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Abstract

Background and Aims: Detecting NASH remains challenging, while at-risk

NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug

development and clinical application. We developed prediction models by

supervised machine learning techniques, with clinical data and biomarkers to

stage and grade patients with NAFLD.

Approach and Results: Learning data were collected in the Liver Inves-

tigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-

proven NAFLD adults), staged and graded according to NASH CRN. Con-

ditions of interest were the clinical trial definition of NASH (NAS ≥ 4;53%), at-

risk NASH (NASH with F ≥ 2;35%), significant (F ≥ 2;47%), and advanced

fibrosis (F ≥ 3;28%). Thirty-five predictors were included. Missing data

were handled by multiple imputations. Data were randomly split into

training/validation (75/25) sets. A gradient boosting machine was applied to

develop 2 models for each condition: clinical versus extended (clinical and

biomarkers). Two variants of the NASH and at-risk NASH models were con-

structed: direct and composite models. Clinical gradient boosting machine

models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72.

There were no improvements when biomarkers were included. The direct

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; FIB-4, Fibrosis-4; GGT, gamma-glutamyl transferase; PRO-C3; Amino-terminal
propeptide of procollagen type III; P3NP, Amino-terminal propeptide of type III procollagen; AUC, Area under the receiver operating characteristic curve; Carbox-
yterminal propeptides of procollagen type IV (PRO-C4) and VI (PRO-C6); CAP, Controlled attenuation parameter; CK-18, Cytokeratin-18; ELF, Enhanced Liver
Fibrosis; FIB-4, Fibrosis-4; GBM, Gradient boosting method; HA, Hyaluronic acid; LITMUS, Liver Investigation: Testing Marker Utility in Steatohepatitis; LSM, Liver
Stiffness Measurement; TIMP-1, Metalloproteinases 1; MICE, Multivariate imputation by chain equations; NAS, NAFLD activity score; NASH CRN, NASH Clinical
Research Network; NITs, Noninvasive tests; VCTE, Vibration-Controlled Transient Elastography.
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NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite

NASH model performed significantly better (0.71) for both variants. The

composite at-risk NASHmodel had an AUC of 0.83 (clinical and extended), an

improvement over the direct model. Significant fibrosis models had AUCs

(clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86)

performed significantly better than the clinical version (0.82).

Conclusions: Detection of NASH and at-risk NASH can be improved by con-

structing independent machine learning models for each component, using only

clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.

BACKGROUND

NAFLD is characterized by fat accumulation in hepato-
cytes. There is a need for more robust and accessible
noninvasive tests (NITs), as NAFLD affects nearly 25%
of the global population.[1,2] As a progressive condition,
NAFLD ranges from isolated steatosis (liver fat content
≥ 5%) to NASH with or without fibrosis and cirrhosis.[3,4]

NASH is associated with progression to liver fibrosis and
HCC.[5] “At-risk” NASH (NASH with at least significant
fibrosis) is an important target for drug development and
the focus of health authorities, as it carries an increased
risk of liver-related mortality and contributes significantly
to the total burden of HCC.[6] In a prospective cohort
study, the population with fibrosis stage 3 and higher had
the greatest risk to develop liver endpoints, while fibrosis
stage 2 and higher was linked to increased hepatic and
extrahepatic morbidity.[7]

Liver biopsy remains the reference standard for a
definitive NASH diagnosis; however, the procedure
carries risks to the patient and has several inherent
limitations, including sampling error and reader
variability.[8,9] Even so, no NITs for NASH that match
similar standards are available. This unmet clinical need
has been the driving force for a marathon of research to
develop and validate novel NITs that can distinguish
patients with a greater likelihood of disease progression
than those with comparable liver biopsy performance.
Identifying those at higher risk is critical for risk
stratification, monitoring, and expediting recruitment
for NASH clinical trials.

