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Abstract
Quasi *-algebras possessing a sufficient family M of invariant positive sesquilinear
forms carry several topologies related to M which make every *-representation con-
tinuous. This leads to define the class of locally convex quasi GA*-algebras whose
main feature consists in the fact that the family of their bounded elements, with respect
to the familyM, is a dense C*-algebra.
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quasi *-algebra
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1 Introduction

Locally convex quasi *-algebras (A[τ ],A0) arise often when taking the completion
A := ˜A0[τ ] of a locally convex *-algebra A0[τ ] with separately (but not jointly)
continuous multiplication (this was, in fact, the case considered at an early stage
of the theory, concerning applications in quantum physics). Concrete examples are
provided by families of operators acting in rigged Hilbert spaces or by certain families
of unbounded operators acting on a common domain D of a Hilbert space H. For a
synthesis of the theory and of its applications, we refer to [6].
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The study of this structure and the analysis performed also in [1, 4, 5, 7, 9] made
it clear that the most regular situation occurs when the locally convex quasi *-algebra
(A[τ ],A0) under consideration possesses a sufficiently rich family IA0(A) of invariant
positive sesquilinear forms on A × A (see below for definitions); they allow a GNS
construction similar to that defined by a positive linear functional on a *-algebra A0.
The basic idea where this paper moves from is to consider a quasi *-algebra (A,A0)

where one can introduce a locally convex topology by means of the set of sesquilinear
forms IA0(A) itself. In the best circumstances, we expect a behavior analogous to that
of a *-algebra B0 whose topology can be defined via families of C*-seminorms

pM (x) = sup
ω∈M;ω(e)=1

ω(x∗x)1/2,

where M is a convenient set of positive linear functionals onB0 [10].
For this reason, we start from a pure algebraic setup, i.e., (A,A0) is a quasi *-algebra

and we suppose that it has a sufficiently large IA0(A) (in the sense that, for some con-
venient subset M ⊂ IA0(A) and for every a ∈ A, a �= 0, there exists ϕ ∈ M, such
that ϕ(a, a) > 0). Starting from this set M, we undertake the construction of locally
convex topologies on A selecting in particular those under which each (sufficiently
regular) *-representation is continuous. This analysis leads to the selection of a class of
locally convex quasi *-algebras (A[τ ],A0) (called locally convex quasi GA*-algebras)
whose bounded elements constitute a C*-algebra. The paper is organized as follows.
In Sect. 2, some preliminary notions on quasi *-algebras, their topologies, and their
representations are summarized. In Sect. 3, we introduce the order defined by a family
M ⊂ IA0(A)whose related wedge becomes a cone when the familyM is sufficiently
rich. In Sect. 4, given M ⊂ IA0(A), we introduce two notions of bounded elements:
those bounded with respect to a family M and those related to the order defined by
M. These two notions turn out to be equivalent and every *-representation produces
a bounded operator when acting on a bounded element. In Sect. 5 the topologies gen-
erated by a familyM ⊂ IA0(A) are investigated, and in Sect. 6, we finally introduce
locally convex quasi GA*-algebras and study some properties of them. Locally convex
quasi GA*-algebras are characterized by the fact that their topology is equivalent to
that generated by some M ⊂ IA0(A) as in Sect. 5.

2 Basic definitions and facts

We begin with some preliminaries; we refer to [6] for details.
A quasi *-algebra (A,A0) is a pair consisting of a vector space A and a *-algebra

A0 contained in A as a subspace and such that

(i) A carries an involution a �→ a∗ extending the involution of A0;
(ii) A is a bimodule overA0 and the module multiplications extend the multiplication

of A0. In particular, the following associative laws hold:

(xa)y = x(ay); a(xy) = (ax)y, ∀ a ∈ A, x, y ∈ A0;
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(iii) (ax)∗ = x∗a∗, for every a ∈ A and x ∈ A0.

The identity of (A,A0), if any, is a necessarily unique element e ∈ A0, such that
ae = a = ea, for all a ∈ A.

We will always suppose that

ax = 0, ∀x ∈ A0 ⇒ a = 0

ax = 0, ∀a ∈ A ⇒ x = 0.

These two conditions are clearly satisfied if (A,A0) has an identity e.

