
Citation: Golosio, B.; Villamar, J.;

Tiddia, G.; Pastorelli, E.; Stapmanns,

J.; Fanti, V.; Paolucci, P.S.; Morrison,

A.; Senk, J. Runtime Construction of

Large-Scale Spiking Neuronal

Network Models on GPU Devices.

Appl. Sci. 2023, 13, 9598. https://

doi.org/10.3390/app13179598

Academic Editor: Alexander N.

Pisarchik

Received: 13 June 2023

Revised: 14 August 2023

Accepted: 15 August 2023

Published: 24 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Runtime Construction of Large-Scale Spiking Neuronal
Network Models on GPU Devices
Bruno Golosio 1,2,† , Jose Villamar 3,† , Gianmarco Tiddia 1,2,∗,† , Elena Pastorelli 4 , Jonas Stapmanns 3 ,
Viviana Fanti 1,2 , Pier Stanislao Paolucci 4 , Abigail Morrison 3,5 and Johanna Senk 3

1 Department of Physics, University of Cagliari, 09042 Monserrato, Italy; golosio@unica.it (B.G.);
viviana.fanti@ca.infn.it (V.F.)

2 Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato, Italy
3 Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA-Institute

Brain Structure-Function Relationships (INM-10), Jülich Research Centre, 52428 Jülich, Germany;
j.villamar@fz-juelich.de (J.V.); jonas.stapmanns@rwth-aachen.de (J.S.); morrison@fz-juelich.de (A.M.);
j.senk@fz-juelich.de (J.S.)

4 Istituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185 Roma, Italy;
elena.pastorelli@roma1.infn.it (E.P.); pier.paolucci@roma1.infn.it (P.S.P.)

5 Department of Computer Science 3, Software Engineering, RWTH Aachen University,
52062 Aachen, Germany

* Correspondence: gianmarco.tiddia@dsf.unica.it
† These authors contributed equally to this work.

Abstract: Simulation speed matters for neuroscientific research: this includes not only how quickly
the simulated model time of a large-scale spiking neuronal network progresses but also how long it
takes to instantiate the network model in computer memory. On the hardware side, acceleration via
highly parallel GPUs is being increasingly utilized. On the software side, code generation approaches
ensure highly optimized code at the expense of repeated code regeneration and recompilation after
modifications to the network model. Aiming for a greater flexibility with respect to iterative model
changes, here we propose a new method for creating network connections interactively, dynamically,
and directly in GPU memory through a set of commonly used high-level connection rules. We validate
the simulation performance with both consumer and data center GPUs on two neuroscientifically
relevant models: a cortical microcircuit of about 77,000 leaky-integrate-and-fire neuron models and
300 million static synapses, and a two-population network recurrently connected using a variety of
connection rules. With our proposed ad hoc network instantiation, both network construction and
simulation times are comparable or shorter than those obtained with other state-of-the-art simulation
technologies while still meeting the flexibility demands of explorative network modeling.

Keywords: spiking neuronal networks; GPU; computational neuroscience; network connectivity

1. Introduction

Spiking neuronal network models are widely used in the context of computational
neuroscience to study the activity of the populations of neurons in the biological brain.
Numerous software packages have been developed to simulate these models effectively.
Some of these simulation engines offer the ability to accurately simulate a wide range
of neuron models and their synaptic connections. Among the most popular codes are
NEST [1], NEURON [2], and Brian 2 [3]. NENGO [4] and ANNarchy [5] should also be
mentioned. In recent years, there has been a growing interest in GPU-based approaches,
which can be particularly useful for simulating large-scale networks thanks to their high
degree of parallelism. This interest is also fueled by the rapid technological development of
this type of device and the availability of increasingly performant GPU cards both for the
consumer and for high-performance computing (HPC) infrastructure. A main driving force
behind this development is the demand from current artificial intelligence algorithms and

Appl. Sci. 2023, 13, 9598. https://doi.org/10.3390/app13179598 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179598
https://doi.org/10.3390/app13179598
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5144-6932
https://orcid.org/0009-0007-8791-7100
https://orcid.org/0000-0001-7524-0285
https://orcid.org/0000-0003-0682-1232
https://orcid.org/0000-0002-5611-909X
https://orcid.org/0000-0002-4879-4183
https://orcid.org/0000-0003-1937-6086
https://orcid.org/0000-0001-6933-797X
https://orcid.org/0000-0002-6304-062X
https://doi.org/10.3390/app13179598
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179598?type=check_update&version=1

Appl. Sci. 2023, 13, 9598 2 of 27

similar applications for massively parallel processing of simple floating point operations,
and a corresponding industry with huge financial resources. Present-day supercomputers
are reaching for exascale by drawing their compute power from GPUs. For neuroscience
to benefit from these systems, efficient algorithms for the simulation of spiking neuronal
networks need to be developed. Simulation codes such as GeNN [6], CARLsim [7,8], and
NEST GPU [9] have been primarily designed for GPUs, while, in recent times, popular
CPU-based simulators have shown interest in integrating the more traditional CPU-based
approach with libraries for GPU simulation [10–15]. Furthermore, the novel simulation
library Arbor [16], which focuses on morphologically-detailed neural networks, takes GPUs
into account.

In general, GPU-based simulators fall into one of three categories: those that allow the
construction of network models at run time using scripting languages, those that require the
network models to be fully specified in a compiled language, and hybrid ones that provide
both options. The most extensively used compiled languages are C and C++ for host code
and CUDA for device code (using NVIDIA GPUs), while the most widely used scripting
language is Python. With scripting languages, simulations can be performed without the
need to compile the code used to describe the model. Consequently, the time required for
compilation is eliminated. Furthermore, in many cases, the use of a scripting language
simplifies the implementation of the model, especially for users who do not have extensive
programming language expertise. Approaches using compiled languages typically have
much faster network construction times. To reconcile this benefit with the greater ease of
model implementation using a scripting language, some simulators have shifted toward a
code-generation approach [5,6]. In this approach, the model is implemented by the user
via a brief high-level description, which the code generator then converts into the language
or languages that must be compiled before being executed in the CPU and GPU. The main
disadvantage of code-generation based simulators is the need for new code generation and
compilation every time model modifications such as changes in network architecture are
necessary. The times associated with code generation and compilation are typically much
longer than network construction times [11].

Examples of the code-generation based approaches include GeNN [6] and ANNar-
chy [5]. In GeNN, neuron and synapse models are defined in C++ classes, and snippets of
C-like code can be used to offload costly operations onto the GPU. The Python package
PyGeNN [17] is built on top of an automatically generated wrapper for the C++ interface
(using SWIG (https://www.swig.org, accessed on 14 August 2023)) and allows for the
same low-level control. Further, Brian2GeNN [12] provides a code generation pipeline
for defining models via the Python interface of Brian [3] and using GeNN as a simulator
backend. Alternatively, Brian2CUDA [14] directly extends Brian with a GPU backend.
The hybrid approach is exemplified in CARLsim [8], which has also developed its own
Python interface to communicate with its C/C++ library named PyCARL [18]. Much like
PyNEST [19], the Python interface of the NEST simulator, CARLsim exposes its C/C++
kernel with a dynamic library, which can then interact with Python. However, like GeNN,
they make use of SWIG to automatically generate the binding between their library and
their Python interface. PyCARL directly serves as a PyNN [20] interface. NEST GPU [13]
is a software library for the simulation of spiking neural networks on GPUs. It originates
from the prototype NeuronGPU library [9] and is now overseen by the NEST Initiative and
integrated with the NEST development process. NEST GPU uses a hybrid approach and of-
fers the possibility to implement models using either Python scripts or C++ code. The main
commands of the Python interface, the use of dictionaries, and the names and parameters
of the neuron and spike generator models are already aligned to those of the CPU-based
NEST code. In a previous version of NEST GPU, connections were first created on the CPU
side and then copied from the RAM to GPU memory. This approach benefited from the
standard C++ libraries and, particularly, the dynamic allocation of container classes of the
C++ Standard Template Library. However, it had the drawback of relatively long network

https://www.swig.org

Appl. Sci. 2023, 13, 9598 3 of 27

construction times, not only due to the costly copying of connections and other CPU-side
initializations, but also because the connection creation process was performed serially.

This work proposes a network construction method in which the connections are
created directly in the GPU memory with a dynamic approach and then suitably organized
in the same memory using algorithms that exploit GPU parallelism. This approach, so
far applied to single-GPU simulations, enables much faster connection creation, initializa-
tion, and organization while preserving the advantages of dynamic connection building,
particularly the ability to create and initialize the model at run-time without the need for
compilation. Although this method was developed specifically in the framework of NEST
GPU, the concepts are sufficiently general that they should be applicable with minimal
adaptation to other GPU-based simulators as long as they are designed with a modular
structure.

Section 2 of this manuscript first introduces the dynamic creation of connections and
provides details on the used data structures and the spike buffer employed in the simula-
tion algorithm (Sections 2.1–2.3); details on the employed block sorting algorithm are in
Appendix A. The proposed dynamic approach for network construction is tested on the
simulation of two complementary weighted network models across different hardware con-
figurations; we then compare the performance to other simulation approaches. Details on
the network models, the hardware and software, and time measurements for performance
evaluations are given in Sections 2.4–2.6. The spiking activity of a network constructed
with the dynamic approach is validated statistically in Section 2.7 and Appendix B. The
performance results are shown in Section 3 (with additional data in Appendices C and D)
and discussed in Section 4.

2. Materials and Methods
2.1. Creation of Connections Directly in GPU Memory

A network model is composed of nodes, which are uniquely identifiable by index
and connections between them. In NEST and NEST GPU, a node can be either a neu-
ron or a device for stimulation or recording. Neuron models can have multiple receptor
ports to allow for receptor-specific parameterization of input connections. Connections
are defined in NEST GPU (and similarly in other simulators) via high-level connection
routines, e.g., ngpu.Connect(sources, targets, conn_dict, syn_dict), where the con-
nection dictionary conn_dict specifies a connection rule, e.g., one_to_one, for establishing
connections between source and target nodes. The successive creation of several individual
sub-networks, according to deterministic or probabilistic rules, can then lead to a complex
overall network. In the rules used here, we allow autapses (self-connections) and mul-
tapses (multiple connections between the same pair of nodes); see [21] for a summary of
state-of-the-art connectivity concepts.