The list of NITs for NAFLD fibrosis has rapidly grown,
with the Liver Stiffness Measurement by Vibration-
Controlled Transient Elastography (LSM by VCTE),
Enhanced Liver Fibrosis (ELF) test, and Fibrosis-4
(FIB-4) score recommended to rule out advanced
fibrosis.[10,11] However, the EASL Clinical Practice
Guidelines currently do not recommend NITs for the
diagnosis of NASH.[10] Extensively studied biomarkers
such as caspase-cleaved cytokeratin-18 (CK-18) frag-
ments and full-length soluble CK-18 show suboptimal
performance, although combining CK-18 with

synergistic markers showed some improvement.[12]

Multivariable models developed using regression-based
techniques, such as FIC-22,[13] the NAFLD diagnostic
panel,[14] or the NASH test,[15] have either proved to be
less effective in more extensive multicenter studies or
have not undergone sufficient external validation. More
recently, the MACK-3, FAST, and NIS4 scores were
developed specifically for detecting at-risk NASH.[16–18]

While the list of NITs for NAFLD grows, few were
developed based on machine learning algorithms, which
are probably more suitable for handling complicated
diseases with multifaceted etiology. Simple regression-
based methods rely heavily on statistical assumptions,
which do not always hold true for real-world data,
whereas model-free machine learning algorithms adapt
to data characteristics with fewer assumptions.

Machine learning uses algorithms to learn associa-
tions, identify patterns, and create predictions from
complex data structures, which can provide opportunities
for improving the diagnosis or prognosis of diseases.
More recently, machine learning has been applied to
develop diagnostic scores across multiple disciplines,
offering a potential solution for developing tools for
conditions that prove more difficult to detect.[19–21] Our
aim was to employ machine learning to develop
diagnostic models for detecting clinical trial definitions
of NASH, at-risk NASH, and significant and advanced
fibrosis, first by utilizing only routinely collected clinical
data and second by adding biomarkers.

METHODS

This manuscript was prepared using the TRIPOD
guidelines (Supplemental Table S2, http://links.lww.
com/HEP/H625).[22]

Study participants (LITMUS metacohort)

We analyzed data from 966 participants in the Liver
Investigation: Testing Marker Utility in Steatohepatitis
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(LITMUS) metacohort.[23] These participants were
recruited from 12 centers in 9 countries across Europe
between 2010 and 2019 and included adults with
biopsy-confirmed NAFLD with available clinical, labo-
ratory, and biomarker data within 6 months of biopsy.
Serum samples drawn within 6 months of biopsy and
stored at −80°C were also available. Details of the study
can be found elsewhere.[24] All participants provided
informed consent before inclusion; the cohort studies
were approved by the relevant ethics committees in the
participating countries.

Liver biopsy

Biopsy samples were examined prospectively in each
center by expert liver pathologists. NAFLD activity was
graded according to the NASH Clinical Research
Network (NASH CRN).[25] Liver fibrosis was graded on
a 5-point scale (0 to 4), denoted as F in the following.

NASH is comprised of 3 components: steatosis,
lobular inflammation, scored on 4‐point scales (0-3),
and ballooning on a 3‐point scale (0-2) according to the
NASH CRN classification.[25] The NAFLD activity score
(NAS), the unweighted sum of steatosis, lobular inflam-
mation, and ballooning scores thus ranges from 0 to 8.

Target conditions

This study addressed 4 target conditions:

i Significant fibrosis: Defined as F≥ 2;
ii Advanced fibrosis: Defined as F≥ 3;
iii Clinical Trial NASH: Steatohepatitis is a histopa-

thological diagnosis based on the presence of
steatosis, lobular inflammation, and hepatocyte
ballooning.[26] For inclusion in therapeutic trials,
the FDA and EMA mandate steatohepatitis is
defined as a NAS≥ 4 with at least a score of 1
point for each histological component,[27] thus
selecting patients with greater disease activity that
are considered more likely to exhibit disease
progression;[28] and

iv “At-risk” NASH: Like the above, “at-risk” NASH is
defined as the presence of steatohepatitis (NAS≥
4 with at least 1 point in each component) plus
significant fibrosis (F≥ 2).[2,17,18] This defines the
population commonly recruited into phase 3 trials
of novel therapeutics for noncirrhotic NASH.

