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Abstract: Doping semiconducting oxides, such as LaFeO3 (LF), with metallic elements is a good
strategy to improve the performance of photocatalysts. In this study, LF and ten different nanopow-
ders metal-doped at the La or Fe site of LaFeO3 were evaluated in the photocatalytic degradation of
ciprofloxacin (CP) and oxytetracycline (OTC). The following metals were used in the doping (mol%)
process of LF: Pd 3% and 5%; Cu 10%; Mg 5%, 10%, and 20%; Ga 10%; Y 10% and 20%; and Sr 20%.
The doped samples were synthetized using a citrate auto-combustion technique. From the X-ray
diffraction (XRD) data, only a single crystalline phase, namely an orthorhombic perovskite structure,
was observed except for trace amounts of PdO in the sample with Pd 5%. The specific surface area
(SSA) ranged from 9 m2 g−1 (Ga 10%) to 20 m2 g−1 (Mg 20%). SEM images show that all samples
were constituted from agglomerates of particles whose sizes ranged from ca. 20 nm (Mg 20%) to
ca. 100 nm (Pd 5%). Dilute aqueous solutions (5 × 10−6 M) prepared for both CP and OTC were
irradiated for 240 min under visible-light and in the presence of H2O2 (10−2 M). The results indicate
a 78% removal of OTC with Cu 10% doped LF in a phosphate buffer (pH = 5.0). The degradation of
CP is affected by pH and phosphate ions, with 78% (in unbuffered solution) and 54% (in phosphate
buffer, pH = 5.0) removal achieved with Mg 10% doped LF. The reactions follow a pseudo-first order
kinetic. Overall, this study is expected to deepen the assessment of photocatalytic activity by using
substrates with different absorption capacities on photocatalysts.

Keywords: heterogeneous photocatalysis; lanthanum ferrite; ciprofloxacin; oxytetracycline;
perovskite

1. Introduction

Besides conventional wastewater treatment methods, the application of advanced
oxidation processes (AOPs) has received widespread attention for decades. AOPs are
based on the formation and reaction of reactive oxidation species (ROS), mostly generated
by light-initiated reactions. Among AOPs, photocatalysis has attracted the interest of
researchers because it represents an effective and sustainable technology that can help
solve environmental management problems, particularly pollutants in wastewater [1,2].
In the photocatalytic process, a chemical reaction is activated or its rate is changed when
a semiconductor photocatalyst is irradiated by light with an energy that matches or ex-
ceeds the band gap energy of the semiconductor, resulting in excited electron-hole (e−-h+)
pairs [3]. The electrons are then promoted from the valence band (VB) to the conduction
band (CB), while the holes remain in the VB. The electrons or holes interact with pollutants
in the water, forming reaction intermediates. If the intermediate compounds are harmful,
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photocatalysis can be used to degrade them in turn. The presence of radiation in the
visible light region of the electromagnetic spectrum is very attractive because it makes
the operation of wastewater treatment plants less complicated and significantly reduces
costs. In particular, visible light photocatalysis can be used as a complementary technique
to conventional wastewater treatments (e.g., biological, chlorination, etc.) for “purified”
effluent from the wastewater plant, which still contains recalcitrant pollutant molecules in
very small concentrations (<1 µg/L).

Several studies have shown that LaFeO3-based semiconductors are promising visible-
light and UV photocatalysts for aqueous reactions [4,5], often combined with a hydrogen
peroxide reaction [6,7]. Recently, the effects of peroxydisulfate (PS) on LF/UV-A treatment
was explored for the first time [8,9]. Furthermore, LaFeO3 is an effective photocatalyst
for As(III) oxidation to As(V) in aqueous environments under UV-C [10]. LaFeO3-based
oxides offer the advantages of LaFeO3 being a stable oxide p-type semiconductor with a
band medium gap of 2.48 eV [10] and both low cost and non-toxic. These perovskite oxides
have the general formula of ABO3, with A cation being a larger size than B. The ideal
(cubic) perovskite structure consists of a three-dimensional system of vertex-sharing [BO6]
octahedral, with A-site cations coordinated 12-fold in the cubo-octahedral cages. Frequently,
perovskite oxides adopt a variant with lower symmetry than cubic. Different dopants may
control phase transformation, regulate electrical conductivity, alter catalytic properties, or
perform various other functions. The partial substitution of A or B cations gives rise to
substituted compounds with the formula La1−xMxFeO3 or LaFe1−xMxO3. In cases where
the charge of M is less than that of Fe, the oxygen atoms slightly shift toward the more
charged cation, although the octahedral symmetry of Fe and M is preserved. Consequently,
their structural stability and physical properties can remarkably be modified.