Definition 2.1 A quasi *-algebra (A,A0) is said to be locally convex if A is a locally
convex vector space, with a topology τ enjoying the following properties:

(lc1) x �→ x∗, x ∈ A0, is continuous;
(lc2) for every a ∈ A, the maps x �→ ax and x �→ xa, from A0 into A, x ∈ A0, are

continuous;
(lc3) A0

τ = A; i.e., A0 is dense in A[τ ].
In particular, if τ is a norm topology, with norm ‖ · ‖, and

(bq*) ‖a∗‖ = ‖a‖, ∀a ∈ A,

then (A[‖ · ‖],A0) is called a normed quasi *-algebra and a Banach quasi *-algebra
if the normed vector space A[‖ · ‖] is complete.

LetD be a dense vector subspace of aHilbert spaceH. Let us consider the following
families of linear operators acting on D:

L†(D,H) = {X closable, D(X) = D; D(X*) ⊃ D}
L†(D) = {X ∈ L†(D,H) : XD ⊂ D; X*D ⊂ D}
L†(D)b = {Y ∈ L†(D); Y bounded},

where Y denotes the closure of Y . The involution in L†(D,H) is defined by X† :=
X* � D, the restriction of X*, the adjoint of X , to D

The set L†(D) is a *-algebra; more precisely, it is the maximal O*-algebra on D,
(for the theories of O*-algebras and *-representations, we refer to [8]).

Furthermore, L†(D,H) is also a partial *-algebra [2] with respect to the following
operations: the usual sum X1 + X2, the scalar multiplication λX , the involution X �→
X† := X*�D, and the (weak) partial multiplication:

X1�X2 = X1
†*X2, (2.1)

defined whenever X2 is a weak right multiplier of X1 (we shall write X2 ∈ Rw(X1)

or X1 ∈ Lw(X2)), that is, whenever X2D ⊂ D(X1
†*) and X1*D ⊂ D(X2*).

The following topologies on L†(D,H) will be used in this paper.
The weak topology tw on L†(D,H) is defined by the seminorms

rξ,η(X) = |〈Xξ |η〉|, X ∈ L†(D,H), ξ, η ∈ D.
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The strong topology ts on L†(D,H) is defined by the seminorms

pξ (X) = ‖Xξ‖, X ∈ L†(D,H), ξ ∈ D.

The strong* topology ts∗ on L†(D,H) is usually defined by the seminorms

p∗
ξ (X) = max{‖Xξ‖, ‖X†ξ‖}, ξ ∈ D.

Then, (L†(D,H)[ts∗ ],L†(D)b) is a complete locally convex quasi *-algebra [6,
Section 6.1].

Let us denote by t† the graph topology on D defined by the set of seminorms

ξ ∈ D → ‖Xξ‖; X ∈ L†(D,H).

The family of all bounded subsets of D[t†] is denoted by B.
We will indicate by ttu , ttu and ttu∗ , respectively, the uniform topologies defined by

the following families of seminorms:
for ttu : pB(X) = supξ,η∈B |〈Xξ |η〉|, B ∈ B;

for ttu : pB(X) = supξ∈B ‖Xξ‖, B ∈ B;

for ttu∗: pB∗ (X) = max{pB(X), pB(X†)}, B ∈ B.
It is easy to see that ttu � ttu � ttu∗

pB(X) ≤ γB pB(X) ≤ γB pB∗ (X), ∀X ∈ L†(D,H);

moreover,

pB(X†�X) = pB(X)2 whenever X†�X is well defined.

As shown in [2, Proposition 4.2.3] L†(D,H)[ttu∗] is complete.

Definition 2.2 Let (A,A0) be a quasi *-algebra and Dπ a dense domain in a certain
Hilbert spaceHπ . A linearmapπ fromA intoL†(Dπ ,Hπ ) is called a *-representation
of (A,A0), if the following properties are fulfilled:

(i) π(a∗) = π(a)†, ∀ a ∈ A;
(ii) for a ∈ A and x ∈ A0, π(a)�π(x) is well defined and π(a)�π(x) = π(ax).

If (A,A0) has a unit e ∈ A0, we assume that for every *-representationπ of (A,A0),
π(e) = IDπ

, the identity operator on the space Dπ .

If πo := π � A0 is a *-representation of the *-algebra A0 into L†(Dπ ), we say that
π is a qu*-representation of (A,A0).

A *-representation π is called bounded if π(a) is a bounded operator in Dπ , for
every a ∈ A.