Predictors

Clinical assessment

Clinical data, including anthropometric, lifestyle/
activity, dietary, comorbidity, pharmacotherapy, clinical

biochemistry, and incident disease/events, were col-
lected in the respective recruitment centers, with blood
assays performed in local laboratories. The list of 25
clinical predictors used is shown in Supplemental
Table S3, http://links.lww.com/HEP/H625.

Biomarker measurements

Additional serum samples were collected in standardized
collection kits within 6 months of liver biopsy and stored
at −80°C. Samples were centrally analyzed at Nordic
Biosciences (Herlev, Denmark), a CLIA-certified labo-
ratory, blinded to clinical data. The following markers
were measured and included as predictors: caspase-
cleaved CK-18 fragments and full-length soluble CK-18
(M30 and M65 antigens), serum peptides that represent
the amino-terminal propeptide of procollagen type III
(PRO-C3), and the carboxyterminal propeptides of
procollagen type IV (PRO-C4) and VI (PRO-C6). We
further include the components of the Siemens ELF test:
tissue inhibitor of metalloproteinases 1 (TIMP-1), amino-
terminal propeptide of type III procollagen (P3NP), and
hyaluronic acid (HA).

LSM and controlled attenuation parameter (CAP) by
VCTE (FibroScan, Echosens, Paris, France) were
collected within 6 months of liver biopsy and also
included as predictors. Probe sizes were selected as
advised by device guidelines.

Machine learning algorithm

A variation of the gradient boosting machine (GBM)
was used to develop the models. GBM is an ensemble
machine learning technique for regression and clas-
sification to produce prediction models of multiple
base learners (or decision trees). This algorithm
involves 3 elements: optimization of a loss function,
predictions made by a base learner, and an additive
model to add base learners to minimize the loss
function successively.

As GBM methods are known for overfitting, we
applied stochastic GBM to reduce the correlation
between trees in the sequence of GBM. Each iteration
uses a sub-sample of the full training data set, drawn at
random, used in place of the full data set to fit the base
learner and compute the model update for the current
iteration.[29] The randomized approach improves model
robustness and reduces overfitting. Other GBM varia-
tions, such as XGBoost, were tested but were not an
improvement from the stochastic method.

We explored alternative algorithms (logistic regres-
sion, k-nearest neighbors, support vector machine, and
decision tree algorithms). Only the results for GBM were
further evaluated as it produced the best-performing
models in the preliminary analyses.
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Data set preprocessing

The original metacohort data set underwent a lengthy
preprocessing phase to convert raw data to the optimal
structure for training and testing GBM models. As the
original data set included over 200 clinical variables, we
isolated those relevant to NAFLD based on clinical
accessibility and established association guided by
experienced hepatologists.

A pairwise Pearson correlation matrix was used to
visualize the predictors’ relationships and test for high
intercorrelation. No variables were removed in this process,
resulting in a final working data set of 35 predictors.

Missing data were handled by first assessing the
degree of missingness and if data were missing at
random. Variables with missing values for more than
80% of participants were excluded entirely. For the
remaining variables, missing data were replaced by
multiple imputations (m=5) using the multivariate
imputation by chain equations (MICE) approach.[30] As
data were split prior to this step, the training and
validation data were imputed separately, resulting in 5
imputed training and validation sets. By purpose, out-
come variables were excluded from the predictor matrix
in the validation set as we aimed to mimic a scenario
where the model is used in a ‘new’ patient, where
outcome data is obviously not available. In support of our
strategy, simulation studies have shown that including
outcomes when imputing the validation set leads to over-
optimistic predictions.[31,32] We further excluded variables
with over 60% missing from the predictor matrix.

Continuous variables were centered and scaled to a
mean of 0 and SD of 1 to improve model stability and fit.

