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Abstract  
Preclinical and clinical studies indicate that psychostimulants, in addition to having abuse 
potential, may elicit brain dysfunctions and/or neurotoxic effects. Central toxicity induced by 
psychostimulants may pose serious health risks since the recreational use of these substances is 
on the rise among young people and adults. The present review provides an overview of recent 
research, conducted between 2018 and 2023, focusing on brain dysfunctions and neurotoxic 
effects elicited in experimental models and humans by amphetamine, cocaine, methamphetamine, 
3,4-methylenedioxymethamphetamine, methylphenidate, caffeine, and nicotine. Detailed elucidation 
of factors and mechanisms that underlie psychostimulant-induced brain dysfunction and neurotoxicity 
is crucial for understanding the acute and enduring noxious brain effects that may occur in individuals 
who use psychostimulants for recreational and/or therapeutic purposes.
Key Words: 3,4-methylenedioxymethamphetamine; amphetamine; caffeine; cell cultures; cocaine; 
methamphetamine; methylphenidate; neurotoxicity; nicotine

Introduction 
Psychostimulants are a heterogeneous group of substances historically 
c l a s s i f i e d  a s  “d i re c t  o r  i n d i re c t  sy m p at h o m i m et i c s ”  o r  “ n o n -
sympathomimetics”, according to their ability to mimic the action of the 
catecholamines dopamine, epinephrine, and norepinephrine (Koob et al., 
2020; Additional Table 1). Sympathomimetic psychostimulants mimic the 
peripheral actions of catecholamines in the autonomic system by directly 
or indirectly activating their receptors, whereas non-sympathomimetic 
psychostimulants act on several neurotransmitter systems using different 
mechanisms of action (Koob et al., 2020).

Although indirect  sympathomimetic  and non-sympathomimetic 
psychostimulants have different mechanisms of action, as described 
below, both ultimately increase the synaptic levels of dopamine and other 
monoamines (e.g., norepinephrine and serotonin) (Rothman and Baumann, 
2003; Howell and Kimmel, 2007; Docherty and Alsufyani, 2021). This effect 
underlies their major central actions, which include elevation of mood, 
suppression of appetite, reduction of fatigue, and improvement of executive 
functions (Fast et al., 2021; Mckenzie et al., 2022). Elevated libido and 
heightened sexual pleasure and activity have also been documented in 
psychostimulant users, albeit often in conjunction with high-risk behaviors 
(Nazlı and Sevindik, 2020; Berry et al., 2022; Suyama et al., 2023).

Certain psychostimulants can improve brain function for specific pathological 
conditions and are currently used as therapeutic medications. For example, 
methylphenidate and dextroamphetamine, the dextrorotatory enantiomer 
of amphetamine (AMPH), can be prescribed to treat attention deficit 
hyperactivity disorder (ADHD) or narcolepsy due to their ability to increase 
attention, vigilance, and wakefulness (Cortese et al., 2018; Bassetti et al., 
2021). Moreover, the Australian Therapeutic Goods Administration has 
recently announced that, starting July 2023, licensed psychiatrists will be 
able to prescribe 3,4-methylenedioxymethamphetamine (MDMA) to treat 
post-traumatic stress disorder, due to its empathogenic effects (Australian 
Government, Department of Health and Aged Care, Therapeutic Goods 
Administration). Non-sympathomimetic psychostimulants such as caffeine 
and nicotine can be used as performance enhancers by certain professionals 
(e.g., aviation, military corps, and truck drivers) for their anti-fatigue effects 
(Gore et al., 2010; McLellan et al., 2019; Kagabo et al., 2020). Indeed, caffeine 

has been reported to elevate mood and working memory, even though 
some authors have postulated that these effects could be due to its reversal 
of caffeine withdrawal (Lin et al., 2023). Moreover, both preclinical models 
and human studies have demonstrated that nicotine enhances cognitive 
performance by improving learning, memory, and attention (Valentine and 
Sofuoglu, 2018).

At the same time, the ability of psychostimulants to increase the synaptic 
levels of dopamine also underlies their ability to generate addictive behaviors, 
psychotic-like symptoms, and deficits in executive functions (Volkow and 
Swanson, 2003). AMPH, cocaine, methamphetamine (METH), and nicotine 
possess high abuse liability and may induce overt addictive behaviors in users. 
While the existence of addictive-like behaviors has also been suggested for 
users of caffeine and MDMA, drug consumption behaviors in these individuals 
rarely meet substance abuse criteria according to the Diagnostic and 
Statistical Manual of Mental Disorders, Fifth Edition. Psychotic-like symptoms 
may be observed in users of AMPH, METH, or cocaine, all of which increase 
extracellular levels of dopamine by acting at the dopamine transporter (DAT). 
For example, cocaine can elicit symptoms such as paranoia, hallucinations, 
violence, and aggression, even following a single administration (Gicas et al., 
2022); similar effects have been observed in AMPH and METH users (Morton 
and Stock, 2000; Gicas et al., 2022). In contrast, users of caffeine, MDMA, 
or methylphenidate are less prone to exhibit psychotic-like behaviors (Patel 
et al., 2011; Virani et al., 2018). Nevertheless, MDMA consumption can be 
associated with anxiety and depressed mood, as well as deficits in working 
memory, attention, and verbal processing (Costa and Gołembiowska, 2022; 
Montgomery and Roberts, 2022). Moreover, caffeine consumption may 
facilitate relapse in psychiatric patients (Rizkallah et al., 2011). 

The manifestation of behavioral abnormalities in psychostimulant users 
suggests that brain dysfunctions, and possibly neurotoxic phenomena, 
may occur in these individuals, especially in brain regions that regulate 
cognitive and emotional domains. Although the induction of neurotoxicity 
by psychostimulants has not conclusively been demonstrated in humans, 
imaging studies have reported the existence of altered brain morphology and 
connectivity in psychostimulant users (Boxler et al., 2018; Vuletic et al., 2018; 
Elbejjani et al., 2019; Bittencourt et al., 2021; Avram et al., 2022). Importantly, 
psychostimulant-induced alterations in brain function depend on several 
factors, such as the amount of drug consumed, the routes of drug intake, 
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and the age and sex of the consumer (Moratalla et al., 2017). Indeed, it is 
noteworthy that prescription psychostimulants (e.g., AMPH, methylphenidate) 
may elicit detrimental, rather than beneficial, effects on the brain when they 
are taken outside of a therapeutic plan (e.g., at higher amounts and/or for 
longer times than prescribed). Moreover, people who use psychostimulants 
for recreational purposes often consume multiple psychostimulants (polydrug 
use), which further complicates ascribing a specific substance with the 
induction of definite dysfunctional/neurotoxic effects in the brain (Rudin et 
al., 2021).

To elucidate risk factors (e.g. age, dose, sex) and mechanisms related to 
psychostimulant-induced neurotoxicity, the present review provides a 
narrative overview of recently published findings in experimental models 
and humans regarding brain dysfunctions and neurotoxic effects following 
administration/consumption of the most used psychostimulants worldwide: 
the sympathomimetics AMPH, methylphenidate, cocaine, METH and MDMA, 
and the non-sympathomimetics caffeine and nicotine. The implications 
of these findings are briefly discussed in terms of risks associated with 
psychostimulant use. Due to its concise format, the present review focuses on 
brain dysfunctions and neurotoxicity induced by psychostimulants; it does not 
provide extensive coverage of the beneficial effects of psychostimulants on 
brain function.

Search Strategy 
We began with an extensive search strategy to conduct a comprehensive 
review of the relevant literature, focusing on original research articles, meta-
analyses, and review articles published in the last 5 years (2018–2023). 
Articles were searched by using the specific search terms “psychostimulants” 
AND “brain dysfunction” AND “neurotoxicity” in PubMed, to focus on articles 
on the brain dysfunction and neurotoxicity induced by AMPH, cocaine, METH, 
MDMA, methylphenidate, caffeine, or nicotine in experimental models and 
humans. The initial search yielded 296 articles. After reading the titles and 
abstracts of these articles, we included in the search strategy a series of 
additional keywords (e.g., the name of specific psychostimulants) focusing 
on the drugs’ biochemical effects and mechanisms of toxicity at the central 
level, rather than on the behavioral effects of specific psychostimulants. Pure 
behavioral studies were not included in the present review. When a limited 
number of relevant articles were found, we adjusted the search criteria, for 
example by extending the search period to the most recent articles available, 
in order to obtain more relevant literature. Finally, we conducted filtering and 
article selection in accordance with the journal’s criteria (e.g., selection of no 
more than three articles from the same author). Overall, the recent findings 
reported in this narrative review are derived from 120 articles published 
between 2018 and 2023. In consideration of the journal’s limitations on the 
number of references, we could not include all possible relevant literature.