LaFeO3, like many ABO3 perovskite-type oxides, presents an extensive recombination
rate for photogenerated electron-hole pairs [11]. Perovskite doping with metal elements
can be a suitable strategy to increase its charge transport properties and decrease its rate
of electron-hole recombination. However, in the literature, the effects of metal-doping
several times on the La and Fe sites using equal experimental conditions have been seldom
reported [12]. Phan et al. [13] reported that the crystallite sizes of Cu-doped LaFeO3
samples are smaller than those of LaFeO3 because Cu doping causes lattice distortion and
suppresses the growth of large crystallites in the samples. The subsequent high degree of
crystallinity with few defects helps to minimize the recombination of electron-hole pairs,
leading to an enhanced efficiency of the photodegradation of organic dyes [14].

The literature has reported a strong affinity between La and phosphate and the conse-
quent possibility of using LaFeO3 to effectively remove phosphate pollution. The absorption
of phosphate consists in replacing its surface hydroxyl groups and forming mononuclear
and binuclear complexes. Therefore, the absorption mechanism of surface-ligand exchange
reactions occurs between phosphate and hydroxyl groups, and phosphate absorption can
significantly increase the number of negative charges on the LaFeO3 surface [15].

The presence of pharmaceuticals in surface water bodies has generated great concern.
Their risks to human health, such as water-related illnesses, are well-documented, par-
ticularly in relation to antimicrobial resistance [16]. Among antibiotics, oxytetracycline
(OTC) and ciprofloxacin (CP) are most frequently detected in aquatic environments. OTC
is widely used for the treatment of infections in both humans and animals and as a feed
additive for promoting animal growth in the livestock and fish-farming industries [17].
CP is commonly used to treat bacterial infections, such as urinary tract infections and
pneumonia [18]. Their properties (hydrophilicity and a stable ring structure) make them
scarcely removable from the aqueous substrate using conventional wastewater treatment
methods [19].

In this study, the effects of the partial substitution of La or Fe ions in three different
La1-xAxFeO3 compounds and seven different LaFe1-xBxO3 compounds on the photocat-
alytic degradation of OTC and CP were investigated under visible-light irradiation and in
the presence of H2O2. The addition of H2O2 increases the photodegradation rate of organic
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pollutants by removing surface-trapped electrons, thereby lowering the electron–hole re-
combination rate and increasing the efficiency of hole utilization for reactions such as OH−

+ h+ → •OH [20].

2. Results and Discussion
2.1. Microstructural Characterization

The structural characterization of the as-prepared photocatalysts confirms that all the
powders used in this study are single phases except for trace amounts of PdO in the LFP05
sample. All the compounds crystallized in a perovskite structure with an orthorhombic cell
(space group Pnma) with lattice parameters close to those of LF (a = 5.5680(2) Å, b = 7.8561(3)
Å, c = 5.5537(2) Å). X-ray diffraction patterns of the photocatalyst powders are shown in
Figures 1 and 2. Figure 1A reports the diffraction patterns of LF, LFM05, LFM10, and LFM20;
as the Mg-doping level increases, peaks broaden considerably, simultaneously shifting the
Bragg angle towards a lower angle. The cell size slightly increases with increasing amounts
of Mg2+ in agreement with the ionic size of the dopant (Mg2+(VI) 0.72 Å vs Fe3+(VI) 0.645
Å). The obtained results are in agreement with data from the literature on these system [21].
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Figure 1. (A) X-ray diffraction patterns of LF, LFM05, LFM10, and LFM20; (B) diffraction patterns 
of LF, LFC10, and LFG10. On the right are enlargements of the (121) peak. 