Model development

Figure 1 provides an overview of the model training and
validation workflow. The learning data were randomly
split into training (75%) and validation (25%) sets. The
training set (n=742) was used to develop models using
the GBM algorithm for each target condition. A grid
search strategy was applied to tune hyperparameters
(boosting iterations, max tree depth, shrinkage,
minimum terminal node size) using 5 repeats of 10-
fold cross-validation. Agreement between the model
prediction and the observed outcome was inspected
visually using calibration plots for each of the
constructed models. Two sets of models were
developed for each target condition, one using only
routinely available clinical predictors (clinical model)
and a second employing these same routinely available
clinical predictors plus additional biomarkers (extended
model).

As discussed above, NASH is established by the
presence of 3 histological features (steatosis, lobular
inflammation, and ballooning). To address how these may
best be combined, we developed 2 variants of the NASH
models: 1 directly including these 3 histological features,
the other by building a composite model that aggregated
the calculated probabilities from models for steatosis,
lobular inflammation, and ballooning (Figure 2):

F IGURE 1 Model development workflow.
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i The “direct” NASH model was trained to a
NAS≥ 4 with at least 1 point in each of the 3
components (S ≥ 1 + B ≥ 1 + LI ≥ 1, with the sum
being ≥ 4).[33,34]

ii The “composite” NASH model was similarly trained
to a NAS ≥ 4 but with an additional, more stringent,
liver inflammation threshold of 2 points (S≥ 1 + B≥
1 + LI≥ 2, with the sum being ≥ 4). In the composite
model, separate models were built for each histo-
logical feature, steatosis (0 vs. 1–3), lobular inflam-
mation (0–1 vs. 2–3), and ballooning (0 vs. 1–2), and
the respective probabilities for each component
were multiplied to yield a NASH prediction index.

In the same way, 2 different “at-risk” NASH model
variants were developed: a “direct” at-risk NASH model
and a “composite” at-risk NASH model, the latter built
by aggregating the calculated probabilities from the
steatosis, lobular inflammation, ballooning, and signifi-
cant fibrosis models as discussed above.

Statistical analysis

The performance of each model was evaluated in the
validation data (n=242), which were untouched and
isolated from the model training process. The area
under the receiver operating characteristic curve (AUC)
in detecting the respective target conditions was
calculated to express the accuracy of classifications
against liver biopsy as the reference standard. As
depicted in Figure 1, the model development and
validation steps were repeated for each of the 5
imputed data sets, for each condition, and AUCs were
pooled following Rubin’s Rule.[35,36]

Irrespective of how the model had been trained, to
ensure that the full spectrum of NAS-defined steatohepa-
titis was captured, the target definition of NASH (or “at-risk”
NASH) used in the validation analyses was NAS of ≥4
with at least 1 point in each of the 3 components (S ≥ 1 +
B ≥ 1 + LI ≥ 1, in any permutation where the sum is ≥4).
The extended GBM models were compared with

other tests: CK-18 and CAP by VCTE for NASH, FAST
score,[17] and ADAPT[37] for at-risk NASH, and PRO-C3,
LSM by VCTE, the FIB-4 score,[38] and the ELF test[39]

for fibrosis, according to their original formula.
Variable importance scores were calculated for the

GBM models to rank selected predictors based on their
relative importance (scaled between 0 and 100) for making
more accurate predictions. This was determined based on
the selection of variables in the tree-building process and
improvement for each boosting iteration.[40]

All statistical analysis was performed using R
software version 4.0.3. Multiple imputations was applied
using the MICE package;[30] GBM models were trained
using the caret package.[40]

RESULTS

The study group had a mean age of 51 and a mean body
mass index of 34; 58% were men, and 42% had diabetes.
Based on liver biopsy, 53% had NASH, 35% had at-risk
NASH, 49% had significant fibrosis, and 28% had
advanced fibrosis (including 7% patients with histological
cirrhosis). Details are summarized in Table 1. The flow of
participants included in the LITMUS (Liver Investigation:
Testing Marker Utility in Steatohepatitis) metacohort can
be seen in Supplemental Figure S1, http://links.lww.com/
HEP/H625.

