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Abstract

An increasingly relevant and crucial subfield of Natural Language Processing (NLP), tackled in this

PhD thesis from a computer science and engineering perspective, is the Text Classification (TC).

Also in this field, the exceptional success of deep learning has sparked a boom over the past ten

years. Text retrieval and categorization, information extraction and summarization all rely heavily

on TC. The literature has presented numerous datasets, models, and evaluation criteria. Even if

languages as Arabic, Chinese, Hindi and others are employed in several works, from a computer

science perspective the most used and referred language in the literature concerning TC is English.

This is also the language mainly referenced in the rest of this PhD thesis. Even if numerous ma-

chine learning techniques have shown outstanding results, the classifier effectiveness depends on the

capability to comprehend intricate relations and non-linear correlations in texts. In order to achieve

this level of understanding, it is necessary to pay attention not only to the architecture of a model

but also to other stages of the TC pipeline. In an NLP framework, a range of text representation

techniques and model designs have emerged, including the large language models. These models are

capable of turning massive amounts of text into useful vector representations that effectively cap-

ture semantically significant information. The fact that this field has been investigated by numerous

communities, including data mining, linguistics, and information retrieval, is an aspect of crucial

interest. These communities frequently have some overlap, but are mostly separate and do their

research on their own. Bringing researchers from other groups together to improve the multidisci-

plinary comprehension of this field is one of the objectives of this dissertation. Additionally, this

dissertation makes an effort to examine text mining from both a traditional and modern perspective.

This thesis covers the whole TC pipeline in detail. However, the main contribution is to investi-

gate the impact of every element in the TC pipeline to evaluate the impact on the final performance

of a TC model. It is discussed the TC pipeline, including the traditional and the most recent deep

learning-based models. This pipeline consists of State-Of-The-Art (SOTA) datasets used in the

literature as benchmark, text preprocessing, text representation, machine learning models for TC,

evaluation metrics and current SOTA results. In each chapter of this dissertation, I go over each of

these steps, covering both the technical advancements and my most significant and recent findings

while performing experiments and introducing novel models. The advantages and disadvantages of
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various options are also listed, along with a thorough comparison of the various approaches. At

the end of each chapter, there are my contributions with experimental evaluations and discussions

on the results that I have obtained during my three years PhD course. The experiments and the

analysis related to each chapter (i.e., each element of the TC pipeline) are the main contributions

that I provide, extending the basic knowledge of a regular survey on the matter of TC.
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il proseguimento delle mie attività di ricerca a Palermo, con ogni mezzo possibile. Per aver provato,

con ottima approssimazione, la correttezza della mia scelta originaria: chiedere a lei di guidarmi in

questo percorso di ricerca che, anche se indirettamente, ha cambiato per sempre la mia visione delle

cose.

Durante il suo ultimo Gran Premio in Formula 1, nel casco del più vincente pilota di tutti i tempi
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Chapter 1

Introduction

1.1 Overview

In several Natural Language Processing (NLP) applications like news categorization, sentiment

analysis, and subject labelling, Text Classification (TC) is a crucial and relevant task. The goal of

TC is to tag or label textual components like sentences, questions, paragraphs, and documents. In

this era of massive information dissemination, manually processing and categorizing huge amounts

of text data takes a relevant quantity of effort and time. To name a few, text information can be

found on social media, websites, chat rooms, emails, questions and answers from customer service

representatives, insurance claims and user reviews. Furthermore, human factors such as skills and

fatigue can have a relevant influence on the effectiveness of manual TC. It is preferable to automate

the TC pipeline involving machine learning models to get objective outcomes. Furthermore, to

reduce the problem of information overloading, the improvement of information retrieval effectiveness

can help in finding the necessary information for a certain task. In Figure 1.1 is illustrated a

flowchart of the steps involved in TC, under the light of traditional and most recent machine learning

models. A critical first stage is the preprocessing of the text to provide as input to the model.

Classical approaches usually employ AI methods to collect relevant features, which are then classified

with machine learning techniques. Next, the text representation approach can severely impact the

outcomes of the model. Involving a series of transformations used to directly map a source text to

predicted labels, deep learning, as opposed to traditional models, incorporates feature engineering

into the process of training of the model. Up until 2010, classical TC models were the most used

and popular. Traditional approaches are still today among the most popular ones. Some of them

are Logistic Regressor (LR), Näıve Bayes (NB), Support Vector Machine (SVM) and K-Nearest

Neighbour (KNN). Such methods clearly outperform past rule-based techniques in consistence and

accuracy. However, they still need feature engineering and they are time-consuming. Additionally, it

is hard to understand the semantic of the words since they frequently neglect the context or natural

1
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Figure 1.1: The TC pipeline, considering traditional and modern approaches.

sequential arrangement of textual material. In TC, deep learning algorithms gradually took the

place of traditional techniques by the 2010s. Deep learning techniques for text mining automatically

construct semantically pertinent representations without the need for humans to define rules and

features. Consequently, the majority of TC activities are focused on deep neural networks. Fewer

and fewer studies focus on using traditional models to overcome computational and data restrictions.

Most conventional machine learning models use a two-step procedure. First, the documents are

stripped of a number of manually added features (or any other textual unit). In the following phase,

a classifier receives these features so it can produce a prediction. The Bag of Words (BoW) feature

and its extensions are frequently created by hand. Hidden Markov Models, NB, SVM, Random

Forests (RF) and Gradient Boosting (GB), are some common classification algorithms employed in

the second step. Numerous disadvantages exist with the two-step approach. For instance, using

handcrafted features and expecting acceptable performance requires time-consuming feature engi-

neering and analysis. Due to the strategy’s heavy reliance on domain expertise for feature generation,

it is also difficult to adapt it to new applications. Last but not least, because of the very specific

features domain, these models cannot fully benefit from the vast volumes of training data available.

To address the issues with the use of handcrafted features, the use of neural approaches has in-

creased. The main component of these approaches is an embedding space, where text is encoded as

a low-dimensional continuous features vector without the need for traditional features representation

strategies. The Latent Semantic Analysis (LSA) proposed in [156] is one of the earliest studies on

embedding models. The proposed architecture is trained on 200K words and has fewer than 1 million

parameters. In [29], the first neural language model was proposed. It consisted of an artificial neural

network trained on over 10 million words. When progressively larger embedding models were con-

structed with significantly more training data, a paradigm change occurred. A number of Word2Vec

models that Google creates in 2013 [198] were trained using billions of words and quickly gained

popularity for numerous NLP applications. As the basis for their contextual embedding model,
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the researchers from AI21 and the University of Washington created a Bidirectional-Long Short

Term Memory (BiLSTM) network using 93 million hyperparameters and a training performed on

a billion of words in 2017. A novel model named Embedding from Language Models (ELMo) [226]

captures contextual information and performs significantly better than Word2Vec because. This

subsequent development results in the construction of embedding models using Google’s new neural

architecture, Transformer [286]. Transformer is entirely attention-based, which significantly boosts

the effectiveness of extensive model training on Tensor Processing Unit (TPU). In the same year,

Google creates the Bidirectional Encoder Representations from Transformers (BERT) [73]. BERT

has 340M parameters and was trained on 3.3 billion words. More training data and larger models

are proposed in the literature every day. The most recent OpenAI GPT-3 model has 170 billion

parameters [67] and it is based on Transformers. Some academics contend that despite the enormous

models’ remarkable performance on different NLP tasks, they do not truly grasp language and are

insufficient for many domains that are mission-critical [120, 187]. Recently, there is a rise of interest

toward neuro-symbolic hybrid models to solve significant flaws of neural models like interpretability,

inability to use symbolic thinking and lack of grounding [251, 90].

Although there are many excellent reviews and textbooks on TC techniques and applications,

this PhD thesis provides a thorough analysis of all the phases that go into creating a TC pipeline

with several contributions, including novel and deep experiments to further investigate the impact

on the performance of each stage of the pipeline. These contributions are usually reported at the end

of each chapter. Even if specific languages are considered in the related works, from the standpoint

of computer science, English is the language that is most frequently used and referred in the present

literature regarding TC. Furthermore, most of the large language models and pre-trained word

embeddings are originally developed focusing on English, partially or totally neglecting the other

languages. The rest of this PhD thesis primarily uses the English as the reference language for many

of the examples and cases presented and discussed.

Starting with a discussion on some of the more contemporary tasks — such as author profiling,

topic classification, news classification, sentiment analysis — I then move on to the metrics used

to evaluate performance on the SOTA datasets, and then I present SOTA models and most recent

and relevant findings. I also cover the most recent deep neural network architectures, which are

divided into a number of types based on their functioning, including Transformers, Convolutional

Neural Networks (CNNs), Capsule Nets and Recurrent Neural Networks (RNNs). For each chapter

presented here, I discuss experiments and findings related to the step in the TC pipeline.

The following are the main Research Questions (RQs) addressed in this PhD thesis. The RQs

are usually addressed at the end of the chapters and supported by experiments, results, quantitative

and qualitative analysis and discussions. Other minor findings are also presented and discussed in

each chapter, even if they are not listed here as RQs.

1https://allenai.org/allennlp/software/elmo

https://allenai.org/allennlp/software/elmo
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• RESEARCH QUESTIONS (RQs)

– (RQ1) Chapter 2: Does data augmentation help at improving the performance of TC

models?

– (RQ2) Chapter 3: Does text preprocessing have an impact also on the performance of

modern classification models (e.g., Transformers)?

– (RQ3) Chapter 4 and 5: After pre-training from scratch a word embedding-based

model, what happens to the trained word vectors in the embedding space considered?

Is it possible to explore and to understand the trained embedding space to drive the

development of a simple deep learning model able to obtain SOTA results?

My thesis is organized as follows: Chapter 2 presents the most common datasets used and avail-

able in the literature and the most used metrics. Then I propose and discuss a data augmentation

strategy to improve the performance of a classifier. In Chapter 3, the preprocessing technique to

prepare raw text are presented and discussed. There, I further investigate and evaluate the impact of

the most common techniques on SOTA models and datasets. In Chapter 4 the methods to represent

text in a numerical way are reported. In this chapter I also propose a strategy based on PCA, to

visualize and analyze a word embedding space trained from scratch. In Chapter 5, traditional and

modern classifiers commonly employed for TC are discussed, including some of my findings and re-

sults concerning a signal analysis through the layers of a shallow CNN. In Chapter 6 some real-world

applications from my previous works are presented along with the results and the relevant findings.

In Chapter 7 the conclusions and the future perspectives are presented. The contributions and a

summary for each chapter of this thesis are reported in what follows.

1.2 Outline and contributions

Several works have investigated TC techniques from a general standpoint. I specifically mention the

work in [162], which offers a thorough analysis of model architectures, spanning from traditional

to the modern deep learning-based ones. The survey by [148] offers a great examination of pre-

processing procedures, including feature extraction and dimensionality reduction. However, despite

including quantitative outcomes of conventional approaches, [200] focuses on deep learning models.

By providing a view of each stage required to design a TC model, this thesis seeks to enhance the

landscape of TC from a general point of view. As a result, I give a thorough explanation of the

key data preparation procedures used along with TC models. Although this part of the pipeline

is frequently disregarded, developing a useful framework for this task requires an understanding of

how they are used and the reasons behind the decisions taken. I provide model descriptions from

traditional ones to deep learning-based ones from more recent years, in contrast to prior TC evalua-

tions. The design of the classifier and feature extraction are highlighted for the traditional models.



CHAPTER 1. INTRODUCTION 5

Once the text possesses well-designed properties, the classifier may be trained to converge quickly.

A specific summary for each chapter of this thesis is reported to conclude this section. Along

with the background on the pipeline stage involved, the last part of each chapter is dedicated to

the main contributions I have provided, supported by new experiments, models and/or methods

proposed, quantitative and qualitative analysis.

Summary of Chapter 2: Challenges, datasets and dataset pre-analysis in

TC

In the early history of machine learning, information retrieval systems primarily used TC algorithms.

But as technology has developed over time, TC and document categorization have become widely

employed in several fields, including law, engineering, social sciences, healthcare, psychology, and

medicine. I highlight some domains that use TC algorithms in this section. Some TC tasks are

introduced in this chapter, including three new datasets related to emerging author profiling tasks.

The datasets available in the literature and related to these tasks and usually employed as bench-

mark, are also reported and presented in this chapter. Then the evaluation metrics usually employed

to assess a model performance on these datasets are presented.

Contribution

The contributions for this section are two. With the first, I present and discuss a strategy for

a preliminary linguistic analysis of a dataset. Such an analysis can eventually drive subsequent

choices in the development of the steps involved in the TC pipeline. With the second contribution, I

introduce and discuss a novel data augmentation technique based on backtranslation. Thanks to this

data augmentation strategy, I found in some of my recent studies, that the TC model performance

can be improved on several tasks.

Summary of Chapter 3: Text preprocessing

In this chapter I collect, report and discuss the text preprocessing techniques found in the literature

and their possible and most recent variants, proposing a nomenclature standard based on acronyms.

I also provide the reader with useful information for self-study and in-depth study of the techniques

presented along with advices on how to operate educated choices to select the preprocessing technique

(or combination of techniques) given a specific task, model, and dataset.

Contribution

My contributions are reported in the last section and concern several experiments. Specifically, I

select the three most common techniques used in the literature to evaluate the impact of each of these

techniques (alone or in combination) on the classification results of nine SOTA models (pre-trained
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deep, deep and non-deep) and on real world datasets. Then I evaluate how text preprocessing can

affect the performance of modern pre-trained architectures based on attention (i.e., Transformers)

compared to traditional ones. Finally, I determine if simple classifiers’ performance are comparable to

the ones obtained by Transformer-based models when text preprocessing is performed in accordance

with the specific model and dataset used.

Summary of Chapter 4: Text representation

Before moving to the classification stage, it is necessary to convert unstructured data, especially free-

running text data, into organized numerical data. To do this, a document representation model must

be used to employ a subsequent classification system following the text preprocessing stage. Text

representation models convert text data into a numerical vector space, which has a substantial impact

on how well subsequent learning tasks can perform. In the history of NLP, word representation has

always been a topic of interest. It is crucial to properly represent such text data, since it contains

a wealth of information and may be applied broadly across a variety of applications. This chapter

examines the expressive potential of several word representation models, ranging from the traditional

to the contemporary SOTA word representation provided by large language models.

The chapter discusses numerous representation models that are frequently employed in the lit-

erature. In the past, several researchers explored various theories to solve the issue of words losing

their syntactic and semantic links with the chosen representation. The literature review, which

demonstrates how numerous strategies have been used for a plethora of NLP-related tasks, is offered

along with these techniques. Before discussing well-known representation learning and pre-trained

language models, I first discuss various statistical models.

Contribution

In the last section of this chapter is reported my contribution about the analysis of a trained word

embedding for a specific TC task. Thanks to a Principal Component Analysis (PCA) tool, it is

shown and analyzed the effect of a CNN training on a 3D visualization of a word embedding space.

This way I am able to understand some implicit choices operated during the training of the model,

to assign specific word vectors to certain keywords belonging to one of the two class labels used for

the task.

Summary of Chapter 5: Text classification methods

In Chapter 5 are reported both the traditional methods for TC and the most modern ones based

on deep learning. Models discussed in this chapter belong to three different groups. The non-

deep learning deterministic models, the not pre-trained deep learning models and large pre-trained

language models known as Transformers. The term “earlier approaches” refers to all techniques



CHAPTER 1. INTRODUCTION 7

used before the advent of deep neural networks, when the prediction was based on manually created

features. Neural networks with only a few hidden layers are also included in this category, and

these are so-called “shallow” networks. These methods replace several rule-based ones, which they

outperformed in terms of accuracy. The most recent deep learning models, which have an impact on

all artificial intelligence domains, including TC, are also discussed. These techniques have become

popular because they can simulate intricate features without requiring manual engineering, which

reduces the need for subject expertise.

Contribution

In the last section, I present and discuss real-world competitive models that I designed and developed

to address some SOTA task about TC. Finally, I present some approaches I used to perform a post-

hoc analysis on a SOTA deep model to explore the results of the predictions provided. I conclude

the chapter with a signal analysis of the CNN layer’s output to understand the behavior of the

network, either during the training phase and during the inference phase. I propose a methodology

to further investigate the behavior of a deep learning model, looking also at its predictions and at

the outputs provided by the intermediate layers of the model. The analysis presented was conducted

focusing on a fake news spreaders dataset to explore the behavior of a shallow CNN. To perform

this exploration, I looked at the predictions provided after completing the training phase [256]. This

further step can be employed in the TC pipeline to improve the model performance and for a deeper

understanding of its behaviors.

Summary of Chapter 6: Applications for competitive tasks

This chapter focuses on TC while facing real-world applications. After introducing all the stages of

the TC pipeline in the previous chapters, this chapter presents some architectures that encompass

all these stages. These architectures are evaluated on emerging tasks and SOTA benchmarks to

correlate the architectures and functioning of the models with the results obtained in specific tasks.

After an introduction concerning the most popular international shared tasks on TC and NLP

in general, in the chapter I report all the architectures I developed to address several recent TC

challenges, providing some background on some modern international challenges of interest for the

NLP community.

Contribution

I developed the architectures presented in this chapter for obtaining — and in some case for out-

performing — SOTA results on the proposed tasks. These tasks involve the automatic detection

of several types of content or discourse. Specifically, the proposed models address the detection of

hate speech, fake news, irony and stereotypes, harmful tweets and patronizing and condescending
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language. At the beginning of any section, a short background on the specific task is provided.

Along with the novel architectures proposed, in the chapter are also presented and discussed the

results obtained on each task. The challenges are related either to binary or multi-label classification

tasks. Thanks to these real-world applications, I was able to better understand and correlate the

impact of each element in the TC pipeline, to the performance and to the results obtained during

my PhD studies.

Summary of Chapter 7: Conclusions and future perspectives

In the last chapter of this thesis, I report my final conclusions and future perspectives on the matter.



Chapter 2

Tasks and datasets

The practice of collecting texts (such as tweets, news articles, and customer reviews) into groups

is known as TC. Topic classification, news categorization and sentiment analysis are examples of

typical TC tasks. Recent studies demonstrate that by giving text classifiers the ability to receive

as input pairs of texts, it is effective to cast various natural language understanding tasks — such

as natural language inference and extractive question answering — as TC. However, they do not

generally work on a finite and predefined set of labels, so they do not properly fit into the TC field.

In the first section of this chapter, some popular TC tasks from the literature are introduced.

The accessibility of labelled dataset for TC has emerged as the primary impetus for this study

area’s rapid development. The dataset, presented in this chapter, are frequently used as benchmarks

in the TC-related literature. In this introduction part, I list the domain-specific properties of these

datasets and provide an overview in the Table 2.1 that shows the task description, the overall sample

count, the number of target classes, and articles presenting the corresponding dataset.

The TC tasks presented here are:

• Author profiling

• Topic classification

• News classification

• Sentiment analysis

In the last section of this chapter is presented a methodology to analyze and evaluate the dataset

considered from a linguistic point of view. Such a pre-analysis can drive the next steps in the clas-

sification pipeline. Furthermore, I propose a data augmentation strategy based on backtranslation

to make explicit, automatically, some latent semantic available in a text.

9
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Table 2.1: Dataset characterization and stats.

Dataset Task #Total documents #Number of classes Reference
FNS Author profiling 500 2 [216]
HSS Author profiling 600 2 [239]
ISS Author profiling 600 2 [32]
MR Sentiment analysis 10,662 2 [215]
SST1 Sentiment analysis 11,855 5 [265]
SST2 Sentiment analysis 9,613 2 [265]
MPQA Sentiment analysis 10,606 2 [71]
IMDB Sentiment analysis 50,000 2 [181]
Yelp2 Sentiment analysis 290,000 2 [311]
Yelp5 Sentiment analysis 700,000 5 [311]
Amazon2 Sentiment analysis 4,000,000 2 [311]
Amazon5 Sentiment analysis 3,650,000 5 [311]
Google News News classification 190,000 2 [68]
Reuters news News classification 10,788 90 URL1

20NG News classification 376,420 20 URL2

AG News News classification 127,600 4 URL3

Sogou News classification 2,909,551 5 URL4

PCL Topic classification 10,637 2 [225]
DBpedia Topic classification 630,000 14 [159]
Ohsumed Topic classification 7,400 23 URL5

ISTO Topic classification 44,898 2 URL6

EUR-Lex Topic classification 19,314 3,956 [179]
Yahoo! Topic classification 1,460,000 10 [311]
WOS Topic classification 46,985 134 [147]
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2.1 Research areas

2.1.1 Author profiling

One of the three main areas of Automatic Authorship Identification (AAI), together with authorship

attribution and authorship identification, is author profiling.The development of AAI started took

shape at the turn of the 20th century. The approach was initially used on the writings of Fran-

cis Bacon, William Shakespeare, and Christopher Marlowe by American self-taught physicist and

meteorologist Thomas Corwin Mendenhall. Mendenhall compared the word lengths of these three

historical leaders in an effort to identify any quantitative stylistic variations.

Author profiling consists in the analysis of a corpus of texts in an effort to determine the author’s

identity or to identify distinct traits of the author based on stylistic and content-based factors. Age

and gender are frequently analyzed factors, but more recent researches have also looked at additional

aspects like personality traits and career [296]. Author profiling is useful in many sectors where it

is necessary to identify particular traits of a text’s author, with a rising focus on forensics and

marketing. The task of author profiling might vary depending on its application in terms of the

traits to be identified, the number of authors researched, and the quantity of texts available for

analysis. Although generally restricted to written writings, such as literary works, this has expanded

to include online texts as computers and the Internet have developed.

Despite significant advancements in the twenty-first century, author profiling is still a challenging

process that has not yet been fully resolved. Below are some well-known author profiling datasets

that can be found in the recent literature.

• Fake News Spreaders (FNS).The FNS dataset is presented and discussed in [216] and

available under request7. The dataset was used for the international shared task at PAN8.

The task’s organizers want to find out if it is possible to distinguish between authors who have

previously disseminated fake news and those who have not.

The dataset consists of tweets in Spanish and English. In the dataset, there are one hundred

tweets representing each author and the corresponding class label for the author (i.e., 1 if the

author has shared one or more fake news in the past, and 0 otherwise). There are one hundred

fifty and one hundred authors per label in the train and in the test set, respectively. Resuming,

the dataset samples (i.e., 500 authors) provide a total number of 50,000 tweets. The results of

the participants at the FNS task are available online9.

• Hate Speech Spreaders (HSS).The HSS dataset is presented and discussed in [239]. As a

first step in preventing hate speech from spreading among online users, the task’s organizers

aim to identify potential Twitter users who spread hate speech.

7https://zenodo.org/record/4039435
8https://pan.webis.de
9https://pan.webis.de/clef20/pan20-web/author-profiling.html

https://zenodo.org/record/4039435
https://pan.webis.de
https://pan.webis.de/clef20/pan20-web/author-profiling.html
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The dataset consists of tweets in Spanish and English. In the dataset, there are two hundred

tweets representing each author and the corresponding class label for the author (i.e., 1 if the

author has shared hate speech in the past, and 0 otherwise). For each language, there are

one hundred authors and fifty authors per class in the train and in the test set, respectively.

Resuming, the dataset samples (i.e., 600 authors) provide a total number of 120,000 tweets.

The results of the participants at the HSS task are available online10.

• Irony and Stereotype Spreaders (ISS).The ISS dataset is presented and discussed in

[45, 32] and available under request11. The dataset was used for the international shared

task at PAN12. The task’s organizers want to focus on irony. Especially when words are used

subtly and figuratively to indicate the opposite of what is literally expressed. A more violent

version of irony, sarcasm aims to mock or ridicule a target without necessarily restricting the

possibilities of hurting them. The objective is profiling users whose tweets can be labelled as

sarcastic.

A group of 600 Twitter authors make up the dataset that the PAN organizers have created.

Two hundred tweets are provided for each author. Each author is represented by a unique

XML file with 200 tweets. Four hundred and twenty authors made up the organizers’ labelled

train set. In the test set, there are 180 further ones. The train set’s authors are identified by

the letters “I” (ISS) or “NI” (nISS). The results of the participants at the task are available

online13.

2.1.2 Topic classification

Topic categorization, commonly referred also as topic analysis, seeks to pinpoint a text’s main

theme or themes (for instance, whether a product review is related to “easy of use” or “customer

assistance”). The complex text theme is defined in the topic analysis in an effort to determine the

text’s meaning. The assignment of themes to documents, known as topic labelling, is a significant

component of the technique aimed at facilitating the process of topic analysis. Here I list several

SOTA datasets.

• Patronizing and Condescending Language (PCL). Described in detail in [225], the

dataset for (PCL) is from the detecting PCL task hosted at SemEval-2022. Such a task is

an emerging one about detecting PCL [224]. PCL occurs when language implies superiority

toward others, talks down to them, or kindly depicts them or their circumstances, elicits

feelings of sorrows and compassion. PCL is often involuntary and unconscious and based on

10https://pan.webis.de/clef21/pan21-web/author-profiling.html
11https://zenodo.org/record/6514916
12https://pan.webis.de
13https://pan.webis.de/clef22/pan22-web/author-profiling.html

https://pan.webis.de/clef21/pan21-web/author-profiling.html
https://zenodo.org/record/6514916
https://pan.webis.de
https://pan.webis.de/clef22/pan22-web/author-profiling.html
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good intentions. In order to complete the assignment, a classifier must determine whether

PCL is present in a given text. The dataset is available on GitHub14.

• DBpedia. Wikipedia’s most frequently used info boxes were used to create the DBpedia [159],

a sizable multilingual knowledge library. Every month, it releases a new edition of DBpedia,

adding or removing classes and attributes. The most widely used version of DBpedia comprises

14 classes, 560,000 and 70,000 records, for training and for testing respectively.

• Ohsumed. The Ohsumed15 has a MEDLINE database affiliation. There are 23 categories for

cardiovascular diseases and 7,400 texts overall. All texts are classified into one or more classes

and are abstracts of medical information.

• ISTO Fake News dataset. The dataset16 contains two types of articles: fake and real

news. This dataset was collected from real world sources; the truthful articles were obtained

by crawling articles from Reuters.com (News website). As for the fake news articles, they were

collected from different sources. The fake news articles were collected from unreliable websites

that were flagged by Politifact (a fact-checking organization in the USA) and Wikipedia. The

dataset contains different types of articles on different topics, however, the majority of articles

focus on political and World news topics.

• EUR-Lex. The EUR-Lex dataset [179] consists of several document categories that are in-

dexed in accordance with a number of orthogonal categorization systems to enable a variety of

search functions. With 19,314 documents and 3,956 categories, the most widely used variant

of the dataset is based on various parts of EU laws.

• Yahoo! Answer. The Yahoo! Answer17 dataset [311] is about topic labelling with 10 different

classes. Per class, there are 6,000 and 140,000 samples to test and train respectively. Three

components, referred to as question titles, question contexts, and best responses, are included

in every sentence.

• Web Of Science (WOS). The WOS dataset [147] is a set of information and meta-information

about articles that is available via Web of Science, the most reputable global citation database,

regardless of the publisher. There are three variants of WOS: WOS-46985, WOS-11967, and

WOS-5736. The full dataset name is WOS-46985. WOS-46985 has two subsets: WOS-11967

and WOS-5736.

14https://github.com/Perez-AlmendrosC/dontpatronizeme
15https://davis.wpi.edu/xmdv/DSs/ohsumed.html
16https://www.uvic.ca/ecs/ece/isot/DSs/fake-news/index.php
17https://www.kaggle.com/DSs/soumikrakshit/yahoo-answers-DS

https://github.com/Perez-AlmendrosC/dontpatronizeme
https://davis.wpi.edu/xmdv/DSs/ohsumed.html
https://www.uvic.ca/ecs/ece/isot/DSs/fake-news/index.php
https://www.kaggle.com/DSs/soumikrakshit/yahoo-answers-DS
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2.1.3 News classification

News classification is the process of automatically categorizing news information according to pre-

determined tags, whose accuracy is derived from the training news records and is based on their

content. Business, entertainment, politics, sports, technology, and other fields can be used to cat-

egorize news items. Users can find news articles they are interested in this way with the use of a

news classification system, saving time and removing news overhead.

One of the most significant information source is news content. Users can obtain essential

knowledge instantly thanks to the news classification system. The duty of categorizing news items

according to topics or user interests is of utmost importance. By depending on user preferences,

spotting new news topics or recommending material of interest, a news classification model aids

people in obtaining real-time information. Here, I go into the detail of a few common datasets.

• Google News. The Google News dataset presented in [68] is made up by two datasets. The

first one consists of a subset of clicks received on the Google News website over a certain time

period, from the top 5000 users (top as sorted by the number of clicks). There are about 40,000

unique items that are part of this dataset and about 370,000 clicks. The second dataset is

similar to the previous one (in fact a superset), and just contains more records: 500,000 users,

190,000 unique items and about 10,000,000 clicks. In order to have uniformity in comparisons,

authors binarize the first dataset as follows: if the rating for an item, by a user, is larger than

the average rating by this user (average computed over her set of ratings) they assign it a

binary rating of 1, 0 otherwise.

• Reuters news. The Reuters-21578 dataset18 is often used for text categorization. It was

gathered by the Reuters economic press release service in 1987. A version of Reuters-21578

with multiple classes containing 10,788 documents is called ApteMod. 90 lessons, 7,769 training

samples, and 3,019 test samples are included. R8, R52, RCV1, and RCV1-v2 are additional

datasets generated from a portion of the Reuters dataset.

• 20 Newsgroup (20NG). The 20NG dataset19 consists of newsgroup documents that were

posted on 20 various themes. For text categorization, text clustering, and other tasks, different

variations of this dataset are employed. One of the most often used versions has 18,821 papers,

evenly distributed among all topics.

• AG News. The AG News dataset20 consists of news articles compiled by academic news

search engine ComeToMyHead from more than 2,000 news sources. It makes advantage of

each news story’s title and description fields. A total of 120,000 training texts and 7,600 test

texts are included in AG. Each sample consists of a brief sentence that has a four-class label.

18https://martin-thoma.com/nlp-reuters
19http://qwone.com/~jason/20Newsgroups/
20http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

https://martin-thoma.com/nlp-reuters
http://qwone.com/~jason/20Newsgroups/
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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• Sogou. The SogouCS and SogouCA news sets are included in the Sogou21 dataset, which

combines both of them. The name of the domains within the URL serve as the labels for each

text. So, as the classification labels for the news, the domain names in their URLs are used.

For illustration, the news at http://sports.sohu.com is classed under the sports category.

2.1.4 Sentiment analysis

Sentiment analysis, commonly referred to as opinion mining or emotion AI, is the systematic iden-

tification, extraction, quantification, and study of affective states and subjective data using natural

language processing, text analysis, computational linguistics, and biometrics. Sentiment analysis

is frequently used in marketing, customer service, and clinical medical applications. It is used to

voice of the customer materials including reviews and survey replies, internet and social media, and

healthcare materials.

This category of tasks entails identifying the polarity and viewpoint of user’s ideas in text (such

as tweets, movies, or product reviews). In contrast to the conventional TC, which examines the

text’s objective content, it is essential to learn whether the text supports a particular point of view.

Understanding emotional states and subjective information in a text, which is frequently categorized

in terms of evoked emotions, can also be part of the work. Either a binary problem or a multi-labels

task can be used to model the work. Sentiment analysis, when focused on binary TC tasks, splits

texts into negative and positive classes, as opposed to multi-class sentiment analysis, which groups

texts into multiple labels. Here, I present the detail of some of the most common datasets used in

the literature as benchmarks.

• Movie Review (MR). The MR dataset[215] is a set of film reviews that was created with

the goal of identifying the sentiment attached to each user review and deciding whether it is

positive or negative. There is a sentence for each review. There are 5,331 positive samples and

5,331 negative samples in the corpus.

• Stanford Sentiment Treebank (SST). The SST dataset [265] extends MR. It has two

categories: one with binary labels and the other with fine-grained (five-class) labels. Namely,

SST-1 and SST-2, respectively. There are 8,544/1,101/2,210 samples, in train/dev/test set

respectively for a total of 11,855 movie reviews in SST-1. SST-2 is divided into train, dev and

test sets, with respective sizes of 6,920, 872, and 1,821.

• Multi-Perspective Question Answering (MPQA). The MPQA is an opinion dataset

[71]. It also has two class labels and an MPQA dataset of opinion polarity detecting sub-tasks.

In total, 10,606 phrases from news stories from various news sources are included in MPQA.

It should be noticed that there are 7,293 negative texts and 3,311 positive texts, all without

text labels.
21https://huggingface.co/DSs/sogou_news/blob/main/README.md

http://sports.sohu.com
https://huggingface.co/DSs/sogou_news/blob/main/README.md
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• Internet Movie Database (IMDB). A dataset for binary sentiment classification was first

described in [181] as the IMDB dataset. It comprises 25,000 reviews of highly divisive movies

for testing and 25,000 for training. Additional unlabeled data is also available for use. The

collection includes binary sentiment polarity labels for the movie reviews that go along with

them. The total of 50,000 reviews are divided in 25,000 reviews each for training and testing,

and make up the core dataset. The reviews are balanced for the two classes (i.e., 25,000 are

positives and 25,000 are negatives). For unsupervised learning, an additional 50,000 unlabeled

documents are included. The IMDB dataset is available online22.

• Yelp. The Yelp reviews dataset [311] comes from the 2015 Yelp dataset Challenge. 1,569,264

of the samples in this dataset include review texts. From this dataset, two classification tasks

are created: one predicts the total amount of stars that a buyer has provided, and the other

predicts whether a star’s polarity is positive or negative. The first dataset has 650,000 and

50,000 samples for train and test respectively, and 280,000 training samples and 10,000 test

samples for each polarity in the polarity dataset.

• Amazon. A well-known corpus known as the Amazon dataset was created by gathering

product reviews from the Amazon website [311]. There are two categories in this dataset.

There are 3,600,000 and 400,000 samples in the train and in the test sets in the Amazon-2

with two labels. For training and testing purposes, Amazon-5, which has five classes, has

3,000,000 and 650,000 comments.

2.2 Metrics

The F1 score and accuracy are two metrics often employed to gauge the effectiveness of TC models.

Later, the assessment metrics are improved due to the complexity of the classification tasks or the

existence of some specific activities. Single-label TC separates samples in one of the categories that

are most likely to be used in NLP tasks. It is possible to ignore the relationships between labels in

single-label TC because each text only belongs to one category. Multi-label TC, as opposed to single-

label TC, breaks the corpus up into various category labels which depends on the task. These metrics

were created for single label TC and are therefore inappropriate for multi-label jobs. Therefore,

some metrics have been created for multi-label TC. Before introducing the metrics reported in the

literature, below I provide the definitions of the terms used in the following equations.

• True Positive (TP). A single prediction provided by a classifier is referred to as a TP when

the model correctly predicts a positive class.

• True Negative (TN). A single prediction provided by a classifier is referred to as a TN when

the model correctly predicts a negative class.

22https://ai.stanford.edu/~amaas/data/sentiment/

https://ai.stanford.edu/~amaas/data/sentiment/
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Figure 2.1: A confusion matrix.

• False Positive (FP). A single prediction provided by a classifier is referred to as an FP when

the model incorrectly predicts a positive class.

• False Negative (FN). A single prediction provided by a classifier is referred to as an FN

when the model incorrectly predicts a negative class.

In Figure 2.1 is shown a confusion matrix [268]. A confusion matrix, also known as an er-

ror matrix, is a table structure which allows visualizing the performance of an algorithm, often a

supervised learning one, in machine learning and, more specifically, the problem of statistical clas-

sification — in unsupervised learning it is usually called a matching matrix. Both variations of the

matrix, where each column represents instances in the class predicted, and each row represents the

actual class instances, are documented in the literature. The name was chosen since it is simple

to determine whether the system is conflating two classes (i.e., commonly mislabelling one as an-

other). It is a unique type of contingency table with two dimensions (actual and expected), identical

sets of “classes” and two dimensions (each combination of dimension and class is a variable in the

contingency table).

Given the above definitions, the following are the common metrics used in literature for several

TC tasks.

Accuracy. Accuracy is the ratio of correct predictions on the total observations and is given by

the Equation 2.1. Accuracy is one way to measure what percentage of predictions are right.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Error rate. Closely related to Accuracy is the Error rate. The definition is given by the

Equation 2.2. The error rate expresses what percentage of predictions are wrong.

ErrorRate = 1 −Accuracy =
FP + FN

TP + TN + FP + FN
(2.2)

Depending on how genuine positives and negatives are defined in a multilabel scenario, the

definition of this metric may differ. A prediction is deemed accurate (referred to as “subset accu-

racy”) when the projected labels exactly match the actual labels. Alternately, before the accuracy
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calculation, predictions can be flattened and condensed to a single-label task.

Precision. Equation 2.3 defines precision or sensitivity as the ratio of true positive (TP) ob-

servations to all-around positive predicted values (TP+FP). Precision is the proportion of correctly

predicted events among all positively predicted events.

Precision =
TP

TP + FP
(2.3)

Recall. Equation 2.4 gives recall or specificity as the ratio of true positive (TP) observations

to all-around actual positive values (TP+FN). Recall is the ratio of right predictions made over all

positive predictions that should have been made.

Recall =
TP

TP + FN
(2.4)

For scenarios involving multi-class classification, it is possible to compute the precision and recall

for each class label.

F1 score. Equation 2.5 illustrates the F1 score, which is the harmonic mean of recall and

precision. The maximum precision and recall value of an F1 score is 1, while the lowest value is 0.

F1 = 2 × Recall × Precision

Recall + Precision
(2.5)

Matthews Correlation Coefficient (MCC). The effectiveness of binary classification tech-

niques is also measured by the Matthews Correlation Coefficient (MCC) [188], which collects all the

data in a confusion matrix. MCC can be used to address issues with unequal class sizes and is still

regarded as a balanced approach. The MCC scales from -1 to 0. (i.e., the classification is always

wrong and always true, respectively). Equation 2.6 provides the formula for MCC.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.6)

Finally, some specific metrics related to multilabel tasks are Micro and Macro-F1 [185], and

Precision@k and Normalized Discounted Cumulated Gains [169].

2.3 Dataset analysis

The example of analysis presented in this section was originally conducted in [256] and is based on

the FNS dataset. The discussion about the tools and the methods described in this section can help

for a better development of the next stages in the classification pipeline.

The Profiling Fake News Spreaders Task (PFNSoT) dataset is a multilingual dataset made of

Spanish and English tweets. For each language, the data collected is made of 100 tweets per author

and 150 authors per class (i.e., FNS and nFNS) in the training set, and 100 authors per class in
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the test set. I decided to use the PFNSoT dataset for two main reasons: PAN has a long tradition

in organizing shared tasks; my extensive tests on several SOTA models are in this way comparable

with the other task participants’ results.

Although task organizers encouraged the submission of multilingual models, submissions of mod-

els dealing only with one language were also allowed. As reported in the task overview, participant

results were lower for the English language in terms of binary accuracy. To further explore the

dataset, I quantitatively and qualitatively investigated it using established corpus linguistics meth-

ods, implemented in the online well-known corpus linguistics tool, Sketch Engine23 [138].