In Figure 1B, the diffraction patterns of LFC10 and LFG10 compared to the reference 
LF are reported. In LFC10, the larger ionic radius of Cu2+(VI) = 0.73 Å compared to Fe3+(VI) 
counterbalanced the unit cell contraction due to (i) the presence of oxygen vacancies and 
(ii) redox reactions in the Fe sites (the ionic radius of Fe4+(VI) = 0.585 Å) [22]. For LFG10, 
the shift toward a higher angle indicates a slight decrement of the lattice parameters in 
agreement with [23]. 

A shift in the positions of the peaks for LYF10 and LYF20, leading to an overall small 
reduction in cell volume, can be seen in the enlargement of Figure 2A. The substitution of 
the La3+ ion (1.16 Å) with smaller Y3+ (1.019 Å) induced an increase in the octahedral dis-
tortion (compression), which led to a reduction in the lattice parameters and unit cell vol-
ume, as previously reported [24]. In Figure 2B, LFP03 and LFP05 are reported: the peaks 
are slightly shifted towards low angles in the diffractograms, corresponding to their cell 
size increasing with increasing amounts of Pd2+. The ionic size of the dopant Pd2+ (VI) was 
0.86 Å, while that of Fe3+ (VI) was 0.645 Å. Palladium oxide (PdO) was detected in the 
pattern of LFP05, possibly as a result of the small solubility limit of Pd in LaFeO3 [25]. 
However, traces of PdO cannot be excluded in LFP03 if below the detection limit. 

Figure 1. (A) X-ray diffraction patterns of LF, LFM05, LFM10, and LFM20; (B) diffraction patterns of
LF, LFC10, and LFG10. On the right are enlargements of the (121) peak.
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reported for the sake of brevity, was similar to that of the substituted LF. By analyzing the 
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Figure 2. (A) X-ray diffraction patterns of LF, LFY10, and LFY20 are shown: the peaks are slightly
shifted towards high angles, corresponding to cell size shrinking and increasing the amount of
Y3+; (B) X-ray diffraction patterns of LF, LFP03, and LFP05. On the right are enlargements of the
(121) peak.

In Figure 1B, the diffraction patterns of LFC10 and LFG10 compared to the reference
LF are reported. In LFC10, the larger ionic radius of Cu2+(VI) = 0.73 Å compared to Fe3+(VI)
counterbalanced the unit cell contraction due to (i) the presence of oxygen vacancies and
(ii) redox reactions in the Fe sites (the ionic radius of Fe4+(VI) = 0.585 Å) [22]. For LFG10,
the shift toward a higher angle indicates a slight decrement of the lattice parameters in
agreement with [23].
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A shift in the positions of the peaks for LYF10 and LYF20, leading to an overall small
reduction in cell volume, can be seen in the enlargement of Figure 2A. The substitution
of the La3+ ion (1.16 Å) with smaller Y3+ (1.019 Å) induced an increase in the octahedral
distortion (compression), which led to a reduction in the lattice parameters and unit cell
volume, as previously reported [24]. In Figure 2B, LFP03 and LFP05 are reported: the peaks
are slightly shifted towards low angles in the diffractograms, corresponding to their cell
size increasing with increasing amounts of Pd2+. The ionic size of the dopant Pd2+ (VI)
was 0.86 Å, while that of Fe3+ (VI) was 0.645 Å. Palladium oxide (PdO) was detected in
the pattern of LFP05, possibly as a result of the small solubility limit of Pd in LaFeO3 [25].
However, traces of PdO cannot be excluded in LFP03 if below the detection limit.

2.2. Brunauer–Emmett–Teller (BET) Specific Surface Area (SSA)

The specific surface area (SSA) and the crystallite size of the samples are listed in
Table 1. With respect to the composition of the reference LF, which shows an SSA of 16 m2

g−1, the surface areas of LFM05, LFM10, LFM20, and LSF20 were enhanced, reaching a
value ~20 m2 g−1 for LFM20. The crystallite sizes calculated from the XRD analysis ranged
from 18 nm (LFM20) to 45 nm (LFG10).