Let (A,A0) be a quasi *-algebra. We denote by QA0(A) the set of all sesquilinear
forms on A × A, such that

(i) ϕ is positive, i.e., ϕ(a, a) ≥ 0, ∀ a ∈ A;
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(ii) ϕ(ax, y) = ϕ(x, a∗y), ∀ a ∈ A, x, y ∈ A0.

For every ϕ ∈ QA0(A), the set

Nϕ := {

a ∈ A : ϕ(a, a) = 0
} = {

a ∈ A : ϕ(a, b) = 0, ∀ b ∈ A
}

is a subspace of A.
Let λϕ : A → A/Nϕ be the usual quotient map, and for each a ∈ A, let λϕ(a)

be the corresponding coset of A/Nϕ , which contains a. An inner product 〈·|·〉 is then
defined on λϕ(A) = A/Nϕ by

〈λϕ(a)|λϕ(b)〉 := ϕ(a, b), ∀ a, b ∈ A.

Denote by Hϕ the Hilbert space obtained by the completion of the pre-Hilbert space
λϕ(A).

Definition 2.3 We denote by IA0(A) the subset of forms ϕ ∈ QA0(A) for which
λϕ(A0) is dense inHϕ . Elements of IA0(A) are also called invariant positive sesquilin-
ear forms or briefly ips-forms.

Moreover, if (A[τ ],A0) is a locally convex quasi *-algebra, we denote by Pτ
A0

(A)

the family of elements ϕ of QA0(A) that are jointly τ -continuous; i.e., there exists a
continuous seminorm pσ , such that

|ϕ(a, b)| ≤ pσ (a)pσ (b), ∀a, b ∈ A.

The sesquilinear forms of IA0(A) allow building up a GNS representation [6].
Indeed,

Proposition 2.4 Let (A,A0) be a quasi *-algebra with unit e and ϕ a sesquilinear
form on A × A. The following statements are equivalent.

(i) ϕ ∈ IA0(A).
(ii) There exist a Hilbert spaceHϕ , a dense domain Dϕ of the Hilbert spaceHϕ , and

a closed cyclic *-representation πϕ in L†(Dϕ,Hϕ), with cyclic vector ξϕ (in the
sense that πϕ(A0)ξϕ is dense inHϕ), such that

ϕ(a, b) = 〈πϕ(a)ξϕ |πϕ(b)ξϕ〉, ∀ a, b ∈ A.

Remark 2.5 The *-representation πϕ is in fact obtained by taking the closure of the
*-representation π◦

ϕ defined on λϕ(A0) by

π◦
ϕ(a)λϕ(x) = λϕ(ax) a ∈ A, x ∈ A0.

If M ⊂ IA0(A) is rich enough (in the sense that, for every a ∈ A, there exists
ϕ ∈ M, such that ϕ(a, a) > 0), then we can introduce a partial multiplication as in
[6, Definition 3.1.30].
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Indeed, in this case, we say that the weak multiplication, a�b, a, b ∈ A, is well
defined if there exists c ∈ A, such that

ϕ(bx, a∗y) = ϕ(cx, y), ∀ x, y ∈ A0 and ∀ϕ ∈ M. (2.2)

In this case, we put a�b := c.
With these definitions, we conclude that [3, Proposition 4.4] A is also a partial

*-algebra with respect to the weak multiplication �.

Remark 2.6 The uniqueness of c = a�b is guaranteed by Proposition 3.3 below.
Clearly, this multiplication depends on the familyM.

3 Families of forms and order structure

As discussed extensively in [6], the notion of bounded element of a locally convex
quasi *-algebra reveals to be important for undertaking a spectral analysis in this
structure. We propose here two different approaches similar to those developed in [3]
but without the continuity assumptions made therein.

Before going forth,we introduce some notions needed inwhat follows. In particular,
in analogy to [10],

Definition 3.1 A subset M ⊂ IA0(A) is said to be

balanced if ϕ ∈ M implies ϕx ∈ M, for every x ∈ A0, where ϕx (a, b) :=
ϕ(ax, bx) for all a, b ∈ A.

sufficient if it is balanced and if, for every a ∈ A\{0}, there exists ϕ ∈ M, such
that ϕ(a, a) > 0.

Remark 3.2 If (A[τ ],A0) is a locally convex quasi *-algebra, then

(a) Pτ
A0

(A) ⊂ IA0(A);
(b) Pτ

A0
(A) is balanced.

Both (a) and (b) follow directly from the joint continuity of elements of Pτ
A0

(A).