Compare Corpora

In this subsection, I report a quantitative description of the Spanish and English datasets. Since I

used corpus linguistics tools to carry out the analysis, in this section I use the term corpus (plural,

corpora) to refer to each dataset. Table 2.3 provides a high-level description of the Spanish and

English corpora, in terms of number of tokens identified in the tweets written by the same typology

of authors. The corpora are also divided into subcorpora, class-wisely grouping tweets released as

training and test data. In the table, each corpus is labelled by specifying the language, the class,

and the partitioning criterion of the corpus. For example, the corpus es train 0 collects the Spanish

tweets (es train 0) contained in the training set (es train 0) written by nFNS authors (es train 0),

while es 1 to the totality (training and test sets) of tweets in Spanish written by FNS. While in

the Spanish corpus there is a relevant difference in size between corpus 0 and corpus 1—and this

difference in size is kept also in the training and test data—it is not the case in the English DS, in

which the two classes have almost the same number of tokens both in train and test data. However,

the difference in size in the Spanish dataset is not as big as to prevent corpus comparison in terms of

common tokens (i.e., similar linguistic register used by the authors). For this comparison, I applied a

chi-square (X2) test [136] by using the built-in function of Sketch Engine, Compare Corpora. Thus, I

compared train 0, train 1, test 0, and test 1 of both languages. In this way, I obtained two confusion

matrices, reported in Figure 2.2, showing values greater of or equal to 1, with 1 indicating identity.

The higher the value, the larger the difference between the two compared subcorpora.

Spanish Corpus Matrix. I assumed 1.74 as the reference measure for all the other comparisons,

since it indicates the difference between train 0 and train 1, i.e., the data that models use for training.

As reported in this matrix, the similarity measure between test 0 and train 0 is 1.36, which is 0.38

points smaller than the reference measure. The same applies to test 1 and train 1: their similarity

measure is 1.41, which is 0.33 points smaller than the reference measure. The fact that the difference

between the reference measure and the class-wise train and test similarity measure is a bit higher

in nFNS might indicate that FNS are slightly more difficult to identify. In addition, it is worth

noticing that, since the similarity measure between train 0 and test 1 (i.e., 1.57) is smaller than

23https://www.sketchengine.eu

https://www.sketchengine.eu
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Table 2.2: dataset summary.

Subcorpus Name # Tokens Percentage Total

es 0 832,755 53.71% 1,550,505
es 1 717,750 46.29%

en 0 669,519 50.57% 1,323,982
en 1 654,463 49.43%

es train 0 500,003 54.04% 925,152
es train 1 425,149 45.96%

en train 0 402,788 50.92% 791,024
en train 1 388,236 49.08%

es test 0 332,752 53.21% 625,353
es test 1 292,601 46.79%

en test 0 266,731 50.04% 532,958
en test 1 266,227 49.96%

the reference measure I assumed, this also might support the idea that FNS authors will be more

difficult to identify than nFNS authors (in contrast, train 1 and test 0 similarity measure is 1.79,

which is bigger than the reference measure, 1.74).

English Corpus Matrix. In this matrix, the reference measure given by the difference between

train 0 and train 1 is 1.83. While the difference between train 1 and test 1 is below this value (i.e.,

1.58 < 1.83)—although with a smaller gap than the same difference in the Spanish dataset (Spanish:

0.33, English: 0.25)—the similarity measure between train 0 and test 0 differs from the reference

measure by just 0.01—in the Spanish dataset is 0.38. This might suggest that systems may have

more troubles in identifying nFNS. However, if I look at the difference between train 0 and test 1

and train 1 and test 0, I have similarity measures of 1.89 and 1.87, respectively, which are both

slightly higher than the reference measure.

Comparing what emerged from these matrices and the error analysis carried out in [216],

I noticed that my hypotheses are consistent with the aggregated task participant results. In the

Spanish corpus, according to their confusion matrix, nFNS were predicted correctly 80% of the

time, while FNS only 65% of the time, confirming de facto that FNS were harder to identify than

nFNS in this corpus as indicated in the matrix (Figure 2.2a). In the English corpus, they reported

a higher confusion from nFNS towards FNS, with nFNS correctly predicted 64% of the time and

FNS 70%, confirming again what emerged from the matrix in Figure 2.2b. In addition, the fact that

systems performed better on the Spanish corpus could be explained by a similarity measure nearer

to 1 (i.e., indicating a higher similarity between the training set of that class and the correspondent

test set) than that of the English corpus. These matrices obtained comparing corpora on Sketch

Engine, then, might be useful to predict system errors in various corpora. However, looking only
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(a) (b)

Figure 2.2: Comparing English and Spanish corpora: confusion matrices obtained with the chi-
square test. The value 1.00 indicates identity between the compared subcorpora. The greater the
value, the more different the subcorpora. (a) Spanish DS. (b) English DS.

at these matrices, it is not possible to state what differs between the corpora. Then, I used other

Sketch Engine facilities to gain insight into what actually differs between them.

Keywords

Despite the term keyword is widely used outside corpus linguistics, in this field it is used to quan-

titatively highlight trends in the corpora. Specifically, through keyword analysis, it is possible to

retrieve tokens that are statistically characteristic of a (sub)corpus when comparing it with another

(sub)corpus (see [70] for a comprehensive exposition of the subject). For both language corpora, I

used Keywords to identify what distinguishes the two classes. To do so, I used once FNS as focus

corpus and nFNS data as reference corpus, and vice versa. In this way, I pointed out focus corpus

keywords as compared to the reference corpus. Keywords in Sketch Engine are sorted according to

their Keyness score, which is calculated as shown in Equation 2.3. In the expression, fpmfocus stands

for normalized per million frequency of the word in the focus corpus, fpmref stands for normalized

per million frequency of the word in the reference corpus, and N indicates the simplemath param-

eter, which is used to handle words that only occur in the focus corpus and not in the reference

corpus (avoiding the problem of dividing by zero), and to decide whether to give importance to

more frequent words or to less frequent words. In fact, different values of simplemath can be used

to sort the keywords in the list differently. Generally, higher values of simplemath rank higher more

common words; lower values of simplemath rank higher more rare words [137]. I decided to focus

on core-vocabulary words, neither so rare nor so common, setting the simplemath parameter to 100.

In Table 2.3 I report the first 50 keywords of both corpora.

Keynessscore =
fpmfocus + N

fpmref + N
(2.7)
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Spanish Corpus Keywords. Focusing on the authors labelled as nFNS (corpus 0 as focus) and

FNS (corpus 1 as focus), I extract keywords which are used differently by the two groups of users

(it is possible also that some tokens do not occur in both subcorpora). Based on these keywords

and inspecting the linguistic context (i.e., co-text) in which they occur (using the Sketch Engine

Concordance facility), I observed that nFNS (corpus 0) share information about technology (4, 9,

10, 15, 17, 19 ‘mobile’ but also referred only to mobile phones, 29 ‘screen’, 35 ‘users’), FN (14),

toponyms (13, 18, 24–43), politics (20, 32), warnings (8, 11). Conversely, FNS (corpus 1) share

information about mostly Latin American artists, music and related (5 ‘premiere’, 8–4, 9, 11–13,

15, 17, 29–39, 41, 45, 46, 47, 48–20, 50), videos (2, 3, 10, 19), shocking or last minute news (5,

7–6, 18–22, 35–28, 37), and also galvanize users to get involved (1 ‘join us’, 14 ‘download’, 23, 31

‘2ps-forget’, 34 ‘share it’).

In addition, it is worth noting the way in which the two groups use capitalization. While focusing

on nFNS, keywords are well-written and capitalization is used in a standard manner (with some

exceptions specific to the medium of communication, i.e., Twitter), when I look at FNS keywords,

I notice misspellings (missing accents in 1, 4, 7, 18, 35), Latin American spelling (2, 3) and much

more capitalized words.

English Corpus Keywords. Based on the keywords reported in Table 2.3, and looking at

their co-text, I observed that nFNS talk about TV shows and related (2, 3, 4, 7, 11, 28, 29, 36, 43),

fashion and related (12, 17, 20, 24, 25, 27), and invite to action (6, 18, 31). FNS, conversely, write

about politics (2, 3, 4, 5, 6, 7, 13, 21, 23, 24, 30, 37, 40), famous people and gossip (1, 9, 12, 14, 17,

27, 28, 31, 35, 39), entertainment (19-28, 29), but also warnings about FN (8, 11, 15).

Differently from what emerged from keyword analysis in the Spanish corpus, in the English

corpus it is not predictable to which class the first 50 keywords belong. In addition, tweets about

FN alerts should not be in FNS data.

Word Sketch Difference

One of the original features of Sketch Engine is the possibility of outlining the behavior of a word

in a corpus using the Word Sketch facility. With its extension, called Word Sketch Difference, it is

possible to compare two words observing differences in use or to compare how the same word is used

in two different corpora. I used Word Sketch Difference to see how the same word is used by the

two groups (i.e., FNS and nFNS) in the two corpora (i.e., English and Spanish datasets). I looked

at the modifiers of the word accident, accidente in Spanish, because it is a word occurring in the

two corpora and in the two classes, and because I expected a different use by the two groups which

should not be due just to frequency. In Table 2.3 I report all the modifiers associated to accidente

and accident, taken as lemma. In Figure 2.3, I show the distribution of their modifiers in the Spanish
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Table 2.3: Spanish and English corpora—Keywords.

Spanish corpus first 50 keywords of nFNS – corpus 0 as focus and corpus 1 as reference

1 T 11 PRECAUCIÓN 21 qué 31 seguridad 41 información
2 HASHTAG 12 tuit 22 to 32 PodemosCMadrid 42 esa
3 Buenos 13 Albacete 23 added 33 hemos 43 Mancha
4 Android 14 bulos 24 Castilla-La 34 han 44 sociales
5 h 15 Google 25 Pues 35 usuarios 45 Os
6 he 16 art́ıculo 26 śı 36 servicio 46 cómo
7 sentido 17 Xiaomi 27 Albedo 37 RT 47 Nuevos
8 RECOMENDACIONES 18 León 28 algo 38 datos 48 pruebas
9 Samsung 19 móvil 29 pantalla 39 os 49 Gracias
10 Galaxy 20 Cs Madrid 30 disponible 40 playlist 50 creo

Spanish corpus first 50 keywords of FNS – corpus 1 as focus and corpus 0 as reference

1 Unete 11 Lapiz 21 Dominicana 31 OLVIDES 41 Concierto
2 VIDEO 12 Vida 22 Fuertes 32 Joven 42 Acaba
3 Video 13 Conciente 23 Follow 33 Años 43 Muere

4 Clasico 14 DESCARGAR 24 DE 34 COMPÁRTELO 44 Hombre
5 ESTRENO 15 Mozart 25 Su 35 IMAGENES 45 Secreto
6 MINUTO 16 De 26 Descargar 36 Le 46 ft
7 ULTIMO 17 Ft 27 añadido 37 IMPACTANTE 47 Preview
8 Mayor 18 Imagenes 28 FUERTES 38 Accidente 48 lista
9 Alfa 19 Official 29 Don 39 Miguelo 49 Republica
10 Oficial 20 reproducción 30 Del 40 Remedios 50 Omega

English corpus first 50 keywords of nFNS – corpus 0 as focus and corpus 1 as reference

1 Via 11 Synopsis 21 Tie 31 Check 41 isabelle
2 Promo 12 Styles 22 qua 32 Academy 42 AAPL
3 Review 13 Lane 23 Bayelsa 33 Ankara 43 fashion
4 Episode 14 GQMagazine 24 du 34 rabolas 44 Date
5 PHOTOS 15 Mariska 25 Robe 35 PhD 45 esme
6 Read 16 Hargitay 26 NYFA 36 Spoilers 46 isla
7 Actor 17 Nigerian 27 Tendance 37 DE 47 Marketing
8 TrackBot 18 READ 28 Supernatural 38 story 48 Link
9 RCN 19 br 29 Film 39 Draw 49 prinny
10 AU 20 beauty 30 Bilson 40 University 50 your

English corpus first 50 keywords of FNS – corpus 1 as focus and corpus 0 as reference

1 Jordyn 11 ALERT 21 Schiff 31 tai 41 Price
2 realDonaldTrump 12 Grande 22 InStyle 32 Him 42 Says
3 Trump 13 Biden 23 Democrats 33 Her 43 post
4 Donald 14 Meghan 24 Trump’s 34 Twitter 44 About
5 Hillary 15 NEWS 25 His 35 Markle 45 rally
6 Obama 16 published 26 After 36 Jonas 46 BUY
7 Clinton 17 Ariana 27 Reveals 37 border 47 Bernie
8 FAKE 18 Webtalk 28 Snoop 38 Khloe 48 Tristan
9 Woods 19 Viral 29 Thrones 39 Scandal 49 tweet
10 RelNews 20 added 30 Border 40 Pelosi 50 FBI
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Table 2.4: Modifiers of ACCIDENTE and ACCIDENT in the corpora.

Spanish Corpus English Corpus

Modifiers nFNS FNS Modifiers nFNS FNS

vial 2 0 single-car 1 0

infortunado 1 0 Dangote 1 0

ferroviario 1 0 motorcycle 2 0

mortal 1 0 truck 1 0

aéreo 1 0 train 1 0

múltiple 1 0 fatal 1 0

grave 1 0 car 0 1

laboral 2 2 theme 0 1

aparatoso 1 5 Park 0 1

propio 0 2 tragic 0 1

cerebrovascular 0 1 snowmobile 0 1

automoviĺıstico 0 2 N.L. 0 1

trágico 0 8

terrible 0 19

(Figure 2.3a) and English (Figure 2.3b) corpora. In both figures, on the left, the image shows the

modifiers which are mostly associated with the selected lemma in FNS tweets; on the right, those

associated to the lemma in nFNS tweets; in the middle, those employed by both groups (empty

in the English corpus). The bigger the circle, the higher the frequency. In the Spanish corpus,

even though in FNS tweets accidente occurs more, it is associated mostly with two connotative

modifiers (terrible and trágico24). It is interesting to notice a correlation between the modifiers of

accident in the English corpus with those used in the Spanish one: the use of tragic (in Spanish

trágico) occurring in FNS subcorpus, while fatal (in Spanish mortal), and vehicles defining the type

of accident, occurring in nFNS subcorpus. The presence of these modifiers might indicate that more

subjective language is used in FNS data—as trágico, terrible and tragic suggest—while, in nFNS,

the news about the accident seems to be reported in a more objective way.

2.4 Data augmentation using backtranslation

Social media’s ascent, which nowadays dominates the information and entertainment arena all

around the world, has revolutionized the way people communicate online [126, 269]. However,

24In English: tragic.



CHAPTER 2. TASKS AND DATASETS 25

(a) (b)

Figure 2.3: Visualization of modifiers of accidente and accident in the Spanish and English corpora,
respectively. (a) Spanish corpus. (b) English corpus.

it is possible that the latent information in this form of communication is not always explicit in the

text, which could hinder the performance of NLP classification models. Data Augmentation (DA)

is a technique that can generate an alternative representation of the input and eventually improve

model performance. Therefore, uncovering this latent information could lead to better results in

author profiling tasks [184]. In this section, I integrate and explore the concept of backtranslation

[41, 261, 260, 177] to propose a novel module, to highlight and uncover latent information available

in an author’s text to improve TC performance.

Studies presented in [212, 255, 158] have shown that backtranslation can be employed as a

powerful tool for expanding samples in NLP-related tasks. Round-trip (or Back-and-forth or simply

back) translation entails converting spoken or written samples from one language into another and

then back again. Moreover, to increase the size of a dataset for machine learning and NLP tasks,

DA is a widely utilized approach [103]. This method has been shown to be particularly effective

in leveraging the semantic differences between languages and improving the representation of the

input [26, 35]. In this study, I specifically focus on a novel strategy of DA. In fact, thanks to the

backtranslation module in the framework, I am able to augment each sample while maintaining the

same number of dataset samples.

In the proposed setting, each sample is a user’s corpus of texts (a Twitter feed), and I hypoth-

esize that semantically enriching the user’s text corpus using the proposed modules can improve

performance. By augmenting each sample with one or multiple translations, I aim to increase the

diversity and informativeness of the data to improve the representation of the input, ultimately

leading to better classification performance of different NLP models. In this section, focusing on

author profiling tasks, I investigate the effectiveness of backtranslation for expanding samples using

English as the original source language and Italian, German, Japanese, and Turkish as the target

languages. In one of my previous work [184] I investigated only Italian as a target language and

only on a single dataset. The domain was related only to irony and stereotype detection, and there

were highlighted promising performance compared to the not augmented version of the framework
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[184]. German was adopted as one of the backtranslation languages by the winner of the Toxic

Comment Classification Challenge25 while Japanese and Turkish were chosen for their belonging to

different linguistic families. The proposed framework is evaluated through a three-stage empirical

experiment. First, a baseline of author profiling models is established using datasets without the

augmentation modules. The second stage involves generating augmented data using backtranslation

from English to target languages with one or multiple augmentations and then back to English.

The backtranslated sample is then concatenated to the original one. In the final stage, a machine

learning model is trained using the enriched data, and its performance is compared with and without

the backtranslation module. I evaluate the framework on three different author profiling datasets

(regarding, namely, fake news, hate speech, and irony and stereotypes spreaders). The results out-

perform the not augmented baseline, showing that the expansion of samples with multiple languages

using backtranslation leads to improved performances in author profiling tasks. All the code used

for the experiments in this section is available on GitHub26.

2.4.1 The proposed framework

The main components of my proposed framework are three, and they are shown in Figure 2.4 and

discussed in this section. It is worth mentioning that the original input sample passes through

the same framework during both the training and test phases. While each component is further

discussed in the following subsection, here I introduce all the steps performed as shown in the

Figure. The input sample is provided as input to the backtranslation module. The backtranslation

can be performed using one or more target languages. Then the backtranslated sample is merged

with the original one using the expansion module. Finally, the newly expanded sample is provided

to the classifier, which provides the final prediction. As already stated, each input sample passes

through the pipeline of the framework for both the training and the inference stages.

Backtranslation module

The proposed augmentation module has been designed to enhance and eventually highlight content

relevant to the classification task. Text data is translated into a different language, and then it is

translated back into the original language as part of the backtranslation augmentation. Instead,

than necessarily retaining the original context and meaning, this technique creates new textual data

with distinct phrases from the original text. To perform the backtranslation in this study, I used

the Google Translate API27.

The augmentation module is also composed of several subcomponents to pre-process each sample

(i.e., all the authors-tag and open-close document tags have been removed). This ensures that any

25https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
26https://github.com/marco-siino/DA-BT/tree/main/code
27https://pypi.org/project/googletrans/

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://github.com/marco-siino/DA-BT/tree/main/code
https://pypi.org/project/googletrans/
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irrelevant or noisy text is removed from the sample. Next, the sample is translated using the

translator, which converts the sample into a different language. The backtranslation process is

then carried out, which involves translating the text back to its original language (in this case

English), with the aim of enriching the semantic content of the text. It is worth noting that the

backtranslation could be performed in more than one language. As shown in Figure 2.4, a sample

can be eventually backtranslated using different target languages in parallel. In this case, all the

backtranslated versions of the sample are provided to the following expansion module.

Expansion module

Inside the expansion module, the backstranslated samples are concatenated with the original one,

and the augmented sample is generated. Again, it is worth repeating that also this process applies

in both the training and test phase. While in previous works as [26] only a single backtranslation

(i.e., with just a single target language) is used, in the proposed framework I allow several parallel

backtranslation layers to perform the translation toward one or more target languages. In this case,

the expansion module merges the text from the original sample with all the backtranslated versions.

Considering the case where four target languages are used after the expansion module, the length

of the expanded sample is around five times more than the original one.

Classifier

After the expansion module, the augmented sample is used to train a classifier and also to test

its performance. Several SOTA classifiers can be employed in the framework. To evaluate and

assess the performance of the two previous modules, I employ four different classifiers. They are,

namely: RoBERTa, GPT-2, an SVM and a CNN. The results are reported in Section 2.4.3, and

a comparison is made between training on the original and on the augmented datasets in each of

the four selected languages, and using all of them. As the datasets are balanced between classes’

sample sizes, accuracy was chosen as the evaluation metric. As also discussed in [256, 259, 307], a

CNN-based architecture was the top-performing model over the three different datasets.

2.4.2 Experimental evaluation

Backtranslation languages

The proposed framework’s performance is assessed considering different languages chosen accordingly

to previous works available in the literature. In fact, this study is an extension of my previous work

presented in [184]. In that work, I used only Italian as a target language for backtranslation and I

did not consider other languages. Here I evaluate also other languages and more datasets to further

investigate the performance of the framework and to conduct a qualitative analysis. Here I also use
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Figure 2.4: The proposed framework.

Italian as the target language, but I also used it in parallel with other languages. German is the

second language I use for this study. This is due because German has been employed as a target

language for the backtranslation in several other works [80, 109, 27, 26]. Furthermore, I want to

investigate the performance using two additional languages with subject-object-verb words order and

very distinctive characteristics in contrast with the structure of Italian and German. They are,

namely, the Turkish and the Japanese. Turkish language characteristics include vowel harmony

and significant agglutination. Turkish’s usual word order is subject-object-verb. Noun classes or

grammatical gender do not exist in Turkish. The usage of honorifics in the language makes a clear

contrast between levels of courtesy, social distance, age, and familiarity with the addressee. Out of

respect, the second-person pronoun and verb forms that relate to one individual are plural. Japanese

is a mora-timed an agglutinative language with pure vowels, a phonemic vowel and consonant system,

and a pitch-accent that has lexical significance. Normal sentence structure is topic-comment and

subject-object-verb, with particles designating the grammatical function of words is the typical word

order. The use of sentence-final particles can create inquiries or add emotive or dramatic emphasis.

There is no article, no grammatical gender, and no number for nouns. Verbs are conjugated, but

not for person, but rather for tense and voice. Adjectives in Japanese can be conjugated as well.

Japanese has a sophisticated honorific system that uses verb forms and vocabulary to denote the

speaker, listener, and other people’s relative position.

Classifiers

To test the effectiveness of backtranslation, together with the top-performing CNN, I tested other

models, belonging to the set of deterministic and pre-trained models respectively. A brief discussion
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of all the models and their configuration is provided in the rest of this section.

• CNN or Convolutional Neural Networks classify data using a single convolutional layer, a

max-pooling layer, and a linear layer. The architecture is the same as discussed in [259]. A

single 1D-convolution layer is used in this model. There are sixty-four filters of size thirty-six

in this layer. The layer then applies convolution to 36-ngram windows with a stride value of 1,

which shifts the convolutional filter by one word embedding tensor for each convolution. The

activation function used on the output is ReLu and no padding is used. The final output of

the linear layer that follows the global average pooling is a single float value. A zero-threshold

value determines the samples’ label to compute the accuracy of the model.

• RoBERTa uses a bidirectional encoder to produce contextualized word embeddings and be-

longs to the class of pre-trained Transformer models. The fine-tuning of the model is performed

for the task, which in this case is author profiling. In this model, presented in [173], authors

conducted a replication study on BERT pre-training and achieved better performance by

making modifications to the pre-train phase of a BERT model. These modifications included

training the model longer with larger batches, removing the next sentence prediction objective,

training on longer sequences, and dynamically changing the masking pattern applied to the

training data.

• GPT-2, or Generative Pre-trained Transformer 2 was developed by OpenAI [237] and is an

open-source large language model. GPT-2 can provide replies to inquiries, translating text,

summarizing sections, and producing text. Since it is a general-purpose learner, it was not

specifically taught any of these tasks, and its ability to complete them is an extension of its

general ability to accurately synthesize the next item in any given sequence.

• SVM, or Support Vector Machine, is a linear classifier that aims to find the best hyperplane

to separate different classes in a high-dimensional space. Based on [52], I tested the sklearn

SVC implementation28. I used a linear kernel type with a value of 0.5 as a regularization

parameter.

Using different models to test the augmentation modules also allowed to assess the usability of

the framework. Different models have different strengths and weaknesses, and they may perform

differently on different datasets or tasks. By testing the augmentation module on multiple models,

I can better understand its effectiveness and limitations in different scenarios. Moreover, the usage

of multiple runs for each model can help to reduce the impact of random initialization and provide

more robust evaluation results.

28https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Experimental setup

On a Tesla T4 from Google Cloud and an NVIDIA GeForce RTX 2080 GPU on a local system, I

ran the experiments using TensorFlow. I used the Simple Transformers 29 library to evaluate the

large language models. The batch size for all models was equal to 1. Each Transformer used came

from the library of Transformers provided in [299]. I used early stopping to fine-tune RoBERTa and

GPT-2 for 10 epochs in accordance with the test set accuracy. According to the reference study,

the best accuracy was typically attained prior to the tenth epoch of fine-tuning. For 20 epochs,

the CNN was trained from scratch. Again, there were no advantages in training for more than 20

epochs in this study; on the test set, the top accuracies were consistently attained before epoch 20.

To assess the effectiveness of each model, I adhered to the protocol outlined in [173]. I therefore

carried out five random weight initializations. There is no need for multiple runs of the SVM because

it uses the implementation covered in the previous section, and it is deterministic. References to the

initial implementations of each model and the experimental setups for each architecture are already

supplied. On request, all the datasets I used can be released.

2.4.3 Results and discussion

I tested the performance of the augmentation module on three datasets: FNS, HSS and ISS. For

each augmentation combination, I trained all four models, evaluating their performance on the test

set. The results for each combination of augmentation and model are presented in Tables 2.6 and

2.5.

Looking at the results, the augmentation module ensures that there is at least an augmentation

strategy with a performance that is at least as good as the one of the original (RQ1) (so not

augmented) across all datasets and models. It is worth noting that augmented-it stands for

augmentation using Italian, and augmented-mix stands for augmentation using all the four languages.

Overall, HSS and FNS are the datasets where most of the combinations perform better than without

the augmentation module.

Roberta, CNN, and GPT-2 present significant p-values for the Italian and German augmentation

when trained with the FNS dataset. I compute this by performing an unpaired one-tailed t-test,

and in the tables the average of the runs is reported too. With RoBERTa, the augmentations with

German, Turkish, and all languages mix always perform better than without the augmentation

modules. CNN architecture performs significantly better on the HSS dataset while on the ISS one,

the performance of the training with original data can be equalled but not surpassed. Surprisingly,

CNN with all languages as expansion cannot outperform other augmentation strategies.

The SVM model seeks to maximize the distance between the decision boundary (hyperplane) and

the closest data points from each class. In the experiments for HSS, all the augmentation performs

29https://simpleTransformers.ai/about/

https://simpleTransformers.ai/about/


CHAPTER 2. TASKS AND DATASETS 31

Table 2.5: RoBERTa, CNN, and GPT-2 accuracy for each dataset and augmentation. In the first
column, the best results are reported, while the second one reports the average of the 5 runs. The p-
value column reports the output of the one-tailed t-test to check if there is a statistically significant
difference between the not augmented accuracy and the alternatives’ accuracies over the 5 runs.
Bold values represent the best value of accuracy in each dataset.

RoBERTa CNN GPT-2
FNS Best Run Average p-vals Best Run Average p-value Best Run Average p-value
not-augmented 0,7100 0,6890 0,00 0,7300 0,7200 0,00 0,6300 0,6300 0,0000
augmented-it 0,7150 0,7080 0,0296 0,7200 0,7140 0,1140 0,6200 0,6120 0,0004
augmented-de 0,7200 0,6930 0,3549 0,7250 0,7160 0,1914 0,6050 0,6050 0,0000
augmented-ja 0,7100 0,6980 0,1548 0,7200 0,7170 0,2297 0,6050 0,6050 0,0000
augmented-tr 0,7100 0,6940 0,2906 0,7350 0,7190 0,4420 0,6300 0,6140 0,0081

augmented-mix 0,7200 0,6970 0,2207 0,7200 0,7140 0,1366 0,6300 0,6140 0,0081
HSS Best Run Average p-vals Best Run Average p-value Best Run Average p-value
not-augmented 0,5900 0,5660 0,00 0,6500 0,6280 0,00 0,6500 0,6500 0,0000
augmented-it 0,6400 0,5700 0,4295 0,6800 0,6440 0,1312 0,6600 0,6480 0,3520
augmented-de 0,5900 0,5700 0,3912 0,6500 0,6400 0,1134 0,6500 0,6500 0,0889
augmented-ja 0,6200 0,5760 0,3386 0,7200 0,7000 0,0000 0,6400 0,6400 0,0000
augmented-tr 0,6200 0,5660 0,5000 0,6700 0,6300 0,4383 0,6000 0,5960 0,0001

augmented-mix 0,6100 0,5680 0,4668 0,6700 0,6560 0,0071 0,6100 0,6080 0,0000
ISS Best Run Average p-vals Best Run Average p-value Best Run Average p-value
not-augmented 0,8222 0,7967 0,00 0,9611 0,9611 0,00 0,9400 0,9120 0,0000
augmented-it 0,8222 0,7900 0,3586 0,9611 0,9578 0,0352 0,7660 0,7660 0,0000
augmented-de 0,8333 0,7944 0,4412 0,9611 0,9578 0,1043 0,7660 0,7660 0,0000
augmented-ja 0,8333 0,8000 0,4179 0,9556 0,9534 0,0024 0,8700 0,8300 0,0001
augmented-tr 0,8111 0,8011 0,3515 0,9611 0,9545 0,0895 0,7660 0,7660 0,0000

augmented-mix 0,8333 0,8022 0,3470 0,9500 0,9500 0,0022 0,9222 0,9222 0,1094

better than the original one; the all language (mix ) augmentation is better both for HSS and FNS.

Table 2.6: The table reports the values of maximum accuracy reached by the SVM for each dataset
and augmentation. Bold means maximum value by columns.

SVM Accuracy
FNS HSS ISS

not-augmented 0.6300 0.5900 0.9278
augmented-it 0.6450 0.6100 0.9222
augmented-de 0.6600 0.6000 0.9167
augmented-ja 0.6300 0.6400 0.9278
augmented-tr 0.6200 0.6200 0.9333
augmented-mix 0.6350 0.6700 0.9167

The CNN is the model that overall reaches the most accurate results, especially on the HSS

dataset, and this can be seen in Figure 2.6. Figure 2.5 confirms that CNN is the best-performing

model. CNN outperforms RoBERTa and SVM, which is the second-best on 2 out of 3 datasets. The

official results for English30, indicate that for HSS the best accuracy is equal to 0.7300, 0.005 less

than the best run [259], the winner of FNS challenge reaches an accuracy of 0.7500, and finally the

best accuracy for ISS is equal 0.9944.

30https://pan.webis.de/

https://pan.webis.de/
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(a) FNS (b) HSS (c) ISS

Figure 2.5: Best accuracies for each model across datasets.

Figure 2.6: Cross-model and cross-augmentation results for the HSS dataset.

Figures 2.7, 2.8, 2.9 report the (sorted) accuracy (on the validation data, y − axis) for each of

the 5 runs (x− axis) of each model trained with each dataset.

The Japanese augmentation in the HSS dataset always outperforms the languages or combina-

tions used for augmentation. On the other hand, in the ISS dataset, CNN reaches a higher level of

accuracy (around +10%) w.r.t. RoBERTa. It is worth noting that GPT-2 is not able to perform as

well as the other tested models. In this context I use it as a binary classifier on the three datasets

and, eventually, this could motivate the lack of performance. It is interesting that GPT-2 on FNS

and on ISS is able to reach the highest accuracy without the proposed framework. However, the

results are always lower, for all the three datasets, when compared to a CNN. The main reason could

be due to the specificity of the task. When performing author profiling, it is not a single and small

piece of text to be classified but a feed of texts from the same author. This observation and the

results are consistent with the main findings reported in [256].

2.4.4 Qualitative analysis

In this section, I perform some qualitative analyses on the samples augmented after the backtransla-

tion by comparing them with the non-augmented versions. First, I compare augmented versions with
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(a) CNN-FNS (b) CNN-HSS (c) CNN-ISS

Figure 2.7: CNN accuracies across different datasets and augmentations.

(a) RoBERTa - FNS (b) RoBERTa - HSS (c) RoBERTa-ISS

Figure 2.8: RoBERTa accuracies across different datasets and augmentations.

significantly improved performance, and then the augmented ones that have not. Specifically, with

respect to the HSS dataset, I qualitatively analyze the augmented version in Japanese which allowed

a significant increment in performance using a CNN. Then the qualitative analysis is conducted on

ISS where the augmentation has not produced significant increases with any language. Later on, I

compare some augmented samples in the case of German with the original versions.

Japanese on HSS

In Table 2.7 are shown some samples from the HSS dataset. The samples are backtranslated using

Japanese and highlighting the changes. In the case 1b only the word Queen is replaced with the

word Mistress. This is a case of word substitution, where the semantic of the word Mistress is

more specific and contextualized than the word Queen. In fact, the word Queen represents a case of

polysemy in which the word can refer to both a queen of a kingdom, the popular rock band, a chess

piece and, by extension, the concept of Mistress. Thus, a classifier previously trained with other

meanings of the word Queen may not fully understand the actual meaning. In contrast, the word

Mistress has a specific meaning about a woman in a position of authority or control, often in sexual

contexts. Also in the cases 2 and 3 some words are replaced (confident with believe and man-meat

with human flesh). But in the case 3 the referent of the discourse is also changed. In the case 3b)

torture it becomes torture you. Also in the case 4) a substitution of words could have made the
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(a) GPT-2 - FNS (b) GPT-2 - HSS (c) GPT-2-ISS

Figure 2.9: GPT-2 accuracies across different datasets and augmentations.

latent semantics clearer for the classifier. In fact, the words Sophia is on her usual are replaced with

Sofia shows her usual. A single word (i.e., shows) replaces “is on her” and this, in the case of a CNN

with single-word embedding, allows the expressed concept to be enclosed in a single term. Also in

the case 5) an interesting substitution (i.e., to please in place of for the amusement) makes explicit

and shortens a concept on a single verb. Furthermore, the plural races are replaced by the singular

race. It is interesting to note that 7 words present in 5b) were not present in 5a). In the case 6b)

hitting replaces the word beatings. And also in this case the two concepts are similar but not equals.

In the case 7a) the plural is replaced with the singular. Therefore, the author’s comment loses the

generic reference to a set of people and is addressed exclusively to a single subject. Finally, in the

case 8), the translator corrects a typing error and, therefore, the word in the augmented sample can

be eventually traced back, easily, to an already learned embedding space.

German on ISS

With regard to the ISS dataset, as shown by the results, the German-augmented and non-augmented

performances with CNN are equivalent. As the examples in Table 2.8 show, the translation is almost

identical. This produces essentially similar classification performances.

In case 1b), even if some words have been replaced, the semantics are essentially the same.

Furthermore, in the case of the short form I’d it is not even appropriate to speak of substitution

as it has only been expanded with I would. Also in the second case, although the sentence contains

many words, only a few of those present in 2b) are not present in 2a). Also achieves the same

meaning as too, Lawyer has simply been replaced with the first capital letter, and seem and look

are generally used interchangeably. Finally, in the case 3) only four words are changed and in one

case, as before, also in place of too is added.

This great similarity between the augmented and non-augmented versions of the samples is in

fact confirmed by the similarity of the results obtained from the models on the ISS dataset.
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Table 2.7: Examples of original tweets from HSS backtranslated using Japanese. Changes in the
backtranslated samples are highlighted in yellow.

ORIGINAL BACKTRANSLATED (JAPANESE)
1a) And the Queen will cage your cock
and balls! #URL# #URL#

1b) And the Mistress puts your cock
and balls in a cage! #URL# #URL#

2a) RT #USER#: I’m confident that
all men are inferior to Women.

2b) RT #USER#: I believe that all
men are inferior to women.

3a) RT #USER#: Use your man-meat
for something meaningful. Let Femoc-
racy Women torture it. Bow &amp;
Serve. #URL#

3b) RT #USER#: Use human flesh
for something meaningful. Let Femoc-
racy Women torture you. Bow & serve.
#URL#

4a) RT #USER#: Sophia is on her
usual fine and sadistic form in the new
clip at #URL# #HASHTAG#

4b) RT #USER#: Sofia shows her
usual feisty sadistic look in new clip on
#URL# #HASHTAG#

5a) RT #USER#: A day at the
races. . . nude males competing for
the amusement of their female owners.
#URL#

5b) RT #USER#: A day in the race. . .
Naked men compete to please their fe-
male owners. #URL#

6a) #USER# Ball beatings is one of
the most effective methods in order to
keep in line the males of the family.

6b) #USER# Ball-hitting is one of the
most effective ways to keep the men in
your family in line.

7a) Bitches be in relationships and
don’t even like they bf

7b) Bitch is in a relationship and
doesn’t like it

8a) Tried to give a bih the world but
she wanted the streets

8b) Tried to give the world to a bitch,
but she wanted the streets.

2.4.5 Conclusion and future works

In conclusion, for all three datasets examined, the proposed framework improves the performance

if compared to a simplified version of the considered architecture without the augmentation mod-

ules (i.e., backtranslation and expansion). The technique consists of an augmentation model that

makes use of backtranslation before expanding each sample by concatenating it with the original

data. The findings imply that a user’s text corpus can be semantically enriched as a useful method

to enhance the performance of an author profiling model. The CNN model fared well with the

HSS dataset, whereas the RoBERTa model consistently improved with the inclusion of backtrans-

lation and expansion, despite the fact that each model’s performance varied among datasets and

augmentation combinations.

Differences in performance between the augmented and original models were also tested for

statistical significance with a one-tailed t-test. Still, the p-value is under the threshold of 0.05 only

for a few combinations. It is crucial to notice that the low sample size (N = 5) can affect the

outcome of the test.

I found that enriching samples with their respective backtranslations can lead to performance
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Table 2.8: Examples of original tweets from ISS backtranslated using German. Changes in the
backtranslated samples are highlighted in yellow.

ORIGINAL BACKTRANSLATED (GERMAN)
1a) #USER# #USER# While Pierre’s
education may not be as elitist as Free-
land’s, I’d prefer as finance minister
someone with his “commerce” educa-
tion over a Slavic degree.

1b) #USER# #USER# While Pierre’s
education may not be as elite as Free-
land’s, as Treasury Secretary I would
prefer someone with his ”business”
background to a Slavic degree.

2a) #USER# #USER# If #USER#
wins #HASHTAG# she should con-
sider ”coaching” too. She’s articulate
but needs to shed the ”lawyer” bland-
ness. Can’t look too meek when debat-
ing or Trudeau and media will eat her
for breakfast

2b) #USER# #USER# If #USER#
#HASHTAG# wins, she should also
consider ”coaching”. She’s articulate,
but needs to drop the ”Lawyer” fade.
Can’t seem too meek when debating or
Trudeau and the media will eat her for
breakfast

3a) #USER# #USER# #USER#
Counter argument: Back in the ’70’s,
Biden was racist too (different times,
let’s move on). Other accusations
later were ”hearsay”. They say multi-
blackface Trudeau isn’t racist either.
I think individual perception applies
here.

3b) #USER# #USER# #USER#
Counter argument: In the 70’s Biden
was also racist (other times, let’s move
on). Other allegations later were
”hearsay”. They say multi-blackface
Trudeau isn’t racist either. I think in-
dividual perception counts here.

improvements. The greater the diversity of the backtranslated versions, the more likely can be

obtained a performance boost.

In addition, thanks to a qualitative analysis, I have found that backtranslation automatically

allows the increasing of information content of a text without feature engineering. One of the

most important things that emerged is that the backtranslation using Japanese allows a significant

increase in performance. This is most likely due to a better explanation of the information that can

express hatred on social media after backtranslating the samples.