Table 1. BET specific surface area (SSA) and crystallite size (calculated using Scherrer equation) of
substituted LaFeO3.

Sample Nominal Composition BET (m2 g−1) Crystallite Size (nm)

LFC10 LaFe0.90Cu0.10O3 12 27
LFG10 LaFe0.90Ga0.10O3 9 45
LFM05 LaFe0.95Mg0.05O3 16 25
LFM10 LaFe0.90Mg0.10O3 17 25
LFM20 LaFe0.80Mg0.20O3 20 18
LFP03 LaFe0.97Pd0.03O3 n.a. 39
LFP05 LaFe0.95Pd0.05O3 n.a. 31
LFS20 La0.80Sr0.20FeO3 17 26
LFY10 La0.90Y0.10FeO3 13 28
LFY20 La0.80Y0.20FeO3 12 24

2.3. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX)

The SEM micrographs shown in Figures 3 and 4 are useful for studying the morphol-
ogy of the investigated samples. In particular, Figure 3 shows images of the LFC10 and
LFG10 samples and a micrograph of LFM20, chosen as representative of the three sam-
ples containing magnesium. For each sample, two different magnifications (50,000× and
200,000×) are reported. On the other hand, in Figure 4, micrographs of the samples LFP05
and LFY20 (chosen as representative of the samples of their respective series) and those
of the LFS20 sample are reported at two different magnifications (50,000× and 200,000×).
The morphologies of all the samples studied indicate that, in general, they comprised an
agglomerate of particles whose sizes ranged from ca. 20 nm to ca. 100 nm depending on
the catalyst. In addition, in all cases, the particles were linked together to form corrugated
sheets that were often curved and intertwined, giving rise to the formation of macropores.
It is interesting to note that the morphology of the reference LF’s composition, images not
reported for the sake of brevity, was similar to that of the substituted LF. By analyzing the
various samples in more detail, it can be observed that those that had particles of a smaller
size also had a higher specific surface area. In particular, the sample LFM20, which showed
the highest SSA (20 m2 g−1), was the catalyst with the smallest particle size (its average
size being in the range of 20–30 nm). On the contrary, the sample LFP05, with a particle
size up 100 nm, showed the smallest SSA.
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Table 2 reports the percentage of metal content in all of the samples, measured using
EDX analysis, compared with that of their nominal compositions. As can be observed in
the table, the metal content measured using EDX analysis was generally very close to the
nominal one. However, in the case of the LFM20 sample, the amount of magnesium was ca.
double with respect to the nominal one, indicating an Mg-rich phase on the surface of the
sample, probably due to the high amount of this element in the sample.
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Table 2. EDX and nominal (in parenthesis) atomic metal percentages.

Sample La Fe Cu Mg Ga Pd Y Sr

LFC10 49 (50) 46 (45) 5.0 (5.0) - - - - -
LFM05 50 (50) 47 (47.5) - 3.0 (2.5) - - - -
LFM10 46 (50) 49 (45) - 5.0 (5.0) - - - -
LFM20 45 (50) 38 (40) - 17 (10) - - - -
LFG10 50 (50) 44 (45) - - 6.0 (5.0) - - -
LFP03 46 (50) 52 (48.5) - - - 2.0 (1.5) - -
LFP05 49 (50) 48 (47.5) - - - 3.0 (2.5) - -
LFY10 45 (45) 50 (50) - - - - 5.0 (5.0) -
LFY20 39 (40) 49 (50) - - - - 12 (10) -
LFS20 40 (40) 50 (50) - - - - - 10 (10)

2.4. Photocatalytic Degradation of CP and OTC

The highly performant photocatalysts on OTC degradation using UV or visible light
are listed in Table S1 in Supplementary Materials. Past experimental studies have been
generally performed with OTC concentrations in the range 5–50 mg L−1, much larger than
the one used in this study (0.5 mg L−1). Specifically, here, the concentration of the pollutant
was chosen taking into account two conditions: (i) the concentration of pollutant measured
in surface water is typically <1 µg L−1 in different areas [26] and (ii) this concentration
must be sufficiently high for spectroscopic detection.