F IGURE 2 Construction of the direct and composite NASH models.
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Steatosis, lobular inflammation, and
ballooning models

Tuning parameters and results across each imputed
training and validation set can be seen in Supplemental
Table S4, http://links.lww.com/HEP/H625. The list of
predictors selected for the clinical and extended models
can be seen in Figure 3. Model calibration can be seen in
Supplemental Figure S2, http://links.lww.com/HEP/H625.

In the validation set, the steatosis model had an AUC
(95% CI) of 0.94 (0.93, 0.96) and 0.94 (0.92, 0.96) for
the clinical and extended version, respectively, showing
no improvement with the addition of biomarkers
(Table 2). The inflammation models also had similar
performance for the clinical and extended versions
(AUC of 0.79 (0.76, 0.81) versus 0.79 (0.76, 0.82)). The
GBM model for detecting ballooning had an AUC of

0.72 (0.69, 0.76) (clinical model) and 0.74 (0.70, 0.77)
(extended model).

NASH models

NASH models were constructed following 2 different
approaches. The direct NASH model had an AUC of
0.61 (0.57, 0.66) using only the clinical predictors and 0.65
(0.60, 0.69) when adding biomarkers (Table 2).

The second, composite NASH model, aggregated the
predicted probabilities of the steatosis, inflammation, and
ballooningmodels. Thismodel performed significantly better
than the direct model with an AUC of 0.71 (0.67, 0.74);
additional biomarkers did not improve the performance.

In comparison, CAP by VCTE and CK-18 M30 had
AUCs of 0.64 (0.59, 0.70) and 0.61 (0.57, 0.65),

TABLE 1 Characteristics of the study group in the training and validation sets

Overall study group Training set Validation set

n 966 724 242

Age, y 51.19 (12.97) 51.80 (12.70) 49.37 (13.61)

Male, n (%) 563 (58.3) 416 (57.5) 147 (60.7)

BMI 34.08 (8.25) 34.10 (8.36) 34.03 (7.93)

ALT, U/L 62.67 (42.54) 62.25 (42.20) 63.92 (43.63)

AST, U/L 42.88 (26.01) 43.09 (26.80) 42.25 (23.55)

GGT, U/L 110.05 (160.19) 113.97 (172.46) 98.34 (115.50)

Albumin, g/L 4.39 (0.42) 4.38 (0.42) 4.41 (0.42)

Platelet, 10^9/L 238.96 (73.45) 237.36 (73.66) 243.76 (72.74)

Glucose, mmol/L 6.50 (2.57) 6.57 (2.65) 6.30 (2.31)

Triglyceride, mg/L 2.07 (1.21) 2.10 (1.26) 1.99 (1.05)

Diabetes, n (%) 406 (42.0) 318 (43.9) 88 (36.4)

FIB-4 1.38 (1.02) 1.41 (1.04) 1.29 (0.96)

VCTE-CAP 312.85 (73.19) 314.13 (71.71) 309.04 (77.46)

VCTE-LSM 11.47 (9.29) 11.15 (8.72) 12.44 (10.78)

Steatosis grade, % (0/1/2/3) 7/33/35/24/1 8/32/35/25/1 5/35/35/23/0

Steatosis, n (%) 898 (93.0) 670 (92.5) 228 (94.2)

Inflammation grade, % (0/1/2/3) 20/57/21/2 19/57/22/2 21/58/18/3

Inflammation, n (%) 223 (23.1) 172 (23.8) 51 (21.1)

Ballooning grade, % (0/1/2) 26/50/24 26/50/25 27/51/22

Ballooning, n (%) 715 (74.0) 539 (74.4) 176 (72.7)

NASH, n (%) 512 (53.0) 385 (53.2) 127 (52.5)

At-risk NASH, n (%) 335 (34.7) 260 (35.9) 75 (31.0)