Indirect Sympathomimetic Psychostimulants
Indirect sympathomimetic psychostimulants have chemical structures that 
resemble that of the catecholamines. Cocaine, AMPH, and the AMPH-related 
drugs methylphenidate, METH, and MDMA are all indirect sympathomimetics. 
These drugs bind to DAT and to the norepinephrine and serotonin (SERT) 
transporters to increase the synaptic levels of monoamines (John and 
Jones, 2007). The precise mechanism by which indirect sympathomimetic 
psychostimulants exert their central effects is not yet fully defined. It is widely 
believed that these drugs produce their effects by enhancing dopamine 
neurotransmission in the brain, and in particular by inducing DAT-mediated 
reverse transport and/or by blocking dopamine reuptake through DAT (Koob 
et al., 2020). These drugs are also called “psychomotor stimulants” because 
their primary biological activity, as indirect dopamine agonists, is to produce 
behavioral activation, which is usually expressed as arousal, alertness, and 
increased motor activity (Koob et al., 2020). 

AMPH and AMPH-related drugs also bind to the vesicular monoamine 
transporter-2 (VMAT-2) (Freyberg et al., 2016; Cholanians et al., 2019; 
Jayanthi et al., 2021), thus inhibiting vesicular uptake of dopamine and 
promoting dopamine release from synaptic vesicles, thereby increasing the 
amount of cytosolic dopamine available for reverse transport by DAT (Freyberg 
et al., 2016). The enhanced synaptic availability of monoamines results in the 
activation of receptors for dopamine, norepinephrine, and serotonin in the 
mesocorticolimbic and nigrostriatal systems (Drouin et al., 2002; Salamone 
and Correa, 2012; Müller and Homberg, 2015). 

Amphetamine
AMPH is  a  psychost imulant  ut i l i zed as  a  racemic mixture or  as 
dextroamphetamine for the treatment of ADHD, narcolepsy, and binge eating 
disorder (Cortese et al., 2018; Bassetti et al., 2021). Besides its therapeutic 
application, AMPH is popular as a recreational drug due to its stimulant and 
euphoriant effects. According to recent self-reported survey responses, it 
was estimated that approximately 36 million individuals had used AMPH-
related drugs (either AMPH or METH) in 2021, with a male-to-female ratio 
of 55:45 (UNODC, 2023). AMPH is highly consumed in Europe, where it 
ranks as the second most used psychostimulant drug after cocaine (UNODC, 
2023). While AMPH-based prescriptions are safe when used for therapeutic 
purposes (Weyandt et al., 2016), the recreational use of AMPH raises 
concerns since users could be exposed to high and potentially neurotoxic 
amounts of the drug. In this respect, several pathological mechanisms have 
been implicated in the neurotoxic effects of AMPH including, but not limited 
to, hyperthermia (Miller and O’Callaghan, 1995), apoptosis (Stumm et al., 

1999), bioenergetic failure (Wan et al., 1999) and increased production 
of reactive oxygen (ROS) and nitrogen (RNS) species (Bashkatova et al., 
2004; Wan et al., 2006; Figure 1). Recent evidence in rats indicates that the 
different mechanisms underlying AMPH-induced neurotoxicity may occur 
sequentially, with energy failure preceding excitotoxicity and excitotoxicity 
preceding the production of free radicals (Tung et al., 2017; Additional Table 
2). Moreover, a study using PC12 cells suggests that the protein phosphatase 
2A (PP2A)/AKT/glycogen synthase kinase-3beta (GSK3β) pathway may be 
an important player in AMPH-induced apoptotic cell death (He et al., 2018; 
Additional Table 2). Preclinical investigations in mice, rats, and nonhuman 
primates have demonstrated that systemic administration of AMPH, either as 
a racemic mixture or dextroamphetamine, may induce marked neurotoxicity 
in striatal dopaminergic terminals, the severity of which varies depending 
on the dosing and frequency of AMPH administration. Indeed, AMPH may 
reduce the synthesis and levels of dopamine, as well as the density of tyrosine 
hydroxylase (TH) and of DAT in the caudate-putamen nucleus (CPu) (Ricaurte 
et al., 2005; Levi et al., 2012; Tung et al., 2017), although a progressive 
recovery of striatal dopaminergic functionality has been also reported with 
time (Melega et al., 1997). Conversely, and differently from what observed 
after the administration of other AMPH-related drugs, AMPH does not induce 
neurotoxic damage in dopaminergic neurons located in the substantia nigra 
pars compacta (SNc) (Gramage et al., 2010). Results from a recent preclinical 
investigation suggest that AMPH may induce the appearance of motor deficits 
before the emergence of signs of dopaminergic neurotoxicity. Indeed, Apóstol 
del Rosal et al. (2021) demonstrated that repeated administration of AMPH 
in rats induced microgliosis and astrogliosis in the dorsal CPu paired with 
an impairment in locomotor activity and motor coordination, but without 
affecting the immunoreactivity of TH-positive dopaminergic neurons and 
terminals in the nigrostriatal system (Apóstol del Rosal et al., 2021; Additional 
Table 2). In addition, AMPH may induce neuronal degeneration in non-
dopaminergic populations, most notably in the hippocampus, parietal cortex, 
and piriform cortex, as demonstrated by studies in adult rats (Bowyer et al., 
2008).

Figure 1 ｜ Scheme of the proposed mechanisms contributing to psychostimulant-
induced brain dysfunctions and neurotoxicity. 
Created with BioRender.com. AMPH: Amphetamine; MDMA: 
3,4-methylenedioxymethamphetamine; METH: methamphetamine; RNS: reactive 
nitrogen species; ROS: reactive oxygen species.

Neuroimaging studies suggest that neurotoxic effects of AMPH may also 
occur in humans, which is consistent with evidence that individuals with 
a history of AMPH consumption may display deficits in memory, decision-
making, and set-shifting (Ersche et al., 2005; Schouw et al., 2013). A recent 
meta-analysis evaluated the occurrence of dopaminergic dysfunction in 
stimulant users, by comparing 31 positron emission tomography (PET) and 
single-photon emission computed tomography (SPECT) studies, revealing a 
significant reduction in the striatal availability of dopamine D2 (D2R) and D3 
(D3R) receptors, as well as of DAT, in recreational AMPH users (Ashok et al., 
2017). Conversely, striatal dopamine synthesis capacity, VMAT availability, 
and expression of dopamine D1 (D1R) receptors remained unaffected in 
this population (Ashok et al., 2017). Moreover, magnetic resonance imaging 
(MRI) investigations demonstrated that chronic AMPH users showed lower 
striatal activity in anticipation of reward (Schouw et al., 2013), as well as 
reduced cortico-striatal-thalamic and prefrontal-limbic-thalamic connectivity 
when acutely exposed to AMPH (Schrantee et al., 2016; Avram et al., 
2022). Intriguingly, Avram and collaborators also reported that acute AMPH 
administration to healthy volunteers may promote auditory-sensorimotor-
thalamic hyperconnectivity (Avram et al., 2022; Additional Table 2), a finding 
that mirrors what has been previously observed in psychiatric subjects 
(Woodward and Heckers, 2016), and highlights the inability of the thalamus 
to properly filter incoming sensory signals. 

Cocaine
Approximately 22 million people are estimated to have used cocaine or 
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cocaine-containing products at least once in 2021, according to the World 
Drug Report (2023). These figures make cocaine the first or second most 
used drug of abuse worldwide, according to the country considered. The 
widespread use of cocaine is related to its potent psychostimulant action, 
resulting in euphoria, increased energy, and mental alertness (Frank et al., 
1992; Hutten et al., 2018). Cocaine is generally available in two forms: as a 
free base (or “crack”), consumed by smoking, and as a salt, consumed by 
snorting or injection. 