The ability for LF, LFY10, LFC10, and LFM10 to photodegrade CP in aqueous solutions
at (i) their natural pH (pH = 6.4) and (ii) in phosphate buffered solutions (pH = 5.0) have
been studied. Interestingly, it has been found that the presence of phosphate shifts the
maximum absorption peak from λ = 270 nm to λ = 275 nm and decreases the absorption
of CP into photocatalysts. Generally, this is ascribed to the chemical characteristics of the
antibiotics and their different capabilities for forming chemical complexes. Phosphate
absorption can significantly increase the number of negative charges on the photocatalyst
surface, causing attraction or repulsion between phosphate and pharmaceuticals, and
adsorption-site competition effects can happen due to the smaller molecular size of phos-
phate ions. The outcomes of our analyses on the degradation of CP are given in Table 3. C0
and Ct are the concentrations of CP before and after irradiation, respectively. Notably, only
41–22% of CP was found at a natural pH in the presence of the four photocatalysts after
240 min of visible light irradiation, whilst 72–46% of the initial CP was observed after the
same irradiation time in the presence of the phosphate buffer. These results suggest that it
is important to quantitatively compare the photocatalytic activities of doped-LF using an
unbuffered solution for CP.

Table 3. Photocatalytic degradation results reported as residual percentage of CP (calculated
as Ct/C0·100) after 240 min of visible light irradiation in unbuffered solution of pollutant
(C0 = 5 × 10−6 M, pH = 6.4) and in phosphate buffered solution (pH = 5.0).

Solution LF LFY10 LFC10 LFM10

CP unbuffered 41 30 39 22
CP buffered 62 55 72 46

The photolytic degradation of OTC and CP in neat water are presented in Figure 5A,B
(data named “blank”). A number of previous studies have shown that CP is susceptible
to direct photochemical transformation from exposure to ultraviolet (UV–A) light [27].
CP photolytically degraded better than OTC, and the same result was found in presence
of H2O2.
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(B) Photocatalytic degradation of CP after 240 min of visible light irradiation. C0 = 5 × 10−6 M, the
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pollutant + H2O2 without photocatalyst.

Doped-LF-mediated heterogeneous photocatalysis was faster than pure photolysis for
both molecules. Previously, it was observed that a small H2O2 addition is advantageous
for the photo-oxidation of CP in the presence of LF [6]. The radical intermediate •OH
formed from this oxidant from reactions with the photogenerated electrons can act as an
electron scavenger, thus inhibiting the recombination of e−/h+ pairs at the semiconductor
surface [28] according to the following equation:

H2O2 + eCB
− → •OH + OH− (1)

where eCB
− indicates an electron excited to the conduction band.

OTC and CP showed different responses to doped-LF photocatalysts. The most
extensive photodegradation of OTC, 78%, was detected with LFC10, and there was also
a good response in the presence of the LFM10 photocatalyst. LSF20 showed the lowest
degradation value. The most significant outcomes for CP were observed for LFM10, LFY10,
and LFY20, with percentages of degradation equal to 78%, 70%, and 71%, respectively. The
worst values were found with LSF20, LFG10, and LFM20. Among the doped catalysts,
LSF20 showed the worst performance in both CP and OTC degradation. It seems that
doping with Sr cancelled the activity of the catalyst; in fact, its activity was similar to that
of the test carried out with H2O2 alone.