Fibrosis stage, % (0/1/2/3/4) 32/19/21/20/9 32/18/22/20/8 34/24/15/17/10

Significant fibrosis, n (%) 471 (48.8) 368 (50.8) 103 (42.6)

Advanced fibrosis, n (%) 273 (28.3) 207 (28.6) 66 (27.3)

Notes: Continuous values are shown as mean (SD).
Steatosis is defined as 0 vs. 1–3, inflammation as 0–1 vs. 2–3, ballooning as 0 vs. 1–2, NASH as NAS ≥ 4 (with at least 1 point in each component), significant fibrosis
as F≥ 2, advanced fibrosis as F≥ 3, and at-risk NASH is the combination of NASH and significant fibrosis.
Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; CAP, controlled attenuation parameter; FIB-4, Fibrosis-4; GGT, gamma-glutamyl
transferase; LSM, liver stiffness measurement; VCTE, Vibration-controlled transient elastography
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F IGURE 3 Variables of the importance for steatosis, inflammation, ballooning, and significant fibrosis for the clinical and extended GBM
models systolic blood pressure (bp_sys), diastolic blood pressure (bp_dia), type 2 diabetes (t2dm), hdl, ldl, alanine aminotransferase (alt),
aspartate aminotransferase (ast), gamma-glutamyl transferase (ggt), alkaline phosphatase (alp), hemoglobin (hb), transferrin saturation (tsat),
albumin (albu), clotting (pt), bilirubin (bili), glycosylated hemoglobin A1c(hba1c), cytokeratin-18 (ck-18, m30 and m65 antigens), plasma pro-
peptides of procollagen type III (pro-c3, pro-c4, pro-c6), tissue inhibitor of metalloproteinases 1 (timp-1), amino-terminal propeptide of type III
procollagen (p3np), and hyaluronic acid (ha). Abbreviation: GBM, Gradient boosting method.
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respectively, for the detection of NASH (Figure 4). The
composite NASH model was a significant improvement
over CK-18.

At-risk NASH model

Two different at-risk NASH models were
evaluated. The direct at-risk NASH model had an
AUC of 0.79 (0.76, 0.82) using clinical variables
and 0.78 (0.75, 0.82) for the extended model
(Table 2).

For the composite at-risk NASH model, the AUCs
were 0.83 (0.80, 0.86) for both the clinical and extended
versions. See Figure 3 for the predictors selected for

each model and aggregated to calculate the composite
models.

The composite GBM models performed well com-
pared with other multi-marker scores: FAST had an
AUC of 0.77 (0.73, 0.81), and ADAPT had 0.77 (0.73,
0.80) (Figure 4).

Significant and advanced fibrosis model

The significant fibrosis models had AUCs of 0.76 (0.73,
0.80) and 0.78 (0.75, 0.82) for the clinical and extended
versions, respectively. Both fibrosis model probabilities
were very consistent with the observed event rates (see
calibration plots in Supplemental Figure S3, http://links.

TABLE 2 Performance of the clinical and extended GBM models for detecting stages of NAFLD in the validation set

Outcome, model variant Definition Prevalence (%) Clinical GBM model Extended GBM model

Steatosis 0 vs. 1-3 93 0.94 (0.93, 0.96) 0.94 (0.92, 0.96)

Inflammation 0-1 vs. 2-3 23 0.79 (0.76, 0.81) 0.79 (0.76, 0.82)

Ballooning 0 vs. 1-2 74 0.72 (0.69, 0.76) 0.74 (0.70, 0.77)

NASH, composite S * I * B 53 0.71 (0.67, 0.74) 0.71 (0.68, 0.77)

NASH, direct NAS≥ 4 — 0.61 (0.57, 0.66) 0.65 (0.60, 0.69)

At-risk NASH, composite S * I * B * F 35 0.83 (0.80, 0.86) 0.83 (0.80, 0.86)

At-risk NASH, direct NAS≥ 4 and F≥ 2 — 0.79 (0.76, 0.82) 0.78 (0.75, 0.82)