The central effects of cocaine stem from its blockade of the reuptake 
of monoamine neurotransmitters, causing an increase in their synaptic 
concentrations (Koob et al., 2020). The DAT is a major target of cocaine; 
increased extracellular levels of dopamine in the mesocorticolimbic system 
are responsible for cocaine-induced euphoria and sense of well-being, but 
also for its addiction potential and other central untoward effects, such 
as irritability and induction of psychotic-like states (Koob et al., 2020). It is 
noteworthy that dopamine can undergo autooxidation, and several studies 
have suggested that extracellular dopamine may readily autoxidize to produce 
ROS, which are responsible for oxidative stress (Schieber and Chandel, 2014), 
one of the causative factors of neurotoxicity (Rudin et al., 2021; Figure 1). 
Another contributing factor to the neurotoxic effects of cocaine may be 
neuroinflammation. Research conducted using both in vitro and in vivo 
models has demonstrated that cocaine activates microglia, leading to the 
release of pro-inflammatory mediators, particularly in brain regions such 
as the prefrontal cortex (PFC), ventral tegmental area (VTA), and nucleus 
accumbens (NAc) (Liao et al., 2016; Vallender et al., 2017; Mai et al., 2019; 
Thangaraj et al., 2020). Interestingly, evidence also indicates that cocaine-
induced production of pro-inflammatory mediators may stem from pericytes, 
a cellular constituent implicated in the preservation and integrity of the blood-
brain barrier, as the result of impaired autophagy (Sil et al., 2019). In humans, 
a recent study has substantiated preclinical data by demonstrating that 
cocaine use disorder alters gene networks implicated in neuroinflammation 
in the NAc and CPu (Mews et al., 2023); however, other studies have failed to 
demonstrate microgliosis in cocaine users (Narendran et al., 2014). 

Collectively, in vitro and in vivo studies have suggested that cocaine may 
induce dysfunctions and structural damage in cortical and mesencephalic 
regions (Camarini et al., 2017; Hirsiger et al., 2019; Bittencourt et al., 2021; 
Clare et al., 2021; Nicolucci et al., 2021; Tondo et al., 2021; Angarita et al., 
2022). While some debate persists, these pathological alterations may be 
linked to cocaine’s capacity to induce mitochondrial dysfunction and increase 
the vulnerability of neuronal and glial cells, thereby promoting cell death via 
apoptosis (De Oliveira and Jardim, 2016).

Recent studies in experimental animals indicate that the ability of cocaine 
to induce synaptic dysfunctions depends on the age and sex of the 
animals. Zhu et al. (2017) reported that rats treated with cocaine during 
adolescence showed behavioral abnormalities at adulthood, associated with 
neurochemical alterations in specific brain regions (Additional Table 2). For 
example, compared to rats treated with vehicle during adolescence, adult 
rats exposed to cocaine as adolescents exhibited cognitive deficits along with 
increased locomotor and anxiety-like behaviors, paired with a decrease in the 
levels of synapse-related proteins (synapsin I and PSD-95) and in the density 
of synapses and dendritic spines in the medial prefrontal cortex (mPFC) (Zhu 
et al., 2017; Additional Table 2). The finding that cocaine administration 
during adolescence induced altered morphology in the rat brain at adulthood 
suggests that cocaine may have long-term neurotoxic effects that persist 
after drug exposure. On the other hand, as emphasized by recent reviews 
on the topic, it is noteworthy that alterations in cognitive function, which 
may potentially be related to neurotoxic events, can be either mitigated or 
exacerbated depending on the timing of cocaine use during adolescence 
(Kantak, 2020; Caffino et al., 2022). These data in experimental animals are 
relevant to humans, since it is during adolescence that the use/abuse of 
illicit drugs, including cocaine, typically begins, as demonstrated by several 
longitudinal studies (Gerra et al., 2020; Moska et al., 2021). With regard to 
the possible influence of sex on the neurotoxic effects of cocaine, Clare et 
al. (2021) investigated changes in total neuronal density measured by NeuN 
(a marker of mature neurons) and the concentration of neurons expressing 
D2R in the mPFC, dorsal CPu, VTA, and NAc in both male and female mice 
treated with cocaine (Clare et al., 2021; Additional Table 2). They reported 
that cocaine-treated female mice had higher numbers of D2R-expressing 
neurons in the mPFC and NAc compared to vehicle-treated female mice, and 
also in the dorsal CPu and VTA compared to vehicle- and cocaine-treated male 
mice. Moreover, cocaine-treated female mice displayed higher D2R mRNA 
levels in the dorsal CPu, compared to their respective vehicle-treated female 
controls, as well as higher D2R and proenkephalin mRNA levels in the mPFC, 
compared to vehicle- and cocaine-treated male mice (Clare et al., 2021; 
Additional Table 2). Nevertheless, cocaine-treated female mice showed a 
decrease in the number of NeuN-positive neurons in the dorsal CPu and VTA, 
compared to saline-treated female mice, and also in the mPFC, compared to 
saline- and cocaine-treated male mice (Clare et al., 2021; Additional Table 2). 
On the other hand, cocaine-treated male mice had a higher number of D2R-
expressing neurons in the dorsal CPu, NAc, and VTA, higher prodynorphin 
mRNA levels in the VTA, higher proenkephalin mRNA levels in the NAc and 
less NeuN-positive neurons in the mPFC, NAc, and VTA, compared to male 
controls (Clare et al., 2021; Additional Table 2). Taken together, these 
observations are of particular interest, since they demonstrate the existence 
of sex-related differences in cocaine-induced neurotoxicity and identify D2R 
expressing neurons as a target of this effect. 

In humans, imaging studies have demonstrated the existence of morphological 
and functional differences in specific brain regions between cocaine users 
and non-users. These differences, though not always significant, have been 
identified in several cortical regions (e.g., anterior cingulate cortex, cortical 
insula, lateral frontal cortex) (Hirsiger et al., 2019; Bittencourt et al., 2021), 
CPu (Ashok et al., 2017) and NAc (Schuch-Goi et al., 2017). Abnormalities 
in the brains of cocaine users have also been found in white matter 
microstructure, suggesting the presence of demyelination and axonal damage 
(King et al., 2022; Gaudreault et al., 2023). Moreover, evidence indicates that 
cocaine-induced synaptic dysfunctions and neurotoxicity in cocaine users may 
not necessarily be affected by the duration of drug use and sex of the user. 
An MRI study by Bittencourt and coworkers (2021) reported that, compared 
to healthy controls, male crack users displayed decreased cortical thickness 
in the left inferior temporal cortex, which was negatively correlated with the 
duration of crack use (Bittencourt et al., 2021; Additional Table 2). Moreover, 
another MRI study by Abdel Malek and et al. (2022) found no significant sex-
specific differences in the morphometry of the cortical insula between male 
and female cocaine users (Additional Table 2). 

Methamphetamine
METH is an extremely addictive psychostimulant with significant abuse 
liability, characterized by rapid brain penetration and quick onset of its desired 
effects. According to the World Drug Report (2023), METH is the second 
most used illicit psychostimulant worldwide after cocaine. Traditionally, 
METH use has been concentrated in North America, but more recently, there 
is increasing presence of METH in East and South-East Asia, South-Eastern 
Europe, as well as Australia and New Zealand (UNODC, 2023). In the United 
States, METH ranked as the fourth most implicated drug in overdose deaths in 
2017 (Hedegaard et al., 2019).

Multiple pathological alterations follow METH administration, which likely 
contribute to its neurotoxic potential. Among these are hyperthermia (Masai 
et al., 2021), dysfunction of the proteasomal system (Meng et al., 2020), 
increased autophagy (Subu et al., 2020), apoptosis (Huang et al., 2019), 
persistent neuroinflammation (Xu et al., 2023), oxidative and nitrosative 
stress (Xie et al., 2018; Qiao et al., 2019), and programmed necrosis (Zhao et 
al., 2021; Figure 1). Moreover, recent studies indicate the disruption of the 
gut microbiota as a potentially novel mechanism implicated in the neurotoxic 
effects of METH. Indeed, METH can decrease gut microbial diversity, promote 
intestinal colon inflammation, and damage its barrier functions, thereby 
compromising the release of anti-inflammatory metabolites (especially 
sphingolipids and serotonin) from the intestinal microbiota into the systemic 
circulation (Zhang et al., 2022; Additional Table 3).