The basic structure of a NEST GPU connection includes the source node index, the
target node index, the receptor port index, the weight, the delay, and the synaptic group
index. The synaptic group index takes non-zero values only for non-static synapses (e.g.,
STDP) and refers to a structure used to store the synapse type and the parameters common
to all connections of that group; it should not be confused with the connection group index,
which groups connections with the same delay for spike delivery. Additional parameters
may be present depending on the type of synapse, which is specified by the synaptic group.
The delay must be a positive multiple of the simulation time resolution and can, therefore,
be represented using time-step units as a positive integer. Connections are stored in GPU
memory in dynamically-allocated blocks with a fixed number of connections per block, B,
which can be specified by the user as a simulation kernel parameter before creating the
connections. It should be chosen on the basis of a compromise. If it is chosen too small, then
the total number of blocks would be high, resulting in longer execution times. Conversely,
if it is chosen too large, a significant amount of memory could be wasted due to incomplete
filling of the last allocated block. The default value for B used in all simulations of this
study is 107.

Appl. Sci. 2023, 13, 9598 4 of 27

Each time a new connection–creation command is launched, if the last allocated block
does not have sufficient free slots to store the new connections, an appropriate number of
new blocks is allocated according to the following formula:

Nnewblocks = b
Nconns + Nnewconns + B− 1

B
c − Nblocks (1)

where Nnewblocks is the number of new blocks that must be allocated, Nblocks is the old
number of blocks, Nconns is the old number of connections, Nnewconns is the number of con-
nections that must be created, and bxc denotes the integer part of x. The new connections
are indexed contiguously as follows:

inewconns = 0, ..., Nnewconns − 1. (2)

To understand our parallelization strategy we introduce two hardware-related terms,
CUDA threads and CUDA kernels. CUDA threads are the smallest GPU computing units,
these are grouped into blocks and several blocks are present in a multiprocessor unit.
Thus, a thread block refers to a physical group of computing units, each unit having a
unique index in the group. CUDA kernels are functions executed on the GPU device, these
concurrently exploit multiple CUDA thread blocks. Henceforth, to avoid confusion with
connection blocks, we will not mention CUDA thread blocks but refer to CUDA kernels,
the functions employing said thread blocks, and CUDA threads as one of the computing
units used by these kernels.

A loop is performed on the connection blocks, starting from the first block in which
there are available slots up to the last allocated block, and the connections are created
in each block by launching appropriate CUDA kernels to set the connection parameters
described above. In each block b, the index of each of the new connections is calculated
from the CUDA thread index k according to the formula:

inewconns,b = Nprevconns,b + k with k = 0, ..., Nthr − 1 (3)

where inewconns,b refers to the subset of inewconns on the current block, and Nprevconns,b is the
number of new connections created in the previous blocks. The number of connections
to be created in the current block, which corresponds to the number of required threads
Nthr, is computed before launching the kernel; if the block will be completely filled, the
number of threads equals the block size, Nthr = B. See Figure 1 for an example of how the
connections are numbered and assigned to the blocks.

The indexes of a source node s and a target node t are calculated from inewconns using
expressions that depend on the connection rule. Here, we provide both the name of the
rules as defined in [21] and their corresponding parameter of the NEST interface. In case
both the source-node group and the target-node group contain nodes with consecutive
indexes, starting from s0 and from t0, respectively, the node indexes are as follows:

• One-to-one (one_to_one):

s = s0 + inewconns (4)

t = t0 + inewconns (5)

with Nnewconns = Nsources = Ntargets.

• All-to-all (all_to_all):

s = s0 + b
inewconns

Ntargets
c (6)

t = t0 + mod(inewconns, Ntargets) (7)

with Nnewconns = Nsources × Ntargets.

Appl. Sci. 2023, 13, 9598 5 of 27

• Random, fixed out-degree with multapses (fixed_outdegree):

s = s0 + b
inewconns

K
c (8)

t = t0 + rand(Ntargets) (9)

where K is the out-degree, i.e., the number of output connections per source node,
rand(Ntargets) is a random integer between 0 and Ntargets − 1 sampled from a uniform
distribution, and Nnewconns = Nsources × K.

0

1

2

3

4

6

5

All-to-all

0

1

2

3

4

5

6

7

8

9

10

11

A B

Current block

Block 0

0 1 2

4

3

5 6 7 8 9 10 11

Block 1

Block 2

Thread
0 1 2 3 4 5 6 7

Figure 1. Example of connection creation using the all-to-all connection rule. (A) Each one of the four
source nodes (green) is connected to all three target nodes (orange). The connections generated via
this rule are identified with an index, inewconns, ranging from 0 to 11 (blue disks). (B) The connections
are stored in blocks that are allocated dynamically, where, for demonstration purposes, a block size
of ten connections is used. The black squares represent previous connections (established using
an earlier connect call), while the twelve connections generated via the considered instance of the
all-to-all rule are represented by the same blue disks labeled with inewconns as in panel A. The new
connections in different blocks are generated via separate CUDA kernels. In this example, Nprevconns,2

of the new connections are created in the previous block (grey frame), and the remaining ones in the
current block (b = 2, yellow frame), where inewconns is computed by adding the CUDA thread index
k to Nprevconns,2.

• Random, fixed in-degree with multapses (fixed_indegree):

s = s0 + rand(Nsources) (10)

t = t0 + b
inewconns

K
c (11)

where K is the in-degree, i.e., the number of input connections per target node, and
Nnewconns = ntargets × K.

• Random, fixed total number with multapses (fixed_total_number):

s = s0 + rand(Nsources) (12)

t = t0 + rand(Ntargets) (13)

Appl. Sci. 2023, 13, 9598 6 of 27

where pairs of sources and targets are sampled until the specified total number of
connections Nnewconns is reached.

If the indexes of source or target nodes are not consecutive but are explicitly given
by an array, the above formulas are used to derive the indexes of the array elements
from which to extract the node indexes. Weights and delays can have identical values
for all connections, or be specified for each connection by an array having a size equal to
the number of connections or be randomly distributed according to a given probability
distribution. In the latter case, the pseudo-random numbers are generated using the
cuRAND library (https://developer.nvidia.com/curand, accessed on 14 August 2023). The
delays are then converted to integer numbers expressed in units of the computation time
step by dividing their values, expressed in milliseconds, by the duration of the computation
time step, and rounding the result to an integer. The minimal delay that is permitted is one
computation time step [22]. Thus, if the result is less than 1, the delay is set to 1 in time step
units.

2.2. Data Structures Used for Connections

In order to efficiently manage the spike transmission in the presence of delays, the
connections must be organized in an appropriate way. To this end, the algorithm divides
the connections into groups so that connections from the same group share the same source
node and the same delay. This arrangement is needed for the spike delivery algorithm,
which is described in the next section. The algorithm achieves this by hierarchically
using two sorting keys: the index of the source node as the first key and the delay as
the second. Since the connections are created dynamically, their initial order is arbitrary.
Therefore, we order connections in a stage that follows network construction and that
precedes the simulation called calibration phase (for a definition of the simulation phases,
see Section 2.6). The sorting algorithm is an extension of radix sort [23] applied to an
array organized in blocks based on the implementation available in the CUB library (https:
//nvlabs.github.io/cub, accessed on 14 August 2023). Once the connections are sorted,
their groups must be adequately indexed so that when a neuron emits a spike, the code
has quick access to the groups of connections outgoing from this neuron and to their
delays. This indexing is carried out in parallel using CUDA kernels on connection blocks
with one CUDA thread for each connection. The connection index extracts the source
node index and the connection delay. If one of these two values differs from those of
the previous connection, it means that the current connection is the first of a connection
group. We use this criterion to count the number of connection groups per source node,
Gi, and to find the position of each connection group in the connection blocks. The next
step constructs for each source node an array of size equal to the number of groups of
outgoing connections containing the global indexes of the first connections of each group.
Since allocating a separate array for each node would be a time-consuming operation, we
concatenate all arrays into a single one-dimensional array. The starting position pi of the
sub-array corresponding to a given source node i can be evaluated using the cumulative
sum of Gi as follows:

pi =
i−1

∑
j=0

Gj i = 1, . . . , Nnodes and p0 = 0 (14)

where Nnodes is the total number of nodes in the network.

2.3. The Spike Buffer

The simulation algorithm employs a buffer of outgoing spikes for each neuron in
the network to manage connection delays [9,13]. Each spike object is composed of three
parameters: a time index, a connection group index, and a multiplicity (i.e., the number
of physical spikes emitted by a network node in a single time step). The spike buffer
has the structure of a queue into which the spikes emitted by the neuron are inserted.

https://developer.nvidia.com/curand
https://nvlabs.github.io/cub
https://nvlabs.github.io/cub

Appl. Sci. 2023, 13, 9598 7 of 27

Whenever a spike is emitted from the neuron, it is buffered, and both its time index and
its connection-group index are initialized to zero. At each simulation time step, the time
indexes of all the spikes are increased by one unit. When the time index of a spike matches
the delay of the connection group indicated by its connection group index, the spike is fed
into a global array called spike array, and its connection group index is incremented by one
unit to point to the next connection group in terms of delay. In the spike array, each spike
is represented by the source node index, the connection group index, and the multiplicity.
The spikes are delivered in parallel to the target nodes using a CUDA kernel with one
CUDA thread for each connection of each connection group inserted in the spike array.

2.4. Models Used for Performance Evaluation

This present work evaluates the performance of the proposed approach on two net-
work models: a cortical microcircuit and a simple network model of two neuron popula-
tions. The models are depicted schematically in Figure 2. The microcircuit model of Potjans
and Diesmann [24] represents a 1 mm2 patch of early sensory cortex at the biological plau-
sible density of neurons and synapses. The full-scale model comprises four cortical layers
(L2/3, L4, L5, and L6) and consists of about 77,000 current-based leaky integrate-and-fire
model neurons, which are organized into one excitatory and one inhibitory population
per layer. These eight neuron populations are recurrently connected by about 300 million
synapses with exponentially decaying postsynaptic currents; the connection probabilities
are derived from anatomical and electrophysiological measurements. The connection rule
used is fixed_total_number with autapses and multapses allowed. The dynamics of
the membrane potentials and synaptic currents are integrated using the exact integration
method proposed by Rotter and Diesmann [25], and the membrane potential of the neurons
of every population are initialized from a normal distribution with mean and standard
deviation optimized from the neuron population as in [26]. This approach avoids transients
at the beginning of the simulation. Signals originating from outside of the local circuitry, i.e.,
from other cortical areas and the thalamus, can be approximated with Poisson-distributed
spike input or DC current input. Tables 1–4 of [27] (see fixed total number models) contain a
detailed model description and report the values of the parameters. The model explains
the experimentally observed cell-type and layer-specific firing statistics, and it has been
used in the past both as a building block for larger models (e.g., [28]) and as a benchmark
for several validation studies [9,17,26,29–32].