To compare the photocatalytic activities of LFM10 and LFC10, the reaction rate con-
stants (k) were calculated using the pseudo first-order model (ln(Ct/C0) versus time)
typically used to describe photocatalytic degradation assuming a low initial concentration
of the pollutant (Figure S2). As shown in Table 4, the apparent rate constants of OTC
were determined to be 0.0051 and 0.0068 min−1 for LFM10 and LFC10, respectively, and
those of CP were 0.0069 and 0.0042 min−1 for LFM10 and LFC10, respectively. Most of the
removal percentage of the data in Table S1 are not comparable with ours because UV or
solar radiation was used as light source. Few of these studies have been carried out using
only radiation in the visible range (entries 3, 7, 8, and 9 in Table S1). Entries 3 and 7 show a
very high removal efficiency (and rate constant values greater than those of solar or UV
radiation) because they describe studies on composite photocatalysts, in which the enhance-
ment of the photocatalytic performance is related to the presence of the graphene phase that
causes a decrement of the recombination of photogenerated electron–hole pairs. Moreover,
the unbonded π electrons of graphene provide a large absorption of OTC molecules via
π-π interactions.
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Table 4. The pseudo first order rate constants of OTC and CP degradation from LFM10 and LFC10 at
room temperature under various conditions.

Catalyst Catalyst Loading
(mg L−1) Pollutant Pollutant

(mol L−1) Additive k1 (min−1) R2

LFM10 130 OTC 5 × 10−6 M H2O2 0.0051 0.999
LFC10 130 OTC 5 × 10−6 M H2O2 0.0068 0.980
LFM10 130 CP 5 × 10−6 M H2O2 0.0069 0.988
LFC10 130 CP 5 × 10−6 M H2O2 0.0042 0.951

2.5. Photocatalytic Degradation of CP and OTC

Generally, the preliminary adsorption of substrate molecules on the surface of a
catalyst is necessary for highly efficient photocatalytic degradation [29]. Larger surface
areas provide active sites for the adsorption of reagent molecules. The adsorption of
molecules on a metal–oxide surface is influenced by the acid-base properties of the surface.
Some authors have reported the point of zero charge (PZC) for LF and related oxides. The
PVC is a pH of 8.9 for LF [7], around 6.2 for LaFe0.80Cu0.2O3 [30], 7.2 for LaFe0.9Co0.1O3 [31],
and 7.2 for La0.6Sr0.4FeO3 [32], suggesting that the surface charge of catalysts is positive
when pH < 6.2 as in the case of our experiments. OTC exists predominantly as a cation at
pH < 3.6 when the dimethylammonium group is protonated, as a zwitterion between pH
3.6 and 7.5 (resulting from the loss of proton from the phenolic diketone moiety), and as
an anion at pH > 7.5 (resulting from the loss of protons from the tricarbonyl system and
phenolic diketone moiety) [33]. In this study, the OTC solution was buffered at pH = 5.0, so
OTC has zwitterionic form (see Figure S3).

Figure 6 shows OTC degradation as a function of the SSA of the photocatalysts
(A), and their calculated crystallite size (B). Two catalysts are missing because of the
following reasons: (i) LSF20 does not show significant photocatalytic activity (Figure 5A)
and (ii) LFP05 is excluded due to the presence of PdO nanoparticles detected from the XRD
analysis. In both graphs, the points lay roughly on a straight line, except for the LFC10
photocatalyst. In yellow is the 95% confidence interval for the linear interpolation (in red)
of the points. The variation in OTC degradation for doped-LF photocatalysts is most likely
the result of an SSA-dependent adsorption on the catalyst surface of the OTC molecules.
This relation between the SSA of the photocatalyst and the photocatalytic degradation
of OTC indicates that surface reactions are predominant compared to radical reactions
in the solution. However, the SSA is not sufficient to explain all results, since the SSA
of LFC10 is smaller than, for example, that of LF. Previously, photocatalyst stability was
assessed using leaching experiments under solar light in the absence of a pollutant [34].
No significant amounts of Fe, Cu, or La were measured with respect to the lowest limits
of their quantification values (Fe = 0.05 mg/L, Cu = 0.03 mg/L and La = 0.1 mg/L). For
this reason, a contribution via Cu2+ complexation in the solution is excluded. A possible
explanation for the better performance of LFC10 could be the presence of oxygen vacancies,
as reported in Cu-doped LaAlO3, which are favorable for the dissociation of H2O2 and
the generation hydroxyl radicals [35]. As expected, the crystallite size dependence of OTC
degradation shows a similar behavior to SSA.