Significant fibrosis F≥ 2 47 0.76 (0.73, 0.80) 0.78 (0.75, 0.82)

Advanced fibrosis F≥ 3 28 0.82 (0.79, 0.84) 0.86 (0.85, 0.87)

Notes: Clinical GBM models include only clinical predictors, extended GBM models include clinical predictors and biomarkers.
Composite NASH model was constructed by aggregating the 3 NASH components: steatosis, lobular inflammation, and ballooning, which were dichotomized
according to the definition as described. At-risk NASH was constructed similarly, including significant fibrosis (F≥ 2).
Direct NASH model was constructed using the standard dichotomization of NAS score (≥ 4), with at least one point in each component of steatosis, lobular
inflammation and ballooning.
Direct at-risk NASH is the combination of NAS score (≥ 4) and significant fibrosis (F≥ 2).

F IGURE 4 AUC of extended GBM models in the validation set compared with existing noninvasive scores for detecting NASH, at-risk NASH,
and significant and advanced fibrosis. Abbreviation: GBM, Gradient boosting method.
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lww.com/HEP/H625). Tuning parameters for each
imputed data set are shown in Supplemental
Table S4, http://links.lww.com/HEP/H625.

In comparison, PRO-C3 had an AUC of 0.67 (0.63,
0.71), LSM by VCTE had 0.77 (0.73, 0.81), FIB-4 had
0.70 (0.66, 0.73), and ELF had 0.70 (0.66, 0.73)
(Figure 4).

For advanced fibrosis, the AUC for the clinical model
was 0.82 (0.79, 0.84). Adding biomarkers significantly
improved the detection of advanced fibrosis, with an
AUC of 0.86 (0.85, 0.87).

For advanced fibrosis, PRO-C3 had an AUC of 0.77
(0.73, 0.81), LSM by VCTE had 0.83 (0.80, 0.87), FIB-4
had 0.76 (0.73, 0.80), and ELF had 0.80 (0.76, 0.83)
(Figure 4).

DISCUSSION

Several diagnostic scores have been studied to identify
patients with advanced stages of fibrosis. However,
those for detecting active NASH (with or without
fibrosis) have been less successful. The present study
utilized a large histologically characterized NAFLD
cohort in Europe with a rich selection of novel
biomarkers to develop diagnostic models using the
GBM algorithm. Two sets of models were developed for
each condition, 1 using only clinical features, and a
second by adding biomarkers, such as CK-18, PRO-
C3/4/6, and LSM and CAP by VCTE.

We explored the added value of fitting the GBM
algorithm for steatosis, inflammation, and ballooning
separately and creating an aggregate model combining
the 3 components. The purpose was to enhance classi-
fications, as NASH models are generally developed solely
based on theNAS score and so far, none are suggested for
use by clinical guidelines.[10] Our results showed that
aggregating the probabilities for each component to arrive
at the composite NASH score significantly improved the
accuracy of detecting NASH. The same strategy also
improved the detection of at-risk NASH.

The performance of the models for NASH and at-risk
NASH was comparable between the clinical and
extended models. The fibrosis models benefited the
most from the additional biomarkers, with significant
improvement in detecting advanced fibrosis.

The study presents some limitations, mostly related
to the retrospective nature of the LITMUS Metacohort.
Liver biopsy serves as the reference standard in our
analysis as it remains the recommended technique for
evaluating NASH, despite caveats such inter-reader
and intra- reader variability.[8,41] We further note that our
definition of NASH corresponds to the efficacy endpoint
defined by health authorities and clinical trials for
NAFLD drug development, which may differ from the
clinical diagnosis of NASH that considers other inputs in
addition to histopathologic diagnosis.[34] We relied on

locally read biopsies and local lab results for standard
markers, which may introduce differences across study
sites. While blood-based biomarkers were centrally
analyzed, they were measured in retrospectively
collected samples and reserved in a biobank. They
were also analyzed in batches.