Figure 2. Schematic representation of the networks used in this work. (A) Diagram of the cortical
microcircuit model reproduced from [26]. (B) Scheme of the network of two populations of Izhikevich
neurons.

Appl. Sci. 2023, 13, 9598 8 of 27

The second model is designed for testing the scaling performance of the network con-
struction by changing the number of neurons and the number of connections in the network
across biologically relevant ranges for different connection rules (see Section 2.1; autapses
and multapses allowed). The model consists of two equally sized neuron populations,
which are recurrently connected to themselves and to each other in four nestgpu.Connect()
calls. The total number of neurons in the network is N (i.e., N/2 per population), and the
target total number of connections is N × K connections, where K is the target number of
connections per neuron. Dependent on the connection rule used, the instantiated networks
may exhibit small deviations from the following target values:

• fixed_total_number:
The total number of connections used in each connect call is set to bN × K/4c.

• fixed_indegree:
The in-degree used in each connect call is set to bK/2c.

• fixed_outdegree:
The out-degree used in each connect call is set to bK/2c.
The network uses Izhikevich neurons [33], but the studied scaling behavior is inde-

pendent of the neuron model as well as the neuron, connection, and simulation parameters.
Indeed, the only parameters that have an impact on this scaling experiment are the total
number of neurons and the number of connections per neuron (i.e., N and K).

2.5. Hardware and Software of Performance Evaluation

As a reference, we implement the proposed method for generating connections directly
in GPU memory in the GPU version of the simulation code NEST. In the following, NEST
GPU (onboard) refers to the new algorithm in which the connections are created directly
in GPU memory, while NEST GPU (offboard) indicates the previous algorithm, which first
generates the network in CPU memory and subsequently copies the network structure into
the GPU as demonstrated in [9,13]. For a quantitative comparison to other established codes,
we use the CPU version of NEST [1] (version 3.3 [34]) and the GPU code generator GeNN [6]
(version 4.8.0 (https://github.com/genn-team/genn/releases/tag/4.8.0, accessed on 14
August 2023)).

We evaluate the performance of the alternative codes on four systems equipped with
NVIDIA GPUs of different generations and main application areas: two compute clusters,
JUSUF [35] and JURECA-DC [36], both using CUDA version 11.3 and equipped with the
data center GPUs V100 and A100, respectively, and two workstations with the consumer
GPUs RTX 2080 Ti, with CUDA version 11.7 and RTX 4090 with CUDA version 11.4. The
NEST GPU and GeNN simulations discussed in this work each employ a single GPU card,
both because the novel network construction method developed for NEST GPU is limited
to single-GPU simulations and also because all the simulation systems employed have
enough GPU memory to simulate the models previously described using a single GPU
card. The CPU simulations use a single compute node of the HPC cluster JURECA-DC
and exploit its 128 cores via 8 MPI processes each running 16 threads. Table 1 shows the
specifications of these three systems.

For the network models, their specific implementations were taken from the original
source for each simulator in the case of the cortical microcircuit model. In particular, both
NEST (https://github.com/nest/nest-simulator, accessed on 14 August 2023) and NEST
GPU (https://github.com/nest/nest-gpu, accessed on 14 August 2023) provide example
implementations of the cortical microcircuit model inside their respective source code
repositories. Additionally, GeNN provides their own implementation of the microcircuit
along with the data used for their PyGeNN publication [17] in the corresponding pub-
licly available GitHub repository (https://github.com/BrainsOnBoard/pygenn_paper,
accessed on 14 August 2023). Furthermore, to correctly compare the performance of the
simulation, we adapt the existing scripts so that the overall behavior remains the same.
In particular, we disabled spike recordings and we enabled optimized initialization of
membrane potentials as in [26].

https://github.com/genn-team/genn/releases/tag/4.8.0
https://github.com/nest/nest-simulator
https://github.com/nest/nest-gpu
https://github.com/BrainsOnBoard/pygenn_paper

Appl. Sci. 2023, 13, 9598 9 of 27

Table 1. Hardware configuration of the different systems used to measure the performance of the
simulators. Cluster information is given on a per node basis.

System CPU GPU

JUSUF cluster 2× AMD EPYC 7742, 2× 64 cores,
2.25 GHz

NVIDIA V100 1, 1530 MHz, 16 GB
HBM2e, 5120 CUDA cores

JURECA-DC cluster 2× AMD EPYC 7742, 2× 64 cores,
2.25 GHz

NVIDIA A100 2, 1410 MHz, 40 GB
HBM2e, 6912 CUDA cores

Workstation 1 Intel Core i9-9900K, 8 cores,
3.60 GHz

NVIDIA RTX 2080 Ti 3, 1545 MHz,
11 GB GDDR6, 4352 CUDA cores

Workstation 2 Intel Core i9-10940X, 14 cores,
3.30 GHz

NVIDIA RTX 4090 4, 2520 MHz,
24 GB GDDR6X, 16384 CUDA cores

1 Volta architecture: https://developer.nvidia.com/blog/inside-volta, accessed on 14 August 2023. 2 Ampere
architecture: https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth, accessed on 14 August
2023. 3 Turing architecture: https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth, accessed on
14 August 2023. 4 Ada Lovelace architecture: https://www.nvidia.com/en-us/geforce/ada-lovelace-architecture,
accessed on 14 August 2023.

The second model presented in Section 2.4 is implemented for NEST GPU (onboard),
and different connection rules can be chosen for the simulation. See the Data Availability
Statement for further details on how to access the specific model versions used in this
publication.

2.6. Simulation Phases

On the coarse level, we divide a network simulation into two successive phases: network
construction and simulation. The network construction phase encompasses all steps until the
actual simulation loop starts. To assess different contributions to the network construction,
we further divide this phase into stages. The consecutively executed stages in the NEST
implementations (both CPU and GPU versions) follow the same pattern as follows:

1. Initialization is a setup phase in the Python script for preparing both model and
simulator by importing modules, instantiating a class, or setting parameters, etc.

import nestgpu

2. Node creation instantiates all the neurons and devices of the model.

nestgpu.Create()

3. Node connection instantiates the connections among network nodes.

nestgpu.Connect()

4. Calibration is a preparation phase that orders the connections and initializes data
structures for the spike buffers and the spike arrays just before the state propagation
begins. In the CPU code, the pre-synaptic connection infrastructure is set up here.
This stage can be triggered by simulating just one time step h.

nestgpu.Simulate(h)

Previously, the calibration phase of NEST GPU was used to finish moving data to
the GPU memory and instantiate additional data structures like the spike buffer (cf.
Section 2.3). Now, as no data transfer is needed and connection sorting is carried
out instead (cf. Section 2.2), the calibration phase is now conceptually closer to the
operations carried out in the CPU version of NEST [37].

In GeNN, the network construction is decomposed as follows:

1. Model definition defines neurons and devices and synapses of the network model.

from pygenn import genn_model
model = genn_model.GeNNModel()
model.add_neuron_population()

https://developer.nvidia.com/blog/inside-volta
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth
https://www.nvidia.com/en-us/geforce/ada-lovelace-architecture

Appl. Sci. 2023, 13, 9598 10 of 27

2. Building generates and compiles the simulation code.

model.build()

3. Loading allocates memory and instantiates the network on the GPU.

model.load()

Timers at the level of the Python interface assess the performance of the three different
simulation engines. This has the advantage of being agnostic to the implementation details
of each stage at the kernel level, including any overhead of data conversion required by the
C++ API, and close to the actual time perceived by the user.

2.7. Validation of the Proposed Network Construction Method

The generation of random numbers for the probabilistic connection rules differs
between the previous and the novel approach for network construction in NEST GPU. This
means that the connectivity resulting from the same rule with the same parameters is not
identical but only matches on a statistical level. It is, therefore, necessary to determine that
the network dynamics is qualitatively preserved.

Using the cortical microcircuit model, we validate the novel method against the
previous one using a statistical analysis of the simulated spiking activity data. To this
end, we apply a similar validation procedure to that proposed in [9,13], where the GPU
version of NEST was compared to the CPU version as a reference. We follow the example
of [26,27,29,32] and compute for each of the eight neuron populations three statistical
distributions to characterize the spiking activity as follows:

• Time-averaged firing rate for each neuron;
• Coefficient of variation of inter-spike intervals (CV ISI);
• Pairwise Pearson correlation of the spike trains obtained from a subset of 200 neurons

for each population.

These distributions are then compared for the two different approaches for network
construction, as detailed in Appendix B.

3. Results

This section evaluates the performance of the proposed method for generating connec-
tions directly in GPU memory using the reference implementation NEST GPU (onboard).
For the cortical microcircuit model, we compare the network construction time and the
real-time factor of the simulations obtained with the novel method to NEST GPU (offboard)
(i.e., the simulator version employing the previous algorithm of instantiating the connec-
tions first on the CPU), the CPU version of the simulator NEST [1] and the code-generation
based simulator GeNN [6].

With the two-population network model, we assess the network construction time
upon scaling the number of neurons and the number of connections per neuron. Refer to
Section 2.4 for details on the network models.

3.1. Cortical Microcircuit Model

Figure 3 directly compares the two approaches for network construction implemented
in NEST GPU, i.e., onboard and offboard, in terms of the network construction time (panel
A) and the real-time factor obtained using a simulation of the network dynamics (panel
B). Panel A shows that the novel method for network construction enables a speed up
by two orders of magnitude with respect to the previous network construction algorithm.
The overhead of the offboard method (used in [9,13]) transferring the network from CPU to
GPU becomes obsolete with the proposed approach to generate the connections directly on
the GPU. Moreover, the onboard version shows lower network construction times across
all hardware configurations without compromising the simulation times (panel B). An
additional detail to take note of with the novel algorithm is that the calibration phase is
now by far the longest compared to the node creation and node connection (3–5 times
longer, depending on the hardware used). However, this is only due to the fact that both

Appl. Sci. 2023, 13, 9598 11 of 27

the creation and connection phases are now only used to instantiate data structures in
GPU memory, whereas the calibration phase takes charge of the connection sorting as
described in Section 2.2. Both versions have real-time factors of less than one second (sub-
real-time simulation), thus showing also an improvement in the simulation time compared
to the results of [9] obtained with the prototype NeuronGPU library. Additionally, in some
cases, it is possible to see a small improvement when simulating using the novel network
construction approach due to some code optimization related to the simulation phase.
While the network construction times are independent of the choice of external drive, the
DC input as expected leads to faster simulations of the network dynamics compared to the
Poisson generators. Comparing the different hardware configuration, the smallest real-time
factor obtained with NEST GPU (onboard) is achieved with DC input on the latest consumer
GPU RTX 4090, 0.386(0.001) (mean (standard deviation)). The respective result for Poisson
input is 0.4707(0.0008). For completeness, we also measure the real-time factor of NEST
and GeNN simulations using the same framework used for Figure 3B. These results are
shown in Tables 2–4 and depicted in Appendix C.