The following proposition allows us to deal with notion of sufficiency in other
equivalent ways.

Proposition 3.3 Let (A,A0) be a quasi *-algebra,M a subset of IA0(A) and a ∈ A.
Then, the following are equivalent:

(i) ϕ(ax, x) = 0, for all ϕ ∈ M, x ∈ A0;
(ii) ϕ(ax, y) = 0, for all ϕ ∈ M, x, y ∈ A0;
(iii) ϕ(ax, ax) = 0, for all ϕ ∈ M, x ∈ A0.

If (A,A0) has unit e andM is balanced, then the previous statements are equivalent
to

(iv) ϕ(a, a) = 0, for every ϕ ∈ M.
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In the case of a locally convex quasi *-algebra (A[τ ],A0), positive elements have

been defined in [7] as the members of the closure A+ := A+
0

τ
, where

A+
0 :=

{

n
∑

k=1

x∗
k xk, xk ∈ A0, n ∈ N

}

.

Here, as we have anticipated, we will start from a quasi *-algebra without a topology
and we will introduce the notion of positive element via a family M of forms of
IA0(A).

Definition 3.4 Let (A,A0) be a quasi *-algebra.We callM-positive an element a ∈ A,
such that

ϕ(ax, x) ≥ 0, ∀ϕ ∈ M,∀x ∈ A0.

We put

KM := {a ∈ A : ϕ(ax, x) ≥ 0, ∀ϕ ∈ M,∀x ∈ A0}.

IfM = IA0(A), we denote the corresponding set by KI .

Lemma 3.5 Let (A,A0) be a quasi *-algebra with a sufficient M ⊂ IA0(A). If a is
M-positive, then a = a∗.

Proof The conclusion is a consequence of Proposition 3.3. ��
The set KM is a qm-admissible wedge, that is a + b ∈ KM, λa ∈ KM and

x∗ax ∈ KM for all a, b ∈ KM, x ∈ A0 and λ ≥ 0. If, moreover, A has a unit e, then
e ∈ KM.

As usual, one can define an order on the real vector space Ah = {

a ∈ A : a = a∗}

by

a ≤M b ⇔ b − a ∈ KM, a, b ∈ Ah .

Proposition 3.6 Let (A,A0) be quasi *-algebra with unit e and let M be a balanced
subset of IA0(A). Then, the following are equivalent:

(i) M is sufficient;
(ii) KM ∩ (−KM) = {0}.
Proof (i) ⇒ (ii) Let a ∈ KM ∩ (−KM). Then, ϕ(ax, x) = 0, for every ϕ ∈ M and
every x ∈ A0; hence, by Proposition 3.3, and by the sufficiency ofM, we get a = 0.
(ii) ⇒ (i)Let us suppose by absurd that there exists a ∈ A, a �= 0, such that ϕ(a, a) =
0, for every ϕ ∈ M. Then, again, by Proposition 3.3, it follows that ϕ(ax, x) = 0
for every x ∈ A0 and every ϕ ∈ M; this means that a ∈ KM ∩ (−KM) = {0} a
contradiction. ��
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4 Bounded and order bounded elements

Definition 4.1 Let (A,A0) be a quasi *-algebra withM ⊂ IA0(A) sufficient. We say
that an element a ∈ A isM-bounded if there exists γa = γa,M > 0, such that

|ϕ(ax, y)| ≤ γaϕ(x, x)1/2ϕ(y, y)1/2, ∀ϕ ∈ M; ∀x, y ∈ A0.

If a isM-bounded, we put

‖a‖M
b = inf{γa > 0 : |ϕ(ax, y)| ≤ γaϕ(x, x)1/2ϕ(y, y)1/2,

ϕ ∈ M, x, y ∈ A0}.

Remark 4.2 For future use, we notice that, in general and regardless to the M-
boundedness of a ∈ A, the following equalities hold:

�a := inf{γa > 0 : |ϕ(ax, y)| ≤ γaϕ(x, x)1/2ϕ(y, y)1/2, ϕ ∈ M, x, y ∈ A0}
= sup{|ϕ(ax, y)|;ϕ ∈ M, x, y ∈ A0, ϕ(x, x) = ϕ(y, y) = 1}
= sup{‖πϕ(a)‖; ϕ ∈ M}.

Moreover, if a = a∗

�a = sup{|ϕ(az, z)|;ϕ ∈ M, z ∈ A0, ϕ(z, z) = 1}.