Rodents and nonhuman primates receiving either acute administration of 
high doses or repeated “binge” administration of METH display neurotoxicity 
in the nigrostriatal and, to a lesser extent, mesolimbic dopaminergic systems 
(Moratalla et al., 2017). In line with previous reports, recent investigations 
in rodents that have evaluated the impact of METH-induced dopaminergic 
dysfunctions on cognitive performance and drug-taking behavior have 
confirmed a significant reduction in TH, DAT, and VMAT-2 proteins, along 
with a decrease in the concentration of dopamine and its metabolites in the 
CPu of METH-treated mice (Masai et al., 2021; Huang et al., 2022) and rats 
(Schweppe et al., 2020; Jayanthi et al., 2022). Interestingly, these studies 
demonstrated that while METH-induced variations in monoaminergic 
markers are not correlated with the occurrence of cognitive deficits in mice 
(Schweppe et al., 2020; Additional Table 3), these neurochemical changes 
might be useful to predict animals’ sensitivity to the addictive effects of METH 
(Jayanthi et al., 2022; Additional Table 3). Moreover, these studies highlight 
the key role of neuroinflammation and oxidative stress in METH-mediated 
neurotoxicity. Indeed, either blockade of high mobility group box-1 (HMGB1), 
a nuclear transcriptional activator that drives inflammatory responses (Masai 
et al., 2021; Additional Table 3), or activation of pathways that regulate the 
cytoprotective responses to ROS/RNS (Huang et al., 2022; Additional Table 
3), attenuated the detrimental effects of METH on the dopaminergic system. 
These findings hold substantial significance, especially considering in vitro 
evidence that established a direct correlation between HMGB1 protein levels 
and D2R expression (Mao et al., 2015). The latter finding, in particular, may 
contribute to enhancing our understanding of the mechanisms underlying the 
robust protection against METH-induced dopaminergic neurotoxicity that has 
been observed in D2R knock-out mice (Granado et al., 2011).

Acute or binge administration of high doses of METH can also induce 
the degeneration of dopaminergic neurons in the SNc of mice, rats, and 
nonhuman primates (Harvey et al., 2000; Kousik et al., 2014; Shin et al., 
2014), as well as severe deficits in motor activity and coordination in rats 
and mice (Jiang et al., 2014; Dang et al., 2017; Shin et al., 2019). Although a 
partial recovery has been reported over time (Granado et al., 2018), evidence 
in adult male rats indicates that METH-induced dopaminergic neurotoxicity 
persists for months after treatment discontinuation (Schweppe et al., 2020). 

Besides affecting dopaminergic neurons, METH administration may impact 
brain regions that contain serotonergic (Silva et al., 2014), γ-aminobutyric 
acid (GABA)-ergic (Fujáková-Lipski et al., 2017), and glutamatergic neurons 
(Zhang et al., 2014). Recent findings in mice have shown that repeated 
METH administration negatively affects synapses located in the PFC and 
hippocampus, leading to lower synaptic density, loss of mature spines, 
and compromised post-synaptic structure (Ding et al., 2022; Additional 
Table 3). Other studies reported that METH increases the expression of 
neuroinflammatory, such as tumor necrosis factor-α and pro-apoptotic 
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(e.g. caspase-3) markers in the hippocampus of rats (Shafahi et al., 2018; 
Additional Table 3). In addition, blood-brain barrier leakage and lowered 
signaling for 4-[18F]ADAM/PET, an in vivo marker of SERT availability, have 
been reported in the hypothalamus, thalamus, hippocampus, and PFC of 
METH-treated rats (Lafuente et al., 2018; Huang et al., 2019; Additional 
Table 3). In female cynomolgus monkeys, both acute and chronic METH 
treatments were found to reduce the hippocampal gray matter volume and 
to alter the expression of genes implicated in vesicle localization, cytoskeleton 
organization, synaptic transmission, and regulation of neuronal differentiation 
and neurogenesis (Choi et al., 2018; Additional Table 3). 

In line with preclinical findings, studies in humans indicate that METH use 
may be associated with neurotoxic damage at the level of dopaminergic 
and serotonergic systems, along with neuroanatomical, neurochemical, and 
functional alterations in cortical and subcortical structures (Moszczynska 
and Callan, 2017). For example, people with a history of METH use have a 
2-to-3-fold increased risk to develop Parkinson’s disease (PD) compared to 
the general population (Lappin et al., 2018), which supports the possible 
occurrence of neurotoxicity at the level of mesencephalic nigrostriatal 
dopaminergic neurons. 

Neuroimaging studies in humans have demonstrated the presence of several 
structural and functional abnormalities in the brain of METH users, with 
either a reduction or an increase in gray matter volume (London et al., 2015). 
In more recent studies, the thickness of cortical gray matter was negatively 
associated with cumulative drug intake and drug craving in METH users (Okita 
et al., 2016; Additional Table 3). In addition, loss of integrity in the white 
matter has been reported in METH users, as measured by changes in the 
mean diffusivity and fractional anisotropy (FA) (Beard et al., 2019; Ghavidel et 
al., 2020; Ottino-González et al., 2022; Zhou et al., 2023).

Changes in biological markers of neuronal function have also been detected 
in METH users, such as a decreased glucose metabolism in the left insula, left 
precentral gyrus, and anterior cingulate cortex (Vuletic et al., 2018; Additional 
Table 3). Furthermore, a recent proton magnetic resonance spectroscopy 
study identified pathological features regarding levels of n-acetyl-aspartate, 
myo-inositol, and glutamate in the mPFC of METH users, likely reflecting 
a decrease in neuronal integrity and the occurrence of mitochondrial 
dysfunction (Wu et al., 2018; Additional Table 3).

Even though neuroimaging studies strongly suggest the existence of 
neurotoxic phenomena in recreational METH users, conclusive evidence is 
still lacking (Kish et al., 2017). Moreover, earlier studies have observed that 
METH-associated abnormalities in gray matter volume, DAT density, and levels 
of vesicular dopamine may recover after protracted abstinence from METH 
(Volkow et al., 2015). Nonetheless, the recovery of monoaminergic markers 
does not exclude per se the possibility that METH may induce neuronal 
degeneration, since the increased synthesis of monoaminergic markers may 
occur in the neuronal population that remains following a neurotoxic insult; 
this adaptive mechanism may reflect an attempt to curb the loss of neuronal 
signaling, as previously observed in the context of neurodegenerative 
diseases, such as PD (Brotchie and Fitzer-Attas, 2009).

3,4-Methylenedioxymethamphetamine 
MDMA, also known as “ecstasy” or “Molly”, is a ring-substituted AMPH-
related drug extremely popular due to its stimulant and euphoriant effects. 
According to the World Drug Report (2023), in 2021 around 20 million people 
aged 15–64 had used MDMA in the past year, with a male-to-female ratio of 
62:38. 

Several pathological mechanisms have been implicated in the neurotoxic 
effects of MDMA. Among them are hyperthermia (Capela et al., 2006), 
formation of ROS/RNS (Górska et al., 2014), alterations in cytoskeletal 
structure (García-Cabrerizo and García-Fuster, 2015), apoptosis (Bakhshayesh 
et al., 2017), mitochondrial complex inhibition associated with bioenergetic 
metabolic dysfunction (Taghizadeh et al., 2016) and astrogliosis (Miner et al., 
2017; Figure 1). 