In future works, it would be interesting to investigate this aspect also on other datasets and

not only for author profiling tasks. Furthermore, it could also be of interest to evaluate the impact

of other languages used in the backtranslation module, although, as emerged from this study, the

inclusion of a larger number of languages does not necessarily lead to an increase in the performance

of the classification models employed.
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Preprocessing

Tasks related to NLP usually consist of lexical tokenization, preprocessing, probabilistic tokeniza-

tion and classification stages. The preprocessing step involves operations like lowercasing, stemming,

lemmatization, stop words removal and others techniques presented in this chapter. Here, I use the

term preprocessing to refer to any changes made to the input text after performing lexical tokeniza-

tion and before proceeding with probabilistic tokenization. Specifically, preprocessing can involve

deleting content that is unnecessary for some tasks (such as removing stop words and non-alphabetic

characters), merging semantically similar words to increase prediction power and decrease data spar-

sity (using stemming, lemmatization, casing conversion of characters, expanding abbreviations, cor-

recting misspellings), and enhancing the quantity of semantic information available (e.g., the Part

of Speech tagging, the use of strategies to manage negation words). This implies that preprocessing

can potentially delete important data (such as deleting stop words when they are pertinent to a

researcher’s study issue). Furthermore, several errors can be introduced into the task’s pipeline. For

instance, when semantically distinct words conflate using stemming and changing the outcomes of

a classification model. In this chapter, preprocessing involves text transformation before identifying

which text units to use as tokens during the probabilistic tokenization stage.

Despite its importance, the text preprocessing stage is often underestimated in several text mining

studies found in the literature. However, there is a substantial quantity of noise in unstructured

texts available on the internet. In some cases, the amount of noise in a dataset can be so high that

it could mislead any machine learning algorithm. The presence of noise could be caused by users

who frequently utilize slangs and acronyms, as well as making spelling and grammar mistakes. To

emphasize their emotions, users may also abuse punctuation marks. For example, typing multiple

exclamation marks instead of a single one. In this context, my definition of noise is related to

any useless information for any text-based task to be performed after preprocessing a dataset. As

discussed here, an incorrect choice when preprocessing text can lead to a difference of over the 25%

37
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in terms of accuracy in classification performance, with the same model and dataset being used.

Preprocessing in this sense can be summed up as the process of cleaning and preparing texts

that will be provided as input for subsequent operations. Thus, the necessity for data cleaning and

normalization arises because the effectiveness of a model employed after the preprocessing stage

depends critically on the quality of such data. The crucial role that preprocessing has before and

throughout the feature selection process, from my point of view, is of prominent importance and to

be widely noted. Unfortunately, past researches have provided conflicting recommendations, mainly

due to the datasets used, the techniques applied and/or the models evaluated.

In the literature there is no convention adopted, and each work tests some preprocessing tech-

niques rather than others. In this PhD thesis I report and discuss these techniques and subsequently,

for the most commonly used, I evaluate the results obtained by their combinations with respect to

the model and to the dataset considered. This section aims at improving text preparation stage and

resolving inconsistencies in preprocessing advices, to offer guidelines and ideas for future studies. I

aim at improving the comprehension of the theoretical and empirical factors that should influence

preprocessing choices. Here, I want to investigate how performance is affected by preprocessing

choices while making use of deep (pre-trained or not) and non-deep learning models. Eventually,

a preprocessing stage cannot only remove noise and/or highlights important features, but can also

reduce the time required for training and testing a model. I can finally state that it is important to

make an educated and context-dependent choice about which preprocessing method (or combinations

of methods) to employ and in what order.

In this chapter I collect, report and discuss the text preprocessing techniques found in the litera-

ture and their possible and most recent variants, proposing a uniform nomenclature standard based

on acronyms. I also provide the reader with useful information for self-study and in-depth study of

the techniques presented here and presenting useful advice on how to operate educated choices to se-

lect the preprocessing technique (or combination of techniques) given a specific task, model, and DS.

Furthermore, in the last section, I select the three most common techniques used in the literature to

evaluate the impact of each of these techniques (alone or in combination) on the classification results

of nine SOTA models (pre-trained deep, deep and non-deep) and on real world datasets. Then I

discuss how text preprocessing can affect the performance of modern pre-trained architectures based

on attention (i.e., Transformers). Finally, I determine if the performance of simple classifiers are

comparable to the performance of Transformer-based models when text preprocessing is performed

in accordance with the specific model and/or dataset used.

This chapter dedicated to text preprocessing is structured as follows. The gaps in the literature

and the related work on the impact of preprocessing techniques are discussed in the next two sections.

In Section 3.3 a complete discussion of the preprocessing techniques collected is presented. In the last

section, I discuss the procedure for the experimental evaluation and the outcomes of my experiments

on three different datasets using the three most common text preprocessing techniques on nine SOTA
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models.

3.1 Gaps in the literature

In this subsection, I briefly introduce some of the most referenced and comprehensive surveys re-

ported in the literature about text preprocessing. A more in-depth discussion that also includes the

most recent and relevant studies is provided in the section dedicated to the related work. I conclude

this subsection, highlighting the gaps found in the literature.

In [263] authors analyze the preprocessing impacts on Twitter data, emphasizing how much the

classifier performance is improved. They deleted URLs, user mentions, stop words, hashtags, punc-

tuation, and then they used n-grams to replace slang words with the corresponding regular words.

The suggested preprocessing method binds slangs on already existing words to assess the meaning

and sentiment interpretation of the slangs. The authors employ an SVM classifier and conclude

their study wondering how effectively the suggested system would work with different classifiers on

other texts. Involving four conventional classifiers and a neural network in their experiments, the

authors in [270] investigate how each preprocessing technique affects the performance of the mod-

els, using solely TF-IDF (unigram) to represent words. Authors demonstrate that while deleting

punctuation does not improve the classification performance, preprocessing procedures like removing

digits, expanding contractions to base words and lemmatization do. Additionally, their study shows

how various preprocessing strategies interact reciprocally and highlights those that work best when

combined. However, the authors conclude their article with an open question for future studies that

could eventually test the preprocessing techniques employed also on datasets from different domains,

such as news articles and products or movie reviews. In [210] authors analyze twelve different prepro-

cessing techniques on three datasets. The datasets are built from Twitter and focus on hate speech

detection. Authors observe the impact of the preprocessing techniques on the classification tasks

they support. However, they do not fully explore all the possible combinations of the preprocessing

techniques proposed but, after an inference process, a subset of all the combinations is considered.

In fact, the authors suggest that future research should examine the impact of these and other pre-

processing strategies in various domains, as well as other preprocessing technique combinations and

their interactions.

Taking into account the above-mentioned studies and those discussed next, some areas regard-

ing text preprocessing are outdated, still unexplored or under-explored. To summarize, the works

described above or referenced in the following sections are characterized by at least one or more of

the following aspects:

• Do not contain a detailed catalog of all the most common preprocessing techniques. Usually,

only a subset of all the available techniques is reported.
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• More in-depth experimental evaluations on Transformers and on modern deep learning archi-

tectures are missing.

• There is a lack of experimental evaluations on models that can truly achieve valuable SOTA

results.

• One single task is addressed and/or a single preprocessing technique is evaluated.

• Similar datasets (e.g., similar text format for any sample) or datasets from the same domain

are employed.

• There is not a clear explanation on why a subset of certain combination of preprocessing

techniques is evaluated.

With this chapter, I hope to better investigate the matter without neglecting any aspects or

point of view reported above.

3.2 Literature review

I report in this section the results of some of the most relevant and recent studies employing text

preprocessing techniques to evaluate their effect. The following are those that, in addition to employ

preprocessing techniques, have also carried out a comparative evaluation using one or more models

and/or datasets. For a detailed discussion on the preprocessing techniques and the corresponding

related work, please refer to the Section 3.3.

Recently, the authors in [153] have used a variety of deep neural architectures — except Trans-

formers — to examine the impact of preprocessing on a pre-trained BERT model when fine-tuning

it as the first embedding layer. The authors find that text preprocessing had negligible influence

on the majority of the models tested. It is worth mention that authors conduct the study on a

single Indonesian dataset containing 3,217 instances from the Water Resources Agency of Jakarta,

to classify the textual reports into five categories (i.e., drain closure, waterways, flood mitigation,

infiltration well and others). The authors use an Indonesian pre-trained version of BERT for the

embedding. Since there were substantial changes in performance outcomes between the model with

and without text preprocessing, the authors suggest that future studies should examine the impact

of each text preprocessing step. In this sense, to investigate the effects of different preprocessing

techniques, authors in [101] make use of fourteen text preprocessing approaches that have been

applied to datasets from Twitter, Facebook, and YouTube. The authors use text preprocessing

algorithms in a particular order. In the study, authors use SVM to assess the variation in terms of

accuracy on sentiment classification employing the preprocessing strategies proposed. Results show

that by consistently utilizing all the preprocessing approaches, it is possible to reach the 82.57%
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accuracy using unigram representations. Even if the proposed preprocessing strategy proved to be

effective on the selected dataset, an in-depth investigation employing deep learning models misses.

The performance of an SVM classifier is also evaluated in [23] on a Twitter dataset for sentiment

classification (i.e., the Stanford Twitter Sentiment Dataset). Authors explore some combinations of

the preprocessing techniques proposed. Researchers discovered that the use of URL features reserva-

tion, repeated letters normalization and negation transformation increases the accuracy of sentiment

classification. Instead, the accuracy descends if stemming and lemmatization are used. Furthermore,

by adding bigrams and emotion features to the initial feature space, a superior outcome is obtained.

Also in [91], authors employ traditional models like NB, SVM, K-means and Fuzzy logic algorithms.

Specifically, on a Twitter dataset, three basic preprocessing methods (i.e., tokenization, removing

of stop words and stemming) are explored. The findings indicate that preprocessing has a relevant

impact on reducing the dimensionality of data, which leads to higher performance in sentiment anal-

ysis classification tasks. Also for unstructured product review data, the authors in [15] demonstrate

that the correctness of classifier predictions depends on a suitable text preprocessing sequence. The

records in the dataset used for training were made up of product reviews from Amazon. To as-

sign a binary output label (positive or negative) to each sample, ratings of one or two stars are

collapsed into the class of negative reviews. Ratings of four or five have been classified as positive.

Also in this study, authors employ traditional models (namely, NB, Decision Tree and SVM). Four

traditional classifiers (i.e., NB, Logistic Regression, SVM and Random Forest) are also employed in

[119], where authors explore the impact of six preprocessing techniques using five different Twitter

datasets. They discovered that by utilizing the preprocessing techniques of extending acronyms and

substituting negation, as opposed to eliminating URLs, removing numerals, or removing stop words,

the classification results, in terms of F1-measure and accuracy, is enhanced. The Transformers are

used in [65] where, before applying TF-IDF, authors remove stop words and keep only features

appearing in, at least, two documents. The experimental findings show that in the smaller datasets,

the shallow, and most straightforward non-neural methods achieve some of the best results. On the

other hand, Transformers perform better in terms of classification accuracy in the larger datasets.

However, the study marginally focuses on the impact of text preprocessing.

Regarding a Twitter related task about irony detection, authors in [318] perform a case-folding

preprocess of tweets before tokenizing with the TokTokTokenizer from NLTK. Then, generic labels

replace hashtags, user mentions and URLs (i.e., hashtag, user and url, respectively). Then, elongated

words are shortened, to limit a vowel to only appear twice in a token after each other (e.g., yeeee

is mapped into yee). While the authors employ BERT as a classification model, they only use the

preprocessing strategy discussed above. Also authors in [64] introduce and apply a new preprocessing

strategy based on three new steps (i.e., lowering dimensionality, rising sparseness and reducing the

number of training samples). These steps proved to improve performance and/or reduce time of

execution. A significant finding reported in the study is that a proper data preprocessing is more
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Table 3.1: Acronyms for preprocessing techniques and real case examples, raw and preprocessed.

Acronym Technique Raw Preprocessed
DON Do Nothing ”Like a Rolling Stone” ”Like a Rolling Stone”
RNS Replace Noise and Pseudonimization ”@Obama 0x10FFFF tells #metoo! bit.ly/–” ”USER tells HASHTAG! URL”
RSA Replace Slang/Abbreviations ”omg you are so nice!” ”Oh my God you are so nice!”
RCT Replace Contraction ”I don’t like butterflies.” ”I do not like butterflies.”
RRP Remove Repeated Punctuation ”I like her!!!” ”I like her multiExclamation”
RPT Removing Punctuation ”You. are. cool.” ”You are cool”
RNB Remove Numbers ”You are gr8.” ”You are gr.”
LOW Lowercasing ”You Rock! YEAH!” ”you rock! yeah!”
RSW Remove Stop Words ”This is nice” ”is nice”
SCO Spelling Correction ”1lenia is so kind!” ”Ilenia is so kind!”
POS Part-of-Speech Tagging ”Kim likes you” ”Kim (PN) likes (VB) you (N)”
LEM Lemmatization ”I be go to shopping” ”I am go to shop”
STM Stemming ”Girl’s shirt with different colors” ”Girl shirt with differ color”
ECR Remove Elongation ”You are cooool!” ”You are cool!”
EMO Emoticon Handling ”:)” ”happy”
NEG Negation Handling ”I am not happy today!” ”I am sad today!”
WSG Word Segmentation ”#sometrendingtopic” ”some+trending+topic”

crucial than the classification algorithm itself. Mainly, for obtaining the best performance at the

lowest possible cost (trade-off among effectiveness-efficiency).

3.3 Preprocessing techniques

In this section are presented the preprocessing techniques found in the literature using the following

methodology. In one of the last comparative surveys [270], the authors present an evaluation of

several text preprocessing techniques on two datasets built to perform sentiment analysis on Twitter.

The article was used as the foundation for my work because — as shown in Table 3.2 — it proved

a posteriori to contain the largest number of techniques available. In order to obtain the list of

related works on preprocessing techniques, all the works cited or citing the aforementioned work

that discussed at least three different preprocessing techniques were included here. Techniques not

discussed in [270] were added as columns to Table 3.2 and also included and discussed. Studies with

less than three techniques are not shown in Table 3.2 but, if targeting some specific technique with

a novel or deeper point of view, they have been briefly discussed in the Section 3.3. At this point,

for each of the study added from time to time to the reference list, the papers cited or citing each

work in the Table 3.2 were included, as long as they discussed at least three different preprocessing

techniques. Thanks to this approach, I can state that, to the best of my knowledge, the preprocessing

techniques most frequently found in the literature have been included in this chapter.

All the preprocessing techniques reported here represent the very first stage for any task related

to TC after lexical tokenization. As defined in [130] the tokenization is the task of separating a

running text into words. To these words one or more preprocessing techniques can be applied.

The next step, after text preprocessing, consists in splitting text into n-grams (i.e., probabilistic

tokenization). Before providing the preprocessed text to a model, it is necessary to tokenize it into a
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numerical form which can be managed by a computer. In some studies, tokenization (either lexical or

probabilistic) is presented as a preprocessing technique. However, I do not include the tokenization

among the techniques presented here. The techniques presented in this chapter are characterized by

their ability to alter the syntactic and semantic content of a text after the lexical tokenization. At

the same time, tokenization (either lexical or probabilistic) is the necessary procedure to fragment

a text to be able to supply it to subsequent stages. Nevertheless, considering that tokenization is

often referred to as part of the preprocessing, I introduce and discuss tokenization in the rest of this

section.

Lexical tokenization is discussed in [102, 192, 290, 1] and usually split text into words. Probabilis-

tic tokenization can split texts into pieces called tokens. Although common forms of tokenization

are performed at word-level, several sub-word tokenization strategies are discussed in the litera-

ture [253, 149, 252]. Regardless the size of the tokenization window used, tokenization generically

consists in segmenting text. Usually, only alphanumeric or alphabetic characters separated by non-

alphanumeric characters are taken into account when segmenting data (e.g., white spaces, tab,

punctuation). The purpose of probabilistic tokenization is to output single units of information —

i.e., the tokens — to be mapped into numerical representations. The token list serves as the starting

point for additional processing, such as text mining, parsing, or classification. Either linguistics (in

which tokenization is a method to segment text into word) or computer science (where it is called

probabilistic tokenization and is used to map a token into a number) can benefit from tokenization.

Depending on the language syntax, the tokenization process can be challenging. For example, the

majority of words in languages like Italian and English are delimited and separated from one another

by white spaces. Otherwise, languages like Chinese are not segmented, since the borders between

the words are not obvious. In the case of languages like Chinese, the terms word segmentation apply.

One final note is about the order of application of several preprocessing techniques in combination.

While some preprocessing approaches (such as removing stop words and punctuation) can be used

independently of one another, others necessitate a more careful thought about the order in which

they are used to providing consistent results. For the tagger to function properly, POS tagging,

for instance, should be applied before stemming, and negation should be done before eliminating

stop words. Eventually, as reported in [17], it is worth notice that it is not necessary to perform

preprocessing on both the training and the test sets.

Finally, given the methodology reported in the previous section as well as in the rest of this

chapter, the histogram in Figure 3.1 displays a list of the preprocessing techniques that have been

documented in the literature. The histogram also shows the number of times that the reported

techniques have been used in the related work.
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Figure 3.1: Number of times that the techniques discussed in this article are found in related work.
In Table 1 are reported the expanded acronyms under the bars. The works related to the Figure are
the ones listed in the Table 3.2. Each bar in the Figure actually shows the counts of the X in the
table for each column.

3.3.1 Replace noise and pseudonimization

The definition of noise varies significantly according to the literature, with regard to removing and/or

replacing noise. Usually noise replacement consists in replacing or removing unwanted strings and

Unicode characters, which are regarded as crawling by-products, that can add further noise to the

data. For this reason, some authors employ regular expressions to eliminate Unicode strings and

non-English words. The authors in [17] do not explicitly mention noise removal. However, they

apply a few text preprocessing techniques at the beginning of their evaluation. These techniques

involve removing HTML tags and special characters from text, such as ”%*=()/”. Furthermore,

not all datasets are provided as plain text.

Especially in the context of sentiment analysis, another form of noise replacement is pseudon-

imization. User-posted tweets may include URLs, user mentions or hashtags (such as @username

or #music), or both. In this way, users can link their tweet to a certain subject or user, and these

strings of characters, depending on the task, can be treated as noise replacing them with specific

tags. In the literature are described a number of methods to deal with this additional data supplied

by users. In [2], authors replace all the URLs with a tag U, and replace user mentions (e.g. @bruce-

springsteen) with the tag T. The majority of academics believe that URLs don’t reveal anything

about the sentiment of a tweet [135, 115, 8, 242]. Other scholars expand URLs from Twitter into full

URLs before tokenization [38, 30]. The tweet text is then refined by removing any URLs that match

the tokens. In conclusion, no general rules apply in definition and managing of noise. Definition and

operations can vary significantly from a study to another.
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3.3.2 Replace slang and abbreviation

Considering the character count restrictions in social networks (e.g., Twitter), abbreviations, acronyms,

informal writing styles, short words and slang are frequently used [277]. These words have to be

managed (e.g., replacing OMG with Oh My God). By handling these informal words in the text

and changing them to reflect their actual meaning, an automated classifier may perform better

while preserving information. These words and sentences can be managed in order to impute their

meaning accurately. In [146] slangs and abbreviations are converted into word meanings that can be

comprehended by utilizing conventional text analysis methods. In [270] authors manually compile a

lookup database with these words, phrases, and their replacements. However, it is worth noting that

word embedding-based models could eventually manage slang and abbreviation as-is, understanding

from the context, during the training phase, their original meaning.

3.3.3 Replace contraction

Contractions are short-form words that are used by users to reduce the number of characters in

a tweet/post [248]. An apostrophe is used in contractions to replace one or more missing letters.

One preprocessing method consists in performing contraction replacement (e.g., can’t be replaced

by cannot).

Expanding contractions could or could not be a beneficial preprocessing technique before perform-

ing probabilistic tokenization. In a word embedding layer which splits words at a space character,

further meaning could be provided, keeping the word can’t instead of cannot. This way, a single word

can incorporate what is expressed by the two single consecutive words can and not. However, words

like not could be of prominent importance for subsequent stages coming later, like the ones that re-

place negations with antonyms. Otherwise, if the splitting of the words is performed at punctuation,

tokenization would create the tokens can and ’t. In this last example, as it matches other negative

forms in the text, this tokenization could not be all that helpful. It is worth mention that, even if the

main referenced language of this thesis is the English, some interesting considerations could be made

concerning other languages. For example, French has a contraction phenomenon which consists of

truncating many words (for example, manif for manifestation), and Italian often presents articles

with an apostrophe (e.g., L’arte della guerra, ‘The art of war’), which should likewise be managed

when focusing with these languages.

3.3.4 Remove repeated punctuation

In [270], authors distinguish three punctuation signs: stop marks, question, and exclamation. These

punctuation marks, according to authors, indicate the presence of emotion in the text considered.
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Because of this, authors substitute a representative tag in its place. For instance, ”multiQuestion-

Mark” is used in place of the token ”???”. This procedure is performed before deleting punctuation.

However, in the not pre-trained models evaluated in this PhD thesis, if there is not any space be-

tween repeated punctuation marks, a separated word is created in the dictionary. As an example,

given the sentence: ”Are you sure???”, three different words will be considered as separated tokens

(i.e., Are, you and sure??? ). In the case of a single and/or multiple spaces (i.e., ”Are you sure

???”), four words/tokens will be added to the dictionary (i.e., Are, you, sure and ??? ). Of course,

these different splitting strategies would lead to different behaviors of a subsequent classifier.

3.3.5 Remove punctuation

In written texts, punctuation can be used to express sentiment and emotion [281] (e.g., ”You are

late! Hurry up!”). Even if this punctuation use can be easily understood by humans, it could not be

so for an automatic classification tool. Furthermore, punctuation can be useless when dealing with

certain TC tasks. For this reason, punctuation removal is often applied in many preprocessing tasks

for automated TC. However, punctuation symbols can also denote sentiment. In [20], authors detect

punctuation signs like ”!!!” and replace them with the label ”multiexclamation”. An application

where punctuation is removed can also be found in [167]. In the study presented in [259], the authors

do not remove punctuation during preprocessing. In fact, they consider as separate entries in the

dictionary the words up and up!. In this way, the word embedding layer, trained from scratch in

the study, at the end of the training phase is able to differentiate the meanings of the two entries in

the dictionary assigning different word vectors in the embedding space. These behaviors could be,

eventually, able to get the intended meaning of the version with the exclamation mark, to invoke

someone for moving faster. Removing punctuation from the sentence and replacing it with a single

space (i.e., ”You are late Hurry up”), would result in the change of some latent information, maybe

of interest for certain TC tasks (e.g., author profiling as in the study of [259].

3.3.6 Remove numbers

Despite the fact that numbers can offer helpful data to obtain a performance gain of a classifier, it

is usual to delete them during the preprocessing stage [167, 11]. Such a practice could be due to

historical reasons, where computational power and traditional machine learning classifiers required

a stricter preprocessing phase to lighten datasets. However, other scholars [72, 259] argue that

numbers are useful, indeed they do not remove them from the original source text.

In fact, the sentence: ”I won 2 dollars on bets.” compared to: ”I won 2,000,000 dollars on bets.”

will become: ”I won dollars on bets.”. However, the resulting sentence has lost the intended meaning

of the user who pronounced it. Such a meaning could be considered differently by an attention based

model or even by a shallow neural network to provide the correct prediction. Even in the case of
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author profiling tasks, the use of numbers could characterize a user based on the quantity expressed

by the numbers in text. Removing numbers could lead to another type of information loss. For

instance, the removal of 4 from the sentence: ”I did it 4 you” (i.e., ”I did it you”) would alter the

original true meaning of the sentence even for a human classifier. Finally, removing the number 8

from the word w8, again, could lead to a loss of information and to a deterioration in performance

as well as in the previous example.

3.3.7 Lowercasing

Among others, lowercasing (i.e., converting uppercase to lowercase letters) is one of the most common

techniques to perform preprocessing on a source text before further steps.

Lowercasing is discussed in [48] and consists in converting to lowercase each character of a text

(e.g., ”Your band sounds like Rolling Stones” — ”your band sounds like rolling stones”). Before the

classification step, authors in [283] change capital letters from uppercase to lowercase. According to

authors, the classification’s performance has improved. Lowercasing has been a common method in

many deep and non-deep architectures presented in the literature due to its simplicity. Lowercasing

may have undesirable effects on system performance since it increases ambiguity despite the fact

that it reduces vocabulary size and sparsity [76]. In the example reported above — regarding the

rock band The Rolling Stones — lowercasing could produce for a non-human classifier an ambiguity,

comparing the sound of a band to a set of stones rolling1 instead of comparing the same sound to

the one of the rock band.

Lowercasing, on the other hand, conflates multiple spellings of words that are based on case. The

diversity of capitalization in the dataset may interfere with classification and degrade performance.

This could be the case of a single misspelled word in a dataset (e.g., ”houSe”). In this case a word

embedding layer trained from scratch could assign a new embedding vector instead of using the most

properly semantic-related word ”house”.

Differences in experimental results across various works in the literature can be simply explained

based on the domains considered. In this work, several datasets and models are tested, so it is

discussed the general impact of the technique using modern classifiers on real world cases.

3.3.8 Remove stop words

The removal of stop words, according to this study, is the most often employed preprocessing method

found in the literature. Stop words are typically frequent terms in a language and are assumed to be

the least informative [94] (i.e., stop words alone do not provide meaning to document). Stop words

are language-specific and cannot be considered as keywords in text mining applications, so they

could be useless in information retrieval. Stop words often appear in writings without being related

1. . . and in this case, maybe, you should look for a new drummer.
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to a specific subject (e.g., prepositions, articles, conjunctions, pronouns etc.). Before performing

the TC task, stop words are typically removed. The size of a dataset is actually decreased after

removing stop words from it. Example of stop words are: ”of”, ”a”, ”the”, ”in”, ”an”, ”with”,

”and”, ”to”. Depending on the list used, there are usually more than 400 stop words in the English

language [77, 87].

The first study considering stop words is conducted in [180]. There, the author makes the

suggestion that words in written texts can be split into terms considered as keyword or non-keyword

using a stop list. In [249], the authors employ data from six different Twitter datasets to use different

stop word detection algorithms and examine how eliminating stop words impacts the effectiveness of

two popular supervised sentiment classification techniques. By tracking changes in the classification

performance, in the amount of data sparsity and in the size of the feature space of the classifier,

the authors evaluate the effects of eliminating stop words. Authors compare results between static

stop word removal techniques (e.g., based on pre-compiled lists) versus dynamic stop word removal

techniques [183] (e.g., based on dynamic detection of stop words in a document). The results

demonstrate that the performance is adversely affected by the usage of pre-compiled stop words

list. Otherwise, the best strategy to retain significant performance while lowering data sparsity and

significantly condensing the space of the features appears to be the dynamic creation of stop word

lists by deleting those uncommon words appearing rarely in the dataset. Researchers have found

that a word’s relevance can be inferred from its frequency in a data collection. This discovery led

to the exploration of various well-liked stop word removal techniques in the literature. While some

approaches consider both the top and the bottom-ranked words to be stop words, others make the

assumption that stop words correspond to the most frequently occurring words. Another well-liked

alternative to using the raw frequency of terms has also been discussed in the literature: Inverse

Document Frequency (IDF). To conclude this section, four different stop word removal techniques

are now described.

• The traditional approach. The traditional approach [285] relies on removing stop words gleaned

from pre-compiled lists.

• Approaches based on Zipf’s law. Three approaches for creating stop words that are moved by

Zipf’s law exist, besides the conventional stop words list [60, 183]. Among these are the words

that are most frequently used and words that only appear once, or singletons. Additionally,

terms having a low inverse document frequency are thought to be removed (IDF).

• The mutual information method. A notion of how informative a term can be about a certain

class is supplied by a supervised technique that determines the amount of information that

each word and document class share [62]. A lower mutual information means that the word

has a weak ability for helping in discrimination, hence it needs to be dropped.

• Random sampling of data chunks. It was initially suggested in [175] to use this technique to



CHAPTER 3. PREPROCESSING 50

manually identify stop words in web publications. This approach operates by repeatedly pro-

cessing different, randomly chosen, data chunks. It then uses the Kullback-Leibler divergence

[129] metric to order the terms in each chunk according to how informative they are.

3.3.9 Spelling correction

It is common that texts shared online by users contain spelling errors. For instance, tweets frequently

contain typos as well as grammatical errors. These errors might make classification tasks more

problematic. The unintended consequence of having the same term transcribed differently is lessened

by correcting spelling and grammar errors. Examples of misspelled words are: absense, decieve,

noticable. After a spelling correction step, the mentioned words would be substituted respectively

by: absence, deceive, noticeable. In [206] it is proven that correcting spelling errors can improve

classification effectiveness. Although other type of errors could be introduced after performing a

spelling correction, this step generally improves performance.

Eventually, an interesting way to perform spell-checking is presented in [291] where a spell checker

is employed to improve stemming, while synonyms of related tokens are combined.

3.3.10 Part-of-Speech tagging

The word class is identified via Part-of-Speech (POS) tagging, which takes into account the word’s

placement in the sentence [186]. A POS tag is then given to any word in a sentence. Noun

(NN), proper plural noun (NNPS), verb (VB), adverb (RB), superlative adverb (RBS), third-

person verb (VBZ), and other tags are examples of tags2. It has been demonstrated that four POS

classes—namely, nouns, adjectives, verbs, and adverbs—are more informative than other classes.

Several purposes of POS tagging in preprocessing are discussed in related work. In [270] the use

of POS tagging allows some parts of speech to be excluded since they do not express the suitable

sentiment for the purpose at hand. Only verbs, adverbs, and nouns were kept in the study. In [24],

in order to tag opinion statements with sentiments, the authors employ POS tags as pointers. In the

literature, exist dozens of different tag sets, defined in the context of different theoretical frameworks

and also designed to represent morphologically different languages. The above-mentioned tag set is

the one related to a popular project of the last century for the construction of a treebank of English

language (i.e., the Penn Treebank). The tag set is still used today, but has been superseded by

others more suited to represent not only the English language. One of the most relevant is the tag

set project of Universal Dependencies3.

Some popular libraries and tools that use rule-based approaches to perform POS tagging are the

2An example from Twitter is the case of a retweet replaced by the tag RT
3https://universaldependencies.org/

https://universaldependencies.org/
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NLTK library’s pos tag()4 and the TextBlob5 Python library. Other libraries based on statistical

models are the spaCy library’s POS tagger6 that is trained on the OntoNotes 5 corpus and the

Averaged Perceptron Tagger in NLTK 7 that is based on the above-mentioned tag set project of the

Universal Dependencies.

Specially in deep learning-based models, this process of assigning POS to each term is helpful

to increase semantic informativeness in text. However, due to its impact on diminishing accuracy,

some authors choose to omit POS tagging for certain tasks [36], while others found POS tagging

useful [11].

3.3.11 Lemmatization

Lemmatization is used to replace a word with its corresponding lemma, or dictionary form. By

analyzing a word’s location in a sentence and removing its inflectional ending, this technique cre-

ates the lemma as it appears in a dictionary (e.g., Performance is greatly improved, replaced by

Performance be greatly improve). In [97], lemmatization reduces various word forms to the same

lemma to enhance user sentiment extraction effectiveness. Lemmatization is discussed in [48] and,

in the context of an SVM model, in [160]. In [154] authors address the issue of ambiguity after

lemmatization. Authors use lemmatization in combination with POS disambiguation to alleviate

the problem.

Lemmatization has long been a common preprocessing step for traditional models. Since deep

learning models started to be employed, lemmatization has rarely been used as a preprocessing stage.

Lemmatization’s major goal is to reduce sparsity because a dataset may contain various inflected

versions of the same lemma. Furthermore, in the context of author profiling tasks, lemmatization can

lead to ignore relevant writing style details [104]. Eventually, it is worth reporting that in inflexionless

language (e.g., Chinese), words are only in one form. For inflexionless languages, techniques like

lemmatization or stemming, does not provide any change to the text.

3.3.12 Stemming

To obtain stem versions of derived words, a process known as stemming is used. For instance,

stemming techniques can reduce word variations like easy, easily, easier, easiest to the word easy.

The dimensionality of dictionaries is decreased, since many words are collapsed to the same one.

This procedure reduces entropy and raises the significance of the concept behind a word like the

one from the previous example (i.e., easy). In the end, stemming enables the same consideration

of nouns, verbs, and adverbs that share the same stem. Word frequencies are commonly calculated

4https://www.nltk.org/api/nltk.tag.pos_tag.html
5https://textblob.readthedocs.io/en/dev/quickstart.html
6https://spacy.io/api/tagger
7https://www.nltk.org/api/nltk.tag.perceptron.html

https://www.nltk.org/api/nltk.tag.pos_tag.html
https://textblob.readthedocs.io/en/dev/quickstart.html
https://spacy.io/api/tagger
https://www.nltk.org/api/nltk.tag.perceptron.html
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after stemming, since derived words share semantic similarities with their root forms.

The first known stemming algorithm was presented in 1968 and discussed in [178]. Going forward,

the algorithm for stemming introduced in [230] is often employed by a multitude of scholars. It is

likely the most popular and effective stemming technique for the English language.

Stemming is applied in [267] and also discussed in [289]. The goal of stemming in both studies is

to find, for any derived word, its corresponding stem. As discussed in [92], the stemming algorithm

depends on the language considered (i.e., Turkish in this case). The library commonly used for

Turkish language is discussed in [4]. For the same language, the fixed-prefix approach described in

[50] is a computationally straightforward yet highly efficient stemming tool. The performance and

efficacy of stemming in applications like spelling checkers across languages are examined by authors

in [96]. Although advanced algorithm employ morphological understanding creating a stem from the

words, a typical simple stemming technique would involve deleting suffixes using a list of frequently

occurring suffixes. The study provides a comprehensive overview of known stemmers for the Indian

language, as well as popular stemming strategies.

Truncating approaches, statistical methods, and mixed methods are typically used to apply

stemmed algorithms. The mechanism used by each of these divisions to determine the word varia-

tions’ stems is different. Below is a discussion of a few of these techniques. For further discussion

on stemming techniques, a deep overview is presented in [203].

• Truncating techniques involve removing a word’s prefixes or suffixes, referred to as affixes.

Truncating a word at the n-th character, is the simplest basic stemmer (i.e., it consists in

keeping n letters and removing the remaining). Words that are shorter than n are left un-

touched using this strategy. When the word length is short, there is a greater chance of over

stemming.

• Porters stemmer is one of the most well-known stemming algorithms developed in 1980 [230].

On the fundamental algorithm, numerous alterations, improvements, and suggestions have

been proposed. The original algorithm is based on the fact that in the English language,

the suffixes are usually composed of groupings of simple and small suffixes. The algorithm is

performed along five steps. Each stage applies the rules until one of them satisfies the criteria.

If a match is found, the suffix is then removed and the subsequent action is evaluated. At the

end of the last stage, the resultant stem is returned. A stemming framework named Snowball

was created by Porter. The primary goal of the framework is to give developers the freedom

to create custom stemmers for different languages or character sets.

• Lovins stemmer was proposed in 1968 [178]. The Lovins stemmer eliminates a word’s longest

suffix. Each word is altered, checking a different table that performs numerous alterations to

turn these stems into acceptable words after the ending has been deleted. Due to the fact that

it is a one pass method, it can never remove more than one suffix from a word. This algorithm
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has the following benefits: 1) it is extremely quick; 2) it can handle changing letters doubled

for words as getting into get and 3) it can handle plurals that are irregular (e.g., ”mouse” and

”mouses”, ”die” and ”dice” etc.). It is worth reporting that the Lovins stemmer, although

being a heavier stemmer, results in superior data reduction. With its extensive suffix collection,

the Lovins method only requires two significant stages to delete a suffix. The algorithm by

Lovins is quicker than the Porter one, based on five iterations. Due to its extremely long

endings list, it is larger than the Porter method.

• Paice/Husk Stemmer is introduced in [213] and is an ongoing method using one database that

has more than one hundred rules and use the final character of a suffix as index. It tries to

determine the relevant rule based on the final character of a word. Rules detail the substitution

or deletion of a word ending. If any rule does not match, the algorithm ends. The algorithm

ends also if the first character of a word is a vowel and no more than two or three letters

remain in the word. If not, the rule is followed and the procedure is repeated. The benefit is

that both deletion and replacement as per the rule are applied at every iteration. However,

because of the weight of this stemmer, over stemming can happen.

The two primary categories of stemming issues are over- and under-stemming. If two words

having different stems are replaced by the same root, then a case of over-stemming occurs. Another

term for this is a false positive. On the other hand, the act of giving two words that ought to share

the same root a different root is called under-stemming. This is also known as a false negative.

3.3.13 Removing elongation

A character that is repeated once or more times can be found in elongated words (e.g. cooooool,

greeeeeeat, goooood etc.). Tweets and other social media posts frequently contain words with repeated

letters that can be managed to better mining sentiment [19]. Character repetitions are employed by

users to emphasize and express their sentiments. The preprocess step of removing elongation consists

in replacing elongated words with their source words, so they can be considered as the same entity.

Repeated characters are reduced to a single one to prevent the learner from considering lengthened

words differently from their basic form. If not, a classifier could interpret them as distinct words

and the longer words are likely to be underestimated because of their lower frequency in the text.

3.3.14 Emoticon and emoji handling

On the internet and in social networks, emotional icons are frequently used to denote users’ sentiment

[110]. Users use different emoticons (e.g., :), :( etc.), to express opinion too. Not to be confused with

emoticon, emoji are pictographs of objects, faces, and symbols. However, in a generic preprocessing

step, the same operations used for emoticons can be applied to emoji too. Depending on the
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considered task, it could also be important to capture information provided by emoticons or emoji

to perform TC.

In [293] authors study and evaluate the impact of emoticons on sentiments of tweets. Authors

demonstrate the value of emotional icons in conveying messages on social media. In [218], the

usefulness of processing emoticons on user-generated content is highlighted by the authors.

Emoticons could also be replaced with scores that express a score against a polarity, but they

can also be translated into text in the corresponding word. For example, for a specific sentiment

classification task, the words pos and neg can be used in place of the positive and negative icons,

respectively. In other studies, emoticons are substituted with the words that best describe them,

such as sad in place of :-(. However, for instance, the irony in the usage of a sad emoticon while

texting something positive, can revert the original meaning of a sentence.

In [2] authors employ emoticons as features and associate words to a value of pleasantness from

one to three. Emoticons are scored similarly to other words and are broken down into the following

classes: extremely negative, negative, neutral, positive and extremely positive.

Keeping as-is emoticons in any text, for word-embedding based models, lead to the generation

of a word vector with an associated semantic as for any other word in the dataset.

3.3.15 Negation handling

As stated in [17], one of the best preprocessing methods for tackling tasks involving sentiment

analysis is negation handling. A crucial stage in sentiment analysis is dealing with negations, such

as ”not nice”. One of the most relevant causes of misclassification is the omission of negation words,

which can affect the tone of all the surrounding words. One way to perform negation handling is

removing negative forms in text to reduce ambiguities of the classified sentences. Specifically, when

facing with sentiment analysis tasks, negation is significant because, in many circumstances, the

polarity of words or sentences can be affected by negation words, which can cause the polarity to

invert. The most typical method of handling negation is to look for terms that are similar to ”not”

in each sentence, then see if the next word has an antonym. The word ”sad” will be used in place of

phrases like ”not happy” for instance. To perform the replacement of words with the corresponding

antonyms, it is generally used WordNet, presented in [199].