The value of �a is finite if and only if a is M-bounded; by the definition itself,
‖a‖M

b = �a .

Lemma 4.3 Let a, b ∈ A be M-bounded. Then

(i) a∗ isM-bounded too, and ‖a∗‖M
b = ‖a‖M

b ;
(ii) a + b isM-bounded and ‖a + b‖M

b ≤ ‖a‖M
b + ‖b‖M

b ;
(iii) αa isM-bounded, ∀α ∈ C;
(iv) if a�b iswell defined, the product a�b isM-bounded and ‖a�b‖M

b ≤ ‖a‖M
b ‖b‖M

b .

Proof We prove (iv). Suppose that a�b is well defined. Then, for every ϕ ∈ M and
x, y ∈ A0, with ϕ(x, x) = ϕ(y, y) = 1, we have

|ϕ((a�b)x, y)| = |ϕ(bx, a∗y)| ≤ ϕ(bx, bx)1/2ϕ(a∗y, a∗y)1/2

≤ ‖a‖M
b ‖b‖M

b .

The statement then follows by taking the sup over ϕ ∈ M. ��
As in [3, Proposition 4.18], one can prove

Proposition 4.4 Let a, b beM-bounded elements of A and let ϕ ∈ M. Then, if a�b is
well defined, πϕ(a)�πϕ(b) is also well defined and πϕ(a�b) = πϕ(a)�πϕ(b).

Remark 4.5 Remark 4.2 and Proposition 4.4 imply that if a is M-bounded and a∗�a
is well defined, then ‖a∗�a‖M

b = (‖a‖M
b )2.
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The notion ofM-positive element can be used to give a formally different definition
of bounded element. Let a ∈ A, put �(a) = 1

2 (a + a∗), �(a) = 1
2i (a − a∗). Then,

both �(a),�(a) ∈ Ah and a = �(a) + i�(a).

Definition 4.6 Let (A,A0) be a quasi *-algebra. The element a ∈ A is said KM-
bounded if there exists γ ≥ 0, such that

{±ϕ(�(a)x, x) ≤ γ ϕ(x, x)
±ϕ(�(a)x, x) ≤ γ ϕ(x, x)

, ∀ϕ ∈ M, x ∈ A0. (4.1)

If (A,A0) is unital, then we can rewrite (4.1), more syntetically, as

±�(a) ≤M γ e, ±�(a) ≤M γ e.

We denote by Ab(KM) the set of all KM-bounded elements of A.

As in [7], the following result holds true:

Proposition 4.7 The couple (Ab(KM),Ab(KM)
⋂

A0) is a quasi *-algebra, and
hence, in particular

1. αa + βb ∈ Ab(KM) for any α, β ∈ C and a, b ∈ Ab(KM);
2. a ∈ Ab(KM) ⇔ a∗ ∈ Ab(KM);
3. a ∈ Ab(KM), x ∈ Ab(KM)

⋂

A0 ⇒ xa ∈ Ab(KM);
4. x ∈ Ab(KM)

⋂

A0 ⇔ xx∗ ∈ Ab(KM)
⋂

A0.

In particular, if (A,A0) has a unit, then also (Ab(KM),Ab(KM)
⋂

A0) has a unit.

Theorem 4.8 Let (A,A0) be a quasi *-algebra andM ⊂ IA0(A). Then, the following
are equivalent:

(i) a ∈ Ab(KM);
(ii) a isM-bounded; i.e., (Definition 4.1), there exists γa > 0, such that

|ϕ(ax, y)| ≤ γaϕ(x, x)1/2ϕ(y, y)1/2, ∀x, y ∈ A0,

for every ϕ ∈ M;
(iii) there exists γ ′

a > 0, such that

ϕ(ax, ax) ≤ γ ′
aϕ(x, x), ∀x ∈ A0,

for every ϕ ∈ M.

(iv) there exists γ ′′
a > 0, such that

|ϕ(ax, x)| ≤ γ ′′
a ϕ(x, x), ∀x ∈ A0,

for every ϕ ∈ M.
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Proof We prove it for symmetric elements.
(i) ⇒ (ii) It is clear that if a = a∗ ∈ Ab(KM), then there exists γ > 0, such that

|ϕ(ax, x)| ≤ γ ϕ(x, x), ∀ϕ ∈ M,∀x ∈ A0

hence

sup{|ϕ(ax, x)|; ϕ ∈ M, x ∈ A0, ϕ(x, x) = 1} < ∞.