V100 A100 2080Ti 4090
NEST GPU (onboard)

V100 A100 2080Ti 4090
NEST GPU (offboard)

10 4

10 3

10 2

10 1

100

101

102

Ne
tw

or
k

co
ns

tru
ct

io
n

[s
]

A

Network construction phases
Initialization
Node creation
Node connection
Calibration

V100 A100 2080Ti 4090
NEST GPU (onboard)

V100 A100 2080Ti 4090
NEST GPU (offboard)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T w
al

l/
T m

od
el

B

Real-time factor - Poisson generator
Real-time factor - DC input

Figure 3. Comparison of network construction phase and simulation of the network dynamics for
the two versions of NEST GPU on the cortical microcircuit model. (A) Performance comparison of
the network construction phase using different hardware configurations. (B) Real-time factor defined
as Twall/Tmodel. The biological model time we use to compute the real-time factor is Tmodel = 10 s.
The external drive is provided via Poisson spike generators (left bars, pink) or DC input (right bars,
dark red). Error bars show the standard deviation of the simulation phase over ten simulations using
different random seeds.

Figure 4 compares the network construction times of the full-scale cortical microcir-
cuit model obtained using NEST GPU (onboard), NEST 3.3, and GeNN 4.8.0 on different

Appl. Sci. 2023, 13, 9598 12 of 27

hardware configurations; for details on the hardware and software configurations, see
Section 2.5. The settings are the same as in Figure 3. While panel A resolves the contribu-
tions of the different stages (defined in Section 2.6) using a linear y-axis, panel B shows the
same data with logarithmic y-axis to facilitate a comparison of the absolute numbers. As
mentioned in Section 2.4, the external input to the cortical microcircuit implementations in
both the CPU and GPU versions of NEST can be provided via either generators of Poisson
signals or DC input. We run simulations comparing both approaches. However, Figure 4
only shows the results for the case of Poisson generators because the network construction
times with DC input are similar. GeNN, in contrast, mimics the incoming Poisson spike
trains via a current directly applied to each neuron. Both NEST GPU (onboard) and GeNN
(without the building phase) achieve fast network construction times of less than a second.
The fastest overall network construction takes 0.499(0.10) s, as measured with NEST GPU
(onboard) using DC input on the A100 GPU, the data center GPU of the latest architecture
tested. The time measured using the RTX 4090 is also compatible with the A100 result; the
measured times with the V100 and the consumer GPU RTX 2080 Ti are also close. Tables 2–4
provide the measured values for reference.

2×64 cores
NEST 3.3 (CPU)

V100 A100 2080Ti 4090
NEST GPU (onboard)

V100 A100 2080Ti 4090
GeNN 4.8.0

0

2

4

6

8

10

12

14

16

Ne
tw

or
k

co
ns

tru
ct

io
n

[s
]

A

Network construction phases

Initialization
Node creation
Node connection
Calibration

Model
definition
Loading
Building

V100 A100 2080Ti 4090
NEST GPU (onboard)

2×64 cores
NEST 3.3 (CPU)

V100 A100 2080Ti 4090
GeNN 4.8.0

10 4

10 3

10 2

10 1

100

101

102

Ne
tw

or
k

co
ns

tru
ct

io
n

[s
]

B

Figure 4. Performance comparison of the network construction phase for different simulators and
hardware configurations on the cortical microcircuit model. Data for NEST GPU (onboard) are the
same as in Figure 3. (A) Network construction time of the model in linear scale for different simulators
and hardware configurations. (B) as in (A) but with logarithmic y-axis scale. In both panels, the
building phase of GeNN is placed on top of the bar, breaking with the otherwise chronological order
because this phase is not always required, and, at the same time, this display makes the shorter
loading phase visible in the plot with the logarithmic y-axis. Error bars show the standard deviation
of the overall network construction phase over ten simulations using different random seeds.

Appl. Sci. 2023, 13, 9598 13 of 27

Table 2. Performance metrics of NEST and NEST GPU when using Poisson spike generators to
drive external stimulation to the neurons of the model. All times are in seconds with notation (mean
(standard deviation)). Simulation time is calculated for a simulation of 10 s of biological time.

Metrics

NEST GPU (onboard) NEST GPU (offboard) NEST 3.3
(CPU)

V100 A100 2080Ti 4090 V100 A100 2080Ti 4090 2 × 64
Cores

Initialization 5.08(0.15)
× 10−4

1.44(0.15)
× 10−3

1.71(0.09)
× 10−4

1.91(0.04)
× 10−4

4.99(0.08)
× 10−4

1.44(0.15)
× 10−3

1.66(0.12)
× 10−4

1.84(0.05)
× 10−4 0.02(0.01)

Node
creation 0.02(0.004) 0.03(0.007) 1.63(0.09)

× 10−3
1.94(0.02)
× 10−3 3.02(0.02) 3.32(0.05) 1.93(0.04) 1.781

(0.018) 0.39(0.02)

Node
connection

0.105
(0.0003) 0.08(0.002) 0.308

(0.009)
0.1600
(0.0005) 54.65(0.11) 56.02(0.27) 41.16(0.28) 44.2(0.7) 1.72(0.17)

Calibration 0.57
(0.001)

0.408
(0.005)

0.602
(0.0006)

0.3638
(0.0004) 1.99(0.01) 2.06(0.01) 2.202(0.01) 2.183

(0.014) 2.39(0.01)

Network
construc-

tion

0.708
(0.001) 0.52(0.08) 0.91(0.09) 0.5259

(0.0008) 59.67(0.13) 61.41(0.27) 45.29(0.32) 48.2(0.7) 4.54(0.18)

Simulation
(10 s) 8.82(0.09) 8.54(0.03) 8.504(0.02) 4.707

(0.008) 9.28(0.04) 8.94(0.02) 8.64(0.01) 5.219
(0.018) 12.66(0.08)

Table 3. Performance metrics of NEST and NEST GPU when using DC input to drive external
stimulation to the neurons of the model. All times are in seconds with notation (mean (standard
deviation)). Simulation time is calculated for a simulation of 10 s of biological time.

Metrics

NEST GPU (onboard) NEST GPU (offboard) NEST 3.3
(CPU)

V100 A100 2080Ti 4090 V100 A100 2080Ti 4090 2 × 64
Cores

Initialization 5.04(0.13)
× 10−4

1.44(0.08)
× 10−3

1.75(0.16)
× 10−4

1.97(0.09)
× 10−4

5.1(0.4)
× 10−4

1.5(0.4)
× 10−3

1.62(0.04)
× 10−4

1.86(0.04)
× 10−4

0.018
(0.003)

Node
creation

7.0(0.5)
× 10−3

6.6(0.3)
× 10−3

1.43(0.13)
× 10−3

1.64(0.04)
× 10−3 3.01(0.02) 3.28(0.03) 1.91(0.02) 1.79(0.03) 0.392

(0.003)

Node
connection

0.1028
(0.0004)

0.0790
(0.0013)

0.31(0.02)
(0.009)

0.1538
(0.0005) 54.65(0.17) 55.89(0.19) 40.8(0.5) 44.2(0.7) 1.53(0.07)

Calibration 0.5785
(0.0013)

0.412
(0.008)

0.6011
(0.0006)

0.3632
(0.0003)

1.993
(0.012)

2.059
(0.016)

2.194
(0.015)

2.181
(0.015)

2.352
(0.005)

Network
construc-

tion

0.6888
(0.0018) 0.499(0.10) 0.91(0.02) 0.5189

(0.0005) 59.65(0.19) 61.23(0.19) 44.9(0.5) 48.1(0.7) 4.30(0.07)

Simulation
(10 s) 6.36(0.02) 7.32(0.05) 5.61(0.03) 3.86(0.01) 6.530

(0.012) 7.43(0.02) 5.604
(0.016)

3.953
(0.013) 7.77(0.15)

Table 4. Performance metrics of GeNN. All times are in seconds with notation (mean (standard
deviation)). Simulation time is calculated for a simulation of 10 s of biological time.

Metrics
GeNN

V100 A100 2080Ti 4090

Model definition 1.704(0.008)× 10−2 1.75(0.01)× 10−2 1.07(0.01)× 10−2 1.094(0.007)× 10−2

Building 13.87(0.36) 14.301(0.72) 7.25(0.04) 8.15(0.04)

Loading 0.77(0.02) 0.85(0.006) 0.51(0.01) 0.445(0.015)

Network construction (no building) 0.79(0.02) 0.85(0.006) 0.52(0.01) 0.456(0.015)

Network construction 14.67(0.35) 15.15(0.72) 7.78(0.04) 8.61(0.04)

Simulation (10 s) 6.48(0.01) 5.39(0.01) 7.007(0.01) 2.719(0.006)

Appl. Sci. 2023, 13, 9598 14 of 27

Hitherto, we discussed the performance for both network construction and simulation
of NEST GPU (onboard) compared to NEST GPU (offboard), NEST, and GeNN. Turning on
the statistical analysis of the simulated activity, data show good agreement between NEST
GPU (offboard) and NEST GPU (onboard) as well as between NEST GPU (onboard) and NEST
3.3. That means that differences between the compared simulator versions are of the same
order as the fluctuations due to the choice of different seeds in either of the codes (see
Section 2.7 and Appendix B). The novel approach constructs the network model in around
half a second, whereas the same task using the previous network construction method took
around a minute. In this validation process, we, therefore, experience a 15% reduction in
the overall time to solution when obtaining the simulated activity of 600 s of biological time
from NEST GPU (onboard) with respect to NEST GPU (offboard). More details on the time
needed to perform this study are reported in the Appendix B.

3.2. Two-Population Network

The two-population network described in Section 2.4 is designed to evaluate the
scaling performance of the proposed network construction method. To this end, we
perform simulations on NEST GPU (onboard) varying the number of neurons and the
number of connections per neuron. The scaling performance of NEST GPU (offboard)
has been evaluated on [9] for a balanced network model. We opted for a total number
of neurons in the network (N) ranging from 1000 to 1,000,000 and a target number of
connections per neuron (K) ranging from 100 to 10,000.