In [17] authors handle negation performing the following steps. At first, they compile an antonym

dictionary using the WordNet dataset. In their work, authors explain how to manage the three

possible cases when looking for antonyms (i.e., a single antonym, multiple antonyms or no antonyms).

The word’s antonym is then randomly selected from the antonym dictionary considered. Eventually,

the negation terms in tokenized text are identified by the authors. In the event that is discovered a

negation word, the token that follows it (i.e., the word to be negated) is selected, and the antonym

of that word is searched in the dictionary of the antonyms. The negated word and the negation
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word are swapped out if an antonym is found. In their work, the authors provide a running example

where the sentence ”I am not happy today” is replaced by the sentence ”I am sad today”.

Handling negations can generally improve performance for sentiment analysis-related tasks based

on sentence classification. However, a comprehensive study on the effect of handling negations for

author profiling tasks (i.e., classifying a whole dataset related to an author instead of performing

classification of single sentences) is still missing.

Negation handling, mentioned here, usually solves the problem considering the presence of par-

ticles or adverbs of denial. Indeed, to treat negations effectively also on a larger portion of text

(instead of single words), parsing strategies apply.

3.3.16 Word segmentation

It is quite common to find different words merged together in online texts. Such a case can be due

both to a typing error or to a deliberate choice. In the first case a user could wrongly type the

word ”Beyoncelemonade” instead of the two different words ”Beyoncé Lemonade”. The merged

word represents noise and could likely be the only token in the dataset. In a tweet like: ”I like

beyoncelemonade” a model could not understand the topic (i.e., music) of the sentence. Considering

the same merged word, a user could deliberately write #beyoncelemonade as a hashtag within the

shared post. In this case, word segmentation would change the desired usage of the author, as

reported in [210]. Nevertheless, segmenting merged words has proved to be helpful in understanding

and better classifying contents of tweets and posts[214][301].

In other cases, a model could benefit from processing words grouped together. It is the case of

words like ”United States”, where splitting single words as different tokens could make it harder

for a model to catch the underlying concept of the single word ”UnitedStates”. In the second case,

word embedding-based architectures could get the meaning of a whole sentence, understanding the

reference to the specific country (i.e. United States of America).

3.4 Experiments on text preprocessing

To assess the impact of the three most common techniques (i.e., lowercasing, removing stop words

and stemming) I performed several experiments. I evaluated the impact of the single techniques

but also the impact of all the possible combinations of them. In Figure 3.2 is shown the process I

applied for the experiments. As can be seen from the figure, the application order of each technique

is relevant. For this reason, I evaluated the preprocessing techniques in order. Even if in Figure 3.2

I only show a running example using one, two or three techniques, in the result section I present and

discuss the effect of using all the possible combinations of two and three techniques. The libraries I

used to apply the techniques were already presented and referenced in the Section 3.3.
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Figure 3.2: From the left to the right is shown the preprocessing applied using a single technique
and a combination of two and three techniques respectively. As can be seen from the figure, the
application order of each technique is relevant. In the experiments, I evaluated the combinations of
the three most common techniques.
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3.4.1 Evaluated models and datasets

I introduce the models and the datasets evaluated in the experiments in this section. For the

traditional models I provide the reference to the libraries used and in the Section 3.4.2 I further

discuss parameters setup for the tested configuration. For the deep learning models, I provide

the reference to the original study reporting changes, if applied. Transformers models are shortly

discussed, and the specific pre-trained version used is reported. The steps applied before feeding

each model are:

1. Preprocessing each sample’s text

2. Word-by-word breakdown (at space characters) of the text in each preprocessed sample

3. Mapping each word (ngram) to a token

4. Associating a unique integer value (index of the token) to each token

5. Using these indices to translate each text into a sequence of integers

Then, two different operations can be performed following the step 5) with respect to traditional

and to deep models. For the traditional models the vector of ints is translated into a bag-of-words

representation8, while for the deep models the vector of ints is used as-is by the following word

embedding layer. In the case of the deep learning models, the word embeddings are trained from

scratch during the training phase. For the Transformers, the pre-trained embedding of each model

is used. The fine-tuning is performed accordingly to each reference paper.

• Logistic Regression (LR). LR is commonly employed in TC for several tasks [254]. Despite

its name, LR is actually a linear classification model. Maximum-entropy classification, logit

regression and log-linear classifier are common terms to refer to LR. The LR is based on a

logistic function that is employed to approximate the likelihoods of the possible results of an

experiment. LR is also used for ensemble of text classifiers, as reported in [262]. For the

experiments, I used the sklearn Logistic Regression implementation9. I used an L2 penalty, a

C value equal to 1.0 and the lbfgs solver as discussed in [47].

• Näıve Bayes (NB). As reported in [189] and experimentally demonstrated over time by

outcomes from various TC tasks [240], NB is one of the most effective model to employ for

classification. I evaluated a multinomial NB classifier from the sklearn MultinomialNB imple-

mentation10. Data are commonly expressed as word vector counts.

8An array containing at the n-th index, corresponding to the n-th int value, a counter of the occurrences of the
corresponding n-gram

9https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
10https://scikit-learn.org/stable/modules/generated/sklearn.Nave_bayes.MultinomialNB.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.Naïve_bayes.MultinomialNB.html
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• SVM. As reported in [58] and in [174], classifiers based on SVM are well-established methods

for TC tasks. SVM are also employed in ensemble-based text classifier, as reported in [63].

Thanks to SVM models, classification results compared to other classification methods have

been greatly improved. Based on [52], I tested the sklearn SVC implementation11. As a

regularization parameter, I used a value of 1.0 with a linear kernel type.

• Artificial Neural Network (ANN). Starting from the research investigation on how coupled

brain cells in the human brain could generate complex patterns, or neurons [191] along with the

development of the perceptron [245], nowadays, ANN are widely implemented on a wide range

of tasks. TC is no exception. The architecture I implemented for the experiments consists

of an embedding layer, a dropout layer, three dense/dropout pairs of layers, a global average

pooling layer, a dropout layer and a final single dense unit layer. The network architecture is

shown in Figure 3.3.

• Convolutional Neural Network (CNN). The CNN evaluated here is the one presented

in [259] and also used in [184]. In this case I do not report further details or the image of

the network architecture which can be found in the above-mentioned papers. Such a CNN

consists essentially of a single convolutional layer. As demonstrated by its results, this CNN

outperforms Transformers and others proposed models as stated in [239] on a classification

task similar to the ones proposed in this PhD thesis.

• Bidirectional LSTM (BiLSTM). In place of feed-forward networks, recurrent neural net-

works are widely utilized to categorize text data. In [211], authors discuss how to perform TC

using LSTM network and their variants like BiLSTM and GRU. For the work, I developed a

simplified version of the BiLSTM discussed in [258]. Also, in this case I do not report further

details or the image of the network architecture which is presented in [258]. The model consists

of two bidirectional LSTM layers. I did not employ any activation functions for any of the

dense layers. I used a binary cross-entropy loss and the optimization algorithm by Adam [141]

to train the model.

• RoBERTa. Authors in [173] — by offering a replication study on the pre-training of BERT

— improve the performance of the BERT model by changing the pre-training stage. These

adjustments consist of the following: (1) training the model for more time using larger batch

size; (2) ignoring the objective of predicting next sentence; (3) using longer sequences for

training; (4) altering the pattern for masking used on the training instances in a dynamic way.

The version of RoBERTa I used is presented in [173].

• ELECTRA. According to what stated in [57], ELECTRA suggests replacing certain tokens

with possible replacements taken from a small generator network, instead of masking the input

11https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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like in BERT. Then, a discriminative model is trained to predict whether each token in the

corrupted input was replaced by a generator sample or not, as opposed to developing a model

that predicts the original identities of the corrupted tokens. Along with graph neural network,

ELECTRA can also be employed as an embedding layer as in [176]. In the experiments, the

original version of ELECTRA, presented in [57], was used.

• XLNet. A generalized autoregressive pretraining strategy is the one suggested in [304]. By

optimizing the predicted likelihood across all combination of the factorization order, it enables

learning bidirectional contexts. XLNet surpasses BERT, frequently by a significant margin, on

a number of tasks, including question answering, sentiment analysis, document ranking and

natural language inference. For this study I used the pre-trained XLNet using zero-shot cross

lingual transfer discussed in [53].

A recent rise in the application of classification techniques based on graphs is noteworthy. A

recent study can be found in [176] for TC but, recently, graph-based methods are also used for traffic

prediction [166], computer vision [234] and social networking [257]. However, most of these methods

are not yet able to outperform models evaluated and discussed here.

The four datasets evaluated in this study come from different domain, and they have been

already presented in the Chapter 2. They are, namely: the FNS, the PCL, the IMDB and the

20N datasets. I describe their structure, content and their respective size in the above-mentioned

chapter. As already stated, all the four datasets used are publicly available and used in recent

literature for TC tasks. I used datasets with varying sizes and distinct classification objectives to

examine how each preprocessing strategy affects different classification tasks.

3.4.2 Experimental setup

The experiments were performed using TensorFlow on an NVIDIA GeForce RTX 2080 GPU on

a local machine and on a Tesla T4 from Google Cloud. For the Transformers, I used the Simple

Transformers12 library. Each of the Transformers used came from the library of Transformers

provided in [299]. The batch size for all models was 1. For 10 epochs, I fine-tuned the Transformers-

based models, early stopping in accordance with the test set accuracy. The best accuracies of

the Transformers models used, as suggested in reference work, were generally obtained before the

tenth epoch of fine-tuning. The DL architectures (ANN, CNN and BiLSTM) were trained for

20 epochs. In this case too, there were no benefits in training over 20 epochs; on the test set,

the best accuracies were always obtained before epoch 20. I followed the protocol used in [173]

to evaluate the performance of each deep model tested. So, I initialize each model with random

weights, and then I run the training and the evaluation phases for five times (with early stopping

12https://simpleTransformers.ai/about/

https://simpleTransformers.ai/about/
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Figure 3.3: The ANN architecture implemented for the experiments. Numbers in brackets indicate
tensor dimensions. Layers as depicted on the Google Colab Notebook.
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Figure 3.4: Box plot for the nine models evaluated on the IMDB (left) and on the PCL (right)
dataset. The deep learning models are the less sensitive to the preprocessing strategy employed,
while the Transformers are the most sensitive.

for each run), then I report the median accuracy along the five runs, as the representative result

of each model. Furthermore, in the Section 3.4.3 I report the maximum gap from such a median

considering the five runs. The Jupyter notebooks hosted on GitHub can be used to study the

outcomes of the experiments. For the three traditional models, I use the implementations discussed

in the Section 3.4.1 and because of their deterministic nature there is no need of performing multiple

runs. I have previously provided references to each model’s original implementation, along with each

architecture’s experimental setup. The datasets I used are described in the preceding section and

are accessible upon request.

3.4.3 Results

I report my comments on the results in this section. The results reported in this section concern

the impact of the three most common preprocessing techniques. The experiments investigated not

only the effect of single techniques but also in combination. On the three dataset used, from Table

3.3 to Table 3.6 the results of the experiments are reported. In each table is shown the binary

accuracy measured as the number of correct predictions divided on the number of all the predictions

provided. In evaluating the preprocessing impact, the DON strategy represents the case where no

preprocessing is applied. It means that each sample in the datasets is provided as-is to the learning

model. Likewise, the results associated to LOW show the impact of lowercasing each character in

the dataset samples. Also, the impact of the combination of the three techniques is evaluated. In

the second block of each table, I show the results obtained using two techniques in combination. For

example, the case (L)-(R) shows the performance when each sample in the dataset is lowercased
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and, after that, each stop word in the sample is removed. For the third block of rows in the tables,

I report the results obtained using the combination of the three technique.

Furthermore, even if already stated, it is worth repeating that for deep models the median over

five runs with random initialization is reported. Next to the median is reported the gap between

the median and the lowest/highest accuracy obtained along the five runs. The best result (i.e., the

best median on the five runs) is reported in bold black, while the worst result is shown in bold

red. Eventually, for the deep architectures tables, the acronyms of the preprocessing techniques are

abbreviated for readability purposes. In Figure 3.4 and in Figure 3.5 I show the box-and-whisker

plots for the three evaluated datasets and for each model tested. The distributions used to build up

each plot are taken from the Tables from 3.3 to 3.6 and each box represents the result distribution

for the model indicated on the x-axis.

3.4.4 IMDB

For the IMDB dataset, the results of the deep models are shown in the Table 3.3. The best perfor-

mance is obtained by ELECTRA with lowercasing as preprocessing technique. The use of the same

model employing stemming, lowercasing and removing stop words as combination leads to a gap of

over the 7% in the classification performance. Also for XLNET the same preprocessing combination

consistently degrades performance. In this case the gap between the best and the worst result in

the table is above the 25%. The worst result for RoBERTa involves stemming and removing stop

words. This result seems to highlight that the pre-trained model do not benefit by reducing words to

their corresponding stem. Nevertheless, while the Transformers’ performance improves using word

variations, stop words appear to be not necessary at all. In fact, the best results for RoBERTa and

XLNet are obtained removing stop words. Even the second-best result of ELECTRA is obtained

removing stop words with a very low gap from the best result. So, removing stop words has to be

taken into account when dealing with Transformers on datasets similar to the IMDB one evaluated

here. Using deep models there is not a substantial difference between the worst and the best re-

sults while varying the combination of techniques applied. This finding can also be noted in the

Figure 3.4. In fact, the size of the boxes related to the result distributions of the deep models are

significantly smaller. The CNN performs consistently better than ANN and BiLSTM. Furthermore,

lowercasing is always involved in any best result obtained by the DL models. Finally, it is worth

mentioning that while the deviation from the median along the five runs changes for any model and

any preprocessing technique, the CNN obtains an impressive and consistent null variation for any

preprocessing technique considered along the five runs. CNN is also the only model with a variation

under the 2% considering the best and the worst combination of preprocessing techniques in terms of

accuracy. In fact, the worst result is 0.853 using combination of stemming, stop words removal and

lowercasing while the best one is 0.857 using lowercasing or combination of removing stop words,

stemming and lowercasing. It can be stated that, even if stemming is one of the most studied and
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employed preprocessing technique discussed in the literature, it does not appear to be involved in

any of the best combination of techniques considered here.

The results of the traditional models on the same dataset are reported in Table 3.6. The best

results are obtained by the SVM without using any preprocessing technique or removing stop words

and lowercasing combination. Considering that for the SVM the gap between the best and the

worst result is below 5% it should be evaluated if the preprocessing stage is worth the additional

complexity. Similar gaps between the best and the worst results happen for the other two models

(i.e., NB and LR). Finally, as already stated, the worst results for each model involve stemming.

3.4.5 PCL

The results of the deep models for the PCL dataset are reported in Table 3.4. Only for this dataset

it happens that the best performance is obtained using a single technique or no preprocessing at

all. The best performance is obtained by ELECTRA with lowercasing as preprocessing technique.

This result is aligned with the one obtained in the case of the IMDB dataset. With a very similar

behavior, in this case too, the use of stemming, lowercasing and removing stop word as combination

leads to the worst result. However, the gap with the best result, in this case, is more than the 9%.

The worst result is obtained by the ANN using lowercasing, stemming and removing stop words

as a combination of techniques (i.e., 0.721). Considering the ANN, there is not any substantial

improvement selecting the best combination (i.e., removing stop words, 0.739). Finally, for the

first time, one of the best results involves stemming as preprocessing technique (this is the case

of the CNN with stemming as combination). However, even for the PCL dataset, deep models

do not highlight a significant difference between the worst and the best results while varying the

combination of techniques applied. The CNN performs consistently better than ANN and BiLSTM.

Consistently with the results reported in the literature, stop word removal is involved in the best

results obtained by the ANN and the BiLSTM. It is interesting that no combination of multiple

techniques are involved in the best results obtained using this dataset. Finally, even for this dataset,

the deviation from the median along the five runs changes smoother for the shallow models with

respect to the Transformers-based ones.

The results obtained by the three traditional models are reported in Table 3.6. The best result

(i.e., 0.736) is reached by the NB employing lowercasing as preprocessing technique. For this dataset,

performance is more responsive to the combination employed. As instance, for the SVM the gap

between the best and the worst result (i.e., last four rows in the table) is above the 10%. This should

lead to further attention when selecting a proper preprocessing technique for an SVM if dealing with

similar tasks. Even for this dataset, the worst results for each model involve stemming.
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3.4.6 FNS

The results of the deep models are reported in Table 3.5 for the FNS dataset. The best performance

of 0.730 is obtained by a simple CNN applying only stop word removal as preprocessing technique.

The same result is obtained by the ANN using removing stop words, stemming and lowercasing as

a combination. However, results along the five runs are more consistent in the case of the ANN.

The worst results (i.e., 0.500) are obtained by the XLNET with several combinations of techniques.

However, also in this case XLNET is very sensitive to the combination of techniques employed. This

is proved by the gap between the best and the worst results (i.e., 18%). This can also be noted from

the size of the box plot in Figure 3.5. As shown in the table, stop word removal is involved in four

best results over six. In the remaining two best results, stemming and lowercasing are involved.

It is worth repeating that this dataset is very different in the numbers and shape of samples

with respect to other datasets. In fact, any sample consists of the last 100 tweets of a Twitter

user. As widely discussed in [256], traditional and deep models perform consistently better than

Transformers. Also on this dataset, stop word removal could be generally considered as a proper

preprocessing method when dealing with deep models. Even for this dataset, deep models do not

exhibit a great difference between the worst and the best results, while varying the combination of

techniques applied. Considering the deep models, deviation from the median along the five runs is

more consistent also for this dataset if compared with Transformers.

The results obtained by the three traditional models on the same dataset are reported in Table

3.6. The best result is obtained by the NB classifier using the removing stop words and lowercasing

combination as a preprocessing technique. The gap between the best and the worst results for

each model is still under the 5% also for this dataset. The worst results for the NB model involve

stemming. However, as in the case of the logistic regressor and of the SVM, the worst performance

is obtained performing no preprocessing at all.

3.4.7 20N

The results obtained by the three traditional models on the 20N dataset are reported in Table 3.6.

It is worth repeating that this dataset entails a multi-class classification problem, and the accuracies

reported are related to the performance in assigning the correct category to a newsgroup article.

The best result of 0.160 is obtained by the SVM using different preprocessing strategies. Even if

stemming has rarely proved to be an effective preprocessing choice, in this case it allows the SVM to

perform at its best. However, the results using stemming, removing stop words and stemming and

removing stop words stemming and lowercasing are the same obtained with no preprocessing applied.

There is no point in using any preprocessing with the NB model. In this case the gap between the

best and the worst result is irrelevant, and I do not even highlight the best results obtained almost

in every preprocessing combination. The LR shows the most variable behavior in terms of results.
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Table 3.3: Median accuracy and maximum gap from the median accuracy of the three deep models
on the IMDB dataset. In bold black and red are shown the best and the worst results, respectively,
for each model.

IMDB

Preprocessing RoBERTa XLNet ELECTRA ANN CNN BiLSTM
DON (D) 0.884 ± 0.00 0.885 ± 0.00 0.888 ± 0.00 0.835 ± 0.01 0.856 ± 0.00 0.847 ± 0.00
LOW (L) 0.877 ± 0.00 0.881 ± 0.01 0.895 ± 0.04 0.842 ± 0.01 0.857 ± 0.00 0.843 ± 0.01
RSW (R) 0.885 ± 0.00 0.886 ± 0.00 0.890 ± 0.07 0.840 ± 0.01 0.855 ± 0.00 0.843 ± 0.01
STM (S) 0.853 ± 0.00 0.852 ± 0.03 0.857 ± 0.05 0.834 ± 0.01 0.856 ± 0.00 0.837 ± 0.02
(L)→(R) 0.875 ± 0.04 0.878 ± 0.01 0.888 ± 0.01 0.840 ± 0.01 0.854 ± 0.00 0.844 ± 0.01
(L)→(S) 0.849 ± 0.00 0.847 ± 0.01 0.860 ± 0.03 0.845 ± 0.00 0.855 ± 0.00 0.845 ± 0.02
(R)→(L) 0.876 ± 0.04 0.874 ± 0.00 0.890 ± 0.01 0.844 ± 0.01 0.855 ± 0.00 0.847 ± 0.01
(R)→(S) 0.826 ± 0.02 0.823 ± 0.32 0.832 ± 0.02 0.839 ± 0.00 0.855 ± 0.00 0.844 ± 0.02
(S)→(L) 0.849 ± 0.00 0.845 ± 0.03 0.864 ± 0.01 0.839 ± 0.00 0.854 ± 0.00 0.840 ± 0.01
(S)→(R) 0.798 ± 0.07 0.817 ± 0.01 0.832 ± 0.01 0.843 ± 0.01 0.854 ± 0.00 0.843 ± 0.01
(L)→(S)→(R) 0.806 ± 0.04 0.782 ± 0.12 0.824 ± 0.01 0.837 ± 0.01 0.855 ± 0.00 0.839 ± 0.34
(L)→(R)→(S) 0.838 ± 0.34 0.820 ± 0.02 0.837 ± 0.04 0.842 ± 0.01 0.854 ± 0.00 0.845 ± 0.00
(S)→(L)→(R) 0.812 ± 0.01 0.645 ± 0.18 0.818 ± 0.02 0.840 ± 0.01 0.856 ± 0.00 0.845 ± 0.01
(S)→(R)→(L) 0.818 ± 0.02 0.820 ± 0.05 0.837 ± 0.01 0.843 ± 0.01 0.853 ± 0.00 0.839 ± 0.01
(R)→(L)→(S) 0.829 ± 0.03 0.837 ± 0.17 0.825 ± 0.05 0.838 ± 0.01 0.855 ± 0.00 0.848 ± 0.01
(R)→(S)→(L) 0.806 ± 0.03 0.822 ± 0.07 0.848 ± 0.01 0.838 ± 0.01 0.857 ± 0.00 0.838 ± 0.34

Table 3.4: Median accuracy and maximum gap from the median accuracy of the three deep models
on the PCL dataset. In bold black and red are shown the best and the worst results, respectively,
for each model.

PCL

Preprocessing RoBERTa XLNet ELECTRA ANN CNN BiLSTM
DON (D) 0.834 ± 0.01 0.837 ± 0.01 0.832 ± 0.02 0.734 ± 0.01 0.746 ± 0.01 0.746 ± 0.02
LOW (L) 0.816 ± 0.01 0.829 ± 0.01 0.839 ± 0.01 0.731 ± 0.00 0.741 ± 0.01 0.749 ± 0.01
RSW (R) 0.827 ± 0.01 0.811 ± 0.03 0.816 ± 0.01 0.739 ± 0.01 0.741 ± 0.01 0.756 ± 0.03
STM (S) 0.804 ± 0.03 0.796 ± 0.30 0.799 ± 0.00 0.734 ± 0.00 0.751 ± 0.01 0.749 ± 0.02
(L)→(R) 0.824 ± 0.01 0.806 ± 0.31 0.822 ± 0.02 0.731 ± 0.01 0.741 ± 0.01 0.751 ± 0.01
(L)→(S) 0.811 ± 0.02 0.796 ± 0.02 0.794 ± 0.01 0.736 ± 0.01 0.739 ± 0.00 0.749 ± 0.02
(R)→(L) 0.822 ± 0.01 0.809 ± 0.31 0.827 ± 0.02 0.729 ± 0.00 0.739 ± 0.01 0.744 ± 0.01
(R)→(S) 0.779 ± 0.04 0.754 ± 0.03 0.774 ± 0.01 0.734 ± 0.01 0.744 ± 0.01 0.751 ± 0.02
(S)→(L) 0.809 ± 0.01 0.804 ± 0.01 0.806 ± 0.02 0.729 ± 0.01 0.741 ± 0.01 0.746 ± 0.01
(S)→(R) 0.786 ± 0.02 0.756 ± 0.26 0.776 ± 0.02 0.736 ± 0.01 0.741 ± 0.01 0.749 ± 0.01
(L)→(S)→(R) 0.776 ± 0.05 0.759 ± 0.02 0.766 ± 0.06 0.721 ± 0.02 0.739 ± 0.02 0.749 ± 0.01
(L)→(R)→(S) 0.774 ± 0.01 0.754 ± 0.02 0.774 ± 0.04 0.731 ± 0.01 0.749 ± 0.01 0.751 ± 0.01
(S)→(L)→(R) 0.766 ± 0.01 0.746 ± 0.13 0.766 ± 0.01 0.724 ± 0.01 0.744 ± 0.01 0.751 ± 0.00
(S)→(R)→(L) 0.789 ± 0.01 0.759 ± 0.01 0.786 ± 0.06 0.734 ± 0.01 0.736 ± 0.00 0.746 ± 0.00
(R)→(L)→(S) 0.771 ± 0.03 0.756 ± 0.06 0.781 ± 0.01 0.736 ± 0.01 0.741 ± 0.01 0.744 ± 0.01
(R)→(S)→(L) 0.786 ± 0.02 0.764 ± 0.01 0.771 ± 0.02 0.734 ± 0.01 0.746 ± 0.00 0.744 ± 0.01
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Table 3.5: Median accuracy and maximum gap from the median accuracy of the three deep models
on the FNS dataset. In bold black and red are shown the best and the worst results, respectively,
for each model.

FNS

Preprocessing RoBERTa XLNet ELECTRA ANN CNN BiLSTM
DON (D) 0.695 ± 0.02 0.620 ± 0.12 0.605 ± 0.09 0.720 ± 0.00 0.725 ± 0.02 0.585 ± 0.11
LOW (L) 0.655 ± 0.04 0.645 ± 0.04 0.690 ± 0.02 0.730 ± 0.01 0.720 ± 0.01 0.610 ± 0.08
RSW (R) 0.705 ± 0.01 0.680 ± 0.18 0.560 ± 0.02 0.725 ± 0.01 0.730 ± 0.01 0.595 ± 0.07
STM (S) 0.660 ± 0.03 0.500 ± 0.13 0.665 ± 0.01 0.715 ± 0.02 0.720 ± 0.03 0.610 ± 0.05
(L)→(R) 0.665 ± 0.02 0.645 ± 0.14 0.680 ± 0.14 0.720 ± 0.02 0.715 ± 0.01 0.565 ± 0.02
(L)→(S) 0.625 ± 0.04 0.510 ± 0.15 0.670 ± 0.05 0.720 ± 0.01 0.715 ± 0.01 0.595 ± 0.07
(R)→(L) 0.670 ± 0.02 0.650 ± 0.05 0.665 ± 0.03 0.725 ± 0.01 0.720 ± 0.01 0.560 ± 0.05
(R)→(S) 0.650 ± 0.15 0.500 ± 0.00 0.645 ± 0.00 0.715 ± 0.01 0.720 ± 0.01 0.595 ± 0.07
(S)→(L) 0.660 ± 0.13 0.500 ± 0.17 0.665 ± 0.02 0.725 ± 0.00 0.725 ± 0.01 0.645 ± 0.04
(S)→(R) 0.660 ± 0.15 0.515 ± 0.13 0.630 ± 0.03 0.715 ± 0.00 0.725 ± 0.01 0.605 ± 0.07
(L)→(S)→(R) 0.640 ± 0.10 0.575 ± 0.07 0.630 ± 0.12 0.715 ± 0.01 0.715 ± 0.01 0.585 ± 0.08
(L)→(R)→(S) 0.645 ± 0.01 0.625 ± 0.12 0.635 ± 0.07 0.715 ± 0.01 0.720 ± 0.01 0.600 ± 0.06
(S)→(L)→(R) 0.640 ± 0.14 0.645 ± 0.14 0.640 ± 0.14 0.725 ± 0.01 0.715 ± 0.00 0.585 ± 0.06
(S)→(R)→(L) 0.640 ± 0.14 0.500 ± 0.15 0.610 ± 0.11 0.720 ± 0.00 0.720 ± 0.01 0.610 ± 0.08
(R)→(L)→(S) 0.645 ± 0.12 0.660 ± 0.16 0.635 ± 0.05 0.720 ± 0.02 0.720 ± 0.02 0.570 ± 0.11
(R)→(S)→(L) 0.640 ± 0.01 0.605 ± 0.10 0.655 ± 0.15 0.730 ± 0.00 0.725 ± 0.01 0.590 ± 0.06

Table 3.6: Accuracies for the three non-deep models on the three test dataset used. In bold black
and red are shown the best and the worst results, respectively, for each model. For NB on 20N, I
avoid black bold for most of the column because of the same results.

IMDB PCL FNS 20N

Preprocessing NB SVM LR NB SVM LR NB SVM LR NB SVM LR
DON 0.767 0.835 0.798 0.726 0.729 0.693 0.685 0.630 0.640 0.040 0.160 0.140
LOW 0.771 0.831 0.801 0.736 0.696 0.668 0.695 0.665 0.650 0.040 0.140 0.100
RSW 0.787 0.831 0.833 0.719 0.651 0.686 0.705 0.715 0.660 0.020 0.100 0.060
STM 0.741 0.794 0.773 0.683 0.678 0.691 0.675 0.645 0.640 0.040 0.160 0.080
LOW → RSW 0.787 0.828 0.833 0.706 0.671 0.683 0.720 0.690 0.680 0.040 0.140 0.040
LOW → STM 0.725 0.803 0.770 0.678 0.668 0.688 0.700 0.665 0.615 0.040 0.120 0.100
RSW → LOW 0.789 0.835 0.820 0.721 0.663 0.691 0.725 0.690 0.675 0.040 0.120 0.020
RSW → STM 0.780 0.794 0.811 0.671 0.641 0.656 0.680 0.695 0.675 0.020 0.160 0.100
STM → LOW 0.725 0.803 0.800 0.678 0.668 0.673 0.700 0.665 0.635 0.040 0.120 0.060
STM → RSW 0.775 0.790 0.821 0.681 0.641 0.646 0.675 0.675 0.670 0.020 0.140 0.120
LOW → STM → RSW 0.750 0.799 0.820 0.678 0.623 0.648 0.695 0.680 0.645 0.040 0.140 0.080
LOW → RSW → STM 0.747 0.794 0.821 0.668 0.636 0.661 0.700 0.685 0.650 0.040 0.140 0.080
STM → LOW → RSW 0.749 0.797 0.814 0.678 0.623 0.661 0.690 0.675 0.645 0.040 0.140 0.080
STM → RSW → LOW 0.749 0.797 0.814 0.678 0.623 0.661 0.690 0.685 0.655 0.040 0.140 0.080
RSW → LOW → STM 0.757 0.797 0.807 0.673 0.623 0.678 0.720 0.670 0.655 0.040 0.140 0.120
RSW → STM → LOW 0.756 0.797 0.803 0.673 0.623 0.651 0.720 0.675 0.685 0.040 0.160 0.080
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In fact, the gap between the worst and the best case is of the 12% and the best result is obtained

when no preprocessing is applied. Contrary to what happens for the IMDB dataset, removing stop

words and lowercasing is the worst preprocessing combination. From a general perspective, the

preprocessing impact on the 20N datasets is similar to the one exhibited on the PCL dataset. In

two out of three models used, there are no benefits in applying some preprocessing to the data.

Regarding the 20N dataset, I do not show the table about the deep and Transformer models. If

this table had been shown it would be, in most cases, a set of full red and black bold numbers. For

the same reason, I do not show the box plot for all the models. In fact, for this dataset, I have found

very small variations applying different preprocessing strategies. While the range 0.080-0.012 of the

accuracies for every model is very similar to the one shown for the traditional models, employing

the deep learning classifiers the results are often more consistent and around 0.100 regardless of

the preprocessing strategy applied. However, it is worth noting that the CNN for the deep models

and RoBERTa for the Transformers are the top performing models using removing stop words as a

preprocessing strategy. As already stated, the detailed results of the experiments are available on

GitHub.

3.4.8 Discussion

From a theoretical point of view, I have empirically shown that the text preprocessing strategy

can affect the performance of any modern classifiers, including the most recent Transformers-based

architectures (RQ2). Along with the different datasets used can be seen that preprocessing only

marginally affects deep models, while the most significant impact is on the Transformers. It is

likely that this result depends on the word embedding for the two classes of models. While the

Transformers make use of a pretraining phase, the embedding trained from scratch in the case of the

deep models could be the main cause of the less sensitivity to the preprocessing strategy applied. In

Figure 3.4 similar results between the IMDB and the PCL dataset can be observed. Interestingly,

the traditional models are also sensitive to the preprocessing strategy applied, but not as much as

the Transformers. It is worth mentioning that while for the IMDB and the PCL datasets the impact

of the preprocessing strategy can significantly affect the outcomes, in the case of the FNS dataset

the only model really sensitive to the preprocessing strategy is the XLNet. In the other cases the

result distributions prove that the most common preprocessing strategies, alone or in combination,

do not significantly change the outcomes. This fact could be due to the sample size in the FNS

dataset. As already stated, each sample is made up by the last one hundred tweets of an author.

So the impact of preprocessing could be less significant because of the more information available in

each sample with respect to the samples in the IMDB and in the PCL dataset.

As a consequence of the high impact of the preprocessing, even simple classification methods can

achieve SOTA results, outperforming more complex and recent pre-trained architectures (i.e., the
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Figure 3.5: Box plot for the nine models evaluated on the FNS dataset. On this dataset, eight out
of nine models show minimal sensitiveness to the preprocessing strategies.

Transformer-based ones). I discovered that also for pre-trained architectures, the preprocessing step

plays a significant role, and it is able to drastically revert the final outcome of a classifier. In other

words, this confirms that different and simple preprocessing strategies constitute a critical aspect

in the pipeline of any TC task. Eventually, the preprocessing stage can also affect the classification

performance more than the classification model itself.

With regard to the box plots, it can be stated that it appears irrelevant to focus on preprocessing

when dealing with deep models without pre-trained word embedding like the ones evaluated here.

Similar observations can be likely extended to datasets containing samples with long text instead of

just a few sentences, as in the case of the IMDB or the PCL datasets. Consequently, the preprocess-

ing strategy to apply when dealing with Transformer-based models should be carefully evaluated,

considering that the most used techniques not necessarily lead to improvements compared to not

performing preprocessing at all. On the other hand, it is evident from the box plots in Figure 3.4

that a wrong preprocessing strategy in place of the best one can significantly change the outcomes

of the same model.

As proved by the results provided, the impact of preprocessing is increasingly important depend-

ing on the size of the dataset samples. In fact, looking at the box plots, the larger the samples of the

dataset are (as in the case of FNS) the less the chosen preprocessing strategy matters. Furthermore,

Transformers-based models are the less sensitive to the preprocessing combination employed, with

respect to not performing any preprocessing. Finally, while lowercasing can be considered as the



CHAPTER 3. PREPROCESSING 69

Figure 3.6: Effect of no-preprocessing and of one of the preprocessing strategy on a small part of a
single sample from the FNS dataset.

first choice when dealing with ELECTRA, removing stop words and do not performing preprocess-

ing should be considered when using RoBERTa or XLNet. On the other hand, stemming should be

carefully employed when in combination with other techniques. In fact, as discussed in the previous

section, for any deep model used in this study it often degrades performance. The only interest-

ing and surprisingly result is the case of the CNN on the PCL dataset. In such a case the use of

stemming leads to the best result obtained by the CNN.

For the multi-class classification task regarding the 20N dataset, I have found a similar impact

of preprocessing when looking at the PCL dataset. This could be motivated by a similar structure

of the samples in the two datasets or, eventually, to similar contents. For this reason, given different

preprocessing strategy applied, a certain model could respond similarly in terms of performance gap.

3.4.9 Qualitative analysis

In this section, I conduct a brief qualitative analysis to show how the text preprocessing alters

dataset samples and how the specific strategy affects the performance.

As previously reported, the minor impact of preprocessing is visible on the FNS dataset regardless

of the model used. An example without and with preprocessing (i.e., removing stop words) is shown

in Figure 3.6. Any snippet of text enclosed within tags document represents tweets from the same

author. In this case the classification task is about classifying an author as an FNS or as a non-FNS.

To accomplish the task, 100 tweets written by the author are available.

From the example shown, it is possible to understand that the impact of preprocessing is minimal.

This result is confirmed by the results of the experiments. Especially considering that the one

reported is only an extract of a sample relating to an author and not the entire sample including the

other tweets. Therefore, what emerged from the results of the experiments on the FNS dataset can

be motivated by the fact that having to classify an author using the set of tweets written, regardless

of the preprocessing applied, the stylistic information that allows to classify an author as FNS or

non-FNS is however present. Therefore, the impact of the preprocessing strategy used is minimal

and on a dataset of this type, preprocessing could be neglected.

On the other hand, looking at the Figure 3.7 it is easy to understand the reason preprocessing is so
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Figure 3.7: Effect of removing stop words only and of stemming after removing stop words on the
IMDB dataset. Three different samples from the dataset are shown.

relevant on datasets similar to the IMDB one. The goal of classification in this case is to understand

whether a single review is positive or negative. In this case the average length of the single sample

is much shorter than that of the samples of the FNS dataset. Therefore, one preprocessing choice

rather than another can drastically change the results obtained while maintaining the same model.

For example, in the case of XLNet, the best classification result was obtained using the removal of

stop words as the only preprocessing strategy. Instead, the worst result was obtained by the strategy

that involves the removal of stop words followed by stemming. In this case the accuracy gap is the

18%. This result is easy to be understood, looking at the three samples from the dataset shown in

the Figure 3.7.

3.4.10 Conclusion and future works

In this study, I have presented the most popular preprocessing techniques found in the literature. I

have then evaluated and compared the effect of the three most common techniques on four datasets

from different domains. To determine the impact of various preprocessing combination on various

datasets, extensive testing was done. Nine machine learning models were used to evaluate each

preprocessing method. The chapter also lists the worst- and best-performing strategies in terms of

the dataset and the model, and it suggests techniques that, whether employed alone or in combi-

nation, consistently outperform the others. Results vary also in relation to the different algorithm,

which demonstrates that selecting a learning algorithm that is appropriate for the task at hand is

crucial for enhancing the TC performance. The best preprocessing strategies, either separately or in

combination, that produce the best classifier performance are suggested following tests with various

strategies and observation of the interactions of the preprocessing method employed. The analysis

emphasizes how crucial preparing data is to ensure consistency when comparing various learning
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models. Moreover, the research highlights that, depending on the preprocessing method selected,

the results are highly variable, also using modern Transformers. The findings ought to motivate re-

searchers to pick their preprocessing choices carefully and to document those choices when assessing

or contrasting various models.

While one could conclude that removing stop words and lowercasing are two well-performing

preprocessing technique, based on this study, it should be noticed that performing no preprocess-

ing at all, is rarely the best choice for optimal results. The recent significant growth in model

understanding capabilities (e.g., Transformers) has caused the emphasis to shift away from data

and toward the evolution and development of newer and more powerful models. With this chapter,

I aimed to draw attention to and explore the importance of the impact of the source data and

associated preprocessing, which should not be disregarded. Specific preprocessing can aid in both

increasing effectiveness and performance and better understanding the behavior of the most recent

Transformers-based NLP models, such as ChatGPT. Because of the very automated and promising

performance of Transformers, the current trend is to underestimate the best preprocessing method

of text (and this is proven by the increasing lack of attention on the subject). However, it is just on

the Transformers that I have found the greatest gap between the best and the worst combination

of preprocessing techniques used. This increased understanding could lead to the creation of newer

models that are not only improved in performance but also developed more consciously.