From Remark 4.2, it follows that ‖a‖M
b < ∞, i.e., a isM-bounded.

(ii) ⇒ (iii) Assume that a ∈ A is M-bounded. If ϕ ∈ M, denote by πϕ the corre-
sponding GNS representation. Then

|〈πϕ(a)λϕ(x)|λϕ(y)〉| = |ϕ(ax, y)| ≤ ‖a‖M
b ϕ(x, x)1/2ϕ(y, y)1/2

= ‖a‖M
b ‖λϕ(x)‖ ‖λϕ(y)‖, ∀x, y ∈ A0.

This implies that, for every ϕ ∈ M, the operator πϕ(a) is bounded and ‖πϕ(a)‖ ≤
‖a‖M

b . Hence

ϕ(ax, ax)1/2 = ‖πϕ(a)λϕ(x)‖
≤ ‖a‖M

b ‖λϕ(x)‖ = ‖a‖M
b ϕ(x, x)1/2, ∀x, y ∈ A0. (4.2)

(iii) ⇒ (iv) Suppose that a satisfies (iii). Let ϕ ∈ M and x ∈ A0. Then

|ϕ(ax, x)| ≤ ϕ(ax, ax)1/2ϕ(x, x)1/2 ≤ γ ′
a
1/2

ϕ(x, x).

(iv) ⇒ (i) It is straightforward. ��
Remark 4.9 By the previous theorem, we also deduce the following equalities for the
norm of an M-bounded element a (see also Remark 4.2):

‖a‖M
b = inf{γ > 0 : ϕ(ax, ax) ≤ γ 2ϕ(x, x), ϕ ∈ M, x ∈ A0}

= sup{ϕ(ax, ax)1/2 : ϕ ∈ M, x ∈ A0, ϕ(x, x) = 1}.

In view of Theorem 4.8, we adopt the notationAM
b for the set of eitherM-bounded

or KM-bounded elements; i.e., we put AM
b = Ab(KM).

Definition 4.10 Let (A,A0) be a quasi *-algebra and letM ⊂ IA0(A). We say that a
*-representation π ofA isM-regular if, for every ξ ∈ Dπ , the vector form ϕξ defined
by

ϕξ (a, b) := 〈π(a)ξ |π(b)ξ〉, a, b ∈ A (4.3)

is a form inM.
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In particular, ifM = IA0(A),π is said to be regular [6].We denote byRepr ,M(A,A0)

the set ofM-regular *-representations of (A,A0). IfM = IA0(A),wedenote it simply
by Repr (A,A0).

Remark 4.11 IfM ⊂ IA0(A) is balanced, then for every ϕ ∈ M, the *-representation
π◦

ϕ isM-regular; see [6, Proposition 2.4.16].

Proposition 4.12 Let (A,A0) be a quasi *-algebra with unit e and let a ∈ A.
If π(a) ≥ 0 for every *-representation π of (A,A0), then a ∈ KI . Conversely, if

M ⊂ IA0(A) and a ∈ KM, then π(a) ≥ 0 for every M-regular *-representation π

of (A,A0).

Proof If π(a) ≥ 0 for every *-representation π of (A,A0), then for every ϕ ∈ IA0(A)

and every x ∈ A0,

ϕ(ax, x) = 〈πϕ(a)λϕ(x)|λϕ(x)〉 ≥ 0.

Hence, a ∈ KI .
Conversely, let π be aM-regular *-representation. Then, for every ξ ∈ Dπ , the vector
form ϕξ (a, b) = 〈π(a)ξ |π(b)ξ〉, with a, b ∈ A, belongs to M. Thus, from a ∈ KM,
it follows that ϕξ (a, e) = 〈π(a)ξ |ξ 〉 ≥ 0, for every ξ ∈ Dπ . Hence, π(a) ≥ 0. ��
Remark 4.13 The first implication is also true if we consider only the GNS represen-
tations constructed from the forms ϕ ∈ IA0(A); if ϕ ∈ M ⊂ IA0(A) and every
πϕ(a) ≥ 0, then a ∈ KM.

Proposition 4.14 Let (A,A0) be a quasi *-algebra with unit e and with sufficient
M ⊂ IA0(A). Then

(i) if a ∈ AM
b , then π(a) is a bounded operator for every π ∈ Repr ,M(A,A0) and

‖π(a)‖ ≤ ‖a‖M
b ;

(ii) if π(a) is a bounded operator for every π ∈ Repr ,M(A,A0) and
sup{‖π(a)‖;π ∈ Repr ,M(A,A0)} < ∞, then a ∈ AM

b .

