4 higher correlation on the 
expected tour length for kroA100, p�0.1 at ρ � 0:38, can 
be negated by a 0.4 higher probability of customer pres-
ence. A lower probability of customer presence gener-
ally results in a lower expected tour length, as the 
number of customers that one expects to visit decreases. 
Similarly, higher correlation results in a lower expected 
tour length as the joint probability to visit a group of 
correlated customers generally decreases.

9.2. The Impact of Dependence on Algorithmic 
Performance

To assess the impact of dependence on algorithmic per-
formance, let us consider the following experimental 
setup inspired by a combination of the setup from Pana-
giotelis, Czado, and Joe (2012) for D-Vine PCCs, the 
setup from Tang and Miller-Hooks (2007) for the gener-
alized PTSP, and the solution procedures proposed in 
Sections 7 and 8. Ten different problem instances of 10, 
20, 30, 50, and 100 nodes are randomly generated using 
the DIMACS TSP instance generator (http://dimacs. 
rutgers.edu/programs/challenge/). Each instance is sub-
jected to low and high regimes of customer-presence 

probabilities and dependence, where low probabilities 
refer to pi � 0:3 ∀i � {1, : : : , n}, high probabilities refer to 
pi � 0:7 ∀i � {1, : : : , n}, low dependence to Kendall’s 
τ � {0:3, 0:2, 0:1, 0:05}, and high dependence to Kendall’s 
τ � {0:7, 0:4, 0:3, 0:2} for all pair copulas correspond-
ing to trees 1, 2, 3, and 4, respectively. Each combi-
nation is tested under three different copulas used to 
describe the dependence structure between customers in 
the D- Vine—namely, Gaussian, Mardia-Takahasi-Cook- 
Johnson (MTCJ)/Clayton, and Gumbel (see Nelsen 2006
for details).

The relaxed subproblems considered by the integer 
L-shaped method (ILSM) are solved using IBM ILOG 
CPLEX 12.9. Two different versions of the cpACS algo-
rithm are implemented, with truncation levels at (κ,λ) �
(8, 3) and (κ,λ) � (4, 2), and referred to as cpACS(8,3) 
and cpACS(4,2), respectively. The 2.5-opt-EEs algorithm 
is implemented with 1,000 a posteriori samples as its 
input for the delta evaluations (2.5-opt-EEs-1000) and 
embedded in an iterated local search (ILS) procedure to 
perturb the incumbent local optimum and explore neigh-
boring solutions for a total of 10 iterations (Balaprakash 
et al. 2010). The resulting ILS-2.5-opt-EEs-1000 algorithm 
is referred to as ILS-EEs for the sake of brevity. The 
remaining parameter settings are identical to the ones 
used in Birattari et al. (2008) for 2.5-opt-EEs; Balaprakash 
et al. (2010) for the ILS framework that embeds it; and 
Bianchi, Gambardella, and Dorigo (2002) for both imple-
mentations of cpACS. The algorithms are implemented 
in C# and run on an Intel Core i5-6600 (3.3GHz) machine 
with 16 GB of RAM, each with a maximum computation 
time of 600 CPU seconds.

Figure 3 presents box plots that show the gap between 
the expected length of the solutions found by each al-
gorithm and the best solution found (BSF) for every 

Figure 2. Expected Tour Length of the Homogeneous CPTSP Relative to the Homogeneous PTSP for Different Dependence 
Levels 
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problem instance. The figure is split into different combi-
nations of copulas, probability settings, and dependence 
settings to highlight specific impacts. (See Online Appen-
dix E for the full set of results.) The combinations are 
sorted in declining order of uncertainty for each copula, 
based on the observation that dependence induces uncer-
tainty with respect to the joint presence of customers.

Overall, the performance of the different algorithms 
across different copulas exhibit similar trends. The ILSM 
manages to produce the BSF for every problem instance 
within the maximum runtime in most cases. It should be 
noted, however, that computation times for the ILSM 
increase sharply with problem size (see Figure 4), follow-
ing similar trends observed by Laporte, Louveaux, and 
Mercure (1994) and Tang and Miller-Hooks (2007) for 
the PTSP and generalized PTSP. Figure 4 also shows that 
computation times increase even faster for low depen-
dence or, similarly, low probability (see Online Appen-
dix E) as a function of the problem size.