To enable the largest networks, benchmarks are performed on the JURECA-DC cluster,
which is equipped with the GPUs with the largest GPU memory (i.e., the NVIDIA A100 with
40 GB) among the systems described in Table 1. Figure 5 shows the network construction
times using the fixed_total_number connection rule and ranging the number of neurons
and connections per neuron. The performance obtained using the fixed_indegree and
fixed_outdegree connection rules are totally compatible with the ones shown in this
figure, and the respective plots are available in Appendix D for completeness.

As can be seen, the value of network construction time for the network with 106

neurons and 104 connections per neuron is not shown because of the lack of GPU memory.
Using an NVIDIA A100 GPU, we can, thus, say that this method enables the construction
of networks with up to an order of magnitude of 109 connections. The largest network
tested on this GPU comprised 3× 105 neurons with K = 10,000 connections per neuron
(data not shown).

103 104 105 106

Number of neurons (N)

10 2

10 1

100

Ne
tw

or
k

co
ns

tru
ct

io
n

tim
e

[s
]

Connections per neuron
 fixed_total_number

K = 100
K = 1000
K = 10,000

Figure 5. Network construction time of the two-population network with N neurons in total and K
connections per neuron using the fixed_total_number connection rule, i.e., the average amount of
connections per neuron is K, and the total number of connections is N × K. Error bars indicate the
standard deviation of the performance across 10 simulations using different seeds.

Appl. Sci. 2023, 13, 9598 15 of 27

4. Discussion

It takes less than a second to generate the network of the cortical microcircuit model [24]
with the GPU version of NEST using our proposed dynamic approach for creating connec-
tions directly in GPU memory on any GPU device tested. That is two orders of magnitude
faster than the previous algorithm, which instantiates the connections first on the CPU and
copies them from RAM to GPU memory just before the simulation starts (Figure 3). The
reported network construction times are also shorter compared to the CPU version of NEST
and the code generation framework GeNN (Figure 4); if code generation and compilation
are not required in GeNN, the results of NEST GPU and GeNN are compatible. The time
to simulate the network dynamics after network construction is not compromised by the
novel approach.

The latest data center and consumer GPUs (i.e., A100 and RTX 4090, respectively)
show the fastest network constructions as expected, approximately 0.5 s. We observe the
shortest simulation times on the RTX 4090 and attribute this result to the fact that the kernel
design of NEST GPU particularly benefits from the high clock speeds of this device (cf.
Section 2.5). Contrary to expectation, our simulations with DC input on the A100 are slower
compared to the V100 although the former has higher clock speeds; an investigation of this
observation is left for future work.

For models of the size of the cortical microcircuit, the novel approach renders the con-
tribution of the network construction phase to the absolute wall-clock time negligible, even
for short simulation durations. Further performance optimizations should preferentially
target the simulation phase. Our result that GeNN currently simulates faster than NEST
GPU indicates that there is room for improvement, which could possibly be exploited via
further parallelizations of the simulation kernel.

The evaluation of the scaling performance with the two-population network on the
A100 shows that the network construction time is dominated by the total number of
connections (i.e., N × K, Figure 5) and mostly independent of the connection rule used.
The maximum network size that can be simulated depends on the GPU memory of the
card employed for the simulation. Future generation GPU cards with more memory
available will enable the construction of larger or denser networks of spiking neurons and,
at the same time, give reasons to expect further performance improvements with novel
architectures and the possibility of an even higher degree of parallelism. Nonetheless, this
conclusion is affected by the structure of the connection objects, as each object contains
multiple data like the weight and the delay (cf. Section 2.2); when using natural connection
density, GPU memory would be consequently filled up faster. However, if one considers
simple connection objects like the ones used in weightless neural networks such as the Ring
Probabilistic Logic Neural Networks discussed in [38], the maximum network size would
naturally increase. The novel approach is currently limited to simulations on a single GPU,
and future work is required to extend the algorithm to employ multiple GPUs as achieved
with the previous algorithm [13].

Further improvements to the library may also expand upon the available connection
rules and more flexible control via the user interface. At present, the pairwise Bernoulli
connection routine [21] is not available; this is because the onboard construction method
requires a precise number of connections that must be allocated at once in order to not waste
any GPU memory. The pairwise Bernoulli connection routine implies that this number
is not known; hence, additional heuristics would be required to optimize memory usage.
Autapses and multapses are currently always allowed in NEST GPU; therefore, another
useful addition would be the possibility to prohibit them (for example, using a flag as in
the CPU version of NEST).

In conclusion, we propose a novel algorithm for network construction, which dynam-
ically creates the network exploiting the high degree of parallelism of GPU devices. It
enables short network construction times comparable to code generation methods and the
advantageous flexibility of run-time instantiation of the network. This optimized method
makes the contribution of the network construction phase in network simulations marginal,

Appl. Sci. 2023, 13, 9598 16 of 27

even when simulating highly-connected large-scale networks. As discussed in [39], this is
especially interesting for parameter scan applications, where a high volume of simulations
needs to be tested, and any additional contribution to the overall execution time of each
test aggregates considerably and slows down the exploration process. Future work can
investigate the extension of this algorithm for multi-GPU simulations, incorporate further
connection rules, and optimize the simulation kernel to enable the fast network construction
and simulation of large networks approaching the size of the human brain.

Author Contributions: Conceptualization, B.G., J.V., G.T., E.P., J.S. (Jonas Stapmanns), V.F., P.S.P.,
A.M. and J.S. (Johanna Senk); methodology, B.G., J.V., G.T., E.P., J.S. (Jonas Stapmanns), P.S.P., A.M.
and J.S. (Johanna Senk); software, B.G., J.V., G.T., J.S. (Jonas Stapmanns) and J.S. (Johanna Senk);
investigation, formal analysis, visualization, validation, and data curation, B.G., J.V., G.T. and J.S.
(Johanna Senk); resources, funding acquisition and supervision, B.G., P.S.P., A.M. and J.S. (Johanna
Senk); writing—original draft preparation, B.G., J.V., G.T. and J.S. (Johanna Senk); writing—review
and editing, B.G., J.V., G.T., E.P., J.S. (Jonas Stapmanns), V.F., P.S.P., A.M. and J.S. (Johanna Senk);
project administration, B.G. and J.S. (Johanna Senk). All authors have read and agreed to the published
version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 Framework
Programme for Research and Innovation under Specific Grant Agreement No. 945539 (Human Brain
Project SGA3), the Initiative and Networking Fund of the Helmholtz Association in the framework
of the Helmholtz Metadata Collaboration project call (ZT-I-PF-3-026), and the Joint Lab “Supercom-
puting and Modeling for the Human Brain”, the Italian PNRR MUR project PE0000013-FAIR CUP
I53C22001400006, funded by NextGenerationEU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code to reproduce all figures of this manuscript is publicly available
at Zenodo: https://doi.org/10.5281/zenodo.7744238, accessed on 14 August 2023. The versions of
NEST GPU employed in this work are available on GitHub (https://github.com/nest/nest-gpu,
accessed on 14 August 2023) via the git tags nest-gpu_onboard and nest-gpu_offboard.

Acknowledgments: The authors gratefully acknowledge the computing time granted by the JARA
Vergabegremium and provided on the JARA Partition part of the supercomputer JURECA at
Forschungszentrum Jülich (computation grant JINB33) and the use of Fenix Infrastructure resources,
which are partially funded from the European Union’s Horizon 2020 research and innovation pro-
gramme through the ICEI project under the Grant Agreement No. 800858. The authors further thank
the INFN APE Parallel/Distributed Computing laboratory and INM-6/IAS-6. Part of the work was
performed while Gianmarco Tiddia enjoyed a scientific stay at INM-6/IAS-6 in the period from 21st
of September 2022 to 28th of March 2023. The authors would also like to thank Markus Diesmann for
the detailed comments on the manuscript and Andrea Bosin, Fabrizio Muredda, and Giovanni Serra
for their support in the use of the RTX 4090 GPU.

Conflicts of Interest: The authors declare no conflict of interest. The sponsors had no role in the
design, execution, interpretation, or writing of this study.

Appendix A. Block Sorting

The following appendix describes the block sorting algorithm employed in the network
construction phase of the simulation and particularly when organizing connections among
the nodes of the network.

https://doi.org/10.5281/zenodo.7744238
https://github.com/nest/nest-gpu

Appl. Sci. 2023, 13, 9598 17 of 27

Figure A1. The COPASS block-sort algorithm. (A) Unsorted array, divided in blocks (subarrays).
Each element of the array is represented as a blue bar. The vertical solid lines represent the division
in subarrays. (B) Each subarray is sorted using the underlying sorting algorithm. (C) The subarrays
are divided in two partitions each using a common threshold, t, in such a way that the total size of
the left partitions (represented in red) is equal to the size of the first block. (D) The left partitions are
copied to the auxiliary array. (E) The right partitions are shifted to the right, and the auxiliary array
is copied to the first block. (F) The auxiliary array is sorted. The procedure from (C) to (E) is then
repeated on the new subarrays, delimited by the green dashed lines, in order to extract and sort the
second block, and so on, until the last block.

Appendix A.1. The COPASS (Constrained Partition of Sorted Subarrays) Block-Sort Algorithm

Given a real-number array A divided in k blocks (subarrays) Si,j of sizes Ni

A =
(

S0,0, . . . , S0,N0 , S1,0, . . . , S1,N1 , . . . Sk−1,0, . . . , Sk−1,Nk−1

)
(A1)

Si,j ∈ R i = 0, ..., k− 1 j = 0, ..., Ni (A2)

The aim of the COPASS block-sort algorithm is to perform an in-place sort of A
maintaining its block structure. This algorithm relies on another algorithm for sorting each
block. It should be noted that the subarrays do not need to be stored in contiguous locations
in memory. The COPASS block-sort algorithm is illustrated in Figure A1. The k subarrays
are sorted using the underlying sorting algorithm (Figure A1B). Each sorted subarray is
divided in two partitions using the COPASS algorithm, described in the next sections, in
such a way that all the elements of the left partitions (represented in red) are smaller than
or equal to a proper common threshold, t, while all the elements of the right partitions are
greater than or equal to t, and the total number of elements of the left partitions is equal to
the size of the first block, N0 (Figure A1C). The elements of the left partitions are copied to
the auxiliary array (Figure A1D). The right partitions are shifted to the right, leaving the
first block free, and the auxiliary array is copied to the first block (Figure A1E). The auxiliary
array is sorted (Figure A1F). The whole procedure is then repeated for extracting the second
block, using the logical subarrays delimited by the green dashed lines in Figure A1F, and
so on, until the last block is extracted. The maximum size of the auxiliary array is equal to
the size of the largest block, i.e.,

mmax = maxi{Ni} (A3)

Appl. Sci. 2023, 13, 9598 18 of 27

The auxiliary storage requirement of the COPASS block-sort algorithm is the largest
between the auxiliary storage requirement of the underlying sorting algorithm for an array
of size mmax and the auxiliary array storage requirement. This requirement can be reduced
by dividing A in a large number of small blocks.