In rats and nonhuman primates, MDMA elicits neurotoxicity mainly in 
serotonergic systems. Indeed, MDMA has been found to reduce striatal, 
limbic, and cortical levels of serotonin, to decrease the activity of tryptophan 
hydroxylase, the rate-limiting enzyme in serotonin biosynthesis, and to lower 
SERT density and availability (Biezonski and Meyer, 2010; Beaudoin-Gobert et 
al., 2015; Lizarraga et al., 2015; Shih et al., 2016). These noxious effects may 
persist long after administration of MDMA. In this respect, a recent PET/MRI 
follow-up investigation conducted in Formosan rock monkeys demonstrated 
that the neurotoxic effects of MDMA on the serotonergic system may persist 
even 66 months after drug discontinuation (Yeh et al., 2022; Additional 
Table 4). Interestingly, Yeh and coworkers also reported a region-specific self-
recovery of SERT availability in the occipital and cingulate cortex, but not in 
the CPu, hippocampus, thalamus, hypothalamus, midbrain, amygdala, frontal 
and orbitofrontal cortex (Yeh et al., 2022). 

Evidence suggests that the neurotoxic effects of MDMA extend beyond the 
serotonergic system. Two recent studies have demonstrated that MDMA 
may induce neurodegeneration in the dopaminergic system of both rats 
(Cadoni et al., 2017) and macaques (Millot et al., 2020). Indeed, rats exposed 
to multiple MDMA injections during adolescence showed marked signs of 
dopaminergic damage at adulthood, as indicated by a reduced number of 
TH-positive neurons in the SNc and VTA, and decreased immunoreactivity for 
DAT and TH in the CPu (Cadoni et al., 2017; Additional Table 4). Moreover, 

Millot and coworkers (2020) reported that repeated MDMA treatment may 
elicit a significant reduction in DAT availability in the CPu of male macaques, 
along with lower SERT availability in the CPu and thalamus (Additional Table 
4). The same study also found that prior exposure to MDMA aggravated 
the parkinsonian-like symptoms induced by the dopaminergic neurotoxin 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in macaques (Millot et al., 
2020; Additional Table 4).

In contrast to rats and nonhuman primates, the neurotoxic effects of MDMA 
in mice are more evident in the dopaminergic nigrostriatal and mesolimbic 
systems (Moratalla et al., 2017), since damage to serotonergic pathways 
in mice has only been detected following high doses of MDMA (Górska et 
al., 2018). For example, MDMA has been found to reduce striatal levels of 
dopamine, DAT, and TH, and to produce a persistent loss of dopaminergic 
cell bodies in the SNc of mice (Granado et al., 2008; Costa et al., 2017; Miner 
et al., 2017). Of note and consistent with prior data, abnormal activation 
of D1R and D2R seems to play a pivotal role in mediating MDMA-induced 
neurotoxic effects on the dopaminergic system of mice (Granado et al., 2011, 
2014). A partial sprouting of TH- and DAT-positive fibers has been observed 
in the CPu of MDMA-treated mice starting from the third day following drug 
administration, which may suggest that dopaminergic damage induced 
by MDMA in this brain area may recover over time (Granado et al., 2008). 
Interestingly, age and sex are two factors known to affect MDMA neurotoxicity 
in experimental animals. In this respect, two recent investigations provide 
new evidence, which may account for such differential susceptibility to 
the noxious effects of MDMA (Chitre et al., 2020; Costa et al., 2021). 
Adolescent mice have a higher metabolic turnover of dopamine following 
MDMA compared to adult mice (Chitre et al., 2020; Additional Table 4), and 
MDMA-treated male mice display an increased expression of the superoxide 
dismutase (SOD) type 2 enzyme in striatal dopaminergic terminals as well as a 
reduced striatal proteolytic activity when compared to female mice (Costa et 
al., 2021; Additional Table 4).

Other studies indicate that the neurotoxic effects of MDMA may extend 
beyond the dopaminergic system. Indeed, a decrease in the number of 
GABAergic interneurons has been detected in the hippocampus of rats 
subjected to repeated MDMA exposure (Anneken et al., 2013). In line with 
this finding, chronic intermittent MDMA treatment has been reported to 
lower the density of glutamic acid decarboxylase 67-positive fibers, an index 
of neurotoxicity affecting the GABAergic system, in the hippocampus, CPu, 
and mPFC of mice (Costa et al., 2017; Additional Table 4). 

Recent studies have also shown that MDMA treatment affects the NO 
system. Indeed, acute administration of MDMA in rats was found to increase 
the expression of the inducible nitric oxide synthase, but not that of the 
endothelial or neuronal nitric oxide synthase, in the PFC (Schiavone et al., 
2019; Additional Table 4). In the same cortical area, the authors also reported 
a significant elevation in immunoreactivity for 3-nitrotyrosine specifically 
in DAT-positive neurons, but not in glial cells (Schiavone et al., 2019). 
These observations are relevant, as increased 3-NT levels have been also 
documented in major neurodegenerative diseases, such as PD, Alzheimer’s, 
and Huntington’s diseases, and are thought to reflect the presence of massive 
nitrosative stress (Bandookwala and Sengupta, 2020). Moreover, in vitro and 
in vivo investigations have demonstrated that pharmacological inhibition 
of NO synthesis significantly decreases serotonergic and dopaminergic 
neurotoxicity induced by MDMA (García-Pardo et al., 2022). Nevertheless, 
clinical validation of these findings is still needed.

In humans, chronic MDMA use has been associated with the appearance of 
enduring neurochemical and functional alterations in serotonergic pathways. 
Reduced levels of serotonin and its major metabolite, 5-hydroxyindoleacetic 
acid, have been detected in the CPu (Kish et al., 2000) and cerebrospinal fluid 
(McCann et al., 1999) of MDMA users. PET investigations in MDMA users have 
demonstrated a significant reduction in the availability of SERT in multiple 
cortical brain regions and in the hippocampus (Kish et al., 2010; Roberts et al., 
2016), as well as an increase in 5-HT2A receptor density in the occipital cortex 
(Reneman et al., 2000). Interestingly, a recent meta-analysis of 10 PET/SPECT 
studies in MDMA users reported that the reduction in SERT density was not 
directly connected with lifetime episodes of MDMA use (Müller et al., 2019). 
This suggests that other factors, such as the amount of drug taken on each 
occasion, should be taken into account during the evaluation of potential 
drivers of MDMA-induced neurotoxicity. This consideration is especially 
relevant with respect to MDMA’s evolving role as a therapeutic agent for the 
treatment of post-traumatic stress disorder. Furthermore, consistent with 
observations in nonhuman primates (Yeh et al., 2022), Müller et al. (2019) 
also reported a partial region-specific recovery in markers of serotonergic 
function after drug abstinence. Once more, this suggests that the noxious 
central effects of MDMA may be reversible to some extent (Müller et al., 
2019). Nevertheless, additional studies are required to ascertain whether 
the restoration of SERT density indicates a full functional recovery of the 
serotonergic system.

A few studies have also investigated the presence of white matter alterations 
in MDMA users (De Win et al., 2008; Liu et al., 2011), with conflicting results 
(Roberts et al., 2018). A recent study found an elevation of FA in the corpus 
callosum and corticospinal tract of chronic MDMA users, which negatively 
correlated with MDMA use frequency (Zimmermann et al., 2022; Additional 
Table 4). While these results exclude the presence of a severe white matter 
lesion, they nevertheless suggest that MDMA use may cause abnormalities in 
axonal organization (Zimmermann et al., 2022).
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Outside of changes in the central nervous system, a single oral dose of MDMA 
to human subjects increased plasma levels of cortisol and of inflammatory 
mediators (e.g. hydroxyeicosatetraenoic acid), and reduced levels of calcitriol 
(vitamin D), a hormone involved in the production of trophic factors (Boxler et 
al., 2018; Additional Table 4). In summary, data collected from human users 
suggest that MDMA induces changes in brain function primarily impacting 
the serotonergic system. Nonetheless, it remains unclear whether such 
changes reflect the presence of neurodegeneration in serotonergic pathways 
or neuroadaptive responses (Biezonski and Meyer, 2011). Moreover, it 
is important to state that most of the findings described here have been 
obtained from polydrug users, while studies involving pure/primary MDMA 
users are quite limited in number (Wunderli et al., 2017). Therefore, our 
knowledge of the precise effects, associated risks, and potential benefits of 
MDMA use remains to be further elucidated. 