Future research in this area can further look into the impact of these and other preprocessing

approaches for NLP tasks others than TC. Also, other preprocessing technique combination and

how they interact could be further investigated. Future studies could eventually investigate other

classes of models and the impact of the preprocessing in relation to the samples size in the dataset

evaluated. In fact, as also noted in [216] [239] [32], concerning three different author profiling tasks,

the best performance obtained by the traditional and the deep models in place of the Transformers

should be further investigated. For all of these author profiling datasets, the impact of preprocessing

could be investigated to further corroborate some findings reported in this study. Finally, different

preprocessing methods could also be used to investigate and understand in greater depth behaviors

of deep and Transformer models. The benefit could be to unveil some interesting mechanisms

happening under the hood, with particular regard to the field of the deep learning.



Chapter 4

Representation

Before moving to the classification stage, it is necessary to convert unstructured data, especially free-

running text data, into organized numerical data. To do this, a document representation model must

be used to employ a subsequent classification system following the text preprocessing stage. Text

representation models convert text data into a numerical vector space, which has a substantial impact

on how well subsequent learning tasks can perform. In the history of NLP, word representation has

always been a topic of interest. It is crucial to properly represent such text data, since it contains

a wealth of information and may be applied broadly across a variety of applications. This chapter

examines the expressive potential of several word representation models, ranging from the traditional

to the contemporary SOTA word representation language models. Model designs, including language

models, have been explored, and a range of text representation techniques have been examined.

These models are capable of turning massive amounts of text into useful vector representations that

effectively capture relevant semantic data. Furthermore, different machine learning models can make

use of these representations for a range of NLP tasks. If it is able to effectively capture intrinsic

data properties, better text representation will probably lead to superior performance. I also briefly

discuss the drawbacks of the provided representation models in the sections that follow. In detail,

after the preprocessing of a raw text, the next stage is to perform a probabilistic tokenization

accordingly to a split strategy. Probabilistic tokenization consists in separating text units and

converting it into a numerical representation. In automatic TC, a single word is one of the most

common elements to use as the unit from a text. In this case a single n-gram is referred to a single

word.

Even if it is not properly a text representation method, to represent a unit of text, the n-gram

can be employed as a feature. A representation that makes use of single words (1-gram), regardless

of the order, is called a BoW. This approach is fairly simple to implement. It represents text as a

vector, typically with text that is manageable in size. The terms 2-gram and 3-gram are frequently

72
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used. When two or more grams are used in place of a single gram (i.e., word) the term n-gram can

be used. An illustration of a 2-Gram is given in the following clause:

• ”Once upon a time you dressed so fine.”

In the proposed example, the tokens would be:

• {“Once upon”, “upon a”, “a time”, “time you”, “you dressed” “dressed so”, “so fine”}

An Example of 3-Gram:

• ”Once upon a time you dressed so fine.”

In the proposed example, the tokens would be:

• { “Once upon a”, “upon a time”, “a time you”, “time you dressed”, “you dressed so”, “dressed

so fine”}

It is worth mention that also split strategies at character level have been reported in the liter-

ature, as in [311], where the authors show that a character-level CNN achieve SOTA performance.

Comparisons are made between deep models like word-based ConvNets and RNN and more conven-

tional models like BoW, n-grams, and their TF-IDF variations. In this case, considering a sentence

like:

• ”Purple Haze”

The tokens are as follows:

• {”P”, ”u”, ”r”, ”p”, ”l”, ”e”, ”H”, ”a”, ”z”, ”e”}

The remainder of this section discusses numerous representation models that are frequently

employed. In the past, several researchers have put forth various theories to solve the issue of

words losing their syntactic and semantic links with the chosen representation. These techniques are

presented along with the literature review. First I present some statistical methods, then relevant

representation learning and pre-trained language models are discussed too.

4.1 Text representation models

4.1.1 Statistical models

The earliest and simplest methods for representing textual data are statistical word representation

techniques. Early classification models for computer vision, information retrieval and NLP made
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Figure 4.1: One-hot encoding example

heavy use of these word representation models. It is easy to design and apply this class of models in

almost every existing task. Despite their simplicity, the following are a few drawbacks of such models:

a) they do not take word order into account; b) they do not take word relationships into account;

c) the input vector and the vocabulary are proportional in size, making them computationally

expensive, which may lead to subpar performance.

These models, that were frequently employed in the past for TC, are presented in this section.

This type of words representation approaches are based on word frequency. These techniques convert

text into a vector form that includes a number that in some way quantifies a word’s usage frequency

inside a text. Common statistical techniques that are frequently employed in the literature are

briefly described in the sections that follow.

One-hot encoding

A basic way to represent text is the one-hot encoding. With the one-hot encoding, It is converted

each categorical value into a new categorical column, and it is assigned a binary value of 1 or 0

to those columns. One hot encoding has a dimension equal to the number of vocabulary terms.

Vocabulary terms are all represented as vectors of binary values (i.e., 0 or 1). After mapping each

token into an integer value, to represent the integer value a binary vector is used. All the values are

zero, and the vector index of the considered word is marked with a 1. Every distinct word has its

own dimension, which is a single 1 in that dimension and 0s in the other dimensions. With one-hot

encoding, all words in the dictionary are orthogonal to each other.

Considering the following sentence:

• ”Like a rolling stone”

The one-hot encoding representation is depicted in Figure 4.1.
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Bag of Words (BoW)

Bag-of-Word (BoW) is another method to represent a document. BoW is used to form a vector rep-

resenting a document using the frequency count of terms in the text. This method of representation

is also referred to as a vector space model. By viewing text bodies as unordered groups of words,

this method reduces complex texts. The consequence of this is that phrase semantic and structure

connections of text pieces are ignored (they are ”thrown” into a ”bag” of words). Nevertheless, it

has been demonstrated that, despite its robust assumptions, it can successfully complete a number

of classification tasks.

The fundamental principle of BoW models is that each word is represented as a one-hot-encoded

vector of size equal to the vocabulary. As a result, approaches based on BoW are frequently used

along with feature extraction methods that take into account the diversity of words, enabling the

preservation of a single vector per document as opposed to one for each word. The cardinality of the

vocabulary alone could be in the millions, therefore it is immediately obvious that this could cause

size problems.

The BoW method is employed in a number of fields, including machine learning for computer

vision, Bayesian spam filters and document categorization. A body of text, such as a sentence or a

document, is viewed in a BoW as a bag of words. The BoW procedure produces word lists. These

words’ semantic relationship is not taken into consideration in their gathering and construction,

since the words in a matrix are not sentences that structure sentences and grammar. A sentence’s

meaning can often be inferred from its terms. The main topic of the corpora may later be ascertained

by counting multiplicity rather than grammar or appearance order.

Unfortunately, the BoW representation scheme has its own limitations. Some of them are: high

dimensionality of the representation, loss of correlation with adjacent words and loss of semantic

relationship that exist among the terms in a document. Additionally, because there could be millions

of words in a vocabulary, BoW models have trouble scaling up (for instance, ”I love you” and ”you

love me” have the same vector representation). So, size is one of the main issue facing the community

of computer scientists and data scientists by BoW.

A BoW representation example is depicted in Figure 4.2.

Term Frequency-Inverse Document Frequency

Term Frequency (TF), often used with BoW, is another technique for text representation. The

approach allocates the feature space to the number of token in each document. The simplest way

for weighing words is called TF, and it maps a single word to a number that represents how many

times it appears across the entire corpus.

Word frequency is frequently used as a boolean or a weighted with a logarithmically scaled scale

in methods that expand the findings of TF. In all weight words techniques, the word frequencies in
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Figure 4.2: BoW encoding example

each document are converted into a vector. This method is obvious, but it has limitations because

it may be dominated by words that are often used in the language.

When used for a corpus of texts, the relative frequency of a word in a single document in

contrast to other documents is typically used instead of the explicit count. Another thing to note

is that popular terms, in particular, are naturally worth less in very large corpora. Thus, TF

is frequently weighted by Inverse Document Frequency (IDF). IDF penalizes their overall score

in order to decrease the impact of popular terms (and boosting the one of rarer words). Term

Frequency-Inverse Document Frequency is the term used to describe the combination of TF and

IDF (TF-IDF). The mathematical representation of TF, IDF and TF-IDF is given in the Equations

4.1, 4.2 and 4.3.

tfij =
nij

|Dj |
(4.1)

idfi = log10

|D|
|di|

(4.2)

tf − idf = tfij × idfi (4.3)

Here nij is the number of occurrences of the term i in the document j. The number of terms in

the document Dj is |Dj |. Looking at Equation 4.2, |D| is the total number of documents and |di| is

the number of documents containing the term i.

It happens that TF-IDF representations will always be significantly large depending on the extent

of the vocabulary. It is possible to cap the number of characteristics that can be included in the

vectors in order to reduce difficulties with memory usage and time complexity. A dimensionality

reduction approach can also be applied to the full-sized representations as an alternative.
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Even though TF-IDF attempts to address the issue of common terminology in the document, it

still has certain descriptive shortcomings. Specifically, because each word is supplied as an index

separately in the document, TF-IDF is unable to account for the similarity between the words.

But more recent developments in complex models have given rise to new approaches, like word

embedding, that can take into account ideas like word similarity and POS tagging.

4.1.2 Word embedding models (from scratch)

Statistical word representation methods are plagued by the large dimensionality of dictionaries and

are unable to catch semantic and syntactic meaning of words. Due to these models’ flaws, researchers

learned how to disperse words in low-dimensional space. Statistically based approaches limit their use

in developing an appropriate model in machine learning. Although prior methods primarily collected

syntactic representations of words and little portions of syntactic relationships that connecting them

in phrases, they essentially still fall short of being able to capture their semantic meaning. Word

synonyms serve as a prime illustration of this problem; although being semantically equivalent, these

models are unable to adequately reflect their resemblance. This results in representations that are

orthogonal to one another when viewed in the context of the feature space, i.e., they are viewed as

entirely distinct from one another. Despite the fact that representing words considering the syntax,

does not imply that the approach accurately reflects the word semantics. BoW models, on the

other hand, disregard the word’s meaning. The terms ”auto”, ”car”, ”automobile”, for instance,

are frequently employed in texts interchangeably. BoW model’s vectors for these words, however,

are orthogonal. Understanding sentences within the model is severely hampered by this problem.

The phrase’s BoW also has the issue of disrespecting the phrase’s word order. This issue cannot

be resolved by the n-gram, hence a similarity must be found between each word in the sentence.

As a result, numerous models were put out in the past, each of which automatically finds the

representations for subsequent tasks like classification. These techniques that automatically discover

features are referred to as feature learning or representation learning. This topic is crucial, since

machine learning models depend greatly on how they represent their input. Traditional feature

learning approaches are being replaced by deep learning-based models, characterized by the self-

learning crucial features. Both supervised and unsupervised learning techniques can be used to

learn proper representation. Statistical text representation techniques have been supplanted in the

field of NLP by unsupervised text representation techniques like word embeddings.

The objective of this method is to infer a mapping from each text component, which is often a

word, to an n-dimensional vector of continuous values. In sight of this, an embedding is an array

that can be processed by a computer and also conceals some true words semantic. These techniques

rely on artificial neural networks, which create these mappings using a variety of learning strategies.

They generally rest premising that the meaning of a word can be inferred from the ones that come

before and that follow in a text.
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Due to the word embeddings’ prior understanding of many machine learning models, they became

particularly effective representation techniques to enhance the performance of various downstream

tasks. These neural network-based algorithms have superseded traditional feature learning tech-

niques because of their strong representation learning capabilities. This new class of models has a

major impact on how well downstream learning tasks work. The scientific community has widely

used representation learning techniques to create effective models. Word2Vec, GloVe, and FastText

are examples of continuous word representation methods that have significantly enhanced classifica-

tion outcomes and eliminated categorical representations’ drawbacks. The ability of these continuous

word representations to capture more semantic and syntactic information of the textual data with-

out sacrificing much information is discovered to have a greater impact than traditional linguistic

features. Because they encode words out of context in their most fundamental form, earlier word

embeddings are frequently technically classified as ”static.” Despite their effectiveness, there are still

some challenges they are unable to resolve, such as the fact that they assign each word the same

vector while ignoring its context, making them unable to manage polysemy problems. Therefore,

practically speaking, they do not model polysemy (where an individual word can have different

meanings). A word only has one embedding, regardless of how many meanings it may have; if a

word token is extremely polysemous, it is likely that its embedding will combine its several senses.

Consider the term sound, for instance. As a noun, it can be identified as something audible, yet

as an adjective, it can describe something/someone that is in good shape. However, these are only

two of the almost 50 possible meanings for this term; in light of this, it should be clear that no one

depiction can effectively convey all of them at once. Furthermore, models like Word2Vec and GloVe

assign a random vector to a word that they did not come across during training, making them inca-

pable of handling out of vocabulary (OOV) terms that were resolved by FastText, which separates

words into n-grams. The performance of TC is lowered by each of these restrictions. Additionally,

none of the current SOTA algorithms work well with low-quality text.

Unigrams can be converted into intelligible input for machine learning algorithms using a variety

of word embedding techniques. The remaining portions of this section introduce Word2Vec, GloVe,

and FastText, three of the most popular approaches that have been productively applied to deep

learning techniques. Then are introduced a few context-based representation techniques.

Word2Vec

Authors in [197] proposed one of the earliest well-known families of word embedding designs. To

produce a high-dimensional vector for each word, their method uses shallow neural networks. When

Word2Vec was initially introduced, the Continuous Skip-gram and the Continuous-Bag-Of-Words

(CBOW) were included. By attempting to guess a central word from its context-dependent surround-

ings, the CBOW technique learns word representations. On the other hand, a skip-gram model turns

the task by attempting to predict a word’s neighbors. These are undoubtedly challenging problems,
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Figure 4.3: The original picture from the work on CBOW and Skip-gram models presented in [197].

and the architecture is not intended to know how to guess the words exactly; rather, the real goal is

to generate meaningful mappings between words and embeddings rather than to accurately forecast

the words.

The original image from [197] is displayed in Figure 4.3. A basic CBOW model is shown in the

picture. This approach offers a highly potent tool for identifying linkages in corpora and/or word

similarities. For instance, the embedding can take into account the proximity of two words in the

vector space it gives them, such as ”large” and ”bigger.”

Continuous BoW Model. For a specific objective of words, the continuous BoW model uses

many words as representation. As context words for the target term ”air-force,” ”airplane” and

”military” come to mind. This entails n replications of the input to hidden layer connections, where

text in it is the quantity of context words. Making a vocabulary, or a list of all the original terms in

the corpus, should come first. The task will be ”predicting the term given its context,” according to

the shallow neural network’s output. The quantity of words utilized is determined on the window

size setting (common size is 4–5 words).

Continuous Skip-Gram Model. This architecture is very close to that of CBOW, but it seeks

to maximize categorization of a word based on the preceding word in the same phrase rather than

anticipating the next word based on context. For machine learning algorithms, the syntactic and

semantic content of sentences is preserved using the continuous BoW and Skip-gram model.

Global Vectors for Word Representation (GloVe)

Another word embedding method is GloVe [222], which stands for Global Vectors for Word Repre-

sentations. The method is comparable to Word2Vec, but it varies fundamentally in that it uses a
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count-based model as opposed to Word2Vec’s typical predictive architecture. In contrast to count-

based models, which essentially determine semantic relatedness between words by explicitly exploring

the underlying statistics of the corpus, such as word co-occurrence, predictive models define word

vectors by reducing the loss between the target and prediction given context words and vector rep-

resentations. Word2Vec just uses local information (the context of each word) to build word vectors,

whereas GloVe embeddings are trained considering global co-occurrence data. The huge size of the

matrix for word co-occurrence that GloVe model employs in its computations need to use a dimen-

sionality reduction phase, which is another thing that should be taken into consideration. This

technique is more suited for parallelization, which facilitates training on larger datasets. Although

it is debatable that compressing representations makes them more robust, the fact that this strategy

may be applied to larger datasets cancels out this benefit.

The embedding utilized in several publications is built with over four hundred thousand vocab-

ularies learned across the corpora of Gigaword 5 and Wikipedia 2014, as well as 50 dimensions for

word representation. Additional pre-trained embeddings with different dimensions (e.g., 100, 200,

or 300) are also available from GloVe. These have been developed using training data from even

larger corpora, such as Twitter content.

FastText

One of the best methods for static word embeddings is FastText, which was created by Bojanowski

[37] at the Facebook AI Research lab. This method resolves the main problem that its forerunners

ignore word morphology by assigning each word a distinct vector. Instead, an n-gram using bag-of-

characters serves as FastText’s representation of each word. For instance, the word ”house” with

n = 3 would be represented as ”ho”, ”hou”, ”ous”, ”use” and ”se” along with the entire word as

a unique sequence. The skip-gram architecture is used to train FastText embeddings. Yet, due to

the way words are encoded, the final vector for a word will be composed of the sum of its character

n-grams. As a result, since their n-grams are shared by more common words, it can build efficient

word embeddings for unusual words. The significant part is that it also implies that FastText can

handle OOV words provided that it has seen the n-grams that make up such words during training.

Instead, OOV words are a case that neither GloVe nor Word2Vec can handle. Facebook released

word vectors that have already been trained using FastText on Wikipedia and are available in 294

different languages.

Generic Context word representation (Context2Vec)

This representation technique is presented in [193], and the original image, as compared to Word2Vec,

is shown in Figure 4.4. The BiLSTM neural network used in the model replaces the model’s word

representation within a given window with a superior and more potent one. Using a large text corpus,
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Figure 4.4: The original picture from the work on Context2Vec presented in [193].

a neural network was trained to embed words and sentence context in the same low-dimensional

space, subsequently refines the model to reflect how the target words and their entire sentential

context interact with one another.

Contextualized word representations Vectors (CoVe)

Based on context2Vec, the CoVe model, was introduced in [190]. CoVe was constructed via machine

translation, as opposed to the methods employed by GloVe (Matrix factorization) or Word2Vec (skip-

gram or CBOW). Starting with GloVe word vectors, the authors’ basic strategy was to pre-train a

two-layer BiLSTM for attention sequence to sequence translation. Then, they coupled it with GloVe

vectors to create a CoVe, the output of the sequence encoder, and employed it in a downstream

task-specific mode with transfer learning. On a range of typical tasks, the authors demonstrate that
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adding these context vectors (CoVe) enhances performance over using solely unsupervised word and

character vectors (SQuAD).

Embedding from Language Models (ELMo)

The authors of [227] describe a brand-new kind of deeply word representation using context that

simulates both the intricate aspects of word use (such as semantics and syntax) and the ways in

which these uses change depending on the linguistic environment (i.e., to model polysemy). ELMo,

which provides rich contextual word representations, was proposed by the authors. The flexible

nature of word use in grammar and semantics, as well as how these uses should change as the

linguistic environment changes, are difficulties that researchers agree should be considered in a

word representation model. They consequently provide a deep contextualized word representation

technique to overcome the two issues. From a bidirectional language model, the word embedding are

learned forward and backward. In contrast to other contextual word representations, instead of only

using the last layer representations, ELMo uses a linear concatenation of the representations learned

from the bidirectional language model. For the same term, ELMo offers many embeddings in various

phrases. Both forward and backward language models of bidirectional language models employ the

log-likelihood of phrases during the training phase. After concatenating the hidden representations

obtained from the forwarding language model, the final vector is calculated. With relative error

reductions ranging from 6 to 20% over strong base models, adding ELMo alone creates a new SOTA

outcome for every task taken into account.

4.1.3 Language models

Identifying the subsequent word in a sentence is the most basic kind of language modelling, which

is the ability in estimating the probability of a word given a number of words that come before or

after it in the context. Despite being far older than neural networks, language models have played a

significant role in several modern deep learning-based breakthroughs. Some early language models

were n-gram models, which function by tying probabilities to word sequences (i.e., sentences). It

makes sense that a better-organized sentence will result in a higher score; nevertheless, the precise

meaning of this probability value depends on the job (e.g., an improved translation). Although the

task is to calculate the likelihood of a forthcoming word, the task is related to assigning probabilities

to full sentences and is structured as such. The Markov assumption, which is typically used in these

models, states that the likelihood of a forthcoming term depends solely on the k terms that came

before it. The next developments in this field will rely on the Transformer [286] architecture because

it has been demonstrated to be quicker and more efficient for language modelling than LSTM or

CNN. Although Transformer will also be covered in the parts that follow, they are just briefly

described here and throughout the remainder of this section as language representation models.
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Figure 4.5: The original picture from [286].

Encoder-decoder structures are common in competitive neuronal sequence transduction mod-

els.The model is autoregressive at each phase, using the previous symbols as extra input to construct

the next. Transformers’ encoder converts an input series of symbol representations (x1,. . . , xn) into

an equivalent sequence of continuous representations, z = (z1, . . . , zn). Then the decoder produces

a sequence (y1,. . . , ym) of symbols, starting with z. In accordance with its general architecture,

the Transformer uses layered self-attention and point-wise, entirely connected layers for the encoder

and decoder. The general architecture of a Transformer is depicted in Figure 4.5 as presented in the

original work in [286].

On downstream tasks, every Transformer-based architecture typically goes through the following

steps: a) General language models pre-training; b) Target task language models fine-tuning; and c)

Target task classifier fine-tuning. The language model’s pre-training is unsupervised, and because

there are many unlabeled text datasets, the pre-training can be as broad as possible. However, it

continues to rely on models that are specific to a given task. The transformer-based models that are
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described below were chosen since it is currently challenging to create a better model architecture for

each position, the improvement is therefore still incremental. These models can deal with context-

related problems, but because they were developed using general domain corpora like Wikipedia,

they can only be used for a limited number of tasks or domains. It has been hypothesized that

domain-specific transformer-based models can enhance performance in subdomains. Some popular

pre-trained language models are briefly introduced in the section that follows. Many NLP tasks use

their pretrained embeddings as a first step toward a downstream job. The rest of this part provides

a brief overview of Transformers before presenting the most common models also employed for TC

challenges in Chapter 5.

RNN Encoder–Decoders

Sequence transduction methods have long been dominated by networks with RNN-like designs.

Through the use of RNN-based encoder-decoder architectures and recurrent language models, which

are advancements of traditional word embedding methods, researchers began pushing the limits of

TC. To a better explanation of Transformers, it could be considered a translation task, where the

sequence of input is a sentence in a source language and the output sequence is the translation

of that sentence in another language. Each word in the input sequence is sent sequentially to the

encoder, this has the effect of giving the model the new input word at time step t and the hidden

state at time step t − 1. RNNs should theoretically be able to learn both long- and short-term

associations between words because the input is used in steps and is dependent on the outcome of

the previous step. The encoder’s output is the ”context” which is a compressed representation of the

input sequence. After that, the decoder assesses the context and creates a brand-new set of words

sequentially (for example, a translation into a different language), where each word is dependent on

the results of the preceding time step. Contextually significant information (the context) is latently

recorded while encoding and may afterward be utilized for tasks like TC. The primary drawback of

this strategy is that the encoder must compress all pertinent data into a vector with a fixed-length.

This was shown to be a problem, especially for longer phrases, and it was noted that as input sentence

length increases, basic encoder-decoder performance rapidly degrades. Furthermore, because of their

sequential nature, recurrent models have intrinsic restrictions. Parallelization is impossible due to

sequentially, which results in more complex computations. As a result of the network’s propensity

to forget previous parts of the sequence, longer sentences are considered as the true bottleneck of

RNNs and can cause memory problems (this is mainly due to the vanishing gradient issue). The

attention mechanism was one approach used to overcome the drawbacks of recurrent architectures.

One of the most significant turning points in the development of NLP was reached when this process

eventually became a fundamental component of the Transformer architecture. In contrast to LSTM-

based models, which showed little benefit from a significant increase in size, these designs’ depth

has actually been shown to be quite advantageous to their performance.
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The Attention Mechanism

Attention was designed to help the learning process focus on input phrases’ more significant compo-

nents by paying them ”attention” when it was first utilized as an update to various architectures. As

was indicated before, encoder-decoder designs based on RNNs have historically been used to solve

seq2seq problems. These designs use stacked RNN layers for both the encoder and the decoder.

Bahdanau [18] presented the idea of attention to address this issue in neural machine translation

tasks. The authors argued that the decoder can discriminate between input words and determine

which of them are crucial for synthesizing the following target word by disseminating knowledge

of the whole input sequence. The attention technique relies on the encoder hi’s hidden state (also

known as ”annotation”) improving the input context of each decoder unit, which contains data on the

entire input sequence. ”Additive attention” is the term used to explain the technique discussed here.

Although there are numerous ways to incorporate the attention mechanism in seq2seq architectures,

the goal is to create an alignment score that measures the relative importance of words in the

input and output sequence. Even outside the realm of NLP, where attention first showed its worth,

attentive artificial neural networks are now used in several applications. Hierarchical attention

networks [195, 305] are novel examples of applications in the field of TC. These methods rely on

paying attention at two levels: the word level when encoding document phrases and the sentence level

when essentially encoding the significance of each sentence in respect to the intended sequence. But

now, rather than being only an additional augmentation, attention is used as a solid foundation. This

is the foundation of the Transformer design, which keeps a well-known encoder-decoder structure

but does not employ recursion. Instead, dependencies between input and output are established

only through the attention mechanism. Transformers have been demonstrated to produce superior

outcomes while also gaining significantly more speed because they are highly parallelized.

The Transformer Architecture

Vaswani [286] introduced the Transformer architecture, a cutting-edge encoder-decoder architecture

that enables to handle all input tokens (such as words) simultaneously rather than sequentially.

Transformers presents input sequences as a bag of tokens with no sense of order. The Transformer

uses a mechanism known as ”self-attention” to understand the relationships between tokens. Thanks

to a particular encoding phase that is carried out before the first layer of the encoder, the embed-

dings for the same word that come in the phrase at a different location will also have a distinct

representation. Positional encoding is the process that fills in the information that would otherwise

be lost regarding the relative location of words. The self-attention layer, a crucial part of this archi-

tecture, naturally enables the encoder to scan other words in the input phrase as it processes one

of its words. A multi-head attention layer is produced by stacking several layers of this kind. The

head outputs are then concatenated, and the resulting output is then passed through a linear layer
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to combine the various outputs into a single matrix.

Multiple parallel iterations of these procedures are carried out by the Transformer multi-head

self-attention layer. The goal of this is to broaden the range of representation sub-spaces which the

model could concentrate on. The output of the attention heads is concatenated and routed via a

linear layer to form the final representation, which condenses data from all the attention heads. This

representation is then normalized, added to the residual input, and given to a feed-forward linear

layer.

Transformers greatly improve TC and other NLP tasks by efficiently learning global semantic

representation. It often uses unsupervised techniques to autonomously mine semantic knowledge,

then builds pre-training targets to help machines understand semantics.

4.2 Analysis

In this section, I report the results of a case study to conduct an example of analysis of a word

embedding trained from scratch. Thanks to the methodology proposed in this section, it is possible

to better investigate the results and the behavior of a deep model trained on a specific dataset. The

analysis presented here was conducted focusing on the FNS dataset to investigate the behavior of

a simple CNN and its predictions on the test set after completing the training phase [256]. This

further step can be employed in the TC pipeline to improve the performance of a model and for a

better understanding of its behaviors.

In Chapter 2 I observe that keywords are good indicators to distinguish the two FNS and nFNS

classes, as corroborated also by the results of the Bayesian model reported in Table 5.2. However,

the CNN-based model must go beyond these frequency differences, as its results suggest. In this

section, I provide a post-hoc analysis of the word embedding layer. Although hybrid approaches

have been exploited to eXplainable AI [133], the CNN tested here can be defined as a shallow neural

model. Thus, it can be analyzed mapping each layer outputs to its inputs.

4.2.1 A word embedding case study

After the training, I visualized in the embedding projector two clearly distinguishable clusters, as

reported in Figure 4.2.1a (RQ3). To verify how these two clusters are related to the two classes, I

labelled the words represented there. To do so, I extracted 3959 keywords using a Bayesian model—

precisely, I extracted 1980 most frequent tokens in corpus 0 and 1979 most frequent tokens in corpus

1—and labelled them accordingly. Then, I visualized them in the embedding space of the trained

CNN model, as shown in Figure 4.2.1b. Note that I used key tokens retrieved by the Bayesian

model and not those obtained using Sketch Engine, because the former has the same tokenization

of the CNN model. I excluded tokens occurring in both corpora 0 and 1. Figure 4.2.1b confirms
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(a) (b)

Figure 4.6: Word embedding as visualized in a 3-dimensional space. (a) Unlabeled word embedding
space (75,999 points). (b) Labelled word embedding space (3959 points).

that the two clouds are closely related to the two task classes. Red dots refer to FNS, blue dots

to nFNS. Exploring these clouds, I can find some keywords also identified using Sketch Engine

Keywords (Table 2.3). In Figure 4.2.1a,b, I highlighted Unete1 as FNS keyword and bulos2 as

nFNS keyword. Apart from Unete, in Figure 4.2.1a, I can find other keywords individuated in the

preliminary analysis conducted in Section 2.3. Of course, since Sketch Engine tokenization differs

from that of the CNN model, there is not a one to one mapping. While, for example, following the

standard tokenization in Sketch Engine I can distinguish cased and uncased letters, it is not the case

with punctuation, which is always kept apart. In the embedding space, I can notice that the tokens

with a higher keyness score are positioned farther than the other cluster (see, for example, Unete in

Figure 4.2.1a). Thus, this could suggest that in the embedding space, tokens are located according

to their keyness score.

4.2.2 Discussion

What emerges from this analysis, concerning the word embedding representation, is that the deep

model involved (a shallow CNN) during the training phase is able to clearly subdivide the two vector

spaces of the word vectors directly related with the two labels. It is worth noting that this deep model

ability is highly dependent on the task. Indeed, when some authors are strongly characterized by a

certain dictionary, the separability of the classes can already take place in the initial word embedding

stage and not when performing the convolution in subsequent layers.

However, this separability is not always feasible when training from scratch a word embedding

layer. As the task varies, the authors belonging to a class may not necessarily be characterized by

certain keywords or, even worse, there may be an overlap between the point clouds present in the

word embedding. Therefore, the methodology presented in this section could be useful to analyze the

1In English: join up.
2In English: hoaxes.
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(a) (b)

Figure 4.7: Visualization of FNS and nFNS keywords in the labelled embedding space. (a) Label 1.
(b) Label 0.

embedding space after the model training and, based on the result, evaluate whether it is necessary

to introduce further complexity into the model with successive layers to improve the classification

performance.



Chapter 5

Classification

The TC is usually defined as the process of extracting features from the raw text data and categoriz-

ing the text data based on these features. Over the past few decades, a lot of TC models have been

put forth. Models discussed in this chapter belong to three different classes. The first class includes

Non-Deep Learning (NDL) deterministic models, the second class comprises not pre-trained Deep

Learning (DL) models, the third class includes large pre-trained Language Models (LMs) known as

Transformers.

The preferred method for TC up until recently was NDL models. These techniques usually

use general-purpose classifiers that are not tailored to this situation when it comes to the actual

classification algorithms. The steps in the TC pipeline (Figure 1.1) before extracting machine-

interpretable characteristics and representations from texts are partially ”offloaded” from the unique

challenges posed by textual data (i.e., text interpretation). One of the original models used for TC

tasks was NB. In the following section, general classification models are suggested. These models,

which include KNN, SVM, Logistic Regression, and Random Forest (RF), are frequently used to

classify texts. Recently, it is debatable if the Light Gradient Boosting Machine (LightGBM) and

the Extreme Gradient Boosting (XGBoost) will deliver outstanding performance.

In order to address the TC issue for DL models, a Convolutional Neural Network (CNN) model

has been introduced in [139]. I also take artificial neural networks, RNNs, and bidirectional LSTMs

into consideration.

Although it wasn’t created with TC tasks in mind, the Bidirectional Encoder Representation from

Transformers (BERT) and other Transformer-based architectures have been extensively used when

creating TC models due to their success on a variety of TC datasets. Also, others language models

have been employed on several TC tasks as classifiers. I have already provided some background

on Transformers in the Chapter 4 which is more related to the original scope of any Transformer

architecture. Here, I present some of the most common architectures employed for TC.

89
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Then I present relevant SOTA results of several models and the corresponding result on some

datasets discussed in Chapter 2.

5.1 Classification models

5.1.1 NDL classifiers

Traditional NDL models accelerate TC without any initial pre-training, achieving relevant results

on a plethora of TC tasks. In any NDL models, the first step involves to preprocess input text, with

techniques like removing stop words, removing noise and unwanted characters/strings (see Chapter

3). Then a representation model is chosen to convert text data into a numerical representation as

discussed in Chapter 4.

The NDL classification algorithms are briefly described in this section. These methods are

based on generic classification approaches; as was mentioned, careful data pre-processing and feature

engineering are stressed in order to obtain competitive results.

Logistic Regression

Logistic regression (LR)[93] is one of the earliest classification techniques worth mentioning. By

attempting to determine which properties are most helpful to distinguish cases, the linear classifier

LR attempts to forecast probabilities over classes. Its basic formulation is most effective for binary

classification tasks, but it may be extended to the multinomial situation by using a formulation that

typically incorporates the softmax function or by building an ensemble of several binary classifiers

using a one-vs.-rest strategy.

Linear classifiers as LR are good for large and high-dimensional datasets. It has been proven to

outperform traditional back-off smoothing, because the former has the ability to process unknown

terms and also avoids over evaluating the conditional probability which is originally zero. Ridge

logistic regression is a popular solution to TC problem, however its role in large scale documents

is still questionable. To eliminate this difficulty, sparse solution is combined with ridge regression.

The sparsification removes less important features, thereby solving the classical problem of ridge

regressors[223].

LR is commonly employed in TC for several tasks [254]. Despite its name, LR is actually a

linear classification model. Maximum-entropy classification, logit regression and log-linear classifier

are common terms to refer to LR. The LR is based on a logistic function that is employed to

approximate the likelihoods of the possible results of an experiment. LR is also used for ensemble

of text classifiers, as reported in [262]. Using the sklearn is available online a Logistic Regression
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implementation1. A common solver is lbfgs and is discussed in [47].

Näıve Bayes

Because of how straightforward their structure and calculation are, models like Näıve Bayes (NB)

are particularly well-liked. The assumption of independence, which states that no feature affects

any other features, is what gives this system its simplicity. The NB method’s core idea is to use the

prior probability of a class given the features—as seen in the training set—to determine its posterior

probability.

NB classifiers are derived from Bayes theorem, which states that given the number of documents

n to be classified into z classes where z ∈ {x1, x2, ...., xz} the predicted label out is x ∈ X. The Bayes

theorem, which asserts that the predicted label out is x ∈ X, is the foundation for NB classifiers.

Given the number of documents n to be categorized into z classes, where z ∈ {x1, x2, ...., xz}, the

expected label out is x in X. This is how the NB theorem is formulated:

P (x|y) = P (x)
P (y|x)

P (y)
(5.1)

Where y stands for a document and x stands for the classes. The NB algorithm will, to put

it simply, compute the likelihood that each word in the training data will be classified. Once each

word’s probability has been determined, the classifier is next instructed to categorize fresh data

using the probabilities that had already been determined during the training phase.

The NB approach is straightforward, and the parameters are more minuscule and less vulnerable

to missing data. The assumption is that features are independent of one another. The performance

of NB declines when the number of features is high or when there is a strong connection between

the features. The NB method makes an independent assumption that the conditions between texts

are independent once the target value has been provided. To get the posterior probability, the NB

method largely uses the prior probability. NB is widely used for TC task because of its straightfor-

ward nature. Even if it is occasionally incorrect to assume that the characteristics are independent,

doing so greatly simplifies calculations and improves performance.

NB for TC has been utilized for document classification tasks on a large scale since the 1950s,

according to [230]. Thomas Bayes developed the Bayes theorem, which serves as the theoretical

foundation for the NB classifier approach. This method of information retrieval has received a lot

of attention in recent studies [235]. This method of TC uses generative models, which are the most

often used approach. The simplest form of NB simply counts the words in documents. The use of

the NB classifier can also be considered as a modern TC application because it is employed in the

identification of fake news [95] and sentiment analysis[204]. Three well-liked NB TC methods are

Bernoulli NB, Gaussian NB, and Multinomial NB.

1https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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As reported in [189] and experimentally demonstrated over time by outcomes from various TC

tasks [240], NB is one of the most effective model to employ for classification. A popular multinomial

NB classifier from sklearn is the MultinomialNB implementation2. When dealing with multinomial

distributed data, MultinomialNB implements the NB method. Data are commonly expressed as

word vector counts.

K-NN-Based Classification

By locating the k-most comparable labelled instances and, in its most basic iteration, assigning the

most prevalent category to the unlabeled instance being classed, TC based on K-Nearest Neighbors

(k-NN) algorithms[61] approaches the problem differently.

Instead of using a discriminating class domain to establish the category, KNN mostly relies on the

nearby finite neighboring samples. So it is better suited than other approaches to split the dataset

with greater crossing or overlap of the class domain. The KNN algorithm locates the k documents

in the training set that are closest to a test document called x, and then ranks the category choices

based on the k neighbors’ classification. The score of the category of the neighbor documents may

depend on how closely x resembles each neighboring document. Multiple KNN documents may fall

under the same category; in this case, the similarity score of class k with regard to the test document

x would be calculated by adding these scores. The candidate is assigned to the class with the highest

score from the test document x after the score values have been sorted.

On the large-scale datasets, the KNN approach, however, requires an abnormally long time

because of the positive association between model time/space complexity and the volume of data

([118]). Scholars in [266] suggest a KNN technique without feature weighting to reduce the amount of

selected features. By employing a feature selection, it is able to identify pertinent features and create

word interdependencies. KNN typically classifies samples with more data when the distribution of

the data is extremely asymmetric. To enhance classification performance on the unbalanced corpora,

the Neighbor-Weighted K-Nearest Neighbor (NWKNN) [278] is presented. It gives neighbors in a

narrow class a large weight and neighbors in a wide class a little weight.

Decision Tree

Decision Tree (DT) development and presentation were done in [236] and in [182] respectively. It

is one of the oldest classification models for text and data mining, and it is successfully used for

classification tasks in a variety of fields. This concept was primarily motivated by the desire to build

tree-based attributes for data points, but the key question is which feature will be a child’s level and

which would be a parent feature. The DT classifier design has a root, decision, and leaf node that

represent the dataset, execute computation, and carry out classification, respectively. The classifier

2https://scikit-learn.org/stable/modules/generated/sklearn.Nave_bayes.MultinomialNB.html

https://scikit-learn.org/stable/modules/generated/sklearn.Naïve_bayes.MultinomialNB.html
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learns the judgment that must be made in order to divide labelled groups during the training phase.

The data is processed through the tree in order to categorize the unclassified instance. A specific

property of the incoming text is compared to a fixed that was previously learned during the training

phase. The choice is based on whether the chosen feature is more prominent than or less prominent

than the fixed feature, which divides the tree into two parts. This comparison is made at each

decision node. The text will finally traverse these decision nodes and arrive at the leaf node that

describes the class to which it has been allocated. The benefits of the DT classifier include the

nearly non-existent number of hyperparameters that need tuning, its simplicity in description, and

the ease with which its visualizations can be understood. On the other hand, the DT classifier has

some significant drawbacks, including the risk of overfitting, sensitivity to small changes in the data,

and difficulties with prediction outside of samples.