Appendix A.2. The COPASS Partition Algorithm

Given a set of k real-number arrays Si,j (here called subarrays) of sizes Ni

Si,j ∈ R i = 0, ..., k− 1 j = 0, ..., Ni (A4)

each sorted in ascending order

Si,j ≤ Si,l for j ≤ l (A5)

and a positive integer m < ∑i,j Si,j, the purpose of this algorithm is to find a threshold t
and k non-negative integers mi such that

Si,j ≤ t for j < mi (A6)

Si,j ≥ t for j ≥ mi (A7)

∑
i

mi = m (A8)

We will call left partitions the subarrays of size mi

Si,j j = 0, . . . , mi − 1 (A9)

and right partitions the complementary subarrays

Si,j j = mi, . . . , Ni − 1 (A10)

The basic idea of the algorithm is to start from an initial interval [
¯
t0, t̄0], such that

¯
t0 ≤ t ≤ t̄0, and to proceed iteratively, shrinking the interval and ensuring that the condition

¯
ts ≤ t ≤ t̄s (A11)

is satisfied at each iteration index s, until either
¯
ts or t̄s is equal to t. For this purpose, for

each iteration index s, we define
¯
mi,s as the number of the elements of the subarray Si,j that

are smaller than or equal to
¯
ts, i.e., the cardinality of the set of integers j such that Si,j ≤ ¯

ts

¯
mi,s = card{j : Si,j ≤ ¯

ts} (A12)

and m̄i,s as the number of elements that are strictly smaller than t̄s

m̄i,s = card{j : Si,j < t̄s} (A13)

Since the subarrays Si,j are sorted, and
¯
mi,s and m̄i,s can be computed through a

binary search algorithm. In a parallel implementation, their values can be evaluated for
all i = 0, . . . , k− 1 by performing the binary searches in parallel on the k subarrays. As an
initial condition, we set

¯
t0 = min(Si,j)− 1 (A14)

t̄0 = max(Si,j) + 1 (A15)

Appl. Sci. 2023, 13, 9598 19 of 27

From Equations (A12) and (A13), it follows that

¯
mi,0 = 0 (A16)

m̄i,0 = Ni (A17)

and

∑
i ¯

mi,0 < m < ∑
i

m̄i,0 (A18)

We proceed iteratively to evaluate the values of
¯
ts+1, t̄s+1,

¯
mi,s+1 and m̄i,s+1 for the

iteration index s + 1 from their values at the previous iteration index s. Assume that the
condition

∑
i ¯

mi,s < m < ∑
i

m̄i,s (A19)

is satisfied for the iteration index s. The iterations are carried on only if m̄i,s − ¯
mi,s > 1 for

at least one index i, i.e.,

∃i : m̄i,s − ¯
mi,s > 1 (A20)

If the latter condition is not met, the iterations are concluded, and a solution is found
as described in Appendix A.3. Otherwise, if Equation (A20) is satisfied, let

ls = arg maxi{m̄i,s − ¯
mi,s} (A21)

m̃s = b ¯
mls ,s + m̄ls ,s

2
c (A22)

t̃s = Sls ,m̃s (A23)

where bxc represents the integer part of x. Since m̄ls ,s − ¯
mls ,s > 1, clearly

¯
mls ,s < m̃s < m̄ls ,s,

and from Equations (A12) and (A13)

¯
ts < t̃s < t̄s (A24)

Let

µ̄i,s = card{j : Si,j ≤ t̃s} (A25)

¯
µi,s = card{j : Si,j < t̃s} (A26)

From the latter equations and from Equations (A12) and (A13), it follows that

¯
mi,s ≤

¯
µi,s ≤ µ̄i,s ≤ m̄i,s (A27)

for all i, and thus,

∑
i ¯

mi,s ≤∑
i ¯

µi,s ≤∑
i

µ̄i,s ≤∑
i

m̄i,s (A28)

The three following cases are possible:

• Case 1

∑
i ¯

µi,s ≤ m ≤∑
i

µ̄i,s (A29)

In this case, t = t̃s. The iteration is concluded, and the partition sizes mi are computed
using the procedure described in Appendix A.4.

Appl. Sci. 2023, 13, 9598 20 of 27

• Case 2

∑
i ¯

mi,s < m < ∑
i ¯

µi,s (A30)

In this case, we set

¯
mi,s+1 =

¯
mi,s ¯

ts+1 =
¯
ts (A31)

m̄i,s+1 =
¯
µi,s t̄s+1 = t̃s (A32)

and continue with the next iteration. Equations (A30)–(A32) ensure that the condition
of Equation (A19) is satisfied for the next iteration index s + 1.

• Case 3

∑
i

µ̄i,s < m < ∑
i

m̄i,s (A33)

In this case, we set

¯
mi,s+1 = µ̄i,s ¯

ts+1 = t̃s (A34)

m̄i,s+1 = m̄i,s t̄s+1 = t̄s (A35)

and continue with the next iteration. Equations (A33)–(A35) ensure that the condition
of Equation (A19) is satisfied for the next iteration index s + 1.

Appendix A.3. The COPASS Partition Last Step, Case 1

This final step is carried out at the end of the iterations when the following condition is met:

m̄i,s − ¯
mi,s ≤ 1 ∀i (A36)

Consider the set of the ordered pairs (Si,m̄i,s , i) such that m̄i,s is equal to
¯
mi,s + 1

C = {(Si,m̄i,s , i) : m̄i,s = ¯
mi,s + 1} (A37)

We sort them in ascending order of Si,m̄i,s values

C̃ = sort(C) (A38)

Let d be the difference

d = m−∑
i ¯

mi,s (A39)

and D the set of the first d elements of C̃

D = {C̃0, . . . , C̃d−1} (A40)

We set the left partition sizes as

mi = ¯
mi,s for (Si,m̄i,s , i) /∈ D (A41)

mi = ¯
mi + 1 for (Si,m̄i,s , i) ∈ D (A42)

From the latter equation, obviously, the total size of the left partitions will be

∑ mi = ∑ ¯
mi,s + d (A43)

Appl. Sci. 2023, 13, 9598 21 of 27

From Equation (A39), it can be observed that this is equal to m, as requested. Further-
more, since D is sorted, the elements of the left partitions will be smaller than or equal to
those of the right partitions.

Appendix A.4. The COPASS Partition Last Step, Case 2

This last step is taken when the condition of Equation (A29) is met. In this case, t = t̃s,
and from Equations (A25), (A26) and (A29), it follows that

Si,j = t for
¯
µi,s ≤ j ≤ µ̄i,s (A44)

Let d be the difference

d = m−∑
i ¯

µi,s (A45)

In order to find a solution for the left partition sizes, mi, we need to find k integers, di,
in the ranges [0, µ̄i,s −

¯
µi,s], such that their sum is equal to d

∑
i

di = d (A46)

¯
µi,s ≤ di ≤ µ̄i,s (A47)

and set

mi =
¯
µi,s + di (A48)

In fact, from Equations (A45), (A46), and (A48), it follows that

∑
i

mi = m (A49)

as requested, while Equations (A26) and (A44) imply that Si,j is smaller than or equal to t
in the left partitions, while it is larger than or equal to t in the right partitions.

Appendix B. Validation Details

As described in Section 2.7, the new method for network construction implemented in
NEST GPU needs an in-depth analysis for validating the new version against the previous
version of the library. To verify the quality of the results, we collect the spiking activity of the
neuron populations of the cortical microcircuit model and compute the three distributions
of the spiking activity to be compared, i.e., the average firing rate of the populations,
the coefficient of variation of inter-spike intervals (CV ISI), and the pairwise Pearson
correlation of the spike trains for each population. The simulations are performed using
a time step of 0.1 ms and 500 ms of the network dynamics are simulated before recording
the spiking activity to avoid transients. Then, the spiking activity of the subsequent 600 s
of network dynamics is recorded to compute the distributions. As shown in [27], this
large amount of biological time to be simulated is needed to let the activity statistics
converge and, thus, to be able to distinguish the statistic of the activity from random
processes. Regarding the performance of such simulations, the real-time factor of NEST
GPU with enabled spike recording has only a 1.5% increase with respect to the performance
shown in Figure 3. Figure A2 shows the violin plots of the distributions obtained with the
seaborn.violinplot function of the Seaborn [40] Python library. The function computes
smoothed distribution through the Kernel Density Estimation method [41,42] with Gaussian
kernel, with bandwidth optimized using the Silverman method [43].

Appl. Sci. 2023, 13, 9598 22 of 27

L2/3E L2/3I L4E L4I L5E L5I L6E L6I
0

5

10

15

20

25

30

35

Fir
in

g
ra

te
 [s

pi
ke

s/
s]

A

L2/3E L2/3I L4E L4I L5E L5I L6E L6I

0.4

0.6

0.8

1.0

1.2

1.4

CV
 IS

I

B

L2/3E L2/3I L4E L4I L5E L5I L6E L6I0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

co
rre

la
tio

n

C

NEST GPU (offboard)
NEST GPU (onboard)

L2/3E L2/3I L4E L4I L5E L5I L6E L6I
0

5

10

15

20

25

30

35

Fir
in

g
ra

te
 [s

pi
ke

s/
s]

D

L2/3E L2/3I L4E L4I L5E L5I L6E L6I

0.4

0.6

0.8

1.0

1.2

1.4

CV
 IS

I

E

L2/3E L2/3I L4E L4I L5E L5I L6E L6I0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

co
rre

la
tio

n

F

NEST
NEST GPU (onboard)

Figure A2. Violin plots of the distributions of firing rate (A), CV ISI (B), and Pearson correlation (C)
for a simulation for the populations of the cortical microcircuit model using NEST GPU with (sky blue
distributions, right) or without (orange distributions, left) the new method for network construction. (D–F)
Same as (A–C), but the orange distributions are obtained using NEST 3.3. Central dashed line represents
the median of the distributions, whereas the two dashed lines represent the interquartile range.