Furthermore, Figures 3 and 4 show that the median 
performance of both cpACS implementations does not 
substantially differ from the ILSM, whereas the compu-
tation times required for the cpACS implementations are 
substantially lower, regardless of the selected truncation 

levels and probability and dependence settings. How-
ever, the variance in the performance of cpACS(8,3) is 
substantially larger than that of the ILSM, and outliers 
occur more often. The same phenomena slightly exacer-
bate for cpACS(4,2)—that is, when the length estimates 
are truncated earlier. ILS-EEs demonstrates weaker per-
formance across all tested cases. An exception is formed 
by the moderately competitive performance of ILS-EEs 
for low probabilities under the independence copula, in 
line with the results by Balaprakash et al. (2010).

To reveal discrepancies in route decisions, Table 1
reports differences in the customer sequence on the a pri-
ori tour found by each algorithm versus the customer 
sequence in the BSF (∆τ∗, left panel) and also versus the 
tour sequence found under the independence copula 
(∆τPTSP, right panel). Compared with an optimal align-
ment (Kruskal 1983) of every customer sequence with 
the customer sequence of the BSF, the tours produced by 
the ILSM differ between 0.44% and 8.69%, on average. 
The tour sequences differ more from the BSF in each 
instance under the combination of low levels of probabil-
ity and dependence or in the case of the PTSP—that is, 
when an independence copula (Ind.) is adopted. Differ-
ences in tour sequence become more pronounced when 

Figure 3. Gap in Expected Length Between Solutions Found by Each Algorithm and the BSF for that Instance 
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heuristic methods are employed, with sequences differ-
ing between 3.28% and 10.01%, on average, for both 
cpACS implementations and between 16.11% and 19.66% 
for ILS-EEs. Regardless of the algorithm, copula, or uncer-
tainty conditions, all tour sequences differ substantially 
from the tours that would have been found by the same 
algorithms under the assumption of independence (right 
panel). On average, neglecting dependence results in a 
11.16% different tour for the tested algorithms and scenar-
ios. Although the differences tend to increase for higher 
levels of uncertainty, even low levels of dependence can 
have a considerable impact on the tour sequence.

In sum, the results suggest that the performance of 
algorithms benefits from using length definitions that 
incorporate dependencies between stochastic customers 
in addition to marginal presence probabilities only, re-
gardless of the chosen copula or probability and depen-
dence settings. Although the expected length estimates 
for the tours found by the ILSM may only suggest mar-
ginal improvement over the estimates found by some 

heuristic methods, their customer sequences can differ 
substantially. The average computational times required 
by the latter methods are, however, considerably lower 
than those of the ILSM. Stricter levels of truncation in 
cpACS do not greatly affect median performance or 
computation time, but do tend to increase the variance 
in performance. Furthermore, the performance of the 
ILS-EEs algorithm based on 1,000 a posteriori simula-
tions is relatively weak overall. Its embedded 2.5-opt 
local search algorithm might not be sufficiently explor-
ative to capture the interactions between more distant 
customers. Moreover, the algorithm seems insufficiently 
competitive in terms of CPU runtime to repeatedly 
assess every potentially improving candidate move for 
a representative, yet manageable, sample of correlated a 
posteriori outcomes.

9.3. Illustration of a Real-World Application
Failed deliveries due to absent customers remain a cos-
tly burden to many parcel-delivery companies. Parcel- 

Figure 4. Average Run Time Development Plots for the Gaussian, MTCJ/Clayton, and Gumbel Copulas Across Problem Sizes 

Table 1. Differences in Customer Sequence

Parameters Tour difference vs. BSF (∆τ∗) (%) Tour difference vs. PTSP (∆τPTSP) (%)

Prob. Dep. Copula ILSM cpACS(8,3) cpACS(4,2) ILS-EEs ILSM cpACS(8,3) cpACS(4,2) ILS-EEs

Low High Gaussian 0.44 9.25 9.34 17.35 11.41 10.95 11.95 19.49
MTCJ 2.04 8.61 7.85 17.85 11.57 11.13 9.80 20.90
Gumbel 2.22 9.11 9.47 19.19 12.14 12.19 10.46 19.90

Low Low Gaussian 5.14 4.65 5.59 17.45 9.97 7.77 9.37 17.53
MTCJ 6.58 3.28 7.57 19.66 8.92 6.45 7.80 17.14
Gumbel 3.39 5.43 7.57 18.59 10.84 8.53 8.73 17.56