Methylphenidate
When taken orally according to a defined therapeutic plan, methylphenidate 
has negligible abuse potential and may elicit psychostimulant-like and 
sympathomimetic-like side effects of moderate intensity (e.g., repetitive 
movements, loss of appetite, insomnia, increase in blood pressure and heart 
rate) that can be controlled by dose adjustment. Nevertheless, concerns have 
been raised about possible long-term consequences that may arise from 
methylphenidate exposure during childhood and adolescence, which are 
two crucial phases of brain development (Loureiro-Vieira et al., 2017). In this 
regard, it has been estimated that globally, the 8–17% of college students 
aged 18–24 have consumed methylphenidate at least once without a valid 
medical indication, with rates of misuse reaching up to 35% depending on 
the country considered (Sharif et al., 2021; Zahavi et al., 2023). The primary 
incentives driving the misuse of methylphenidate include cognitive and 
academic enhancement, heightened alertness, weight loss, and personal 
curiosity (Finger et al., 2013). Since the chemical structure and mechanism 
of action of methylphenidate are similar to AMPH, prolonged (chronic) use 
of methylphenidate raises concerns about its neurotoxicity. Early studies 
in cell cultures and experimental animals provide conflicting results, since 
the neurotoxic effects of methylphenidate have been demonstrated by 
some (Gopal et al., 2007; Schmitz et al., 2016), but not others (Yuan et al., 
1997; Ludolph et al., 2006). In addition, there is evidence to indicate that 
methylphenidate, administered after METH treatment in rats, prevents the 
persistent dopamine deficits and reverses the acute decreases in vesicular 
dopamine uptake and content and VMAT-2 ligand binding observed following 
METH alone (Sandoval et al., 2003). However, more recent investigations in 
rats have demonstrated that chronic methylphenidate may elicit neurotoxic 
effects (Motaghinejad et al., 2017a, b; Motaghinejad and Motevalian, 
2022) and dysfunctions in the ventral CPu (Quansah and Zetterström, 
2019; Additional Table 4). For example, chronic administration of 
methylphenidate reduced the number of granular cells in the dentate gyrus 
and pyramidal cells in the cornu ammonis region 1 (CA1) of the hippocampus 
(Motaghinejad et al., 2017b; Additional Table 4). These cellular reductions 
were accompanied by decreased expression of brain-derived neurotrophic 
factor, cAMP response element-binding protein (total and phosphorylated), 
protein kinase B (total and phosphorylated) and B-cell lymphoma-2 (Bcl-2) 
proteins, as well as increased expression of pro-apoptotic marker Bcl-2-like 
protein 4 (Bax) and glycogen synthase kinase 3 proteins in the hippocampus 
(Motaghinejad et al., 2017a, b; Additional Table 4). Furthermore, the same 
group found that methylphenidate altered markers of oxidative stress, such 
as malondialdehyde, glutathione, glutathione disulfide, and SOD, as well 
as markers of inflammation, such as interleukin-1β and tumor necrosis 
factor-α, in the hippocampus and/or mitochondria (Motaghinejad and 
Motevalian, 2022; Additional Table 4). Overall, these observations suggest 
the existence of pro-apoptotic, pro-oxidant, and pro-inflammatory effects of 
chronic methylphenidate (Motaghinejad et al., 2017a, b; Motaghinejad and 
Motevalian, 2022), and thereby raise concerns about its potential neurotoxic 
effects in humans who use methylphenidate chronically. However, it is 
important to note that these studies, which demonstrated neurotoxicity by 
chronic methylphenidate in rats, used a dose (10 mg/kg) that far exceeds 
therapeutic doses of methylphenidate, which are roughly 10 mg/day  
in children and 20-30 mg/day in adults, as indicated by the U.S. Food and 
drug administration guidelines. These doses correspond to 0.3–0.4 mg/kg, 
if an average weight of 32 kg or 70 kg is assumed for children and adults, 
respectively. Indeed, the available evidence from studies of structural and 
functional neuroimaging in unmedicated and medicated patients with ADHD 
indicates that methylphenidate is safe overall and improves brain function 
(Loureiro-Vieira et al., 2017; Krinzinger et al., 2019). Nevertheless, the same 
studies also indicate that brain toxicity (e.g., cerebral arteritis, hallucinations) 
may be induced by methylphenidate, although this effect seems to disappear 
after drug discontinuation (Loureiro-Vieira et al., 2017; Krinzinger et al., 2019). 
Overall, there is a substantial lack of data on the long-term neurological 
evaluation of patients treated therapeutically with methylphenidate 
(Krinzinger et al., 2019). Similarly, only a few studies have explored the 
detrimental effects of low doses of methylphenidate in experimental animals. 
Hence, further studies on the neurotoxic effects of methylphenidate in 
humans are warranted. Special focus should be placed on individuals who use 
methylphenidate for recreational purposes or as a performance enhancer, 
since they may be exposed to amounts of methylphenidate that far exceed 
therapeutic doses, which could result in overt neurotoxic effects.

Non-Sympathomimetic Psychostimulants 
Non-sympathomimetic psychostimulants possess dissimilar chemical 

structures and include caffeine and nicotine. Caffeine is a methylxanthine 
alkaloid, which at doses used during recreational consumption, induces 
its central effects by antagonizing adenosine A1 and A2A receptors (Ferré 
et al., 2018). Caffeine also indirectly modulates other neurotransmitter 
systems, including dopaminergic pathways. This action contributes to the full 
manifestation of caffeine’s central effects as well as to its interactions with 
other psychoactive substances (Simola et al., 2021). Nicotine is a dinitrogen 
alkaloid that activates presynaptic nicotinic acetylcholine receptors, thus 
stimulating acetylcholine release (Benowitz, 2009). Nicotine also activates the 
dopaminergic system by increasing dopamine release in mesolimbic regions, 
CPu, and PFC (Benowitz, 2009). In addition to eliciting psychostimulant 
effects, caffeine, and nicotine may both induce neurochemical alterations 
possibly leading to brain dysfunctions and/or neurotoxicity. 

Caffeine
Caffeine is a natural xanthinic alkaloid contained in several plant species 
(e.g., Coffea arabica, Thea sinensis) and consumed worldwide due to its mild 
euphoriant and psychostimulant effects. According to the latest European 
Food Safety Authority (EFSA) dietary survey, the daily intake of caffeine 
in Europe (expressed as mg/kg × body weight) ranges from 0.1 to 1.4 in 
adolescents (10–17 years old), from 0.5 to 4.3 in adults (18–65 years old), and 
from 0.3 to 4.8 in the elderly (60–74 years old) (Verster and Koenig, 2018). For 
adults, major sources of caffeine are coffee and tea, followed by carbonated 
soft drinks, while adolescents and children mostly consume carbonated soft 
drinks and tea, followed by coffee [EFSA Panel on Dietetic Products, Nutrition 
and Allergies (NDA), 2015].

Caffeine consumption is generally considered a harmless habit, which, in 
some cases, may even be beneficial for an individual’s performance or health. 
For example, caffeine has been shown to be protective in experimental 
models of neurotoxicity (Ren and Chen, 2020). In addition, epidemiological 
studies suggest that caffeine-mediated neuroprotection could occur in 
humans, since there is an inverse correlation between caffeine consumption 
and the incidence of neurodegenerative diseases (Janitschke et al., 2021). 
Nevertheless, harmful effects associated with caffeine consumption have 
been also described. For example, caffeine may amplify the behavioral effects 
of dopaminergic psychostimulants of abuse, such as AMPH-related drugs 
and cocaine, in both experimental animals and humans (Morelli and Simola, 
2011). Furthermore, preclinical studies have demonstrated that caffeine may 
elicit neurotoxic effects and exacerbate the neurotoxicity elicited by other 
substances (Frau et al., 2016).