The DT method produces simple classification rules, and the pruning technique [241] can also

assist lessen the impact of noise. Its fundamental weakness, however, is from its inability to effectively

handle datasets with rapidly growing sizes. Information gain is explicitly used by the Iterative

Dichotomiser 3 (ID3) algorithm [236] as the attribute selection criterion in the selection of each

node. It’s utilized to choose the attribute for each branch node before choosing the one with the

greatest information gain value to serve as the discriminant attribute for the current node.

An DT-based symbolic rule system is proposed by the author in [124]. The approach converts

each text into a vector based on the frequency of each word, and it then generates rules based on

training data. The classification of the additional data, which resembles the training data, is done

using the learning rules. Fast Decision-Tree (FDT) [287] also employs a two-pronged approach to

lower the computational costs of DT algorithms: pre-selecting a feature set and training multiple

DTs on various data subsets. To address the issues of imbalanced classes, the results from different

DTs are integrated using a data-fusion technique.

An DT-based symbolic rule system is proposed by the author in [124]. The approach converts

each text into a vector based on the frequency of each word, and it then generates rules based on

training data. The classification of the additional data, which resembles the training data, is done

using the learning rules. Fast Decision-Tree (FDT) [287] also employs a two-pronged approach to

lower the computational costs of DT algorithms: pre-selecting a feature set and training multiple

DTs on various data subsets. To address the issues of imbalanced classes, the results from different

DTs are integrated using a data-fusion technique.

Random Forest

Random Forest (RF), also known as an ensemble learning methodology, focuses on ways to compare

the outcomes of multiple trained models in order to provide a better classifier and performance than

a single model. A proposed RF classifier that is easy to learn and produces better classification
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outcomes is described in [108]. A bootstrapped subset of the training text is used to train each tree

in the number of DT classifiers that make up the RF classifier. At each decision node, a random

subset of the characteristics is chosen, and the model only looks at a portion of these attributes. The

main problem with using a single tree is that it has a lot of variety, which makes it susceptible to the

effects of how the training data and feature arrangements are organized. Although this classifier is

rapid to train on textual data, Bansal [22] found that it is slow to make predictions after training. It

performs well with both categorical and continuous data, can handle missing values automatically,

is robust to outliers, and is less impacted by noise than training numerous trees, which can be

computationally expensive, take a long time to train, and use up a lot of memory.

Support Vector Machines (SVMs)

Authors in [59] suggest the Support Vector Machine (SVM) to deal with the binary classification of

pattern recognition. For the first time, authors in [121] represent each text as a vector, employing the

SVM algorithm for TC. The TC challenges are divided into numerous binary classification tasks using

SVM-based methods. By maximizing the distance between the hyperplane and the two categories

of training sets, SVM generates an ideal hyperplane in the one-dimensional input space or feature

space in this situation, resulting in the best generalization ability. The objective is to maximize

the distance along the category boundary that is perpendicular to the hyperplane. In other words,

this will produce the lowest categorization error rate. To arrive at a globally optimal solution, the

challenge of building an optimal hyperplane can be turned into a quadratic programming problem.

To ensure that SVM can handle nonlinear problems and develop into a reliable nonlinear classifier,

it is crucial to select the right kernel function [161, 275]. To further reduce the labelling effort based

on the supervised learning algorithm SVM, active learning [164] and adaptive learning [221] methods

are employed for TC. Joachims [123] suggests a theoretical learning model combining the statistical

traits with the generalization performance of an SVM, analyzing the features and benefits using a

quantitative approach. This analysis examines what the SVM algorithms learn and what tasks are

suitable. A universal decision function that takes into account a particular test set is presented to

be used with the Transductive Support Vector Machine (TSVM) [122] to reduce misclassifications of

specific test collections. It establishes a better framework and studies more quickly by using existing

knowledge.

SVMs extend to multidimensional, non-linear classification by projecting their inputs to a higher-

dimensional space in order to potentially be better able to distinguish training categories. The kernel

trick is the name of the process because the function that maps to this higher-dimensional space is

known as a kernel function. The key to getting good performance is choosing the proper form and

parameters.

As reported in [58] and in [174], classifiers based on SVM are well-established methods for TC

tasks. SVM are also employed in ensemble-based text classifier, as reported in [63]. Thanks to SVM
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models, classification results compared to other classification methods have been greatly improved.

Based on [52], is available online the sklearn SVC implementation3.

5.1.2 DL classifiers

The Artificial Neural Networks (ANN) that make up the DL classifiers mimic the human brain

to automatically learn high-level features from data, outperforming conventional models in speech

recognition, picture processing, and text understanding. To categorize the data, input datasets

like a single-label, multi-label, unsupervised, imbalanced dataset should be examined. The input

word vectors are delivered into the ANN for training in accordance with the trait of the dataset up

until the termination condition is met. The downstream tasks, such as sentiment categorization,

question answering, and event prediction, provide as proof of the training model’s effectiveness. In

the recent decades, a large number of deep learning models for TC have been suggested. The first

two deep learning methods for the TC task that outperform conventional models are the multilayer

perceptron and the recursive neural network. Then, for text categorization, CNNs, RNNs, and

attention processes are applied. Many researchers enhance CNN, RNN, and attention, or model

fusion and multitask approaches, to improve TC performance for various tasks. Text categorization

and other NLP methods have advanced significantly with the introduction of BERT, which can

produce contextualized word vectors. It has been found that TC models based on BERT perform

better than the models mentioned above in a variety of NLP tasks, including TC. Additionally,

Graph Neural Network (GNN)-based TC technology is being studied by certain academics in order

to collect structural information in the text that cannot be captured by alternative techniques.

Except the attention-based models, I go into detail below about a few exemplary models. For a

detailed discussion on attention-based models, please refer to Chapter 4.

Artificial neural network

The gap between shallow and deep methodologies is bridged by straightforward structures like

Multilayer Perceptrons (MLPs) or Artificial Neural Networks (ANN). These neural network designs

are among the most fundamental, but they serve as the cornerstone for the first word embedding

methods and produce great results when used as standalone classifiers. These MLP models often

approach input text as an unordered BoW, with each input word being represented by a different

feature extraction method (like TF-IDF or word embeddings).

ANN see text as a collection of BoW. They first use an embedding model, such as Word2Vec

[197] or Glove [222], to learn a vector representation for each word. They then use the vector sum or

average of the embeddings as the representation of the text, pass it through one or more feed-forward

layers known as Multi-Layer Perceptrons (MLPs), and perform classification on the representation

3https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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of the final layer using a classifier, such as The Deep Average Network (DAN)[116] that is one of

these models.

DAN performs better than other more complex models that are intended to explicitly learn the

compositionality of texts, despite their simplicity. On datasets with large syntactic variance, DAN,

for instance, performs better than syntactic models. A straightforward and effective text classifier

named fastText is proposed by the authors of [128]. FastText sees text as a collection of words,

much like DAN. FastText, unlike DAN, uses a bag of n-grams as extra features to record local word

order data. In practice, this proves to be quite effective, producing outcomes that are comparable

to those obtained by methods that explicitly employ the words order [294].

Additionally, the authors of [157] propose doc2vec, which use an unsupervised approach to train

fixed-length feature representations of variable-length textual units like sentences, paragraphs, and

documents. Doc2vec’s architecture resembles that of the CBOW model. The extra paragraph token

that is via matrix converted to a paragraph vector is the only difference. To forecast the fourth

word in doc2vec, this vector’s concatenation or average with a context of three words is employed.

The paragraph vector serves as a placeholder for context-missing data and can serve as a reminder

of the paragraph’s subject. After training, the paragraph vector is sent to a classifier for prediction

and utilized as features for the paragraph (for example, in place of or in addition to BoW). When

Doc2vec is released, it produces brand-new SOTA outcomes on a number of TC tasks.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [232]—which are designed to get word relationships and text

structures for TC—view text as a series of words. Pure RNN models, on the other hand, frequently

perform worse than feed-forward neural networks. Long Short-Term Memory (LSTM) is the most

often used RNN variation, since it is intended to better capture long-term dependency. By incor-

porating a memory cell to retain values over virtually any time period and three gates (input gate,

output gate, forget gate) to control the flow of data into and out of the cell, LSTM solves the gra-

dient disappearing or exploding issues that plagued vanilla RNNs. There have been efforts to make

RNNs and LSTM models for TC better by capturing additional data, such as natural language tree

structures, long-span word relations in text, document topics, and so forth. The authors of [211]

describe how to conduct TC using LSTM networks and various variations, such as BiLSTM and

GRU. Additionally, authors who employ a BiLSTM in [258] do so with noteworthy outcomes. Two

bidirectional LSTM layers make up the model.

The authors of [274] develop a Tree-LSTM model, a generalization of LSTM to tree-structured

network typologies, to learn complicated semantic representations. Because natural language pos-

sesses syntactic characteristics that would naturally join words to form phrases, the authors contend

that Tree-LSTM is a more effective model for NLP tasks than the chain-structured LSTM. On the
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two tasks of sentiment classification and predicting the semantic similarity of two sentences, they

validate the efficiency of Tree-LSTM. The chain-structured LSTM is also extended to tree struc-

tures by the authors of [315], using a memory cell to preserve the history of numerous child cells or

numerous descendant cells in a recursive process. The new model, they contend, offers a systematic

approach to thinking about long-distance communication over hierarchies, such as language or pic-

ture parse structures. The LSTM architecture is supplemented in [55] with a memory network in

place of a single memory cell in order to model long-span word relations for machine reading. With

brain attention, this permits adaptive memory use during recurrence and provides a method for

weakly inducing relationships between tokens. In terms of language modelling, sentiment analysis,

and NLI, this model yields encouraging results. By capturing important information with various

timescales, the Multi-Timescale LSTM (MT-LSTM) neural network, which is described in [170], is

also intended to model extended texts, such as sentences and papers. A typical LSTM model’s hid-

den states are divided into many categories by MT-LSTM. At various times, each group is updated

and activated. MT-LSTM can therefore model extremely long documents. On TC, MT-LSTM is

said to perform better than a number of baselines, including models based on LSTM and RNN.

RNNs have trouble remembering long-distance dependencies, but they do a decent job of capturing

the local structure of a word sequence. Contrarily, word ordering is not taken into account by latent

topic models, which can only represent the overall semantic structure of a document. The authors

of [74] suggest a TopicRNN model to combine the advantages of latent topic models and RNNs. It

uses latent topics to capture global (semantic) dependencies, while employing RNNs to capture local

(syntactic) dependencies. According to reports, TopicRNN performs better in sentiment analysis

than RNN baselines. Other intriguing RNN-based models exist. The authors of [171] train RNNs

to utilize labelled training data from numerous related tasks by utilizing multitask learning. The

authors of [125] investigate an LSTM-based text region embedding technique. Authors in [314]

present a novel architecture that combines a BiLSTM model with two-dimensional max-pooling to

capture text features. A bilateral multi-perspective matching model is put out in [295] inside the

”matching-aggregation” framework. A BiLSTM model is used by the authors of [292] to investigate

semantic matching utilizing various positional sentence representations. It is crucial to remember

that RNNs are a subset of DNNs. A recursive neural network continually applies the same set of

weights over a structural input to create a structured prediction or a vector representation over

inputs of varying sizes. Recursive neural networks (RNNs) are recursive neural networks with a

linear chain structure input, whereas recursive neural networks with a hierarchical structure input,

such as parse trees of English language sentences ([265]), can operate on hierarchical structures by

integrating child representations into parent representations. RNNs are the most popular recursive

neural networks for TC because of their effectiveness and ease of use.
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Figure 5.1: The original image of the CNN architecture proposed in [139].

Convolutional Neural Networks

Computer vision applications are frequently linked with Convolutional Neural Networks (CNNs).

CNNs are employed for classifying images using convolving filters that can extract picture charac-

teristics. However, they have also been used, especially in the context of NLP and TC. In [139],

one of the earliest attempts to use a CNN for sentiment analysis is covered. Figure 5.1 shows

the original network structure. The author describes a series of experiments using a CNN trained

for sentence-level classification tasks on top of pre-trained word vectors. The author demonstrates

that a straightforward CNN with little hyperparameter adjustment and static vectors performs ad-

mirably on a variety of benchmarks. Additional performance benefits can be obtained by learning

task-specific vectors through fine-tuning. In order to support the use of both task-specific and static

vectors, the author also suggests a straightforward change to the architecture. The CNN models

mentioned here outperform the current state of the art on 4 of the 7 tasks, including sentiment

analysis and question classification.

The CNN architecture used in [256] to identify FNS on Twitter is displayed in Figure 5.2. The

input text’s word vectors are first combined into a word embeddings matrix. The convolutional

layer, which has multiple filters with various dimensions, feds the matrix. The output of the convo-

lutional layers is then passed through the pooling layer and concatenated to create the final vector

representation of the text for two additional pairs of conv-pool layers. The last vector predicts the

category. To avoid overfitting, certain dropout layers are placed between layers.

Examining their input, which likewise uses word embeddings, is the simplest way to comprehend

these methods. RNNs typically input a sentence’s words in order, but CNNs provide sentences as

a matrix, with each row representing an embedding of a word (therefore, the number of columns

corresponds to the size of the embeddings). Contrary to RNN, CNN can apply convolutions defined

by many kernels to numerous chunks of a sequence at once. In contrast, convolutional filters often
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Figure 5.2: The architecture of the CNN used proposed in [256].

glide over local portions of an image in two directions in image-based tasks. Instead, filters in text-

related tasks are typically made to be as wide as the embedding size, ensuring that this operation

only proceeds in ways that make sense from a sentence-level perspective while always taking the

full embedding for each word into account. In general, the speed and effectiveness of CNNs’ latent

representations are considered to be their key benefits. On the other hand, when analyzing text,

other features that could be used while working with images, like location invariance and local

compositionality, make little sense.

Other interesting applications based on CNN are discussed in [259] and also used in [184]. Such

CNNs consist essentially of a single convolutional layer. As demonstrated by its results, these CNNs

outperforms Transformers and others proposed models as stated in [239].

Capsule Neural Networks

CNNs use pooling and successive layers of convolution to categorize images and words. Convolution

procedures lose information on spatial relationships and are more likely to misclassify things based

on their orientation or proportion, despite the fact that pooling operations identify important fea-

tures and simplify computation. Hinton et al. suggest a novel strategy known as capsule networks

(CapsNets)[106] to overcome the issues with pooling. A capsule is a collection of neurons that rep-

resent various properties of a certain kind of thing, such as an object or an object component, by
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their activity vector. The length of the vector denotes the likelihood that the entity exists, while the

vector’s orientation denotes the characteristics of the entity. In contrast to max-pooling of CNNs,

which chooses some information and discards the rest, capsules use all the data present in the net-

work up to the final layer for classification by ”routing” each lower-layer capsule to its ideal parent

capsule in the higher layer. Different methods, such as dynamic routing-by-agreement [247] or the

EM algorithm [107] can be used to implement routing.

Capsule networks, which have recently been used in TC, modify capsules to represent a sentence

or document as a vector. The authors of [302] suggest a TC model built on a CapsNets variation. An

n-gram convolutional layer, a capsule layer, a convolutional capsule layer, and a fully linked capsule

layer make up the model’s four layers. The authors test three methods for stabilizing the dynamic

routing process in order to reduce the disruption caused by noise capsules that contain background

data such stop words or words that are unrelated to any document categories. Additionally, they

investigate Capsule-A and Capsule-B, two capsule structures. Similar to the CapsNet in [247] is

Capsule-A. To learn a more thorough text representation, Capsule-B employs three parallel networks

with filters of various window sizes in the n-gram convolutional layer. In the tests, CapsNet-B

performs better.

Graph Neural Networks

TextRank [196] is one of the earliest graph-based models created for NLP. The authors suggest

modelling a natural language document as a node-and-edge graph. Nodes can represent text units

of various types, such as words or complete sentences, depending on the applications at hand. Similar

to how lexical or semantic relationships, contextual overlap, etc. may all be represented using edges,

so can other forms of relationships between any nodes. DL methods for graph data, like the text

graphs utilized by TextRank, are extended to create modern Graph Neural Networks (GNNs).

Over the past few years, DNN, including CNNs, RNNs, and autoencoders, have been adapted to

handle the complexity of graph data. In order to perform graph convolutions, for instance, a 2D

convolution of CNNs for image processing is generalized by taking the weighted average of a node’s

neighborhood information. Convolutional GNNs, such Graph Convolutional Networks (GCNs) [142]

and its derivatives, are the most often used among the numerous types of GNNs because they perform

well and are simple to combine with other neural networks, and they obtain SOTA results in many

applications. An effective CNN variation for graphs is the GCN. To learn graph representations,

GCNs stack layers of previously learned first-order spectrum filters and then apply a nonlinear

activation function. TC is a common GNN application in NLP. GNNs use the relationships between

words or documents to infer the labels of documents. Authors in [219] propose a graph-CNN based

DL model that first transforms text into a graph of words before using graph convolution procedures

to convolve the word graph. They demonstrate through tests that CNN models have the benefit

of learning several levels of semantics, whereas the graph-of-words representation of texts has the
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advantage of capturing non-consecutive and long-distance semantics. Authors suggest a TC model

in [220] that is built on hierarchical taxonomy-aware and attentional graph capsule CNNs. The

usage of the hierarchical relationships among the class labels, which in earlier methods are deemed

independent, is one of the model’s distinctive characteristics. In particular, the authors create a

novel weighted margin loss by taking into account the label representation similarity in order to

exploit such relations. They also construct a hierarchical taxonomy embedding approach to train

their representations. Similar Graph CNN (GCNN) model is used for TC in the method in [306].

They create a single text graph for a corpus based on word co-occurrence and document word

relations, and then train a Text Graph Convolutional Network (Text GCN) for the corpus. The

Text GCN learns the word and document embeddings jointly under the supervision of the known

class labels for documents, after initializing with a one-hot representation of each.

5.1.3 Transformers

Also in TC, the attention-based techniques are successfully applied. The model can pay varying

attention to different inputs thanks to the attention mechanism. It first groups necessary words

into sentence vectors, and then groups necessary sentence vectors into text vectors. Through the

two levels of attention, it can determine the relative contributions of each word and sentence to

the classification judgment, which is useful for applications and analysis. The popularity of the

attention mechanism stems from its potential to enhance TC performance with interpretability.

The remainder of this section introduces a few of the most well-known Transformer architectures

that are also employed for a number of TC applications.

Bidirectional Encoder Representations from Transformers (BERT)

Bidirectional Encoder Representations from Transformers (BERT) is a method for fine-tuning for

individual tasks without creating bespoke network architectures by first training a large language

model on free text. The contextualized word representation language model is presented in [73] and

uses parallel attention layers rather than sequential recurrence in the transformer. BERT is trained

with two tasks in place of the fundamental language task to promote bidirectional prediction and

sentence-level comprehension. BERT is trained on two unsupervised objectives: (1) a Masked

Language Model (MLM) task, in which 15% of the tokens are randomly masked (i.e., replaced with

the ”[MASK]” token), and the model is trained to predict the masked tokens; and (2) a Next Sentence

Prediction (NSP) task, in which the model is given a pair of sentences and trained to determine when

the second one follows the first. The purpose of this second assignment is to gather more practical

or long-term data. English Wikipedia text passages and the dataset of Books Corpus are used in

BERT training. The BERT-Base and BERT-Large pre-trained models are both available. BERT

can be used to unannotated data as well as fine-tuned task-specific data directly from the trained
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model. Online resources include both the fine-tuning code and the publicly available pre-trained

model.

GPT2

In 2019, the OpenAI team published GPT2 [237], a scaled-up version of GPT. In terms of the

location of layer normalization and residual relations, it adds a few minor enhancements over the

previous version. There are actually four different GPT2 variants, the smallest of which is identical

to GPT, the medium of which is comparable to BERT Large, and the xlarge of which was produced

with 1.5B parameters, which is the actual GPT2 standard.

RoBERTa

Authors in [173], by offering a replication study on the pre-training of BERT, improve the perfor-

mance of the BERT model by changing the pre-training stage. These adjustments consist of the

following: (1) training the model for more time using larger batch size; (2) ignoring the objective of

predicting next sentence; (3) using longer sequences for training; (4) altering the pattern for masking

used on the training instances in a dynamic way.

ALBERT

Despite its success, BERT has some drawbacks, such as its enormous amount of parameters, which

leads to concerns with pre-training time degradation, memory management challenges and model

degradation. These problems are extremely effectively addressed by ALBERT, which Lan proposed

in [155] and updated based on the BERT architecture. ALBERT uses two-parameter reduction tech-

niques to scale pre-trained models, removing the crucial obstacles. The large vocabulary embedding

matrix is divided into two smaller matrices using factorized embedding parameterization, NSP loss

is replaced with SOP loss, and cross-layer parameter sharing prevents the parameter from increasing

with network depth. When compared to BERT, these techniques considerably reduce the amount

of parameters utilized while having little to no impact on the model’s performance, enhancing pa-

rameter efficiency. As BERT large has 18 times fewer parameters and can be trained roughly 1.7

times faster, an ALBERT configuration is the same as that. Despite having fewer parameters than

BERT, ALBERT produces novel SOTA outcomes.

DistilBERT

A lighter version of BERT based on a transformer (i.e., DistilBERT), requires a quicker model to

train being a more compact general-purpose language representation model. DistilBERT shrinks the

original BERT model by 40% while keeping 97% of its language understanding skills and increasing
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speed by 60%. If BERT can be seen as the instructor in the process of knowledge distillation,

DistilBERT is the pupil. A little model that represents the student is trained to mimic the behavior

of the larger model (i.e., the teacher). Such a compact model is trained with a linear combination

of three losses: the distillation loss (i.e., Lce), the masked language modelling loss (i.e., Lmlm), and

the cosine embedding loss (i.e., Lcos). Because of the distilled nature of the model, training and

fine-tuning on a specific dataset for a specific task is of prominent importance. Refer to [250] for a

thorough description of DistilBERT.

XLNet

A generalized autoregressive pretraining strategy is the one suggested in [304]. By optimizing the

predicted likelihood across all combinations of the factorization order, it enables learning bidirec-

tional contexts. BERT is surpassed by XLNet, often with a relevant margin, on a number of tasks,

including question answering, sentiment analysis, document ranking and NLI. A popular implemen-

tation is the pre-trained XLNet using zero-shot [53].

Text-to-Text Transfer Transformer (T5)

By converting the data to text-to-text format and using an encoder-decoder framework, unified NLU

and generation is possible. The T5 pre-training corpus has been developed, and it also comprehen-

sively contrasts previously presented methodologies, in terms of pre-training aims, architectures,

pre-training datasets, and transfer mechanisms. T5 employs a pre-training for multitasking and

a text infilling objective. T5 employs the decoder’s token vocabulary as the prediction labels for

fine-tuning.

ELECTRA

According to what stated in [57], ELECTRA suggests replacing certain tokens with possible replace-

ments taken from a small generator network, instead of masking the input like in BERT. Then, a

discriminative model is trained to predict whether each token in the corrupted input was replaced

by a generator sample or not, as opposed to developing a model that predicts the original identities

of the corrupted tokens. Along with GNN, ELECTRA can also be employed as an embedding layer,

as in [176].

5.1.4 Hybrid and others approaches

Hybrid approaches

To capture local and global aspects of sentences and documents, many hybrid models that incorpo-

rate LSTM and CNN architectures have been developed.
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A CNN-RNN model that can capture both global and local textual semantics and, consequently,

represent high-order label correlations while having a manageable computational complexity is used

by Chen et al. [54] to perform multi-label TC.

A Convolutional LSTM (C-LSTM) network is suggested by Zhu [316]. In order to create the

sentence representation, C-LSTM uses a CNN to extract a series of higher-level phrase (n-gram)

representations. For document modelling, Zhang et al. [313] suggest using a Dependency Sensitive

CNN (DSCNN). The sentence vectors learned by the LSTM in the hierarchical DSCNN model are

then supplied to the convolution and max-pooling layers to produce the document representation.

Xiao et al.[300] recommend using character-based convolution and recurrent layers for document

encoding, since they see a document as a series of characters rather than words. When compared to

word-level models, my model produced equivalent results with a lot less parameters.

Kowsari et al. suggest a Hierarchical Deep Learning method for TC in [147]. At every level of

the document hierarchy, HDLTex uses stacks of hybrid DL model architectures, such as MLP, RNN,

and CNN, to give specialized knowledge.

A reliable Stochastic Answer Network (SAN) for multistep reasoning in machine reading com-

prehension is proposed by Liu [172]. Memory networks, Transformers, BiLSTM, attention networks,

and CNN are just a few of the neural network types that are combined in SAN. The context rep-

resentations for the questions and passages are obtained via the BiLSTM component. A passage

representation that is question-aware is derived by its attention mechanism. A second LSTM is then

employed to create a working memory for the section. A Gated Recurrent Unit (GRU) based answer

module then generates predictions.

For language modelling, Kim et al. [140] use a highway network with CNN and LSTM over

characters. A character embedding lookup is done in the first layer, followed by convolution and max-

pooling operations to create a fixed-dimensional representation of the word that is then transferred

to the highway network. The output of the highway network serves as the input for a multi-layer

LSTM. To extract the distribution across the following word, an affine transformation and a softmax

are then applied to the LSTM’s hidden representation.

Other approaches

The twin neural network is another name for the siamese neural network [56]. It works in tandem

with two different input vectors and uses equal weights to produce equivalent output vectors. A

siamese adaptation of the LSTM network made up of pairs of variable-length sequences is presented

by Mueller [205]. The model, which outperforms ANN of higher complexity and painstakingly

created features, is used to estimate the semantic similarity between texts. The model also encodes

text using neural networks with word vectors as inputs that were separately learned from a sizable

dataset.
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Deep learning techniques call for numerous additional hyperparameters, which raises the compu-

tational difficulty. In semi-supervised tasks, Virtual Adversarial Training (VAT) [201] regularization

based on local distributional smoothness can be employed. It simply needs a few hyperparameters

and can be directly read as robust optimization. Miyato uses VAT to significantly enhance the

model’s robustness, generalizability, and word embedding performance.

By increasing the total number of rewards received, Reinforcement Learning (RL) learns the best

course of action in a particular situation. Zhang [310] provide an RL strategy for creating organized

sentence representations by teaching the structures relevant to tasks. The model includes repre-

sentation models for Hierarchical Structured LSTM (HS-LSTM) and Information Distilled LSTM

(ID-LSTM). The HS-LSTM is a two-level LSTM for modelling sentence representation, and the ID-

LSTM learns the sentence representation by selecting keywords that are pertinent to tasks.

Memory networks[66] develop the capacity to integrate the long-term memory and inference

components. Li [165], who uses two LSTMs with extended memories and neural memory operations

to manage the extraction duties of aspects and opinions at once. Latent topic representations

indicative of class labels are encoded using Topic Memory Networks (TMN) [309], an end-to-end

model.

Common-sense acquired outside the country. Authors in [75] believe that the event extracted from

the original text lacked common knowledge, such as the goal and emotion of the event participants,

because there was not enough information about the event itself to identify it for the EP task. The

model enhances the effectiveness of stock forecasting, EP, and other factors.

The words and their relationships to one another are represented in the quantum language

model by fundamental quantum events. In order to learn both the semantic and the sentiment

information of subjective writing, Zhang et al. [312] propose a sentiment representation approach

that is quantum-inspired. The model performs better when density matrices are added to the

embedding layer.

Notable mention should also be made of integration-based (or ensemble learning) methods, which

combine the output of various algorithms to improve performance and interpretation. These contain

a number of subcategories, with bagging and boosting being the most well-liked ones. Bagging[40]

(also known as bootstrap aggregation methods) averages the results of many classifiers without

strong dependencies by training each of them separately on a part of the training data (sampling

with replacement). Random forests are the most prevalent example of such a method, which increases

accuracy and stability.
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5.2 SOTA Results

Some results on the author profiling datasets discussed in Chapter 2 are shown in Table 5.2. Re-

garding the first three best results on the FNS dataset, the first best approach [44] make use of

an LR ensemble based on five sub-models (n-grams with Logistic Regression, n-grams with SVM,

n-grams with Random Forest, n-grams with XGBoost and XGBoost), the second-best approach

employs combinations of character and word n-grams and SVM [229]. The third one [144] used

Logistic Regression and Support Vector Machines, depending on the language, with combinations

of character and word n-grams.

In addition, in [256] other models are compared on the same dataset. In Figure 5.2 is reported

the average accuracy of each model evaluated. AVG accuracy is calculated averaging the accuracy in

each language (Spanish and English). In Table 5.2 detailed results of the experiments are reported.

As already discussed, the binary accuracies reported are the median over five random initializations

on the test set, except for SVM and NB, because their deterministic nature allow reporting accuracy

in a single run. For the same reason, the standard deviation of these two models is not reported in

the table. The standard deviation is calculated using the five accuracies over the five random initial-

ization. This metric further provides information on the ability of each model to replicate constant

results over several runs. As hypothesized during my preliminary linguistic analysis, performances

over the English test set are worse compared to the Spanish test set for all the models evaluated.

The results indicate the shallow CNN as the best performing model on both test sets (English and

Spanish), and the one achieving the smallest standard deviation on the Spanish test set. The small-

est standard deviation over the English test set is obtained by the Multi-CNN. Transformer-based

models generally perform worst in terms of standard deviation. It is interesting that the linear

SVM is able to outperform any Transformers on the Spanish test set, but ELECTRA. On the other

hand, NB on the English test set, is able to perform better (or equal, compared to RoBERTa) of

any Transformer evaluated. Given the size of each sample in the dataset, results are in line with

those reported in other studies ([49]). As far as Longformer is concerned, I expected a better per-

formance from it. It is worth bearing in mind that each sample within train and test sets contains

a feed of the last 100 tweets of a single user. This size would perfectly fit the information that a

Longformer can manage. However, the results suggest that this is not enough to capture relevant

user features based on the whole thread of each user. These low performances could be motivated

by the fact that the user is not represented with a long, consistent text. The 100-tweet sequence

per user cannot be considered as a text (i.e., a coherent stretch of language), because each tweet is

not always and directly linked to the previous and to the next one. To this content fragmentation

could be due the poor performances of the Longformer. Contrarily to Transformers, for the CNN,

fragmentation could be a positive feature. In fact, the 100-tweet thread per user could be seen as

a picture composed by 100 different parts, each representing an aspect—represented in 280 pixels
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Table 5.1: Models accuracies and standard deviation. For non-deterministic models, accuracy is the
median over five runs. In the table, the best results are shown in bold.

English Spanish

Acc σ Acc σ

CNN 0.715 0.022 0.815 0.005
Multi-CNN 0.545 0.004 0.670 0.013
BERT 0.625 0.036 0.735 0.018
RoBERTa 0.695 0.014 0.735 0.024
ELECTRA 0.630 0.016 0.760 0.015
DistilBERT 0.645 0.016 0.725 0.014
XLNet 0.675 0.020 0.710 0.070
Longformer 0.685 0.041 0.695 0.007
Naive Bayes 0.695 - 0.695 -
SVM 0.630 - 0.755 -

(because their longest sequence of tweets is 280 characters)—of the full picture. Some users are

more diverse than others, depending on the variety in their feed. Since CNN filters are able to scan

each content window and focus on the relevant features, it is not surprising that they are able to

cope well with image classification/recognition, which in my opinion is comparable to the content

fragmentation I have in this task. Apart from this, from my experimental evaluation it emerges that

non-deep models are not a second choice compared to Transformers. In fact, a simple ensemble of

NB and SVM models could achieve better performances than Transformers on this and on similar

binary classification datasets.

On the Hate Speech Spreaders dataset, the overall best result has been obtained by [259] with a

100-dimension word embedding representation to feed a CNN. The two ex aequo second best per-

forming teams, respectively fine-tuned a transformer to replicate and modify the method previously

used in authorship verification [276], and used a meta-classifier fed with combinations of n-grams

[21].

On the ISS dataset, the best approach is obtained by [308] with a BERT feature-based CNN

model. The second-best result has been achieved by [273] with a combination of SBERT and emojis.

The third best performing teams [114] used a Random Forest fed with unigrams pre-selected with

several techniques such as PMI and TF-IDF with the aim to maximize the probability difference of

each feature for each class.

Sentiment analysis, news categorization, topic labeling, and NLI tasks all differ significantly from

one another and cannot be described simply as a TC task. The performance of the primary models

presented in their articles on classic datasets is tabulated in this part and evaluated by classification

accuracy. Due to experiments on datasets using a less conventional TC model, the performance of

the NB and SVM algorithms is provided from [163] in Figure 5.4. For SST-2, NB and SVM had
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Figure 5.3: Average accuracy of each model evaluated. AVG accuracy is calculated averaging the
accuracy in each language (Spanish and English).

Table 5.2: Model accuracies for the first ten participants with a referenced paper at the shared tasks
discussed in [239, 45]. Where multilanguage datasets were provided, results on both languages, i.e.,
English (EN) and Spanish(ES) are reported. The best results per language and dataset are shown
in bold.

Hate Speech Spreaders

Model EN ES AVG
CNN [259] 0.730 0.850 0.790
META-Classifier [21] 0.730 0.830 0.780
Transformer [276] 0.740 0.820 0.780
BERT-BETO [13] 0.720 0.820 0.770
BERT [272] 0.730 0.800 0.765
CNN [113] 0.730 0.790 0.760
BERT [86] 0.670 0.830 0.750
TF-IDF+SVM [127] 0.690 0.810 0.750
Ensemble [51] 0.700 0.800 0.750
Stack Ensemble [82] 0.700 0.790 0.745

Irony and Stereotype Spreaders

Model EN
BERT+CNN [308] 0.9944
SBERT+Emojis [273] 0.9778
RF [114] 0.9722
Transformers [79] 0.9667
Iro-Net [98] 0.9611
BERT [271] 0.9556
GPT2+NB [112] 0.9556
RF [243] 0.9556
TF-IDF+RF [279] 0.9500
LR Ensemble [262] 0.9444

accuracy rates of 81.8 and 79.4 percent, respectively. NB has more accuracy than SVM in the SST-2

dataset, with just two categories. It might be as a result of NB’s rather consistent categorization

accuracy on fresh data sets. On tiny data sets, the performance is also consistent. NB performs

worse than the deep learning model in terms of performance. The advantage of NB over deep models

is that it requires less computing. Yet because it needs manually created categorization features, it’s

challenging to apply the model straight to other data sets. Pre-trained models perform better on the

majority of datasets for deep learning models. It means that, except for MR and 20NG, which haven’t

been tested on BERT-based models, pre-trained models should be evaluated first for a TC task. RNN
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Capsule-accuracy for the MR dataset is 83.8 percent, yielding the best outcome. It recommends that

for sentiment analysis, RNN-Capsule creates a capsule for each category. Without using linguistic

expertise, it may output words together with sentiment trends indicating capsule qualities. BLSTM-

2DCNN receives a 96.5 percent score for 20NG dataset, which is the best accuracy score. It might

show how well the 2D max-pooling operation works for getting a fixed-length representation of the

text, and how well 2D convolution works for sampling more valuable matrix data.

Table in Figure 5.5 is presented in [200]. The table lists the sentiment analysis dataset findings

from Yelp, IMDB, SST, and Amazon. Since the debut of the first DL-based sentiment analysis

model, it is visible that accuracy has significantly improved, as evidenced by, for instance, a 78

percent relative reduction in classification error (on SST-2).

Table in Figure 5.6 is discussed in [200] and reports the performance on three news categorization

datasets (i.e., AG News, 20-NEWS, Sogou News) and two topic classification datasets (i.e., DBpedia

and Ohsummed). A similar trend to that in sentiment analysis is observed.

5.3 Post-hoc analysis

In this section, I report an example of analysis of the results and the behavior of a deep model trained

on a specific dataset. The analysis presented here was conducted focusing on the FNS dataset

to investigate the behavior of a simple CNN and its predictions on the test set after completing

the training phase [256]. This further step can be employed in the TC pipeline to improve the

performance of a model and for a better understanding of its behaviors (RQ3).

In Section 2.3, I observe that keywords are good indicators to distinguish the two FNS and nFNS

classes, as corroborated also by the results of the Bayesian model reported in Table 5.2. However,

the CNN-based model must go beyond these frequency differences, as its results suggest. In this

section, I provide a post-hoc analysis of intermediate model outputs, devised to shed light on the

CNN behavior. In particular, I analyze the outputs of two hidden layers: the convolutional layer

and the global average pooling layer. These are the model layers that can be analyzed by relating

the outputs to the inputs to better understand the overall classification decision. Although hybrid

approaches have been exploited to eXplainable AI [133], the CNN tested here can be defined as a

shallow neural model. Thus, it can be analyzed mapping each layer outputs to its inputs.

5.3.1 Convolutional Layer Output

The output of each filter of the convolutional layer was searched for finding maximum and minimum

values in the output tensor. The hypothesis is that these values correspond to some tweets, cap-

tured by the filter window, showing some relevant linguistic features I found during my preliminary



CHAPTER 5. CLASSIFICATION 110

Figure 5.4: Accuracy of TC models on primary datasets evaluated by classification accuracy (in
terms of publication year). Bold is the most accurate. (Original image taken from [163])

.
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Figure 5.5: Accuracy of TC models on sentiment analysis datasets . (Original image taken from
[200])

.
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Figure 5.6: Accuracy of TC models on sentiment analysis datasets (in terms of classification accu-
racy), evaluated on the IMDB, SST, Yelp, and Amazon datasets . (Original image taken from [200])

.

analysis. Reverse mapping the input tokens corresponding to the filter window, I identified the 32-

token windows with maximum and minimum values assigned. The 32-token windows receiving the

maximum value are those considered important by the convolutional layer filters and, consequently,

pass also the max pooling layer. Thus, I randomly downloaded 15 samples per class (10% of the

train) together with the 32-token windows with the maximum and minimum values assigned. These

32-token windows consist of maximum three complete tweets. I noticed that the majority of the 32

filters outputted a maximum or minimum value for the same windows of tokens (with a variation of

a few tokens) per author sample. This behavior suggests that a lower number of filters could have

been enough for capturing the token patterns which are more relevant for classifying an author as

FNS or nFNS. I observed that giving as input the whole collection of 100 tweets per author produced

two or three peaks in the filter output that are clearly distinguishable from the other local maximum

values. An example of output corresponding to the complete filtering of a reference author found

by the first convolutional filter is graphically shown in Figure 5.7. The document—i.e., the author’s

100 tweets—consists of about 2000 tokens, then it is padded up to 4060. The output of this filter

shows a global maximum in position 1739, indicating that in that 32-token window there are relevant

features. To see what this window contains, I looked at the vocabulary and did a reverse mapping.

I applied this procedure to all the windows with maximum and minimum valued tokens, allowing an

analysis of the linguistic features that the best performing model considers most or less important

when classifying the sample.

Analyzing FNS and nFNS 32-token windows considered important by the filters, I found some
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Figure 5.7: Output of the first convolutional layer after convolving one of the 32 filters over the
input provided. The maximum value corresponds to the token in position 1739 and the minimum
corresponds to the token in position 1673. The sample shown consists of less than 1500 tokens,
hence the document is padded up to 4060.

patterns, reported below, corresponding to specific topics and tweet style, such as the usage of the

first person or the formulation of a question.