Low Ind. Ind. 8.69 4.99 8.34 17.45
High High Gaussian 3.04 7.59 7.72 16.44 9.97 9.07 9.48 18.04

MTCJ 2.02 8.72 7.29 16.11 7.61 8.40 8.55 17.10
Gumbel 1.72 7.87 7.32 17.11 7.09 7.96 8.75 15.37

High Low Gaussian 3.89 5.62 5.56 18.83 5.13 5.06 6.93 14.01
MTCJ 1.88 7.30 6.01 18.37 4.84 6.00 9.35 15.53
Gumbel 2.80 6.81 8.93 16.51 11.19 9.71 11.46 16.62

High Ind. Ind. 4.07 6.66 10.01 17.52
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delivery companies therefore increasingly urge custo-
mers to cancel upcoming delivery attempts in case of 
anticipated absence through track-and-trace systems. A 
track-and-trace system typically presents a customer the 
opportunity to deliver the parcel to a nearby collection- 
and-delivery point instead or to postpone the delivery to 
a later date. If a customer cancels the delivery while the 
delivery driver is already en route, the cancellation is 
communicated in real time to the delivery driver. The 
driver is then instructed to treat customers who cancel in 
the same way as the (C)PTSP treats its absent customers— 
namely, by simply skipping them on the delivery route.

As the previous results illustrate, anticipating potential 
customer absences and their dependencies in the deter-
mination of an a priori delivery tour can lead to different 
route cost estimates and route decisions. Assuming that 
a route is not dynamically reoptimized when a driver is 
notified of a canceled home delivery en route, the CPTSP 
allows us to estimate the errors and opportunity costs of 
disregarding potential cancellations and their dependen-
cies in the design of an a priori tour.

For this purpose, real-world data on parcel-delivery 
attempts for a region in the southwest of Amsterdam are 
sourced from a parcel-delivery company. The data con-
tain delivery information about 34,516 delivery attempts 
across 134 neighborhoods, spanning an area of 31.9 km2, 
for the period February 1, 2019, to April 30, 2019. Each 
delivery attempt is associated with one of the 134 in-
cluded neighborhoods (five-digit postcodes). The out-
comes of the delivery attempts in each neighborhood are 
expressed in terms of delivery efficiency—that is, the 
proportion of successful deliveries out of the total num-
ber of deliveries. The center of each neighborhood is 
taken to be the target delivery location. Seven different 
instances are extracted from the data set, based on the 
actual delivery routes described in the data. The name 
of each instance reads AMS-n, where n denotes the num-
ber of neighborhoods included in the instance. An artifi-
cially compiled eighth instance, AMS-134, contains all 134 
neighborhoods.

The delivery efficiency in each neighborhood varies 
throughout the day and exhibits potential positive or 
negative relationships with the efficiency in other neigh-
borhoods (see Figure 5). Therefore, a D-Vine PCC is used 
to capture the relationships between the delivery suc-
cesses across neighborhoods. The selection algorithm 
outlined in Panagiotelis et al. (2017) is used to select the 
appropriate D-Vine structure and fit the copulas that 
serve as its building blocks. In line with the previous 
experiments, the copula selection for the algorithm in-
cludes Gaussian, MTCJ/Clayton, and Gumbel copulas. 
Fitting the D-Vine PCC to the data yields a copula mix 
consisting of 20% Gaussian copulas, 57% MTCJ/Clayton 
copulas, and 23% Gumbel copulas. The D-Vine is trun-
cated at λ� 1, as the conditional dependencies estima-
ted beyond this tree do not significantly differ from 

independence. The resulting D-Vine PCC for each in-
stance is embedded in a CPTSP framework and solved 
with the ILSM, cpACS(8,3), cpACS(4,2), and ILS-EEs. 
These algorithms maintain the same implementations as 
in the previous subsection. The experiments are repeated 
with PTSP and TSP length implementations for the same 
instances.