The distributions obtained with the two versions of NEST GPU are visually indis-
tinguishable; the distributions of the CPU simulator (version 3.3) are likewise indistin-
guishable, as previously demonstrated in [9] for the comparison between the previous
version of NEST and NeuronGPU, the prototype library of NEST GPU. Additionally, to
quantitatively evaluate the difference between the different versions of NEST GPU, we
compute the Earth Mover’s Distance (EMD) between the pairs of distributions using
the scipy.stats.wasserstein_distance of the SciPy library [44]. More details on this
method can be found in [13]. We simulate sets of 100 simulations changing the seed for
random number generation. The sets of simulations for the two versions of the NEST GPU
library are, thus, pairwise compared, obtaining for each distribution and each population of
the model a set of 100 values of EMD, evaluating the difference between the distributions of
the two versions of NEST GPU (offboard-onboard). Furthermore, we compute an additional
set of simulations for the previous version of NEST GPU to be compared with the other set
of the same version (offboard-offboard). This way, we can evaluate the differences that can
arise using the same simulator with different seeds for random number generation and
compare it with the differences obtained by comparing the two different versions of NEST
GPU. Additionally, we performed the same validation to compare NEST and NEST GPU to

Appl. Sci. 2023, 13, 9598 23 of 27

have a quantitative comparison between the most recent versions of the two simulators,
i.e., NEST-NEST GPU (onboard) and NEST-NEST. Figure A3 shows the EMD box plots for
all the distributions computed and for all the populations.

L2/3E L2/3I L4E L4I L5E L5I L6E L6I
0.0

0.1

0.2

0.3

0.4

0.5

EM
D

[s
pi

ke
s/

s]

A EMD firing rate

L2/3E L2/3I L4E L4I L5E L5I L6E L6I0.000

0.002

0.004

0.006

0.008

EM
D

B EMD CV ISI

L2/3E L2/3I L4E L4I L5E L5I L6E L6I
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

EM
D

C EMD correlation

offboard-onboard
offboard-offboard

L2/3E L2/3I L4E L4I L5E L5I L6E L6I
0.0

0.1

0.2

0.3

0.4

0.5

EM
D

[s
pi

ke
s/

s]

D EMD firing rate

L2/3E L2/3I L4E L4I L5E L5I L6E L6I0.000

0.002

0.004

0.006

0.008

0.010

EM
D

E EMD CV ISI

L2/3E L2/3I L4E L4I L5E L5I L6E L6I
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

EM
D

F EMD correlation

NEST-NEST GPU (onboard)
NEST-NEST

Figure A3. Box plots of the Earth Mover’s Distance comparing side by side firing rate (A), CV ISI
(B) and Pearson correlation (C) of the two versions of NEST GPU (sky blue boxes, left) and the
previous version of NEST GPU using different seeds (orange boxes, right). Panels (D–F) are the same
as (A–C), but distributions of NEST GPU (onboard) and NEST 3.3 are compared. In particular, the
comparison between the different simulator is represented by the sky blue boxes on the left, whereas
the comparison between two sets of NEST simulations is depicted with the orange boxes. Central
line of the box plot represent the median of the distribution, whereas the extension of the boxes
is determined by the interquartile range of the distribution formed by the values of EMD of each
comparison. Whiskers shows the rest of the distribution as a function of the interquartile range, and
dots represent the outliers.

Comparing the box plots in panels A–C reveals very similar distributions in EMD
for the two comparisons, meaning that the variability we measure from comparing the
two versions is compatible with the one that we have by employing the previous version
of NEST GPU using different seeds, ergo the new method does not add variability with
respect to simulating the model with the previous version of NEST GPU using different
seeds. Similar conclusions can be derived from the comparison between NEST and NEST
GPU (onboard) (see panels D–F).

Appl. Sci. 2023, 13, 9598 24 of 27

As mentioned before, the real-time factor of NEST GPU marginally increased because
of the activation of the spike recording. The overall simulation time of a set of 100 simula-
tions using the novel method for network construction took around 868 min, with less than
one minute dedicated to network construction (more precisely, the average time is 0.53 s
for a single simulation). A set of simulations obtained using the old method for network
construction took around 1020 min, with around 100 min of them related to the network
construction phase. This represents a reduction in the network construction time of around
116 times with respect to the previous network construction method.

Appendix C. Additional Data for Cortical Microcircuit Simulations

Analog to Figure 3B, we show in Figure A4 the real-time factor for simulations run
with the CPU version of NEST and GeNN.

V100 A100 2080Ti 4090
NEST GPU (onboard)

2×64 cores
NEST 3.3 (CPU)

V100 A100 2080Ti 4090
GeNN 4.8.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T w
al

l/
T m

od
el

Real-time factor - Poisson generator
Real-time factor - DC input
Real-time factor - GeNN

Figure A4. Real-time factor, defined as Twall/Tmodel, of cortical microcircuit model simulations for
NEST GPU (onboard), NEST and GeNN. The biological model time we use to compute the real-time
factor is Tmodel = 10 s, simulated driving the external stimulation using Poisson spike generators (left
bars, pink) or DC input (right bars, dark red). GeNN (magenta bars) employs a different approach
for simulating external stimuli. Error bars show the standard deviation of the simulation phase over
ten simulations using different random seeds.

For the CPU version of NEST, ref. [31] demonstrated a smaller real-time factor for the
simulations of the cortical microcircuit model with DC input compared to our results in
Figure A4, which is likely due to a different version of the simulation code. We also employ
a different parallelization strategy to optimize the real-time factor with the recent release
NEST 3.3 on a compute node of the JURECA-DC cluster (i.e., 8 MPI processes each running
16 threads, as in [45] who obtained similar results with NEST 3.0).

Appendix D. Additional Data for the Two-Population Network Simulations

Figure 5 shows the network construction time of the two-population network using
the fixed_total_number connection rule. In Figure A5, we provide the corresponding
data for the fixed_indegree and the fixed_outdegree rules.

Appl. Sci. 2023, 13, 9598 25 of 27

103 104 105 106

Number of neurons (N)

10 2

10 1

100

Ne
tw

or
k

co
ns

tru
ct

io
n

tim
e

[s
]

A
Connections per neuron
 fixed_indegree

K = 100
K = 1000
K = 10,000

103 104 105 106

Number of neurons (N)

10 2

10 1

100

Ne
tw

or
k

co
ns

tru
ct

io
n

tim
e

[s
]

B
Connections per neuron
 fixed_outdegree

K = 100
K = 1000
K = 10,000

Figure A5. Network construction time of the two-population network with N total neurons and
K connections per neuron using different connection rules. (A) Performance obtained using the
fixed_indegree connection rule, i.e., each neuron of the network has an in-degree of K. (B) Per-
formance obtained using the fixed_outdegree connection rule, i.e., each neuron of the network
has K out-degrees. The value of network construction time for the network with 106 neurons and
104 connections per neuron is not shown because of lack of GPU memory. Error bars indicate the
standard deviation of the performance across 10 simulations using different seeds.

References
1. Gewaltig, M.O.; Diesmann, M. NEST (NEural Simulation Tool). Scholarpedia 2007, 2, 1430. [CrossRef]
2. Carnevale, N.T.; Hines, M.L. The NEURON Book; Cambridge University Press: Cambridge, UK , 2006. [CrossRef]
3. Stimberg, M.; Brette, R.; Goodman, D.F. Brian 2, an intuitive and efficient neural simulator. eLife 2019, 8, e47314. [CrossRef]

[PubMed]
4. Bekolay, T.; Bergstra, J.; Hunsberger, E.; DeWolf, T.; Stewart, T.; Rasmussen, D.; Choo, X.; Voelker, A.; Eliasmith, C. Nengo: A

Python tool for building large-scale functional brain models. Front. Neuroinform. 2014, 7, 48. [CrossRef]
5. Vitay, J.; Dinkelbach, H.U.; Hamker, F.H. ANNarchy: A code generation approach to neural simulations on parallel hardware.

Front. Neuroinform. 2015, 9, 19. [CrossRef]
6. Yavuz, E.; Turner, J.; Nowotny, T. GeNN: A code generation framework for accelerated brain simulations. Sci. Rep. 2016, 6, 18854.

[CrossRef]

http://doi.org/10.4249/scholarpedia.1430
http://dx.doi.org/10.1017/cbo 9780511541612
http://dx.doi.org/10.7554/eLife.47314
http://www.ncbi.nlm.nih.gov/pubmed/31429824
http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.3389/fninf.2015.00019
http://dx.doi.org/10.1038/srep18854

Appl. Sci. 2023, 13, 9598 26 of 27

7. Nageswaran, J.M.; Dutt, N.; Krichmar, J.L.; Nicolau, A.; Veidenbaum, A.V. A configurable simulation environment for the efficient
simulation of large-scale spiking neural networks on graphics processors. Neural Netw. 2009, 22, 791–800. [CrossRef]

8. Niedermeier, L.; Chen, K.; Xing, J.; Das, A.; Kopsick, J.; Scott, E.; Sutton, N.; Weber, K.; Dutt, N.; Krichmar, J.L. CARLsim 6: An
Open Source Library for Large-Scale, Biologically Detailed Spiking Neural Network Simulation. In Proceedings of the 2022
International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–10. [CrossRef]

9. Golosio, B.; Tiddia, G.; De Luca, C.; Pastorelli, E.; Simula, F.; Paolucci, P.S. Fast Simulations of Highly-Connected Spiking Cortical
Models Using GPUs. Front. Comput. Neurosci. 2021, 15, 627620. [CrossRef] [PubMed]

10. Kumbhar, P.; Hines, M.; Fouriaux, J.; Ovcharenko, A.; King, J.; Delalondre, F.; Schürmann, F. CoreNEURON: An Optimized
Compute Engine for the NEURON Simulator. Front. Neuroinform. 2019, 13, 63. [CrossRef]

11. Golosio, B.; De Luca, C.; Pastorelli, E.; Simula, F.; Tiddia, G.; Paolucci, P.S. Toward a possible integration of NeuronGPU in NEST.
In Proceedings of the NEST Conference, Aas, Norway, 29–30 June 2020; Volume 7.