2.6. BET Specific Surface Area (SSA) and CP Degradation

CP possesses a carboxylic acid group (pKa1 = 6.1) and an amine group in the piperazine
moiety (pKa2 = 8.7) [36]. It can exist predominantly as a cation at pH < 6.1, as a zwitterion
between pH 6.1 and 8.7, and as an anion at pH > 8.7. Surface complexation with positively
charged sorbents can occur with deprotonated carboxylate and keto groups. Figure 7 shows
CP degradation as a function of the SSA of the photocatalysts and their calculated crystallite
size. Unlike what is observed with OTC, the results suggest that microstructural features
have poor influence on the extent of the degradation. In this study, the initial pH of the
solution was about 6.4, so CP zwitterionic and cationic forms were predominant. During
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the degradation reactions, the pH dropped just below 6.1 due to the formation of inorganic
acids, such as HF and HNO3, and low molecular weight organic species, such as carboxylic
acids [37]. In general, pH affected the adsorption of the pollutant on the catalyst. When the
solution pH was lower than 6.1, the surface of the doped-LF oxides was positively charged,
and the catalyst exhibited electrical repulsion that hindered the adsorption of CP cations;
thus, the reaction efficiency dropped. This fact is evident from an analysis of the results
obtained from the photocatalytic tests performed with CP at a pH of 5 (see Table 3). The
degradation of CP observed at a pH of 5 indicates that the reaction occurred only in the
homogeneous phase and, furthermore, that the presence of the catalyst negatively affected
the degradation of CP as a result of a light shielding effect. In fact, the degradation rate of
CP in the presence of a photocatalyst was always lower than that of CP in the presence of
H2O2 alone. On the contrary, the tests carried out at an initial pH of 6.4 indicate that the
degradation of CP in the presence of a photocatalyst was generally slightly higher than
that of CP in the presence of H2O2 alone. This indicates that the homogeneous reaction
is the prevailing one and, therefore, at this pH, a leveling in the amount of CP degraded
is observed.
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3. Materials and Methods
3.1. Chemicals

All the chemicals, solvents, and reagents used in this study were purchased from
Sigma–Aldrich Europe (Milano, Italy) and used without purification. Ciprofloxacin (≥98%)
and Oxytetracycline dyhydrate (≥97%) were used as model pollutants. Lanthanum ferrite
LaFeO3 (LF), 10 mol% Cu-doped LF (LFC10), 5 mol% Mg-doped LF (LFM05) 5), 10 mol%
Mg-doped LF (LFM10), 20 mol% Mg-doped LF (LFM20), 10 mol% Ga-doped LF (LF G10),
3 mol% Pd-doped LF (LFP03), 5 mol% Pd-doped LF (LFP05), 10% mol Y-doped LF (LFY10),
20 mol% Y-doped LF (LFY20), and 20 mol% Sr-doped LF (LFS20) nanopowders were
prepared using the citrate auto-combustion method, as described in our previous work [22].

3.2. Microstructural Characterization

The powder X-ray diffraction patterns of the catalysts were recorded using a Bruker
D8-Advance powder diffractometer equipped with a Cu kα X-ray source and a Lynxeye
XE-T® solid-state detector. The patterns were recorded in an interval of 10–90◦ 2θ with a
step of 0.01◦ and a counting time of 1 s per step. X-ray data were used to calculate domain
size using the Scherrer equation. Brunauer–Emmett–Teller (BET) specific surface area (SSA)
determination was performed with nitrogen absorption on about 500 mg of the samples
using a Micrometric Tristar 3000 automated gas-adsorption analyzer.

3.3. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX)

Scanning electron microscopy (SEM) was performed using an FEI Quanta 200 ESEM
microscope, operating at 20 kV on specimens from which a thin layer of gold had evap-
orated. On the other hand, an electron microprobe used in an energy dispersive mode
(EDX) was employed to obtain information on the actual metal-content ratio present in
the samples.