Table 2 reports the expected length of the BSF among 
the applied algorithms (E[L(τ∗)]) with the fitted D-Vine 
PCC, along with the computation time that the superior 
algorithm took to obtain the BSF in CPU seconds (CPU). 
The delivery driver’s a priori tour is determined thrice 
for different levels of customer cancellations (“Canc.” 
column), expressed in terms of the average number of 
total failed deliveries in each instance. For example, a 
cancellation level of 50% indicates that half of the deliver-
ies that typically fail are also communicated to the driver 
while en route, whereas the remaining 50% are not com-
municated and, thus, still result in failed deliveries. If 
none of the customers notify the driver of their absence 
(cancellation level 0%), the problem reduces to a TSP. 
The E[L(τ∗PTSP)] and its adjacent CPU columns report the 
results generated under the assumption of independent 
delivery efficiencies across neighborhoods. The impact 
of stochastics is reported in the ∆E[L(τ∗TSP)] and ∆τ∗TSP 
columns, which compares the results of the CPTSP row- 
wise with the 0% cancellation level for each instance. 
Similarly, the impact of dependencies is reported in the 
∆E[L(τ∗PTSP)] and ∆τ∗PTSP columns, which compare the 
results of the CPTSP column-wise with the results of 
the PTSP.

In spite of the relatively high average delivery efficien-
cies (p), the results in Table 2 indicate that disregarding 
the potential of delivery cancellations during operations 
altogether results in estimation errors of the expected 
length (∆E[L(τ∗PTSP)]) to be traveled ranging between 
[0.41%, 5.49%]. The difference between both estimation 

Figure 5. Illustration of the Average Delivery Efficiency Evolv-
ing over Delivery Hours Across Three Selected Neighborhoods 
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errors is significant at the 5% level, implying that the 
accuracy of the length estimates benefits from taking the 
uncertainty surrounding canceling customers into ac-
count. That is, the delivery driver’s route cost estimates 
are prone to significant estimation errors if uncertainty 
among customer presences is ignored. Furthermore, four 
out of the 16 investigated cases suggest also that an alter-
native route should be taken, with customer sequences 
differing (∆τ∗TSP) between 6.72% and 24.00%. Disregard-
ing dependencies show more modest estimation errors 
of the expected length (∆E[L(τ∗PTSP)]) ranging between 
[0:01%, 1:97%]. The increase in accuracy of the expected 
length estimates comes at slightly bigger computational 
cost for the instances that can be solved within the com-
putational time limit. The relatively weak values for the 
average Kendall’s tau correlation in each instance (K) 
suggest that the overall impact of dependencies on 
the route are, in this particular case study, limited to 
route estimates, rather than route decisions (∆τ∗PTSP). 
Nevertheless, the improved route cost estimates and 
the modest increase in computation time suggest that 
incorporating stochastic dependencies bears sufficient 
potential to increase the accuracy of parcel-delivery 
operations with customer cancellations.

10. Conclusions
This paper introduces the CPTSP, a new stochastic com-
binatorial optimization problem that is concerned with 
finding an a priori tour of minimal expected length along 
a set of customers whose presences are both stochastic 

and correlated. The CPTSP generalizes the PTSP pro-
posed by Jaillet (1988) by relaxing the assumption that 
the random variables associated with the stochastic cus-
tomer presences are independently distributed. D-Vine 
PCCs (Panagiotelis, Czado, and Joe 2012) are used to 
model dependencies among the stochastic customer pre-
sences in heterogeneous CPTSP applications. The pro-
posed formulation of the CPTSP exhibits a number of 
desirable properties from both a modeler’s and a practi-
tioner’s perspective. For example, the CPTSP objective 
function only requires the specification of marginal prob-
abilities, pertaining to the stochastic presence of custo-
mers, and pairwise correlations, specifying the degree of 
dependence between customers. Moreover, the objective 
function of the CPTSP reduces to the objective function 
of the PTSP in the absence of correlation and to the objec-
tive function of the TSP in the absence of uncertainty.

This paper contributes a novel approach to the lit-
erature that enables one to model dependencies bet-
ween stochastic customer presences in routing problems. 
To the best of my knowledge, such an approach has 
not been proposed before. Dependencies allow practi-
tioners to reflect relationships and interactions between 
customers—for example, presence behavior that results 
from (dis)similarities within and between different cus-
tomer segments. Although the TSP is selected as the 
underlying problem to illustrate the concept, parts of the 
methodology can be readily extended to related routing 
problems, most notably the VRP with stochastic custo-
mers (Bertsimas 1988).