Due to the limited sample volume, not all biomarkers
were measured in all patients. We avoided complete
case analysis by imputing missing values by multiple
imputations. Five imputed data sets were produced and
analyzed as simulation studies have shown a required
number of repeated imputations to be as low as 3 for
data sets with 20% missingness.[42] The retrospective
nature of this study also meant that some samples were
older than others. As the stability of these samples is
largely unknown, we excluded a handful of samples
collected before 2010 from the analysis.

Other machine learning models have been devel-
oped using only clinical predictors to detect NASH.
Using a variant of GBM, 1 study found out-of-sample
AUCs of 0.82 and 0.76, using data from the National
Institute of Diabetes, Digestive and Kidney Diseases,
and Optum Analytics.[21] Another study applied machine
learning algorithms to predict NASH using data from
Optum Analytics and found the highest AUC (0.88)
using XGBoost.[43] This study, however, included
healthy participants without any liver-related diseases
in the model development phase. Both studies relied on
data from Optum, which, in the absence of a histological
diagnosis of NASH, relied on several different ICD
codes for NASH or NAFLD.

Other scores have been developed using regression-
based methods, such as NIS4 and MACK-3. NIS4,
which includes 4 components (miR-34a-5p, alpha-2
macroglobulin, YKL-40, and glycated hemoglobin), had
an AUC of 0.80 from 3 validation cohorts for detecting
at-risk NASH.[18] An external validation study found that
MACK-3 (fasting glucose and insulin, AST, and CK-18)
also had an AUC of 0.80 for detecting at-risk NASH.
More recently, the SomaSignal test developed based
on elastic net produced an AUC of 0.76.[44,45] All of
these multi-marker scores include more novel bio-
markers, which come with the cost of additional testing.
Our at-risk NASH model performed well, relying only on
clinical data, highlighting a potential advantage of
utilizing machine learning. This warrants further evalua-
tion in an external cohort.

Constructing separate models for each component of
NASH further allowed us to observe that different
predictors were selected as most informative for each
component. The most influential predictors had strong
biological plausibility or an established position in the
disease pathway.[12,46–48] However, the ranking of
markers was variable across imputed data sets and
should be interpreted with caution.

In the future, we plan to finalize the models using
complete data from the ongoing prospective LITMUS
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Study Cohort, focusing on the aggregated approach for
constructing the models for NASH and at-risk NASH. A
single model for each outcome will be converted to a
user-friendly interface in the form of a Shiny app. Such
tools would allow clinicians, including those in a primary
care setting, to enter values of clinical parameters to
detect NASH or at-risk NASH with greater ease.

Machine learning approaches are sometimes per-
ceived as too complicated compared with classic
regression-based tools. Some studies have demon-
strated the superior performance of machine learning
algorithms over logistic regression, such as Feng et al,
who found machine learning models outperformed
regression-based models for detecting significant fib-
rosis across different subgroups.[49] However, a large
meta-analysis found no benefit of machine learning over
logistic regression.[50] Given the vast selection of
available algorithms, heterogeneous study designs,
sparse reporting, and conflicting conclusions in the
literature, more work is needed to understand which
tools and study design elements are optimal for
developing diagnostic models for NAFLD. This should
be paired with a clear emphasis on the tool's desired
clinical context of use, whether to triage patients in
clinical practice or select participants most likely to
benefit from therapeutic interventions in clinical trials.

Our study found promising results to explore machine
learning algorithms further to improve the diagnosis of
NASH and at-risk NASH, using readily available clinical
data. The inherent ability to adapt to new data positions
machine learning as a valuable tool for rapidly evolving
health care settings and conditions with a complex etiology
such as NAFLD. While the move towards machine
learning to detect NAFLD is still in its infancy, concerted
efforts to robust methodology, biomarker discovery, and
quality data can improve the clinical management of
NAFLD. Importantly, this is most needed outside expert
centers, where the vast majority of patients do not have
access to specialists focusing on liver disease.
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