Earlier investigations that employed in vitro or in vivo models demonstrated 
that caffeine-induced neurotoxicity may be sustained by diverse mechanisms, 
such as induction of apoptosis (Kang et al., 2002), alteration in the cellular 
levels of Ca2+ (GepdıṘemen et al., 1998), inhibition of neuronal repair and 
induction of neuroinflammation (Yang and Jou, 2016), inhibition of SOD and 
catalase enzymes and induction of lipid peroxidation (Bavari et al., 2016; 
Figure 1). On the other hand, activation of necrotic and excitotoxic pathways 
is not involved in caffeine-mediated neurotoxicity (Kang et al., 2002), 
whereas the involvement of oxidative stress has been suggested by some 
studies (Bavari et al., 2016), but not others (Kang et al., 2002). More recent 
in vitro investigations have shed light on the mechanisms by which caffeine 
induces neurotoxicity and how it could amplify the neurotoxic effects of 
other substances. A study in PC12 cells provides support to the involvement 
of oxidative stress pathways in caffeine-mediated neurotoxicity, by 
demonstrating that concentrations of caffeine that inhibited cell viability also 
induced apoptosis and increased the generation of ROS (Chian et al., 2022; 
Additional Table 5). Moreover, caffeine treatment reduced protein expression 
and mRNA levels of Nrf2 protein, a key regulator of oxidative stress response, 
as well as of the mRNA encoding Nrf2 and its target genes NADPH quinone 
oxidoreductase 1, glutamate cysteine ligase catalytic subunit and modifier 
subunit (Chian et al., 2022; Additional Table 5). Further support to the role 
of the Nrf2 pathway in the toxic effects of caffeine comes from the finding 
that caffeine treatment had a reduced effect on the viability of PC12 cells 
bearing a knockdown of Nrf2 expression (Chian et al., 2022; Additional Table 
5). A study performed in SH-SY5Y cells demonstrated that concentrations 
of caffeine within the range of those detected in caffeine-contaminated 
environments (e.g., wastewater, seawater) under-expressed several genes 
encoding key elements of other neurotransmitter pathways, such as the 
serotonin 5HT3A receptor, the D2R, the enzyme GABA-transaminase, the 
protein synaptotagmin 10, which regulates neurotransmitter release, and the 
subunit a3 of the ATPase Na+/K+ pump (Vulin et al., 2022; Additional Table 
5). Although this study found no overt cytotoxicity in SH-SY5Y cells exposed 
to the concentrations of caffeine tested (Vulin et al., 2022), the observed 
changes in gene expression deserve further consideration, since they identify 
new molecular targets that could potentially sustain caffeine’s neurotoxic 
effects through prolonged exposure to low amounts or acute exposure to 
high amounts of caffeine.

Additional studies have identified the induction of apoptotic cell death as 
a key mechanism by which caffeine potentiates the neurotoxic effects of 
other substances. A study in SH-SY5Y cells exposed to ethanol found that 
subsequent treatment with caffeine exacerbated the reduction in cell viability 
and increased early apoptosis (Sangaunchom and Dharmasaroja, 2020). 
Specifically, caffeine potentiated ethanol-induced inhibition of signaling 
mediated by mechanistic target of rapamycin, p70S6 kinase, and eukaryotic 
translation initiation factor 4E-binding protein 1, and eventually reduced 
mitochondrial membrane potential, as compared to either control conditions 
or ethanol alone (Sangaunchom and Dharmasaroja, 2020; Additional Table 
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5). Moreover, an investigation in premature newborn mice found that the 
co-administration of caffeine together with the sedative/anesthetic drugs 
midazolam, fentanyl, or ketamine potentiated the number of activated 
caspase 3 apoptotic cells in colliculi, hippocampus, neocortex, CPu, and 
thalamus, as compared to treatment with either drug alone (Cabrera et 
al., 2017; Additional Table 5). Caffeine has also been shown to exacerbate 
apoptosis induced by morphine in the premature rat brain (Kasala et al., 
2020). In this model, combined administration of caffeine and morphine, 
compared to either drug alone, caused a more marked and sex-dependent 
increase in the expression of Bax and a more marked reduction in the 
expression of Bcl-2 (Kasala et al., 2020; Additional Table 5). Furthermore, 
caffeine has been reported to worsen the neurotoxicity induced by in 
utero exposure to isoflurane anesthesia in the fetal rhesus macaque brain 
(gestational days 100–120), by exacerbating neuronal apoptosis, especially in 
the basal ganglia and cerebellum (Noguchi et al., 2018; Additional Table 5). 
Interestingly, the brains of rhesus macaques prenatally exposed to isoflurane 
and caffeine displayed a decreased number of oligodendrocytes throughout 
their white matter (Noguchi et al., 2018; Additional Table 5). 

It appears that mechanisms other than induction of apoptotic cell death may 
participate in the amplification of drug-induced neurotoxicity by caffeine. For 
example, caffeine potentiates MDMA-induced damage in dopaminergic and 
serotonergic terminals in the mouse brain following binge co-administration 
of caffeine and MDMA (Górska et al., 2018). This effect was associated with 
an increase in extracellular dopamine and serotonin levels in the CPu and an 
exacerbation of the oxidative damage of nuclear DNA induced by MDMA in 
the mPFC, compared to either drug alone (Górska et al., 2018; Additional 
Table 5). Another study found that co-administration of caffeine and cocaine, 
compared to either drug alone, exacerbated the increase in intracellular Ca2+ 
and dysregulated the hyperpolarization-activated cyclic nucleotide-gated 
and T-type VGC channels in thalamic ventrobasal neurons of mice (Rivero-
Echeto et al., 2021; Additional Table 5). Although this study did not assess 
the neurotoxic effects of the caffeine-cocaine combination, the observed 
increase in intracellular Ca2+ suggests the existence of other mechanisms by 
which caffeine could potentiate the neurotoxic effects of other drugs, since 
dysregulation of Ca2+ homeostasis is a key player in neurotoxicity phenomena. 

Despite evidence that caffeine may induce neurotoxicity and can exacerbate 
the neurotoxic effects of other substances, the neuroprotective effects 
of caffeine have also been extensively demonstrated (Simola et al., 
2021). Various factors may influence the induction of neuroprotection/
neurotoxicity by caffeine, including levels of caffeine exposure, the presence 
of interindividual and interspecies differences in caffeine pharmacokinetics 
and metabolism, as well as other drugs with which caffeine is consumed. 
Caffeine acts as an antagonist of adenosine A1 and A2A receptors at plasma 
concentrations attained following recreational consumption (Fredholm 
et al., 1999). In this regard, it is noteworthy that several of the studies 
that demonstrated caffeine neurotoxicity used concentrations/doses that 
exceeded those associated with the recreational consumption of caffeine. As 
such, these high concentrations/doses of caffeine may act on targets other 
than adenosine receptors (Fredholm et al., 1999), and, in turn, may activate 
molecular pathways that cause neurotoxicity. Nevertheless, the potential 
of caffeine to induce, or exacerbate, neurotoxicity should be regarded as a 
source of concern at least under specific circumstances, such as the use of 
high doses of caffeine for the treatment of infants for apnea of prematurity 
(Noguchi et al., 2018) and its recreational consumption in combination with 
other psychoactive substances that bear neurotoxic potential (Frau et al., 
2016). Furthermore, the increasing presence of caffeine and its metabolites as 
environmental contaminants raises concern regarding potential neurotoxicity 
following the consumption of caffeine-contaminated food and water (Vieira et 
al., 2022). 

Nicotine
Nicotine is a natural alkaloid contained in plant species from the genus 
Nicotiana and is consumed worldwide due to its euphoriant properties. It 
is found in several products, such as cigarettes, e-cigarettes, and nicotine 
cessation gums and patches. In 2019, more than 1 billion people worldwide 
were reported to regularly smoke cigarettes, and almost 8 million deaths 
were attributable to cigarette use (GBD 2019 Tobacco Collaborators). Nicotine 
elicits its euphoriant and psychostimulant properties by activating nicotinic 
acetylcholine receptors in the brain, which causes the release of a variety 
of neurotransmitters including norepinephrine (Verplaetse et al., 2015), 
acetylcholine (Wonnacott, 1997), serotonin (Fletcher et al., 2008), GABA and 
glutamate (Li et al., 2014), and dopamine (Di Chiara, 2000). The release of 
these neurotransmitters, in particular of dopamine, serves as the basis of 
the psychoactive, rewarding, and addictive properties of nicotine (Di Chiara, 
2000). Several pathological mechanisms have been implicated in the brain 
dysfunctions that can be observed following nicotine use, including, but not 
limited to, apoptosis (Anbarasi et al., 2006), bioenergetic failure (Malińska et 
al., 2019), and neuroinflammation (Piao et al., 2009; Figure 1).