FNS Patterns. I found both features in accordance with my preliminary analysis and not. On

the one hand, in these windows of FNS samples, I found information about: 1. tricks, miracle foods

or home remedies (e.g., El truco para secar la ropa sin necesidad de tenderla — VÍDEO #URL#,

‘The trick to drying clothes without hanging them out to dry’); 2. sensitive (o strong) images or

videos (e.g., FUERTE VÍDEO – Matan Hombre Por Violar Niñas #URL# #URL#, ‘STRONG

VIDEO — Man Killed For Raping Girls’); 3. music (e.g., Chimbala anuncia union entre algunos

dembowseros para cambiar el sonido musical de ese genero!!! #URL# Unete #USER#>, ‘Chimbala

announces union between some dembowsers to change the musical sound of this genre!!!’). On the

other hand, I also found tweets containing: 1. personal opinions (e.g., no te vas a poner a dialogar

sobre la cosntruccion de un nuevo pais,sobre aristotles,pitagoras o engels., ‘you are not going to

start a dialogue about the construction of a new country, about Aristotle, Pythagoras or Engels.’);

2. political news (e.g., El nuevo Gobierno boliviano detendrá a diputados del partido de Morales por

[UNK] y sedición” #URL#, ‘The new Bolivian government will arrest deputies from Morales’ party

for [UNK] and sedition’).

nFNS Patterns. I noticed in nFNS sample windows: 1. complete questions (e.g., ¿Por qué se

nos riza el pelo? ¿Por qué crece pero las pestañas y el vello no? #URL# v́ıa #USER#, ‘Why does

our hair get frizzy? Why does it grow but the eyelashes and hair don’t? #URL# via #USER#’); 2.

series of mentions (from three up; two mentions in a row are also present in FNS sample data) (e.g.,
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Figure 5.8: Global average pooling layer output, providing the training test as model input. For
both classes (i.e., FNS and nFNS) every sample is correctly classified. In this case no overlapped
lines are visible between the two groups of lines (i.e., green or blue). Each line corresponds to an
author.

#USER# #USER# #USER# #USER# #USER# #USER# #USER# Queŕıa poner tocaros,no

tocarlos..., ‘#USER# #USER# #USER# #USER# #USER# #USER# #USER# I wanted to

touch you, not touch you...’); 3. politics (e.g., Se ha visto Srª #USER# en estas imágenes, a mi me

da verguenza, una diputada del congreso, ‘It has been seen Miss #USER in these images, it gives

me shame, a deputy of the congress’); 4. emojis (almost absent in FNS maximum outputs).

This analysis suggests that the CNN model might consider important the features highlighted in

the preliminary analysis of the dataset. However, what emerges is also that this CNN model might

be biased towards some topics (e.g., music for FNS and politics for nFNS).

5.3.2 Global Average Pooling Output

Figure 5.3.2 shows the output of the global average pooling layer when the training set is provided

as input. On x-axis, I represent the 32 units of the layer, on the y-axis the values associated to each

unit. For every sample of the set, a line is drawn connecting the 32 output values of each unit of

the level. Blue lines represent FNS, while green nFNS. Similarly, Figure 5.3.2 shows values of the

32-GAP-output units when test set samples are provided to the CNN. In this case, some lines near

to 0 values output fall outside their actual area. This might suggest that wrongly predicted samples

are similar to the opposite class, hence confusing my classifier when making predictions.

Thus, I extracted two documents per class selecting one document whose 32-GAP-output values

are far from the 0 threshold and one near it, because I imagined that highly characterized documents
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Figure 5.9: Global average pooling layer output, providing the full test set as model input. In this
case some errors are visible (i.e., green lines in blue-line zone and vice versa). It is worth noting
that errors in detection are often near to 0 values output. This might suggest that the 0.0 threshold
value used to separate the classes is small, and this could possibly explain model mistakes.

(i.e., documents which contain a high number of features characteristics of their class) should be far

from 0. As expected, the features highlighted in the preliminary analysis are in a higher number in

those documents whose 32-GAP-output values are far from 0. In particular, 52% of tweets in the far-

from-0 FNS document start with VIDEO, DE ULTIMO MINUTO4 ‘breaking news’, ESTRENO5,

IMPACTANTE 6, or DESCARGAR7, 76% contain Unete at the end of the tweet (i.e., contain

keywords of FNS as reported in Table 2.3). Similarly, in the far-from-0 nFNS document, 19% of

the total number of tokens is made of #HASHTAG#, in addition to other keywords reported also

in Table 2.3 such as Samsung, bulos8, qué9, informaćıon10, but also complete questions (starting

with ¿ and ending with ? ) as emerged as important feature analyzing the first convolutional layer

output. In the two documents whose 32-GAP-output values are near to 0, I found a similar tweet

(nFNS: He publicado una foto nueva en Facebook #URL#, ‘I have posted a new photo on Facebook

#URL#.’, and FNS: He publicado un v́ıdeo nuevo en Facebook #URL#., ‘I have posted a new video

on Facebook #URL#.’) repeated more than once, 33 and 7 times out of 100 in nFNS and FNS,

respectively. This, not only, reduces the variety of features available for classifying each document,

but also it is a similar behavior shared by the two opposite-class authors. In addition, in both

4In English: last minute.
5In English: premiere.
6In English: shocking.
7In English: discharge.
8In English: hoaxes.
9In English: that.

10In English: information.
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documents at least a quarter of tweets are retweets (25% and 29% in nFNS and FNS, respectively),

though different in nature. In particular, the analyzed nFNS author retweeted mostly users’ personal

opinion (e.g., about politics), whilst the FNS author retweeted mostly crime news.

5.3.3 Qualitative error analysis

The CNN tested, in the best performing run on the Spanish dataset, reaches an accuracy of 0.82

and fails to recognize 19 FNS and 17 nFNS authors, confirming that FNS are slightly more difficult

to identify than nFNS. Since it is worst to mistakenly label a nFNS as an FNS, I decided to analyze

the features of wrongly and correctly identified nFNS—following the suggestion by [28] who propose

that error analysis should also be done on correctly identified samples to verify why the system

performs well, especially when using black-box models.

Since I suppose that the CNN model considers important for the classification the distribution of

keywords, I selected three nFNS samples—one wrongly identified as FNS and two correctly identified

as nFNS—containing keywords identified as a good predictor of FNS. I found that the CNN model

is able to distinguish different usages of the same keyword. In Table 5.3.3, I show three different

examples in which the lemma remedio11 (cfr. Table 2.3) is used in two different ways. Examples 1

and 3 are similar to what can be found in FNS tweets. Example 2 is very different from FNS authors’

usage. Since the model does not make its decision based only on one tweet (the first convolutional

layer takes 32-token windows corresponding to maximum three complete tweets), I can suppose that

the presence of the tweets reported in Example 1 and 3 are not enough to assign the FNS label to a

nFNS. The author sharing the tweet in Example 1 was wrongly labelled as FNS by the CNN model.

The authors sharing the tweets in Examples 2 and 3 were correctly identified as nFNS by the CNN

model.

The author that shared the tweet in Example 2, shared also several features in line with what

I found in the preliminary analysis for nFNS. This author, indeed, always publishes where to find

information concerning what they say and also shares information on how to counteract misinfor-

mation, thus I might suppose that the CNN model pays more attention to these features and not

on the presence of that precise tweet containing a keyword of FNS. Then, the question is why the

authors sharing Example 1 and 3 are not both wrongly—or correctly—predicted. The author who

shared the tweet in Example 1, not only uses the keyword remedio (used by many FNS), but also

contains several variants of one of the high discriminant keywords pinpointed both by Sketch Engine

and by the Bayesian model, i.e., video. Conversely, the author sharing the tweet in Example 3, apart

from sharing powerful remedies, they ask many questions (and I saw in SubSection 5.3.1 that the

convolutional filters consider questions as good predictors of nFNS) and publishes personal opinions

in both explicit and implicit form (e.g., yo opino, ‘I think’; yo digo, ‘I say’; yo comento, ‘I comment’).

11In English: remedy.
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Table 5.3: Examples drawn from the nFNS Spanish test set.

Example Tweet Text English translation

1 RT #USER#: Remedio casero
para limpiar las juntas del azulejo.
#URL#

RT #USER#: Home remedy to
clean the joints of the tile. #URL#

2 La venta de medicamentos con rec-
eta bajó todos los años entre 2016
y 2019. Además, en 2018 la mi-
tad de los hogares pobres de CABA
y el Conurbano debieron dejar de
comprar remedios por problemas
económicos. Más info en esta nota
#URL# de #USER#. #URL#

The sale of prescription drugs fell
every year between 2016 and 2019.
In addition, in 2018 half of poor
households in CABA and the sub-
urbs had to stop buying medicines
due to economic problems. More
info in this note #URL# de
#USER#. #URL#

3 Poderoso remedio casero para
eliminar el colesterol de los va-
sos sangúıneos y perder peso -...
#URL#

Powerful home remedy to remove
cholesterol from blood vessels and
lose weight -... #URL#

Hence, I supposed that the CNN model is able to discriminate also on the basis of the presence

of overtly expressed personal pronouns. I checked if FNS and nFNS use the first-person pronoun

yo differently. I performed a Welch t test and found a statistically significant p value of 0.0194

when inspecting together test and train, a p value not quite statistically significant looking only

at train data (0.0833), and a p value of 0.1158 in test data, which is not statistically significant.

Thus, I might suppose that since it was trained only on train data, this difference should not be

so discriminant. Then, I wanted to measure if nFNS use more first-person verbs and pronouns

than FNS (both singular and plural). To obtain this type of information, I automatically parsed

the dataset using the AnCora pretrained model with UDPipe12 The linguistic annotation confirmed

that nFNS tweets contain more first-person tokens than FNS. Hence, I performed a Welch t. test

to determine if this difference is statistically significant. I found a p value less than 0.0001, thus

extremely statistically significant. I also investigated if also the second and the third person features

were significantly different and found a p value less than 0.0001 for each person (1, 2 and 3, taken

singularly) and also when aggregated. This last result suggests that these two classes use differently

verbs (and auxiliaries) and pronouns—the only parts of speech that can have this morphological

feature (i.e., person).

12https://lindat.mff.cuni.cz/services/udpipe/.

https://lindat.mff.cuni.cz/services/udpipe/


Chapter 6

Applications for competitive tasks

Following the introduction of each stage in the TC pipeline in preceding chapters, the current chapter

showcases architectures that incorporate these stages comprehensively. These architectures undergo

evaluation against contemporary tasks and SOTA benchmarks to establish correlations between

their structures, model functionalities, and the outcomes achieved in specific tasks. Therefore,

after introducing and discussing some contemporary international challenges in the field of NLP, I

provide a detailed presentation of some of the classification models that I have developed to propose

my original contribution to the field.

The NLP community has been characterized for several years by some main evaluation campaigns,

in particular those proposed in SemEval. SemEval1 (Semantic Evaluation) arose from the Senseval

word sense evaluation series and is a continuing series of evaluations of computational semantic

analysis systems. The assessments aim to investigate the nature of meaning in language. Although

people have an intuitive understanding of meaning, applying such understanding to computational

analysis has proven difficult.

A technique is being provided by this set of evaluations to more precisely define what is required

to compute in meaning. As a result, the evaluations offer an emergent mechanism to pinpoint the

issues and fixes for calculations that have purpose. These activities have developed to express a

wider range of the factors that influence the use of the language. They started with what appeared

to be straightforward efforts to computationally determine word senses.

Some tasks related to this chapter are the ones presented and discussed in [284, 25]. Other

interesting recent tasks presented at SemEval or in other venues are related to abusive language

detection [10], toxic language detection [69, 244] and automatic misogyny identification [85].

In the first section of this chapter, I report all the architectures I developed to address some

recent TC tasks. In the last section, I report the conclusions to motivate and try to generalize on

1https://semeval.github.io/
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some common patterns found across the different tasks proposed in this chapter. The tasks are a

subset of the ones discussed in the Chapter 2.

6.1 Detection of hate speech spreaders using CNN

6.1.1 Task description

The aim of the PAN 2021 Profiling Hate Speech Spreaders (HSSs) on Twitter task [33, 239] was

to investigate whether the author of a given Twitter thread is likely to spread tweets containing

hate speech or not. The multilingual dataset, namely English and Spanish datasets provided by

the organizers of the task, consisted of 120,000 tweets: 200 tweets per author, 200 authors per each

language training set and 100 authors per each language test set [238]. The model I used to compete

for the task consists of a shallow CNN. Broadly speaking, my network preprocess each sample in

the dataset to build a dictionary2 where the key is an integer number and the value is an n-gram

resulting from my custom preprocessing function. Each integer value (e.g., a key in the dictionary) is

then mapped to a single point into a 100-dimensional word embedding space. Then, a 1-dimensional

convolution is applied. The output of the convolution layer is then fed into an average pooling and

then into a global average pooling layer fully connected to a single dense layer output.

6.1.2 Proposed model

The architecture of the model is presented in Figure 6.1, in which the dimensions of inputs and

outputs of each model layer are highlighted.

In what follows, I present each layer of the network and the chosen hyperparameter values.

Before discussing the network architecture, it is important to bear in mind that each set of the

dataset (training and test per language) is made of XML files—each XML is related to a single

author—containing 200 tweets of the author. In addition, a ground truth file containing the labels

0 and 1 matched to each XML file is provided for the training set. For handling these files and

before training, my system organizes these XML files into two folders (i.e., 0 and 1) while reading

the ground truth file. Then each sample (i.e., a single XML file) is read by the model for training or

test, depending on the number of fold validation. These function for reading samples is accomplished

by the first layer (namely, InputLayer).

2In this paper, I use the well known computer science concept of a dictionary. A dictionary (or associative array)
is a data type composed by a collection of (key, value) pairs. However, in the TextVectorization class definition used
in my model is used the word vocabulary referring to a list of tokens (e.g., n-grams returned after preprocessing some
input text) in which keys are token indices for such a list and values are the tokens.
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Figure 6.1: Model architecture. Numbers in brackets indicate tensor dimensions; None stands for
the batch dimension not yet known before running the model. Layers as depicted on my Google
Colab Notebook.
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Text vectorization

The first layer of my model reads the text in the XML files and apply my custom preprocessing

function to split n-grams. In what follows, I refer to an n-gram as a sequence of characters. This

sequence of characters is determined looking at the space before and after the sequence considered

(i.e., the n-grams are split from the input text in correspondence of spaces). Then I build a dictionary

where the keys are integer numbers and the values are the n-grams from the training set. While

applying this tokenization based on spaces to the English dataset, I likely obtain n-grams that

correspond to traditional tokens, or syntactic words. It is not the case when applied to the Spanish

language. Hence, being n-gram a broader term as defined above, I prefer saying n-grams instead

of tokens. Since the classification of HSSs is approached as an author profiling task, I decided to

keep punctuation and capitalization to maintain a certain amount of stylistic information in my

dictionary entries. Specifically and as an example, when splitting text, I associate two different

dictionary entries to the word Hello and to hello or to Hello!. The hyperparameters characterizing

this layer are described below.

• Standardize. It is the preprocessing function applied to the text before proceeding with its

vectorization. In my case, this function, in addition to removing tabulations and newline

characters, substitutes the occurrences of the CDATA tag with a space followed by a minus

than sign, adds a space between the closing of one tag and the next, and then split each n-gram

at each space;

• Max tokens. This parameter refers to the dictionary size. To get this value, I simply count the

numbers of different n-grams resulting from my preprocessing step. It is worth noting that my

dictionary size is developed scanning both the Spanish and the English training sets;

• Output mode. This parameter is the type of token index returned by the vectorization function.

I used the INT type, so that every word is mapped to a positive integer number;

• Sequence length. Although each XML document contains 200 tweets, the size in terms of

produced n-grams is different for each sample because of the different length of each tweet.

For this reason, I decided to consider the longest sample of the training set as size value,

padding the shorter documents. As shown in Figures 6.1 and 6.2, this size is 3,911. As

mentioned, padding is used for documents with a resulting number of token indices less than

3,911. Eventually, longer documents in the test set would be cut at this value.

The resulting output of this layer is a sequence of 3,911 positive integers corresponding to the

dictionary keys of the n-grams of the XML document considered. Some random examples of value

→ key pairs in my dictionary are shown below.

...



CHAPTER 6. APPLICATIONS FOR COMPETITIVE TASKS 122

rock → 210

...

Hi! → 2315

...

pregunta → 1508

...

Embedding

This layer takes as input a tensor of 3,911 integer numbers generated as described in the previous

subsection. Each integer value of this tensor is mapped to a 100-dimension word embedding tensor.

In this way, each integer from the previous layer is mapped to a single tensor consisting of 100

floating point values. A notable difference with the previous layer is that the 100 coordinate values

of each tensor is updated at each optimization step while training the model. More precisely, I

trained and tested multiple models as the word embedding space varies from 2 to 800 dimensions,

as also discussed in a similar Twitter TC problem [303]. The best performances over different tests

on a 5-fold cross validation were obtained with a 100-dimension embedding space.

Convolution

In my model, a single 1D-convolution layer is implemented. This layer consists of 64 filters of

size 36. The layer then performs convolution on 36-ngram windows with stride value of 1 (i.e.,

after each convolution, the convolutional filter is shifted of one word embedding tensor). For this

layer, no padding is added and ReLu [88, 89] is used as activation function on the output values.

Number of filters and filters size (i.e., the two main parameters of this layer) are of paramount

importance for the global performance of the model. Indeed, the filter size determines the size of

the windows over the text of the input sample provided. In this way, I observed that a filter of size

36 generally gets n-grams from 3–4 different tweets each time. Similarly, the number of filters used

(i.e., 64) determines the number of different feature maps relevant for the classification task. Both

parameters are determined after extensive experiments conducted over the training set on many

5-fold cross validation runs. To fine-tune these two hyperparameters, I performed a binary search

[298, 143] for both, looking in the range values 1–1,024. I discovered that a number of filters greater

than 256 increases the overfitting of the model while a filter size greater than 1,024 does not allow

the model to reach an accuracy of 1.0 not even on the train fold considered.
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Average and global average pooling

The average pooling layer [280] downsamples the input representation by taking the average value

over the window defined by a pool size parameter. The window is shifted by strides. As an example,

consider a single dimension array X = [1.0, 2.0, 3.0, 4.0, 5.0]. Defining a 1D-average pooling layer

having pool size of 2 and stride of 1 and providing X as input to such a layer, the array Y=[1.5, 2.5,

3.5, 4.5] is returned. In this case too, in the attempt of finding the best value for the hyperparameters

of this layer, I performed a binary search and found an optimum value of 8 for the pool size and

1 for the stride. The pool size of 8 represents the number of averaged values outputted from the

convolution layer at each step. I suppose that the optimum of 1 as stride value might be maybe due

to my tokenization choices.

A final 1D-Global Average Pooling layer is similar to the previously described average pooling

one. In this case, it is not the average value over a window of the pool size defined that is returned

as output but, instead, a global average along the first dimension from the previous layer outputs.

Looking at the Figure 6.1, the output of AveragePooling1D layer is made of 484×64 elements.

Dense

The Global Average Pooling 1D layer is fully-connected to the last layer, which is a single dense unit

output. The layer is followed by a simple linear activation (e.g., a(x) = x). The final output is a

single float value. Positive values are considered as HSSs and negative ones as nHSSs. A threshold

of 0.0 is set to determine the accuracy of the model in predicting the label of the sample provided.

Model training

The values assigned to the various hyperparameters were originally set taking into account many of

the decisions adopted in the studies conducted in [313, 117] and subsequently fine-tuned to improve

the accuracy achieved by the model. To initialize the weights of the model, I used a Glorot uniform

initializer [134]. The model is compiled with a binary cross entropy loss function; this function

calculates loss with respect to two classes (i.e., 0 and 1) as defined in 6.1.

LossBCE = − 1

N

N∑
n=1

[yn × log (hθ(xn)) + (1 − yn) × log (1 − hθ(xn))] (6.1)

where:

• N is the number of training examples;

• yn is the target label for the training sample n;

• xn is the input sample n;
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Table 6.1: Dataset summary showing the number of samples (i.e., authors) for each set, language,
and class.

Training Set Test Set
English — class 0 100 50
English — class 1 100 50
Spanish — class 0 100 50
Spanish — class 1 100 50

• hθ is the neural network model with weights θ.

Optimization is performed with an Adamic optimizer [141] after giving each batch of data as input.

I performed a binary search for finding the optimal batch size. The model achieved the best overall

accuracy with a batch size of 2. The model architecture is depicted in Figure 6.2, where the number

of the various network hyperparameters are provided.

Figure 6.2: Model representation showing the number of parameters involved at each layer. Such a
few parameters allows low computational load for training and testing. Figure as depicted on my
Google Colab notebook.

6.1.3 Experimental evaluation and results

In this section, I report the results obtained by my model during evaluation on the 5-fold cross

validation on the training set. Then, I report the results of the trained model on the test set.

Experiments

Table 6.1 reports the number of samples within each set. Each sample in all the sets is an XML

file whose name corresponds to the author ID. Each XML file contains 200 tweets of the considered

author. Considering that there are 200 tweets per author (the number of authors is shown in Table

6.1), the whole dataset consists of 120,000 tweets.
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Table 6.2: The 5-fold splitting applied to the complete multilingual training set. T indicates that
this percentage is used for training and V for validation on this fold.

1-Fold 2-Fold 3-Fold 4-Fold 5-Fold
80%T — 20%V 60%T — 20%V — 20%T 40%T — 20%V — 40%T 20%T — 20%V — 60%T 20%V — 80%T

Table 6.3: Results achieved by the model on a 5-fold cross validation on the complete multilingual
training set (i.e., Spanish and English data). Both loss and accuracy are computed for the validation
set used at the fold indicated on the upper row. In the last two columns, I report the values of the
arithmetic mean and the standard deviation over the 5 folds.

Fold Nr.
1 2 3 4 5 Avg. Dev.

Accuracy 0.6625 0.7000 0.6750 0.8000 0.6875 0.7050 0.0491
Loss 0.6097 0.7070 0.7771 0.5074 0.6234 0.6449 0.0916

Task organizers invited participants to deploy their models on TIRA[231]. As communicated by

email by the task organizers, TIRA has been experiencing technical issues. Therefore, my model

was developed and tested as a Jupyter Notebook in Google Colab using TensorFlow. The complete

source code is publicly available and reusable.3

To validate my model and fine-tune its hyperparameters, I ran 5-fold cross validations for each

test performed. I considered the full training set made by the union of both language sets, then I

shuffled this multilanguage training set and used it for the cross validations. Then I split 80–20 for

each of the fold. Specifically, the first fold was made using the first 80% of the samples for training

and the remaining 20% for validation. The remaining folds were made as reported in Table 6.2 with

the order of the percentage of samples taken for both sets (train and validation) from the complete

training set.

Results

In Table 6.3 the results obtained adopting a 5-fold cross validation on the complete multilingual

training dataset are reported. The 5-folds were made as explained in the previous subsection. Table

6.3 reports accuracy and loss values achieved on the validation set used at each fold, together with

the arithmetic mean and standard deviation. For each fold I trained the model for 15 epochs, then I

reported the higher accuracy and the related loss over the 15 epochs of training with respect to the

validation set used for the fold indicated in the upper row. As can be noted, some splits achieved

a better performance, and this could be due to a higher level of similarity between the considered

train and validation sets.

Finally, as reported in the PAN website, my model achieved an accuracy of 0.73 on the English

3Model notebook: https://colab.research.google.com/drive/1hUwn_uk0YPC6Tpo3MK1gDVGPQxmzPh_E.

https://colab.research.google.com/drive/1hUwn_uk0YPC6Tpo3MK1gDVGPQxmzPh_E
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test set and of 0.85 on the Spanish test set4. Considering these results, the overall accuracy (i.e.,

the arithmetic mean of the accuracy achieved per language) is 0.79.

6.2 ELECTRA and graph neural networks to detect harmful

tweets

6.2.1 Task description

Along to the COVID-19 outbreak, the spread of misleading information online related to news on

the pandemic could be observed, for example on social media. The three tasks proposed for the

CheckThat! Lab@CLEF2022 [209, 208] aim at addressing related issues, namely: (1) Identifying

relevant claims in tweets, (2) Detecting previously fact checked claims and (3) Fake news detection.

All tasks are framed as classification problems and build on collective effort to tackle the COVID-19

related infodemic.

The aim of this work is to propose a model to address the first task [207]. Furthermore, this

task includes four different subtasks. Subtask 1A is about determining check-worthiness of tweets

(i.e., given a tweet, predict whether it is worth fact-checking). Subtask 1B is about verifiable factual

claims detection: given a tweet, predict whether it contains a verifiable factual claim. In Subtask

1C, the focus is on harmful tweet detection: given a tweet, predict whether it is harmful to the

society and why. Finally, Subtask 1D is related to attention-worthy tweet detection: given a tweet,

predict whether it should get the attention of policymakers and why. This task is defined with eight

class labels. For the subtasks 1A and 1C the official evaluation metric is the binary F1 score with

respect to the positive class, for subtask 1B the metric used is the accuracy and for subtask 1D the

metric used is the weighted F1 score.

I present the model proposed for Subtask 1C — English language. The model takes advantage of

an ELECTRA-based document embedding as well as a text graph that is processed using a Graph

Convolutional Network (GCN). The goal is to introduce a novel method that can handle different

types of heterogeneous textual or social information. I show how a first version of such a model

performs on the proposed task, leaving room for improvements on future research in the domain.

To support reproducibility and future research directions, I make my code publicly available5.

6.2.2 Proposed model

The model architecture with input and output shapes of each layer is shown in Figure 6.2.2 along

with parameter distributions of each layer. The proposed model is composed by two modules:

4Pan 2021 task results: https://pan.webis.de/clef21/pan21-web/author-profiling.html#results.
5https://github.com/sagacemente/CLEF2022CheckThat.git

https://pan.webis.de/clef21/pan21-web/author-profiling.html#results
https://github.com/sagacemente/CLEF2022CheckThat.git
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• Graph creation and embedding

• Pretrained document embedding

Figure 6.3: Model parameters (Top) numbers in brackets indicate parameters’ tensor dimensions;
last column indicates the number of parameters in each layer. Model architecture (bottom) model
input and output shapes in each layer (figure taken from my Google Colab notebook).

Geometric deep learning [43, 142] has led to a growing number of new architectures as well as

novel applications, including text modelling [81]. The representation of each tweet into a graph starts

with text preprocessing and POS tagging. After these steps each unique tagged word in the tweet

corresponds to a node in the graph and the adjacency matrix is populated connecting each node

with all words in a window equal to 3. Each node is annotated with various features, as discussed

later. The proposed architecture is composed of two graph attention convolution (i.e., GATV2Conv)

layers proposed by [42]; the node-wise representation outputted by the GATV2Conv layers is passed

to a max pooling operator and a dropout layer. The output is then concatenated with the document

embedding generated using ELECTRA [57]. Finally, two dense layers and a rectified linear unit

(ReLu) activation function between them output the predictions of the model for each class.

Before discussing the network architecture as well as the hyperparameter settings, I want to

mention that each split of the dataset (training and test per language) consists of individual tweets
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and their corresponding labels.

Graph creation

The graph module takes as input a raw sample (tweet) and outputs the tweet represented as an

undirected, attributed graph. In Figure 6.2.2 each step of the preprocessing pipeline is depicted. The

custom preprocessing function uses the python NLTK package [34]. Below, I list all the preprocessing

steps involved:

• Lowercasing. This step is used to get the same embedding, e.g., for the words Hello and hello.

• Removing stopwords. Stopwords are generally speaking used with high frequency but they are

in many cases not really informative, e.g., preposition and articles belong to this category.

• POS tagging. In this step, each word in the tweet is classified into its parts of speech class

and labelled accordingly using a one-hot encoding. These vectors correspond to the respective

POS tag out of all 43 POS classes in the NLTK package.

• URL removing. All URLs in each tweet have been removed.

• Hashtag symbol and tagged accounts. All hashtag symbols have been removed along with

tagged users.

Figure 6.4: Graph representation: each tweet is represented as a graph after pre-processing and POS
tagging.

Starting from the output of POS-tagging, I adopt a strategy that associates an edge to each

word with all words in a window equal to 3. If a word is repeated more than once, only the first

occurrence is considered as node, while edges are updated accordingly. Edges are unweighted.

Node characterization

As mentioned above, in Figure 6.2.2 each node is characterized as a 815-dimensional vector. The

first 768 features correspond to the pretrained ELECTRA document embedding, obtained using
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FLAIR, applying the introduced preprocessing steps 6[3]. To select the best embeddings, I evaluated

different transformer-based models using the tweet text data as input. The official evaluation metric

was used during this experiment, and it turned out that ELECTRA outperformed other pretrained

language models. Using ELECTRA, I collected both word embedding for each node in the graph

and document embedding for the whole tweet. Each node was also annotated with the corresponding

one-hot-encoded vector of its POS tag (45 features). Given the fact that graph networks are order

invariant w.r.t the nodes processed during message passing, the order of words in the original tweet is

lost. To maintain this information, I characterized each node with a feature vector of two dimensions

that encodes the distance from the origin of each node (word) in the graph using sine and cosine

positional encoding of a transformer model [286]. This vector is concatenated to the other node

features.

Graph attention convolution and max pooling layer

In the model, I use two GATV2Conv [42] layers. This layer is characterized by the computation of

dynamic attention scores. Moreover, I adopt multiple heads in the first layer where the number of

heads is set to four, because (as demonstrated previously by [288]) the learning process can benefit

from employing multi-head attention and concatenating their outputs. As highlighted in Figure

6.2.2 the number of features used to represent each node is halved between the 2 layers. The output

of the graph attention layer is a 2D matrix with shape: Number of nodes (d) * Number of features

(N). The maximum value is calculated along the dimension of size N , in fact reducing the dimension

of the input tensor by one.

Dense

The max pooling layer’s output is concatenated with the tweet embedding obtained from ELECTRA.

This vector is fully connected to a dense layer which is followed by a rectified linear unit function

element-wise (e.g., Relu(x) = max(0, x)) and finally a dense layer with two units as output. This

float values correspond to the softmax logits, a vector of raw (non-normalized) predictions.

6.2.3 Experimental evaluation

I participated in Subtask C (harmful tweet detection) of CheckThat!’s Task 1 for the English language.

Before addressing experimental setup and model training, I briefly describe the provided dataset.

6Documentation available here: https://github.com/flairNLP/flair

https://github.com/flairNLP/flair
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Table 6.4: Dataset statistics of all provided splits for English.

DS Number of Samples Label 0 Label 1
Train 3323 3031 292
Development 307 276 31
Dev-Test 910 828 82
Test 251 211 40

Dataset

The corpus includes a list of tweets that are either labelled as harmful (1) or not (0). In addition,

the ID of the tweets and its URLs are available. All samples are related to COVID-19. In general,

a train, development and dev-test set are provided as well as an official test set that was used for

evaluation of the submissions. While for the first three dataset splits the gold labels were available,

those of the official test set were held out till the end of the evaluation phase. In general, the number

of samples for all parts of the dataset are distributed as shown in table 6.2.3. The data were released

as multiple tab-separated files (one per split)

An exploratory analysis shows the dataset imbalance with respect to the class labels. For the

training set, the positive class samples correspond to only 8% of the total entries. Using the Tweet

IDs provided, I crawled Twitter data via the official Twitter API 7. However, only a small subset

of the samples (w.r.t. the training set only 20% of the original tweets) was still available as the

rest of this information was already deleted by Twitter. Given this observation, I choose to discard

including social context information such as the number of tweet interaction (favorites, shares),

author features (follower following relationships as well as user timeline tweets). Besides using the

graph based approach introduced in Section 6.2.2 I performed further experiments on the dataset

featuring transformer based methods as well as alternative graph construction techniques. I present

details on the results of these experiments in Section 3.4.3.

Model training

The hyperparameter settings are in line with many of the decisions made in a study conducted in

[297] and used to subsequently fine-tune my proposed model. To initialize the weights of the model,

I used a Glorot uniform initializer [134]. The model was compiled using binary cross entropy loss;

this function calculates the loss with respect to two classes (i.e., 0 and 1) as defined in 6.2.

LossBCE = − 1

N

N∑
n=1

[yn × log (hθ(xn)) + (1 − yn) × log (1 − hθ(xn))] (6.2)

where:

7https://developer.twitter.com/en/docs/twitter-api

https://developer.twitter.com/en/docs/twitter-api
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• N is the number of training examples;

• yn is the target label for the training sample n;

• xn is the input sample n;

• hθ is the neural network model with weights θ.

To improve the model performance and counteract class imbalance, I set up class weights that

correspond to a manual rescaling weight assigned to each class. Optimization is performed using the

Adam optimizer [141]. To reduce overfitting I take advantage of a learning rate scheduler reducing

the learning rate by a factor of 0.9 with a step size of 25 epochs. The model architecture is depicted

in figure 6.2.2, where the number of the various network hyperparameters are provided.

6.2.4 Results

Baseline

The organizers provide official baseline results based on random predictions. The metric to evaluate

the task is the binary F1 score of the positive class label (harmful tweet). The official baseline result

amounts to 0.200 binary F1 on the evaluation test set. I compare the baseline results to the values

my approaches did achieve in Table 6.5.

I established an additional, strong baseline based on a fine-tuned transformer model. I evaluated

different transformer architectures including BERT, RoBERTa and ELECTRA regarding the clas-

sification task. It turned out that ELECTRA achieves the best results among these models (using

3 epochs for fine-tuning, as recommended by [73]). The performance of this approach amounts to

0.250 binary F1 score.

The proposed approach

The main experiments are based on the model proposed in Section 6.1.2. I will report results on

the test set used for evaluation using the official binary F1 metric, as well as binary precision and

binary recall of the positive class label.

As presented in Table 6.5 the submitted approach (GCN+ELECTRA) outperforms the official

baseline by 8%. The official baseline approach generates class labels in random order.

Compared to the performance of my own baseline using ELECTRA, the GCN+ELECTRA out-

performs this approach by 3%. I also evaluated a ELECTRA fine-tuning setup using 50 epochs,

resulting in a performance almost as good as the finally submitted approach. However, the high

number of epochs lead to strong overfitting on the training data.

In addition, I report results obtained by experimental setups that I evaluated as part of the

development process of the submitted approach. In Table 6.5 GCN+POS w/o word embeddings
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Approach Binary Precision Binary Recall Binary F1
Baseline 0.200 0.200 0.200
GCN+3-gram-ELECTRA 0.138 0.625 0.226
ELECTRA (3 epochs) 0.263 0.250 0.256
GCN+POS w/o word embeddings 0.166 0.650 0.264
ELECTRA (50 epochs) 0.275 0.275 0.275
GCN+ELECTRA 0.166 0.875 0.280

Table 6.5: Results (binary Precision, Recall and F1 of the positive class label) on the official test
set for English with respect to different approaches.

refers to a setting where I omit word embeddings and represent graph nodes by only considering

one-hot encoded POS-tag vectors. In the GCN+3-gram-ELECTRA model, I characterize graph

nodes by mean-pooled word embeddings of 3 subsequent words at each position. Thus, I also

wanted to take into account word orders that can be lost during graph convolution.

6.3 Detecting Irony and Stereotype Spreaders on Twitter

6.3.1 Task description

The task proposed at PAN@CLEF2022 [31] was about Profiling Irony and Stereotype Spreaders

(ISSs) on Twitter [46]. The task was to investigate whether an author of a Twitter feed is likely to

spread tweets containing irony and stereotypes. The organizers provided a labelled English dataset,

consisting of 420 authors. In the dataset, each sample represents a single author’s feed. For each

author, a set of 200 tweets is provided. The unlabeled test set provided consists of 180 samples. In

the rest of this subsection, I discuss the three models developed to participate at shared task.

6.3.2 T100: A modern classic ensamble

The model I used to compete for the task consists of a Logistic Regressor (LR) that get as input the

predictions provided by a first stage of classifiers (named the voters). The voters are a Convolutional

Neural Network (CNN), a Support Vector Machine (SVM), a Näıve Bayes classifier (NB) and a

Decision Tree (DT).

The model proposed and described in this section is named T100. This name is motivated by

the modern classic class of motorcycles produced by the UK-owned manufacturer8. In fact, T100

consists of both modern and classic elements to perform its task9. T100 include an LR model trained

on the predictions provided by a first stage of classifiers. Details about the training phase of T100

are provided in the following subsection.

8https://www.triumphmotorcycles.co.uk/
9...that is TC, not yet able to run at 100 MPH. Yet...

https://www.triumphmotorcycles.co.uk/
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As a first step I preprocess each sample in my dataset to remove information common to all

samples. More specifically, I remove the tag CDATA before each tweet of any author’s feed. Then

I remove the starting tag < documents > opening each sample. Finally, I remove the opening

and closing tag < authorlang = ”en” >. Finally, I lowercase all the text. The resulting text

is then vectorized using the Keras Text Vectorization layer10. The preprocessing discussed above

is performed by the text vectorization layer. Therefore, the text vectorization layer performs the

following operations:

1. Preprocess the text of each sample

2. Split the text in each preprocessed sample into words (at each space character)

3. Recombine words into tokens (ngrams)

4. Index tokens (associate a unique int value with each token)

5. Transform each sample, using this index, into a vector of ints.

While the vectorized text is provided as-is to the word embedding layer inside the CNN, another

step is performed for other voters. The vectorized text is translated into a Bag-of-Words (BoW)

representation and provided as input to the other voters (i.e., NB, SVM and DT).

It is worth noting that the outputs from the first stage of classifiers have different meanings.

In fact, the CNN outputs a float value in the range (-∞,+∞), while other classifiers output the

probability that a given sample is an ISS. In the case of the CNN the threshold value is set equal to

0, therefore any negative value corresponds to a nISS while a positive one corresponds to an ISS.

The CNN network is implemented accordingly to the work discussed in [259] and in [258]. The

network consists of a word embedding layer followed by a convolutional layer, an average pool-

ing layer, a global average pooling layer and a single dense unit as output. The other voters are

implemented using the Scikit-learn packages11.

At a very first implementation, I tried to normalize each voter’s output. Specifically, I per-

formed several experiments; as an instance, using the normalization techniques discussed in [5, 217].

However, I discovered that keeping the original output range from each voter notably increases the

performance of T100. So I lastly did not make use of any kind of normalization technique for any

voter’s output.

Model training

The training of my model is based on a 5-fold strategy. As a first step, I train each voter using

the k-training fold. Then I let each voter predicts on the corresponding k-validation fold. Then I

10https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization
11https://scikit-learn.org/stable/

https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization
https://scikit-learn.org/stable/
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Figure 6.5: The overall architecture of T100. The sample xi is the Twitter feed of the i-th author.
The shallow CNN used here is built as discussed in [259]. Other classifiers are included into the Scikit-
learn package. LR uses the predictions provided by the voters to predict the label yi corresponding
to the input sample xi.
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merge the five sets of predictions on the validation folds. In such a way, a new predictions’ dataset

is generated. In this new generated predictions dataset, samples consist of voter’s predictions and

of the original corresponding label (i.e., nISS or ISS ) of the input sample. This new predictions’

dataset is used to train the LR.