12. Stimberg, M.; Goodman, D.F.M.; Nowotny, T. Brian2GeNN: Accelerating spiking neural network simulations with graphics
hardware. Sci. Rep. 2020, 10, 410. [CrossRef]

13. Tiddia, G.; Golosio, B.; Albers, J.; Senk, J.; Simula, F.; Pronold, J.; Fanti, V.; Pastorelli, E.; Paolucci, P.S.; van Albada, S.J. Fast
Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster. Front. Neuroinform. 2022, 16,
883333. [CrossRef]

14. Alevi, D.; Stimberg, M.; Sprekeler, H.; Obermayer, K.; Augustin, M. Brian2CUDA: Flexible and Efficient Simulation of Spiking
Neural Network Models on GPUs. Front. Neuroinform. 2022, 16, 883700. [CrossRef]

15. Awile, O.; Kumbhar, P.; Cornu, N.; Dura-Bernal, S.; King, J.G.; Lupton, O.; Magkanaris, I.; McDougal, R.A.; Newton, A.J.H.;
Pereira, F.; et al. Modernizing the NEURON Simulator for Sustainability, Portability, and Performance. Front. Neuroinform. 2022,
16, 884046. [CrossRef] [PubMed]

16. Abi Akar, N.; Cumming, B.; Karakasis, V.; Küsters, A.; Klijn, W.; Peyser, A.; Yates, S. Arbor—A Morphologically-Detailed Neural
Network Simulation Library for Contemporary High-Performance Computing Architectures. In Proceedings of the 2019 27th
Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Pavia, Italy, 13–15 February
2019; pp. 274–282. [CrossRef]

17. Knight, J.C.; Komissarov, A.; Nowotny, T. PyGeNN: A Python Library for GPU-Enhanced Neural Networks. Front. Neuroinform.
2021, 15, 659005. [CrossRef]

18. Balaji, A.; Adiraju, P.; Kashyap, H.J.; Das, A.; Krichmar, J.L.; Dutt, N.D.; Catthoor, F. PyCARL: A PyNN Interface for Hardware-
Software Co-Simulation of Spiking Neural Network. In Proceedings of the 2020 International Joint Conference on Neural
Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–10. [CrossRef]

19. Eppler, J.; Helias, M.; Muller, E.; Diesmann, M.; Gewaltig, M.O. PyNEST: A convenient interface to the NEST simulator. Front.
Neuroinform. 2009, 2, 12. [CrossRef]

20. Davison, A.P. PyNN: A common interface for neuronal network simulators. Front. Neuroinform. 2008, 2, 11. [CrossRef] [PubMed]
21. Senk, J.; Kriener, B.; Djurfeldt, M.; Voges, N.; Jiang, H.J.; Schüttler, L.; Gramelsberger, G.; Diesmann, M.; Plesser, H.E.; van Albada,

S.J. Connectivity concepts in neuronal network modeling. PLoS Comput. Biol. 2022, 18, e1010086. [CrossRef]
22. Morrison, A.; Diesmann, M. Maintaining Causality in Discrete Time Neuronal Network Simulations. In Lectures in Super-

computational Neurosciences: Dynamics in Complex Brain Networks; Graben, P.b., Zhou, C., Thiel, M., Kurths, J., Eds.; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 267–278. [CrossRef]

23. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press: Cambridge, MA, USA, 2009.
24. Potjans, T.C.; Diesmann, M. The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking

Network Model. Cereb. Cortex 2014, 24, 785–806. [CrossRef] [PubMed]
25. Rotter, S.; Diesmann, M. Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol.

Cybern. 1999, 81, 381–402. [CrossRef]
26. Van Albada, S.J.; Rowley, A.G.; Senk, J.; Hopkins, M.; Schmidt, M.; Stokes, A.B.; Lester, D.R.; Diesmann, M.; Furber, S.B.

Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software
NEST for a Full-Scale Cortical Microcircuit Model. Front. Neurosci. 2018, 12, 291. [CrossRef]

27. Dasbach, S.; Tetzlaff, T.; Diesmann, M.; Senk, J. Dynamical Characteristics of Recurrent Neuronal Networks Are Robust Against
Low Synaptic Weight Resolution. Front. Neurosci. 2021, 15, 757790. [CrossRef]

28. Schmidt, M.; Bakker, R.; Shen, K.; Bezgin, G.; Diesmann, M.; van Albada, S.J. A multi-scale layer-resolved spiking network model
of resting-state dynamics in macaque visual cortical areas. PLoS Comput. Biol. 2018, 14, e1006359. [CrossRef] [PubMed]

29. Knight, J.C.; Nowotny, T. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When
Simulating a Highly-Connected Cortical Model. Front. Neurosci. 2018, 12, 941. [CrossRef]

30. Rhodes, O.; Peres, L.; Rowley, A.G.D.; Gait, A.; Plana, L.A.; Brenninkmeijer, C.; Furber, S.B. Real-time cortical simulation on
neuromorphic hardware. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 378, 20190160. [CrossRef]

31. Kurth, A.C.; Senk, J.; Terhorst, D.; Finnerty, J.; Diesmann, M. Sub-realtime simulation of a neuronal network of natural density.
Neuromorphic Comput. Eng. 2022, 2, 021001. [CrossRef]

32. Heittmann, A.; Psychou, G.; Trensch, G.; Cox, C.E.; Wilcke, W.W.; Diesmann, M.; Noll, T.G. Simulating the Cortical Microcircuit
Significantly Faster Than Real Time on the IBM INC-3000 Neural Supercomputer. Front. Neurosci. 2022, 15, 728460. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.neunet.2009.06.028
http://dx.doi.org/10.1109/IJCNN55064.2022.9892644
http://dx.doi.org/10.3389/fncom.2021.627620
http://www.ncbi.nlm.nih.gov/pubmed/33679358
http://dx.doi.org/10.3389/fninf.2019.00063
http://dx.doi.org/10.1038/s41598-019-54957-7
http://dx.doi.org/10.3389/fninf.2022.883333
http://dx.doi.org/10.3389/fninf.2022.883700
http://dx.doi.org/10.3389/fninf.2022.884046
http://www.ncbi.nlm.nih.gov/pubmed/35832575
http://dx.doi.org/10.1109/EMPDP.2019.8671560
http://dx.doi.org/10.3389/fninf.2021.659005
http://dx.doi.org/10.1109/IJCNN48605.2020.9207142
http://dx.doi.org/10.3389/neuro.11.012.2008
http://dx.doi.org/10.3389/neuro.11.011.2008
http://www.ncbi.nlm.nih.gov/pubmed/19194529
http://dx.doi.org/10.1371/journal.pcbi.1010086
http://dx.doi.org/10.1007/978-3-540-73159-7_10
http://dx.doi.org/10.1093/cercor/bhs358
http://www.ncbi.nlm.nih.gov/pubmed/23203991
http://dx.doi.org/10.1007/s004220050570
http://dx.doi.org/10.3389/fnins.2018.00291
http://dx.doi.org/10.3389/fnins.2021.757790
http://dx.doi.org/10.1371/journal.pcbi.1006359
http://www.ncbi.nlm.nih.gov/pubmed/30335761
http://dx.doi.org/10.3389/fnins.2018.00941
http://dx.doi.org/10.1098/rsta.2019.0160
http://dx.doi.org/10.1088/2634-4386/ac55fc
http://dx.doi.org/10.3389/fnins.2021.728460
http://www.ncbi.nlm.nih.gov/pubmed/35126034

Appl. Sci. 2023, 13, 9598 27 of 27

33. Izhikevich, E. Simple model of spiking neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [CrossRef] [PubMed]
34. Spreizer, S.; Mitchell, J.; Jordan, J.; Wybo, W.; Kurth, A.; Vennemo, S.B.; Pronold, J.; Trensch, G.; Benelhedi, M.A.; Terhorst, D.; et al.

NEST 3.3. Zenodo 2022. [CrossRef]
35. Vieth, B.V.S. JUSUF: Modular Tier-2 Supercomputing and Cloud Infrastructure at Jülich Supercomputing Centre. J. Large-Scale

Res. Facil. JLSRF 2021, 7, A179. [CrossRef]
36. Thörnig, P. JURECA: Data Centric and Booster Modules implementing the Modular Supercomputing Architecture at Jülich

Supercomputing Centre. J. Large-Scale Res. Facil. JLSRF 2021, 7, A182. [CrossRef]
37. Jordan, J.; Ippen, T.; Helias, M.; Kitayama, I.; Sato, M.; Igarashi, J.; Diesmann, M.; Kunkel, S. Extremely Scalable Spiking Neuronal

Network Simulation Code: From Laptops to Exascale Computers. Front. Neuroinform. 2018, 12, 2. [CrossRef]
38. Azizi, A. Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern

Manufacturing. Complexity 2017, 2017, 8728209. [CrossRef]
39. Schmitt, F.J.; Rostami, V.; Nawrot, M.P. Efficient parameter calibration and real-time simulation of large-scale spiking neural

networks with GeNN and NEST. Front. Neuroinform. 2023, 17, 941696. [CrossRef] [PubMed]
40. Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [CrossRef]
41. Rosenblatt, M. Remarks on Some Nonparametric Estimates of a Density Function. Ann. Math. Stat. 1956, 27, 832–837. [CrossRef]
42. Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [CrossRef]
43. Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: London, UK, 1986.
44. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;

Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
45. Albers, J.; Pronold, J.; Kurth, A.C.; Vennemo, S.B.; Mood, K.H.; Patronis, A.; Terhorst, D.; Jordan, J.; Kunkel, S.; Tetzlaff, T.; et al.

A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations. Front. Neuroinform. 2022, 16, 837549.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNN.2003.820440
http://www.ncbi.nlm.nih.gov/pubmed/18244602
http://dx.doi.org/10.5281/zenodo.6368024
http://dx.doi.org/10.17815/jlsrf-7-179
http://dx.doi.org/10.17815/jlsrf-7-182
http://dx.doi.org/10.3389/fninf.2018.00002
http://dx.doi.org/10.1155/2017/8728209
http://dx.doi.org/10.3389/fninf.2023.941696
http://www.ncbi.nlm.nih.gov/pubmed/36844916
http://dx.doi.org/10.21105/joss.03021
http://dx.doi.org/10.1214/aoms/1177728190
http://dx.doi.org/10.1214/aoms/1177704472
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.3389/fninf.2022.837549

	Introduction
	Materials and Methods
	Creation of Connections Directly in GPU Memory
	Data Structures Used for Connections
	The Spike Buffer
	Models Used for Performance Evaluation
	Hardware and Software of Performance Evaluation
	Simulation Phases
	Validation of the Proposed Network Construction Method

	Results
	Cortical Microcircuit Model
	Two-Population Network

	Discussion
	Appendix A
	The COPASS (Constrained Partition of Sorted Subarrays) Block-Sort Algorithm
	The COPASS Partition Algorithm
	The COPASS Partition Last Step, Case 1
	The COPASS Partition Last Step, Case 2

	Appendix B
	Appendix C
	Appendix D
	References