3.4. Photocatalytic Studies

Photocatalytic degradation reactions were carried out using a Ryonet reactor equipped
with 6 fluorescent lamps (daylight, 8W, GE lighting 10055-F8T5/D) emitting in the
380–780 nm region. The temperature was kept constant at 28 ± 1 ◦C through a liquid
cooling system. In the typical process, 2.6 mg of photocatalyst powder was added to 20 mL
of a 5.0 × 10−6 M aqueous solution of CP or OTC with the presence of 10−2 M H2O2. The
mixture was stirred in the dark for 20 min in a Pyrex glass tube in order to allow for an
adsorption/desorption equilibrium on the catalyst surface. Then, the 6 lamps were turned
on for 4 h at different time intervals (t = 0, 30, 60, 120, and 240 min), and aliquots of the
reacting suspension (2.5 mL) were taken. The samples were centrifugated for 5 min at
350 rpm (Scharlab BL-8), and their supernatants were analyzed on the spectrophotometer
(see Section 2.5). The photocatalytic activities of the samples were evaluated by monitoring
the degradation of CP in a buffered solution (buffer phosphate, 100 mM pH = 5.0) and in
an unbuffered CP solution (initial solution pH = 6.0, and about 6.4 when the photocatalysts
were also present). The degradation of OTC was evaluated only in the buffered solution
(buffer phosphate, 100 mM pH = 5.0) since, at pH 5.0, OTC cannot be photolyzed under
visible light because of its poor visible light absorption [38]. All degradation tests were
repeated twice.

3.5. UV–Vis Spectroscopy

The absorption spectra were measured using an ultraviolet–visible (UV–Vis) double-
beam spectrophotometer (Jasco V-650) with a 10-mm light path and quartz cuvettes. Full
spectra were taken in order to monitor any spectral change that may have occurred. The
degradation of CP and OTC were calculated using the formula Ct/C0, where C0 and Ct are
the concentrations of the pollutant in the solution before and after irradiation, respectively,
at a set time (t). Degradation values are the average of two independent assays. The main
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absorption peaks were detected at 270 nm for CP and 350 nm for OTC. Figure 8 shows the
absorption spectra of the investigated molecules.
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4. Conclusions

Many studies focusing on heterogeneous photocatalysis for water treatment have
reported on the synthesis of novel semiconductor oxides, their physico-chemical charac-
terizations, and the degradation of model compounds. We have shown herein that the
selection of the substrate (model compound) is critical. To obtain reliable conclusions, it
is good to use one (or more) model molecules exhibiting electrostatic attraction with the
surface of the photocatalyst and also one exhibiting electrostatic repulsion.

In this study, pure and doped semiconductor oxides (La1-xAxFeO3 A = Y; Sr and
LaFe1-xBxO3 B = Cu, Ga, Mg, Pd) were prepared using the sol-gel method and used
for the photocatalytic degradation of model pollutants, the OTC and CP antibiotics in
water. LFM10 and LFC10 are able to remove 71% and 78% of OTC (C0 = 5 × 10−6 M,
buffer pH = 5.0) in 240 min in the presence of H2O2 and under visible light irradiation,
respectively. The specific surface area (SSA) and doping type are the main factors affecting
degradation capacity.

LFM10, LFY10, and LFY20 photocatalysts showed a remarkable photocatalytic activity
degrading CP (78%, 71%, and 70% of CP removal in 240 min, respectively) using starting
conditions C0 = 5 × 10−6 M and a natural pH of 6.4. OTC and CP exist predominantly as a
cation at pH < 3.6 and pH < 6.1, respectively. As a consequence, unlike what is observed
with OTC, when the electrostatic repulsion between the pollutant (CP) and the oxide surface
is predominant (pH below 6.1), the microstructural features have poor influence on the
extent of degradation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28093807/s1. Figure S1: SEM picture of LF; Figure S2:
Kinetics for the photocatalytic degradation of OTC (5 × 10−6 M) in the presence of LFC10 and LFM10
photocatalysts with the presence of 10−2 M H2O2; Figure S3: Ionization of OTC at various pH;
Table S1: Comparison of the experimental conditions for degradation of OTC. For comparison, OTC
photolysis results are also shown. References [38–47] are cited in Supplementary Materials.
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