After the training phase, the simulation phase is performed as follows. Using the official test set,

I provide the unlabeled samples to the voters. Predictions of the voters are provided as input to the

LR, then I collect and submit the final predictions made by the LR. This last prediction phase is

depicted in Figure 6.5.

Experimental evaluation

The model, developed in TensorFlow, is publicly available as a Jupyter Notebook on GitHub12. The

architecture of the CNN-based model used in my work is very similar to the one discussed in [259].

It is a shallow CNN compiled with a binary cross entropy loss function; this function calculates loss

with respect to two classes (i.e., 0 and 1). Optimization is performed with an Adamic optimizer [141]

after giving each batch of data as input. For each fold, I trained the CNN for five epochs. That is

motivated by the fact that some overfitting starts after the fifth epoch. I performed a binary search

to find the optimal batch size. The model achieved the best overall accuracy with a batch size equal

to 1. For the NB voter, I use MultinomialNB from the Scikit-learn package. The SVM voter uses a

linear kernel with a C-value equal to 0.5. Finally, for the DT classifier, I set a random state equal

to 0.

The dataset provided by the PAN organizers consists of a set of 600 Twitter authors. For each

author, a set of 200 tweets is provided. A single XML file corresponds to an author and contains

200 tweets of the author. The labelled training set provided by the organizers contains 420 authors.

The test set consists of the remaining 180 ones. Authors in the training set are labelled as ”I” (ISS)

or ”NI” (nISS). my final submission consists of a zip file containing predictions for each non-labelled

author in the test set.

Results

The official metric used for the author profiling task at PAN@CLEF2022 is the accuracy. Before

performing the 5-fold cross validation, I shuffled the 420 labelled samples, and then I left out the last

40 samples as a labelled test set. In Table 6.6 are reported the results obtained by the single voters

both on the test set and adopting a 5-fold cross validation on the labelled training set. In the table

are reported the arithmetic mean and the standard deviation over the 5-folds. Table 6.7 reports the

results of T100 on the validation set at each fold and on the labelled 40 samples I used as a test set.

In terms of accuracy, each classifier used individually performs worse than T100. Furthermore, the

12https://github.com/marco-siino/T100-PAN2022

https://github.com/marco-siino/T100-PAN2022
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Table 6.6: Results in terms of accuracy achieved by each voter of T100 at each fold. Models are
evaluated on the corresponding validation set at each fold and on the same test set. Performance of
the classifiers at the first stage of T100 are lower compared to the ensemble model presented here.
In the last two columns, I report the values of the arithmetic mean and the standard deviation over
the five folds.

Voter Set Fold Nr.
1 2 3 4 5 AVG σ

CNN
Val
Test

0.8947
0.9000

0.8684
0.8750

0.9079
0.9250

0.8684
0.9250

0.8947
0.9500

0.8868
0.9150

0.0158
0.0255

NB
Val
Test

0.8947
0.9000

0.8553
0.9000

0.8816
0.9000

0.8289
0.8750

0.8289
0.8750

0.8579
0.8900

0.0268
0.0122

SVM
Val
Test

0.9210
0.8750

0.9342
0.8500

0.9079
0.8750

0.8816
0.8750

0.8947
0.8500

0.9079
0.8650

0.0186
0.0122

DT
Val
Test

0.7368
0.7750

0.8421
0.8000

0.8684
0.7500

0.7631
0.8500

0.8816
0.8750

0.8184
0.8100

0.0579
0.0464

Table 6.7: Results achieved by the model on a 5-fold cross validation on the training set provided.
The results shown in the table are obtained using a Logistic Regressor as a final classifier of T100.

T100 — Logistic Regressor Fold Nr.
1 2 3 4 5 AVG σ

Val 0.9210 0.9342 0.9342 0.8553 0.9342 0.9158 0.0307
Test 0.9250 0.9250 0.9250 0.9250 0.9250 0.9250 0.0000

standard deviation of the single voters and of T100 is comparable on the validation sets. However,

the standard deviation is equal to 0 on the test set for T100 and higher for the single voters.

I performed several tests to investigate the best classifier as the very last predictor of T100. From

Table 6.8 to Table 6.10 these results are reported.

How it is shown in the tables, the LR is consistent over different training fold, with a null standard

deviation on the test set. In terms of consistency, the Gradient Boosting Classifier performs similarly,

with a standard deviation of 0.010. However, results in terms of binary accuracy are poor using

Gradient Boosting Classifier as long as the other models tested.

Finally, I used the T100 trained at the fifth fold to generate the predictions on the official

unlabeled test set provided by the organizers. As announced by the organizers, such a final version

of my model is able to reach an accuracy of 0.9444 with respect to the official test set.

Table 6.8: Results achieved by a T100 ensemble using a Decision Tree at the final prediction stage.

T100 — Decision Tree Fold Nr.
1 2 3 4 5 AVG σ

Val 0.8421 0.8158 0.8947 0.8421 0.8158 0.8421 0.0288
Test 0.9000 0.8000 0.8500 0.8250 0.8500 0.8450 0.0331
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Table 6.9: Results achieved by a T100 ensemble using a Random Forest at the final prediction stage.

T100 — Random Forest Fold Nr.
1 2 3 4 5 AVG σ

Val 0.9079 0.9342 0.9210 0.8816 0.9210 0.9131 0.0178
Test 0.8750 0.9000 0.9000 0.8750 0.8750 0.8850 0.0122

Table 6.10: Results achieved by a T100 ensemble using a Gradient Boosting Classifier at the final
prediction stage.

T100 — Gradient Boosting Fold Nr.
1 2 3 4 5 AVG σ

Val 0.8816 0.9079 0.9210 0.8684 0.9210 0.9000 0.0214
Test 0.8750 0.8500 0.8500 0.8500 0.8500 0.8550 0.0100

6.3.3 A CNN-based model using data augmentation with back translation

Before the data augmentation layer, I preprocess the dataset to remove useless information. More

specifically, I remove the opening tag CDATA from every XML file. Then I removed the start-

ing tag < documents > opening each sample. Finally, I removed the opening and closing tag

< authorlang = ”en” > and I lowercased all the text.

Dataset augmentation

In Figure 6.6 is shown the overview of my proposed framework. The very first stage takes a sample

from the dataset. The sample is preprocessed as described in the previous section. Such a pre-

processed sample is then augmented. To perform the augmentation, my framework back-translates

each sample. I implement this operation, within my framework, performing an online request to

the Google Translator API from the deep translator library. Full documentation of this module

is available online13. Thanks to this module, I translate each sample in dataset from English to

Italian. Then I translate back from Italian to English and finally, I merge the original sample with

the back-translated one.

The rationale behind such an augmentation strategy is easily explainable with the following

running example. In the example, making use of the Google Translate Tool online, a tweet contained

in one of the samples from the provided dataset is translated and then back-translated.

• ORIGINAL (ENG): ”Yeah; on paper, kinda shitty business model expecting banks et al to buy

something they have never needed, and never will need. But I know the real business model is

extracting fiat cash from morons; it seems to be playing out swimingly.”

• TRANSLATED (ENG to IT): ”S̀ı; sulla carta, un modello di business di merda che prevede

13https://deep-translator.readthedocs.io/en/latest/

https://deep-translator.readthedocs.io/en/latest/
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Figure 6.6: Overall architecture of the proposed framework. Both for training and testing phase, the
CNN proposed in [259] operates on an augmented dataset built as shown in Figure. Each sample is
augmented back-translating the contained text and merging it with the original source.

che le banche e altri acquistino qualcosa di cui non hanno mai avuto bisogno e di cui non

avranno mai bisogno. Ma sappiamo che il vero modello di business è estrarre denaro fiat dagli

idioti; sembra che stia nuotando.”

• TRANSLATED (IT to ENG): ”Yup; on paper, a shitty business model that requires banks and

others to buy something they never needed and never will. But I know that the real business

model is to extract fiat money from idiots; it looks like it is swimming.”

As can be seen from my running example from the dataset provided, the process of back-

translating a sample replace, delete and insert words, in fact augmenting the information available

for the subsequent CNN-based model. It is worth reporting that while maintaining the character-

istics of ironic text (in the first part of an augmented sample), an increased number of words and

sentences could provide more information available for the training of the CNN.

In my experiments, I also used back-translation to generate a separate sample for each original

sample in the training set. However, there was no improvement in terms of accuracy over the five-fold

validation.

Model training

The architecture of the CNN-based model used in my work is very similar to the one discussed in

[259]. It is a shallow CNN, as depicted in Figure 6.1.

The model is compiled with a binary cross entropy loss function; this function calculates loss with

respect to two classes (i.e., 0 and 1) as defined in 6.3.3. These classes are obtained after threshold

the output of the last single dense unit of the CNN. Positive values as output are considered as ISS
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Figure 6.7: The shallow CNN used and discussed in [259].
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Table 6.11: Results achieved by the model on a 5-fold cross validation on the training set provided.
In this case the DA layer is used before using each augmented sample as input for the CNN.

Fold Nr.
1 2 3 4 5 AVG σ

Accuracy 0.8947 0.8684 0.9211 0.8684 0.9079 0.8921 0.0210
Loss 0.3322 0.2710 0.3024 0.4102 0.2129 0.3057 0.0655

(i.e., 1) and negative ones as nISS (i.e., 0).

LossBCE = − 1

N

N∑
n=1

[yn × log (hθ(xn)) + (1 − yn) × log (1 − hθ(xn))] (6.3)

Optimization is performed with an Adamic optimizer [141] after giving each batch of data as

input. I performed a binary search for finding the optimal batch size. The model achieved the best

overall accuracy with a batch size of 1. my model, developed in TensorFlow, is publicly available as

a Jupyter Notebook on GitHub.

Results

In Table 6.11 are reported the results obtained adopting a 5-fold cross validation. The table reports

accuracy and loss values achieved on the validation set used at each fold, together with the arithmetic

mean and standard deviation. For each fold, I trained the model for 5 epochs. That is motivated

by the start of overfitting by the sixth epoch. In the same table, the higher accuracies and the

related losses are shown over the training epochs, with respect to the validation set used at the fold

indicated. As can be noted, some splits achieved a better performance, and this could be due to a

higher level of similarity between the considered train and validation sets. The model trained on

the best fold was used to make predictions on the test set provided for the competition. Predictions

were uploaded on TIRA [231]. As reported in the final ranking14, the proposed model (namely, stm)

reaches an accuracy of 0.9278.

6.3.4 A simple SVM ensemble

The proposed model

The proposed model is shown in Figure 6.8. After a Text Vectorization15 layer, I provided the

tokenized text to the CNN, Naive Bayes and Decision Tree classifiers.

The Naive Bayes and Decision Tree are implemented using the Scikit-learn package, while for

14https://pan.webis.de/clef22/pan22-web/author-profiling.html
15https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization

https://pan.webis.de/clef22/pan22-web/author-profiling.html
https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization
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Figure 6.8: Overview of the proposed ensemble model.

the CNN I implemented the shallow network discussed in [259].

After I collected the prediction from CNN, NB and DT on each sample of the dataset, I provided

these predictions as input to an SVM. Same pipeline is implemented both for training and testing

phase of my model. During the training phase, I provide predictions related labels to the SVM.

For the test phase, I provided the unlabeled sample from the test set to the CNN, NB and the DT.

Providing the output predictions from these classifiers as input to the SVM, I collected the final

prediction to be submitted to TIRA.

Experimental setup

I developed my software using the Python language (version 3.7) on Google Colab16. To build my

models I mainly used the Scikit-learn17 package, NumPy18 and TensorFlow19. My code is available

in Google Drive as a Jupyter Notebook20.

Results

In Table 6.12 are shown the results obtained by the single classifiers used and by the SVM ensemble

on the best running fold over a 5-fold cross validation. Results of the SVM are obtained using as

samples the predictions of the first layer classifier over the five folds.

16https://colab.research.google.com/
17https://scikit-learn.org/
18https://numpy.org/
19https://www.tensorflow.org
20https://colab.research.google.com/drive/1EWCxAHxWWAkFg-Y8dveXuxrh82hyOh96?usp=sharing

https://colab.research.google.com/
https://scikit-learn.org/
https://numpy.org/
https://www.tensorflow.org
https://colab.research.google.com/drive/1EWCxAHxWWAkFg-Y8dveXuxrh82hyOh96?usp=sharing
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Table 6.12: Results of single classifiers over 5-fold. The best results over 5-fold are expressed in
terms of binary accuracy. The standard deviation over the 5-fold is shown in the latest column.

Model Accuracy σ

CNN 0.9079 0.0158
NB 0.8947 0.0268
DT 0.8816 0.0579

SVM (ensemble) 0.9474 0.0377

As can be noted, the performance of the SVM ensemble significantly outperforms single classifiers

within my proposed framework. However, the standard deviation over the five folds is not smaller

with regard to the CNN and Naive Bayes. As communicated by the organizers, on the test set

provided, my model is able to reach an accuracy of 0.9389.

6.4 Detection and categorization of PCL

With the exponential growth of contents shared on social networks, a lot of new challenging tasks

have emerged. Many are currently studied and addressed by scholars, and a plethora of novel

machine learning approaches have been proposed [16], [111], [257]. Some of the most common tasks,

often co-located with international conferences, are those about fake news [216], hate speech [39],

misogyny [85] and cyberbullying [151] detection.

For these purposes, there is a constantly growing need for tools that can automatically extract

and classify information from online feeds, to face with consolidated as well as with emerging social

issues. Interest in NLP has increased in recent years with advances in machine and deep learning

architectures. There have been significant efforts in developing methods to automatically detect and

classify text content available online nowadays.

Together with the already mentioned tasks, an emerging one is about detecting Patronizing and

Condescending Language (PCL) [224]. The PCL Detection Task hosted at SemEval-2022 is covered

in detail in [225] and briefly discussed here. The main task is made of two subtasks. The first

one is a binary classification problem where, given a paragraph, a model has to predict whether

the paragraph contains or not PCL. The second one is a multi-label classification task where each

paragraph has to be labelled with one to seven categories of PCL. Classes are not mutually exclusive,

and so a paragraph could express one or more categories of PCL.

To face with the first subtask, I propose two deep models. The first one is a multichannel CNN.

Such a network consists of parallel word embedding and convolutional layers to allow different sets of

weights for trained embeddings — because of different kernel sizes employed by convolutional layers.

In terms of Precision, Recall and F1, results of my model show certain room for improvements in

future work. The second model is a hybrid bidirectional LSTM. Such a network is composed by a
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convolutional layer and two bidirectional LSTM layers.

For the second subtask, I propose two Transformer-based models [286]. The first one is a lighter

and faster version of BERT (i.e., DistilBERT) [250]. The model is opportunistically trained on an

undersampled version of the training dataset. The model is able to outperform RoBERTa [173]. The

second is an XLNet-based one [304]. The model is based on a generalized autoregressive pretraining

method. It enables learning bidirectional contexts by maximizing the expected likelihood over all

permutations of the factorization order. Under comparable experiment setting, XLNet outperforms

BERT [73] on several tasks, often by a large margin, including question answering, natural language

inference, sentiment analysis, and document ranking. My model implementation is opportunistically

trained on an undersampled version of the training DS. The model is able to outperform RoBERTa

[173] in terms of average F1.

6.4.1 Background

In this section, I provide some background about the Task 4 hosted at SemEval-2022. The aim of this

task is to identify PCL, and to categorize the linguistic techniques used to express it, specifically

when referring to communities identified as being vulnerable to unfair treatment by the media.

Participants at the Task 4 received a dataset with sentences in context (paragraphs), extracted from

news articles. Although news articles were collected from different countries, they were all provided

in English. The task consists of the two subtasks listed below.

1. Subtask 1: Binary classification. Given a paragraph, a system must predict whether it contains

any form of PCL. Two opposite labelled samples from the dataset provided are shown below.

Non-PCL Sample Text: ”Council customers only signs would be displayed . Two of the

spaces would be reserved for disabled persons and there would be five P30 spaces and eight P60

ones .”

Non-PCL Sample Label: [0]

PCL Sample Text: ”It can not be right to allow homes to sit empty while many struggle to

find somewhere to live, others having to sleep rough on pavements during Christmas, hoping

against hope, for some charity to provide shelter. The number left homeless and destitute is

alarming not necessarily at Christmas?”

PCL Sample Label: [1]

2. Subtask 2: Multi-label classification. Given a paragraph, a system must identify which PCL

categories express the condescension. The PCL taxonomy has been defined based on previous

works on PCL. The proposed categories are:
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• Unbalanced power relations

• Shallow solution

• Presupposition

• Authority voice

• Metaphor

• Compassion

• The poorer, the merrier

Two samples from the dataset provided are shown below. For each sample, the label is an array

containing seven elements. For each element, symbol 1 means that the corresponding PCL category

is expressed in the paragraph.

Sample Text 1: ”Yes ... because there is NO HOPE where he lives . India is a third-world

country . Do n’t be fooled by call centers in big cities . Most of the country is rural and most of the

population is illiterate and hopeless .”

Sample Label 1: [1, 0, 1, 0, 0, 1, 0]

Sample Text 2: ”For refugees begging for new life , Christmas sentiment is a luxury most of

them could n’t afford to expect under the shadow of long-running conflicts.”

Sample Label 2: [0, 0, 1, 0, 0, 1, 0]

Task organizers released a training and a dev set before the competition officially started. For

both sets, the gold labels were provided. During the first phase — Practice phase — participants

were able to develop and test their models, uploading predictions on Coda Lab. After releasing the

unlabeled test set, the second phase — Evaluation phase — started. Results for both phases are

available online 21.

6.4.2 System overview

In this section, I discuss the models presented for each subtask and the design choices made by my

team, motivating them. For both models, the code is publicly available and reusable. Further details

are provided in Section 3.4.2.

Subtask 1: Binary Classification

Given the binary nature of the task and his subject, for my first submission I developed a more

versatile CNN based on the one presented in [259]. Such a network is composed of parallel word

21https://sites.google.com/view/pcl-detection-semeval2022/ranking

https://sites.google.com/view/pcl-detection-semeval2022/ranking
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embedding and convolutional layers to allow different weights for embeddings and convolutional

filters. A general overview of the model architecture is shown in Figure 6.9. The rationale of

the model presented is to have more parallel convolutional-based channel, each with different word

embeddings and kernel filter weights. More properly, I set kernel size of 1, 2, 16 and 32 for each of

the 32 Conv1D layer filters. In this way I drive my model to focus more on a single token, a pair of

tokens, a group of 16 and of 32 tokens respectively. On the basis of my experiments, these are the

best-performing kernel sizes for the proposed task on my preliminary 10 cross-fold validation. In

addition to this behavior, I expect different coordinates for each word/token in each word embedding

channel, with the aim of getting a more fine-grained positioning of words/tokens in the embedding

space.

Based on my preliminary experiments, I found that on five different seeds initialization, the best

word embedding size for my model is 50. This size is consistent with the common values reported

in literature [194]. For each dense layer, I did not use any activation function. I trained my model

with a binary cross-entropy loss and using the Adam optimization algorithm [141].

For my second submission, I developed a light Hybrid LSTM. The model consists of a convolu-

tional layer followed by two bidirectional LSTM layers. Such a strategy is motivated by my decision

to extract relevant features from the word embedding layer before the first bidirectional one. A

general overview of the model architecture is shown in Figure 6.10. Based on my preliminary ex-

periments on five different seeds initialization, I found that the best word embedding size for the

model was 50. For each dense layer, I did not use any activation function. I trained my model with

a binary cross-entropy loss and using the Adam optimization algorithm [141].

Subtask 2: Multi-Label Classification

For my first submission at the Subtask 2 I chose a transformer-based model lighter than BERT (i.e.,

DistilBERT). Due to the high number of experiments to perform, I needed a faster model to train.

DistilBERT is a smaller general-purpose language representation model. In DistilBERT the original

size of BERT model is reduced by 40%, while retaining 97% of its language understanding capabilities

and being 60% faster. In terms of knowledge distillation, while BERT is the teacher, DistilBERT

is the student. The student is represented by a compact model and is trained to reproduce the

behavior of the larger model (i.e., the teacher). Such a compact model is trained with a linear

combination of three losses: the distillation loss (i.e., Lce), the masked language modeling loss (i.e.,

Lmlm), and the cosine embedding loss (i.e., Lcos). Because of the distilled nature of the model,

training and fine-tuning on a specific dataset for a specific task is of prominent importance. For

a detailed discussion of DistilBERT refer to [250]. While I firstly compared the results on the dev

set provided, I finally trained my model on the full training set — union of train and dev set —

providing predictions on the test set. In addition, I found beneficial maintaining the information

about casing of characters. So I did not lowercase the text provided, implementing a cased version
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Figure 6.9: Overview of the multichannel CNN presented for the first subtask at SemEval-2022. Each
channel has a different kernel size at Conv1D, driving model attention on different sized windows
of words. The kernel size of filters used at each Conv1D are 1, 2, 16 and 32. Each convolutional
layer has 32 filters separately trained during training phase. Such a strategy allows extraction of
different-sized features for a fine-grained learning.
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Figure 6.10: Overview of the Hybrid LSTM presented for first subtask hosted at SemEval-2022.
The presence of the Conv1D layer is motivated by my intention to extract relevant features from
the previous embedding layer. The kernel size of the 64 filters used by the convolutional layer is 2.
Such a strategy should allow extraction of relevant bi-grams from the input text.
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of DistilBERT and setting as output for each label seven digits corresponding to the seven categories

of PCL. Finally, I preprocessed each sample to include the country and keyword of each paragraph

in the input text.

For the second submission, I implemented an XLNet-based model. Different unsupervised pre-

training objectives have been explored in literature. XLNet implements a generalized autoregressive

pretraining method that uses a permutation language modeling objective to combine the advantages

of autoregressive and autoencoding methods. The neural architecture of XLNet is developed to

work seamlessly with the autoregressive objective, including the integration of Transformer-XL and

the careful design of the two-stream attention mechanism. XLNet achieves substantial improve-

ment over previous pretraining objectives on various tasks. Among them, autoregressive language

modeling and autoencoding have been the two most successful pretraining objectives. Furthermore,

XLNet integrates ideas from Transformer-XL [66] into pretraining. An XLNet model integrates two

techniques from Transformer-XL, namely the relative positional encoding scheme and the segment

recurrence mechanism. The relative positional encodings are applied based on the original sequence.

Furthermore, the recurrence mechanism is included into the proposed permutation setting and enable

the model to reuse hidden states from previous segments.

Training and fine-tuning of an XLNet for a specific task is of prominent importance. While I

firstly compared the results on the dev set provided, I finally trained my model on the full training

set — e.g., union of train and dev set — providing predictions on the test set.

6.4.3 Experimental setup

I implemented my first two models using Keras22 and TensorFlow23. The dataset provided for the

binary classification task is unbalanced in terms of negative and positive PCL instances. To face

with this issue, I undersampled the negative instances. On the basis of my preliminary experiments,

I found beneficial undersampling negative instances to be just six times more the positive ones.

Furthermore, I found it beneficial to include in each sample (both for training and prediction) the

keyword and the country field of each paragraph from the dataset. Then I used a batch size of

100. I empirically found that a good early stopping point for the training phase is obtained with

10 epochs and a learning rate of 0.001. I ran the experiments on Google Colab using the default

GPU (NVIDIA Tesla K80). The training time was around 15 seconds for each of the ten epochs.

The official metrics used for the task were Precision, Recall and F1 on positive instances (sample

containing PCL). But during my development phase, I focused on the model loss (i.e., binary cross

entropy loss). This chooses was dictated by the fact that the gold labels of the test set were not

provided.

22https://keras.io/
23https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/
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The models for Subtask 2 were implemented using Simple Transformers24. I used DistilBERT

and XLNet as the pre-trained language models. I preprocessed the dataset to include, within the

text of each sample, the country, and the keyword of the paragraph. To train my final models, I built

a single dataset consisting of the train and the dev set. Then I undersampled negative instances

(i.e., Non-PCL samples) to alleviate bias in the unbalanced dataset provided. I ran the experiments

on Google Colab, using an NVIDIA Tesla K80 GPU. The official metrics used for the task were F1

for each category and average F1 among them. In this case too, during my development phase, I

focused only on the loss of the models to perform some fine-tuning.

6.4.4 Results

For Subtask 1 the metrics used are Precision, Recall and F1. Each True Positive (TP) is computed

on the positive instances (i.e., paragraphs containing PCL). So a TP is a sample containing PCL

and correctly classified, a False Positive (FP) is a sample without PCL but wrongly classified as

a PCL sample, a False Negative (FN) is a sample containing PCL but wrongly classified as not

containing PCL. Therefore, Precision is the number of the correctly predicted PCL samples over

the total number of predicted PCL samples. Recall is the number of the correctly predicted PCL

samples over the total number of actual PCL samples. Finally, the F1 Score is the harmonic mean

of Precision and Recall.

The final ranking for the first subtask is drawn up accordingly to the F1 score on the test set

provided.

In Table 6.13 are shown the results on the dev set provided by the organizers. Results are

ordered according to F1 score. my model based on multichannel CNN is able to outperform the

Random-baseline provided in terms of F1 and Precision, obtaining similar results in terms of Recall.

RoBERTa-baseline performs better along the three metrics provided.

It is interesting to note that RoBERTa is a model pre-trained on over 160 GB of text. Com-

pared to my proposed model, it requires much more in terms of resources and time needed. Despite

such efforts, RoBERTa outperforms my model by only 16% and around 11% in terms of F1 and

Precision. The most significant difference is with recall. This means that the proportion of actual

positives identified correctly by my model is lower compared to RoBERTa. This could be mainly

due to the inability of my model at contrasting the bias learned because of the unbalanced dataset

provided, where Non-PCL paragraphs are, in fact, the vast majority. Our team did an additional

submission involving two deep models based on a Hybrid LSTM (i.e., made of convolutional and

bidirectional LSTM layers) and on an XLNet [304]. Our proposed Hybrid LSTM is able to out-

perform the Random-baseline provided in terms of F1 and precision. RoBERTa-baseline performs

24https://github.com/ThilinaRajapakse/simpletransformers

https://github.com/ThilinaRajapakse/simpletransformers


CHAPTER 6. APPLICATIONS FOR COMPETITIVE TASKS 150

Table 6.13: Performance comparison on dev set. The results of the two baseline methods provided
by the organizers (i.e., RoBERTa and Random baseline) compared to my models based on a multi-
channel CNN and Hybrid LSTM.

F1 P R
RoBERTa-baseline 48.29 34.99 77.89

Multi-Channel CNN 32.29 23.46 51.76
Hybrid LSTM 26.32 31.47 22.61

Random-baseline 17.35 10.40 52.26

Table 6.14: Performance comparison on test set. In the table are shown the RoBERTa-baseline, the
first classified (i.e., hudou), the two last classified and my models results. In parentheses are shown
the positions in the final ranking according to F1 score. NA stands for Not Assigned because only
the best result of the two model submitted is considered for final ranking.

F1 P R
hudou (1) 65.10 64.60 65.62

RoBERTa (44) 49.11 39.35 65.30
Multi-CNN (69) 29.28 23.40 39.12

Hybrid LSTM (NA) 28.15 29.62 26.81
mahangchao (79) 4.48 10.59 2.84

makahleh (80) 0.0 0.0 0.0

better along the three metrics provided. Compared to the Hybrid LSTM model, the multichan-

nel CNN outperforms the Hybrid LSTM. However, the Hybrid LSTM performs better with regard

to precision. Such a result leads to the conclusion that Hybrid LSTM correctly predicts a higher

number of actual PCL paragraphs with respect to the total predicted PCL paragraphs. Therefore,

further investigation might be conducted on combinations of main components of the two proposed

models in the effort to improve the F1.

In Table 6.14 are shown the results on the test set provided by the organizers without the gold

labels. Results are ordered based on the F1 score. Compared to the winner (i.e., hudou), RoBERTa

exhibits the most significant gap in Precision. Which means that proportion of positive instances

correctly classified by the winner team is significantly more compared to RoBERTa. However, in this

case too, RoBERTa outperforms my model with a similar gap along the three metrics with respect

to the results presented for the dev set. My two submitted models exhibit similar performances on

the test set. In this case too, the most significant gap is in recall.

For Subtask 2 the metric used is F1 along the seven categories provided, and the final ranking

was drawn up considering the average F1 along the seven categories on the test set provided. For
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this subtask, there is an important bias due to the unbalanced nature of the dataset with regard to

each category. In Table 6.15(a) the results on the dev set are shown. Results are ordered based on

the average F1 score. For each category, my XLNet is able to outperform the Random-baseline. The

average F1 is 15% more than such a baseline. It is worth noting that results with a random predictor

are not uniformly distributed along each category. This distribution provides further evidences

about the unbalanced nature of the dataset with regard to this multi-label classification subtask.

Furthermore, the random predictor outperforms F1 score of RoBERTa in four of the seven categories

provided. However, RoBERTa performs a lot better in detecting Unb, Pre and Com language

(namely, Unbalanced power relations, Presupposition and Compassion). These performances could

be motivated by the greater number of samples in the dataset expressing the first category. Compared

to RoBERTa my DistilBERT-model does better for five categories out of seven. And for this single

category (i.e., Presupposition) the gap is under 4%. Compared to my other submission, the XLNet

heavily outperforms DistilBERT in terms of F1 for each category and in the final average F1. In

Table 6.15(b) I report the results of the first model, my proposed models, RoBERTa and the last

classified one, according to the final ranking drawn up considering the average F1. In this case

too my models outperform RoBERTa, in terms of F1, for six out of seven categories. On the test

set, RoBERTa performs better in detecting Unb. However, compared to the results on dev set,

my two proposed models perform with a lower average F1 gap. And there is just a category (i.e.,

Metaphor) where DistilBERT significantly outperforms the XLNet. It is worth noting that the best

performing model is able to reach an average F1 of 46.89, outperforming of over 20% and 36% my

proposed models and RoBERTa respectively. This lead to a conclusion about the very large room

for improvement in this multi-label task. Some difficulties in reaching an average F1 of at least 50%

could be due to the unbalanced dataset as much as the intrinsic complexity of the task.

6.5 Conclusion

What emerges from the results presented in this chapter is that the choice of model is strongly

correlated to the type of the evaluated task. More precisely, to the type of input data considered.

While the CNN-based shallow architecture has been shown to classify effectively in the case of HSS,

similar results have not been obtained in the case of ISS. However, from a textual point of view, the

two datasets had the same format. In both cases, a Tweet feed represented the author to be rated.

Analyzing the results presented in [256], it emerges that a simple CNN architecture trained from

scratch actually separates at the word level already at the embedding level, identifying different

vector spaces for the two available classes. It is therefore possible that in the case of ISS, this

separation could not be carried out with performances comparable to those obtained with the HSS

dataset.
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Unb Sha Pre Aut Met Com The AVG
XLNet 47.99 20.41 24.61 20.06 16.67 39.24 8.89 25.41

DistilBERT 47.60 15.90 23.84 15.53 10.91 31.23 0.0 20.72
RoBERTa-baseline 35.35 0.0 29.63 0.0 0.0 28.78 0.0 13.40
Random-baseline 11.30 3.23 5.09 3.22 6.04 8.21 1.31 5.48

(a)

Table 6.15: Performance comparison on dev set (a) and test set (b) for Subtask 2. The table
shows F1 calculated for each category and the average F1 in the last column. For Subtask 2 my
proposed models based on DistilBERT and XLNet outperform RoBERTa on both dev and test set.
In parentheses are shown positions in final ranking. NA stands for Not Assigned in this case too.

Unb Sha Pre Aut Met Com The AVG
guonihe (1) 65.60 52.94 36.90 40.66 35.90 49.18 47.06 46.89
XLNet (29) 32.32 32.93 19.18 20.55 22.22 26.35 7.14 22.96

DistilBERT (NA) 32.62 30.49 18.80 18.31 26.00 25.37 0.0 21.65
RoBERTa-baseline (37) 35.35 0.0 16.67 0.0 0.0 20.87 0.0 10.41

nikss (49) 0.0 1.01 0.0 0.0 0.0 0.0 1.09 0.03
(b)

It is interesting to note that the best performances in the case of the ISS task were obtained

from an ensemble-based model (i.e., T100). The model actually considers the predictions provided

by a first layer of classifiers and makes the prediction of the class on these. Although not yet

demonstrated, in the field of information theory, the ability of the model to overcome — or in the

worst case equal — the performance of the single classifiers that compose it should be the subject

of further investigations. The particular nature of the ISS task (which includes the recognition of

irony) could partly motivate these results. It is possible that some models are able to disambiguate

better than others in certain cases and, taking into account the predictions provided, the ensemble

judges appropriately from time to time.

The results obtained by ELECTRA and GNN in relation to tweet harmful detection are not

sufficient to support the approach based on the use of pre-trained embeddings in combination with

graph-based networks. Therefore, it would perhaps not be the case to investigate further in this

direction.

Finally, with respect to the PCL dataset, it was interesting to note how opportunistically im-

plemented fine-tuning strategies can have such an impact on the final performance of a pre-trained

model. Furthermore, the results presented further highlighted the fact that attention-based models

generally achieve their best performance by operating on small sample sizes such as in the case of

newspaper articles, single tweets or reviews. In contrast to shallow convolutional models trained

from scratch, which would appear to fit convolution windows to particular text frames sufficient to

perform a correct classification.



Chapter 7

Conclusion

7.1 Conclusions and future perspectives

7.1.1 Conclusions

One of the most relevant challenges in the field of NLP is the TC. The creation and publication

of supervised machine learning methods is becoming increasingly important, especially for TC as

text and document datasets multiply. Determining these methods is necessary to have a better

document categorization system for this information. However, the need to have a better under-

standing of the complete process involved in TC tasks, models, and algorithms that are already in

use could eventually operate more effectively. Currently, a pipeline of this kind can be broadly split

in subsequent stages as follows: (I) Present challenges and datasets (II) Applying various strategies

and techniques to the raw text during preprocessing, (III) Text representation techniques as Term

Frequency-Inverse Document Frequency (TF-IDF), Term Frequency (TF), and Word2Vec, contex-

tualized word representations, Global Vectors for Word Representation (GloVe), and FastText. (IV)

Existing classification architectures such as random forest and deep learning models, Transform-

ers, logistic regression, Bayesian classifier, k-nearest neighbor, support vector machine, decision tree

classifier, and k-nearest neighbor. (V) Real-world applications and, last but not least, (VI) future

perspectives on performance and comprehension of the TC pipeline.

The following are my primary findings and contributions. I listed the prominent dataset used and

available in the literature in Chapter 2 along with the current tasks, problems, and applications for

TC. Here, I add a method for performing a preliminary analysis on the dataset under consideration.

Then, another proposed contribution is about performing data augmentation to enhance or make

explicit the latent information available in the text (RQ1). The most popular preprocessing methods

for preparing raw text are shown and explored in Chapter 3. In this chapter, I investigated the impact
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of common preprocessing techniques on a TC model performance. Thanks to a series of studies and

experiments, I was able to conclude that selecting a preprocessing method wisely can considerably

enhance a model’s performance. Furthermore, it is also possible to outperform the performance of

large pre-trained model using simpler classifiers adopting the proper preprocessing strategy (RQ2).

In Chapter 4, methods for numerically representing text were described, together with a thorough

introduction to the attention mechanism. In addition, as a further contribution, I proposed a

methodology for a thorough examination of a trained word embedding for a real-case problem and I

used the results to improve the model’s design (RQ3). Traditional and contemporary classifiers used

for TC are covered in Chapter 5. The reference materials for a number of contemporary Transformers

are listed. Contributions to this chapter regard several cross-experiments on real world datasets and

a methodology for a post-hoc analysis of a CNN layers to investigate further the behavior of a deep

learning model and to improve its design (RQ3). I go over all the designs and models created to

handle various current international and competitive TC tasks in Chapter 6. In Chapter 7 future

perspectives are provided along with the conclusions of this PhD thesis.

I discovered that the traditional approach enhances TC performance primarily by enhancing

the classifier design, preprocessing, and text representation scheme. The deep learning model, in

contrast, improves performance by enhancing the presentation learning process, the model structure,

and the inclusions of new information and data. I can finally say that serious attention to the very

initial stages of the categorization pipeline can lead to significant improvements in TC tasks (i.e., data

augmentation (RQ1), text preprocessing (RQ2) and representation models (RQ3)). The importance

of the ensuing stages varies according to the task being considered as well as the dataset involved.

7.1.2 Future perspectives

Two primary paths can be seen on the roadmap for NLP. The first is driven by bigger Transformer

Models like GPT-3 and its future relatives. The second important breakthrough will be in dialogue

models, where Google, Facebook, and other businesses are investing millions of dollars in R&D. At

the moment, in almost every sector, GPT models are sensitively impacting on everyone’s life. GPT-3

was created by Open AI, a research company that Elon Musk and other well-known figures like Sam

Altman co-founded. A multitasking system called GPT-3 can speak with a human, interpret text,

extract text, and, if you’re bored, amuse you with its poems. GPT-3 has, nonetheless, developed

expertise (and actual utility) in the area of producing computer code. Given the right guidelines,

GPT-3 can create full programs in Python, Java, and a number of other languages, opening up

interesting new possibilities. Bigger and bigger transformer models, like the GPT-4 or the Chinese

variant known as Wu Dao 2.0, are on the horizon.

The second significant development in NLP is the study of dialog models and conversational AI
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by Google and Facebook. For instance, Google unveiled a demonstration of the LAMDA conversa-

tional AI system. Unlike contemporary chatbots, which are programmed for specific conversations,

LAMDA has the advantage of being able to communicate with people on a seemingly limitless range

of themes. If LAMDA is effective, it will probably disrupt customer service, help desks, and ”whole

new types of useful applications,” as one Google blog put it.

In conclusion, the recent strides in Natural Language Processing (NLP) not only render it an

appealing investment for professionals and IT enthusiasts but also mark a pivotal moment in its

widespread adoption across key sectors such as finance, insurance, and healthcare. The swift expan-

sion of the NLP market as a composite of various technologies underscores the need for practitioners

to astutely identify the underlying systems with the utmost commercial potential and strategically

time their implementation. Looking forward, the bright future of NLP is unequivocal, characterized

by continual enhancements in user experience and the emergence of novel opportunities in unex-

plored markets. As NLP continues to evolve, its trajectory appears to be one of sustained growth

and transformative impact in almost every area of knowledge.
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Rychlý, and Vı́t Suchomel. The Sketch Engine: ten years on. Lexicography, pages 7–36, 2014.

[139] Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751,

Doha, Qatar, October 2014. Association for Computational Linguistics.

[140] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural

language models. In Thirtieth AAAI conference on artificial intelligence, 2016.

[141] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua

Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[142] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,

France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[143] Donald Knuth. The Art Of Computer Programming, vol. 3: Sorting And Searching. Addison-

Wesley, 1973.

[144] Boshko Koloski, Senja Pollak, and Blaz Skrlj. Multilingual detection of fake news spreaders via

sparse matrix factorization. In Linda Cappellato, Carsten Eickhoff, Nicola Ferro, and Aurélie
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[228] Dje Petrović and Milena Stanković. The influence of text preprocessing methods and tools on

calculating text similarity. Facta Universitatis, Series: Mathematics and Informatics, 34:973–

994, 2019.

[229] Juan Pizarro. Using n-grams to detect fake news spreaders on twitter. In Linda Cappellato,
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