Multiple factors influence the long-term effects of nicotine, leading to either 
brain dysfunctions or neuroprotection depending on the age at which it is 
consumed (Ren et al., 2022), the amount consumed, and the duration of 
its use (Peng et al., 2018). For example, nicotine use during adulthood is 
associated with increased risk for psychiatric and neurological conditions, 
including major depression (Laviolette, 2021), alcohol use disorder (King 
and Meyer, 2022), lower processing speed, poorer general cognitive ability, 
poorer decision-making, increased impulsivity (Conti and Baldacchino, 2021, 
2022), and Alzheimer’s disease (Durazzo et al., 2018). It may be hypothesized 

that the increased risk of brain disease in nicotine users may depend, at least 
in part, on the induction of abnormalities in cerebral structure and function, 
as suggested by neuroimaging studies (see below). Conversely, preclinical 
and clinical evidence indicates that nicotine administration/consumption 
may have a protective effect on the underlying neurodegeneration and/or 
phenotypical manifestation of PD (Nicholatos et al., 2018; Mappin-Kasirer et 
al., 2020; Carvajal-Oliveros et al., 2021; Wang et al., 2022).

Nicotine is often consumed by pregnant women, and gestational nicotine 
exposure has been shown to negatively affect the developing fetal brain, 
leading to neuronal and glial alterations in several cerebral regions that may 
affect the offspring later in their life (Dwyer et al., 2019; Zhou et al., 2021). 
For example, a recent study demonstrated the existence of abnormalities in 
cortical regions of adolescent rats that were exposed to nicotine in utero from 
gestational days 4 to 18 (Dwyer et al., 2019; Additional Table 5). Specifically, 
male and female adolescent rats prenatally exposed to nicotine displayed an 
increase in dopamine content, a decrease in the turnover ratio of homovanillic 
acid/dopamine, and a decrease in norepinephrine transporter expression 
in the PFC, compared to adolescent rats not prenatally exposed to nicotine 
(Dwyer et al., 2019; Additional Table 5). There was also an increase in striatal 
and pallidal D3R binding, as measured by [125I]-7-OH-PIPAT, and D2R-G-
protein functional coupling in the ventral CPu and pallidum in adolescent rats 
prenatally exposed to nicotine (Dwyer et al., 2019; Additional Table 5). In the 
same study, adolescent female rats prenatally exposed to nicotine exhibited 
a decrease in striatal DAT binding, as measured by [125I] RTI-55 (Dwyer et al., 
2019; Additional Table 5). A different study using mice that were prenatally 
exposed to nicotine reported an increased number of microglial cells and 
Nissl-positive neurons in the CA1 of the hippocampus, as well as alterations 
in the expression of genes related to neuroinflammation, synaptic plasticity, 
and neurotransmitter function, compared to mice prenatally treated with 
saline (Zhou et al., 2021; Additional Table 5). Nicotine exposure in utero can 
also affect an offspring’s response to subsequent challenges with a different 
psychostimulant. For example, in male adolescent mice born to mothers 
treated with nicotine during pregnancy methylphenidate treatment led to 
more pronounced release of dopamine and noradrenaline, but not serotonin, 
in the PFC (measured by in vivo microdialysis), compared to mice prenatally 
exposed to saline (Zhang et al., 2021; Additional Table 5).

Neuroimaging investigations in humans have obtained evidence supporting 
the possibility that in utero exposure to nicotine may elicit enduring 
detrimental effects on brain function in offspring. A recent MRI study 
demonstrated the presence of smaller volumes of the left and right thalami 
and inferior frontal gyrus in children aged 7–9 years old who were prenatally 
exposed to environmental tobacco smoke, compared to age-matched children 
not exposed to tobacco smoke during gestation (Margolis et al., 2021; 
Additional Table 5). Another MRI study found lower callosal volume, higher 
FA, and lower mean diffusivity in adolescent and young adults prenatally 
exposed to maternal cigarette smoking, compared to age-matched non-
exposed individuals (Björnholm et al., 2020; Additional Table 5). 

Studies of neuroimaging performed in cigarette smokers have also 
demonstrated that chronic nicotine consumption during adulthood is 
associated with brain abnormalities in gray or white matter (Elbejjani et 
al., 2019; Yang et al., 2020; Fan et al., 2023). Specifically, Elbejjani et al. 
(2019) reported a reduction in gray matter volume in adult cigarette smoker 
participants, compared to adult non-smokers (Additional Table 5). In line with 
this, a recent meta-analysis of 17 voxel-based morphometry studies found 
that chronic smokers had a robust decrease in gray matter volume in the right 
superior frontal gyrus, right middle frontal gyrus, left insular and left superior 
frontal gyrus (Yang et al., 2020; Additional Table 5). Furthermore, reductions 
in the thickness of the medial and lateral orbitofrontal cortex, entorhinal 
cortex, fusiform and middle temporal gyrus, and insula have been observed 
in cigarette smokers, compared to people who never smoked (Durazzo et al., 
2018; Additional Table 5). Conversely, Yang et al. (2020) found an increased 
gray matter volume in the right lingual cortex and left occipital cortex of 
cigarette smokers (Additional Table 5). In line with this, a more recent MRI 
study found that cigarette smokers had higher gray matter volume in the left 
but not right putamen, compared to non-smokers, whereas no differences in 
gray matter volume were observed in the putamen, compared to cannabis 
and tobacco smokers (Daniju et al., 2022; Additional Table 5).
 
Conclusions
Of late, much progress has been achieved in clarifying the central noxious 
effects of psychostimulants. Indeed, while consistent evidence supports 
the therapeutic applications of some psychostimulants (e.g., amphetamine, 
methylphenidate) under closely monitored conditions, it is now clear that 
their misuse may potentially result in brain impairments and functional 
neurotoxicity.

We have reviewed the recent findings derived from experimental models 
and human studies that examined brain dysfunctions and neurotoxicity 
that may be triggered by the most commonly used sympathomimetic and 
non-sympathomimetic psychostimulants. The preclinical investigations 
reported in this review provide new insights into factors that may contribute 
to psychostimulant-induced neurotoxicity. These data also substantiate 
previous findings, indicating that consumption of psychostimulants, 
especially at high amounts and for extended periods of time, could result 
in the emergence of neurotoxic phenomena and brain dysfunctions which 
involve monoaminergic systems. Of note, oxidative stress, mitochondrial 
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dysfunction, neuroinflammation, and apoptosis dysregulation emerge as 
prominent and common mechanisms involved in the neurotoxic effects of 
psychostimulants. At the same time, each psychostimulant may have its own 
specific mechanism(s) that mediates its detrimental effects on the brain, as 
well as unique noxious interactions with other substances that may lead to/
contribute to brain damage.

It is important to note that the extent of psychostimulant-induced neurotoxic 
effects varies and depends on the specific psychostimulant considered, the 
experimental procedure, as well as the stage of life at which it is consumed 
or administered. Furthermore, recent findings indicate that detrimental 
alterations outside the central nervous system, for example in the gut 
microbiota, are of particular interest since they may provide new tools for 
monitoring the noxious effects of psychostimulants in users. Conversely, 
data derived from neuroimaging investigations in users provide compelling 
evidence that psychostimulants may elicit central structural and functional 
changes that impact the activity of several cortical and subcortical brain areas; 
interestingly, some of these changes appear to undergo recovery following 
extended periods of drug abstinence. Nevertheless, the question remains as 
to whether the psychostimulant-induced alterations observed in neuroimaging 
studies reflect the occurrence of neuronal cell death or should be attributed 
to adaptive responses triggered by aberrant monoaminergic signaling. 
Moreover, potential confounding variables such as polydrug use, inclusion of 
current or abstinent users, drug intake patterns, and amount of drug taken 
per occasion, introduce complexity into the interpretation of clinical studies. 
In this regard, further research involving animal models designed to more 
accurately replicate the patterns of drug consumption observed in humans 
will be crucial for gaining novel insights into the neurotoxic effects and brain 
dysfunction that psychostimulants may induce in the human brain. 
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