Table 2. CPTSP, PTSP, and TSP Results for Different Neighborhood Sets and Levels of Customer Cancellations

Instance Canc. (%) p K E[L(τ∗)] CPU ∆E[L(τ∗TSP)] (%) (∆τ∗TSP) (%) E[L(τ∗PTSP)] CPU ∆E[L(τ∗PTSP)] (%) (∆τ∗PTSP) (%)

Ams-14 0 1.000 9.912 <1
50 0.980 0.046 9.836 1 �0.77 (0.00) 9.848 1 �0.12 (0.00)

100 0.961 0.046 9.738 6 �1.76 (0.00) 9.766 5 �0.29 (0.00)
Ams-18 0 1.000 9.682 <1

50 0.980 0.029 9.447 27 �2.43 (0.00) 9.447 7 �0.01 (0.00)
100 0.961 0.029 9.208 600 �4.89 (0.00) 9.210 600 �0.02 (0.00)

Ams-20 0 1.000 6.867 <1
50 0.926 0.045 6.692 46 �2.55 (0.00) 6.697 11 �0.07 (0.00)

100 0.851 0.045 6.490 16 �5.49 (0.00) 6.503 2 �0.20 (0.00)
Ams-26 0 1.000 7.114 <1

50 0.914 0.039 6.955 45 �2.23 (0.00) 6.957 2 �0.03 (0.00)
100 0.828 0.039 6.790 44 �4.55 (0.00) 6.796 3 �0.08 (0.00)

Ams-47 0 1.000 19.360 1
50 0.933 0.033 18.953 600 �2.11 (0.00) 18.956 600 �0.02 (0.00)

100 0.865 0.033 18.531 600 �4.28 (0.00) 18.541 600 �0.05 (0.00)
Ams-50 0 1.000 11.947 2

50 0.945 0.039 11.668 600 �2.34 (16.00) 11.670 600 �0.01 (0.00)
100 0.890 0.039 11.379 600 �4.76 (24.00) 11.383 600 �0.04 (0.00)

Ams-57 0 1.000 21.063 1
50 0.932 0.031 20.674 600 �1.85 (0.00) 20.676 600 �0.01 (0.00)

100 0.864 0.031 20.269 600 �3.77 (0.00) 20.676 600 �1.97 (0.00)
Ams-134 0 1.000 37.502 25

50 0.939 0.034 37.350 600 �0.41 (11.19) 37.357 600 �0.02 (0.00)
100 0.878 0.034 36.368 600 �3.02 (6.72) 36.385 600 �0.05 (0.00)
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Generally speaking, representations of routing pro-
blems that incorporate dependencies between stochastic 
customer presences warrant more accurate estimations 
of the routing costs that can be observed in reality (Gen-
dreau, Jabali, and Rei 2016). An application to the last-mile 
delivery problem with customer cancellations supports 
this premise: The results suggest that implementations 
based on the CPTSP produce up to 5.49% more accu-
rate length estimates than implementations that do not 
take into account the expected costs of customer cancel-
lations during operations and up to 1.97% more accu-
rate length estimates than implementations that do not 
exploit correlations between customer presences. Fur-
thermore, I illustrate with several computational experi-
ments that, even for low levels of dependence, neither a 
good tour for the TSP nor a good tour for the PTSP needs 
to coincide with a good tour for the CPTSP, regardless 
of the dependence structure. I propose two heuristic 
approaches based on a priori and a posteriori approxi-
mations that support the notion that good tours under 
stochastic and dependent conditions can be obtained 
with limited computational effort. I also propose an 
exact algorithm based on the integer L-shaped method. 
A comparative study suggests that further, seemingly 
small, improvements in route costs can lead to relatively 
big differences in route decisions. Practitioners are there-
fore recommended to explicitly take into account depen-
dencies between customer presences that can influence 
route decisions.

The CPTSP creates ample opportunity for future theo-
retical and practical experimentation, supported by the 
results in this paper. Firstly, improved bounds and other 
theoretical properties (cf. Bertsimas and Howell 1993) for 
CPTSP implementations equipped with specific copula 
families may be derived. These results can help to further 
reduce the computational burden of the objective func-
tion. Secondly, the setup of the CPTSP can be extended 
to increase its practical value for industry applications— 
for example, by extending the setup of the case study 
with time windows, multiple vehicles, and dynamic fea-
tures. Finally, the empirical results suggest that it can be 
promising to develop novel simulation-based solution 
procedures that are capable of accounting for dependen-
cies between the presences of more distant stochastic 
customers.
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