Proof (i) By Theorem 4.8, a ∈ AM
b implies ϕ(ax, ax)1/2 ≤ ‖a‖M

b ϕ(x, x)1/2, ∀ϕ ∈
M; x ∈ A0. If π is M-regular, for every ξ ∈ Dπ , ϕξ ∈ M where ϕξ (a, b) =
〈π(a)ξ |π(b)ξ 〉. Then

‖π(ax)ξ‖ = ϕξ (ax, ax)
1/2 ≤ ‖a‖M

b ϕξ (x, x)
1/2 = ‖a‖M

b ‖π(x)ξ‖.

The quasi *-algebra is supposed to be unital and also π(e) = IDπ
. Then

‖π(a)ξ‖ ≤ ‖a‖M
b ‖ξ‖, ∀ξ ∈ Dπ .

Hence, ‖π(a)‖ ≤ ‖a‖M
b .

(ii) Put γ := sup{‖π(a)‖;π ∈ Repr ,M(A,A0)}. By hypothesis

‖π◦
ϕ(a)λϕ(x)‖ ≤ γ ‖λϕ(x)‖, ∀ϕ ∈ M, x ∈ A0,
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that is

ϕ(ax, ax) ≤ γ 2ϕ(x, x), ∀ϕ ∈ M, x ∈ A0,

and by Theorem 4.8, it is equivalent to say that a ∈ AM
b . ��

Remark 4.15 Let ϕ ∈ M and denote, as before, by πϕ the corresponding GNS repre-
sentation. If a ∈ AM

b , then πϕ(a) is a bounded operator. Indeed, for every x ∈ A0

‖πϕ(a)λϕ(x)‖2 = ϕ(ax, ax) ≤ (‖a‖M
b )2ϕ(x, x) = (‖a‖M

b )2‖λϕ(x)‖2,

regardless of whether πϕ isM-regular or not.

The following additional condition will be used:

(C) if a, b ∈ AM
b , then there exists c ∈ A, such that πϕ(a)�πϕ(b) = πϕ(c), for every

ϕ ∈ M.

Remark 4.16 The uniqueness of c in condition (C) is guaranteed by the sufficiency of
M. Moreover, c ∈ AM

b , as we shall see in Theorem 4.17.

Theorem 4.17 Let (A,A0) be a quasi *-algebra. Let M ⊂ IA0(A) be sufficient and
assume that condition (C) holds. Then, AM

b is a normed *-algebra with the weak
multiplication � and the norm ‖ · ‖M

b .

Proof As we have seen until now, AM
b is a normed space (the sufficiency of M

guarantees that if ‖a‖M
b = 0, then a = 0), such that if a ∈ AM

b , then a∗ is M-
bounded and ‖a∗‖M

b = ‖a‖M
b and, whenever a�b is well defined, the product a�b

is M-bounded and ‖a�b‖M
b ≤ ‖a‖M

b ‖b‖M
b . Now, if ϕ ∈ M and a, b ∈ AM

b , the
operator πϕ(a)�πϕ(b) is well defined, since, by Remark 4.15, πϕ(a) and πϕ(b) are
bounded operators; of course, πϕ(a)�πϕ(b) is also bounded. Thus, by (C), there exists
a unique c ∈ AM

b , such that πϕ(a)�πϕ(b) = πϕ(c), for every ϕ ∈ M. Hence, for all
ϕ ∈ M and x, y ∈ A0, we have

ϕ(bx, a∗y) = 〈πϕ(b)λϕ(x)|πϕ(a∗)λϕ(y)〉 = 〈πϕ(a)�πϕ(b)λϕ(x)|λϕ(y)〉
= 〈πϕ(c)λϕ(x)|λϕ(y)〉 = ϕ(cx, y).

Thus, c = a�b is well defined and is M-bounded by Lemma 4.3. This completes the
proof. ��

Proposition 4.18 Let (A,A0) be a quasi *-algebra with unit e. Let M ⊂ IA0(A)

be balanced and denote by RM(A) the intersection of the kernels of all M-regular
*-representations of A on some Hilbert space. Then

RM(A) = {a ∈ A| ϕ(a, a) = 0, ∀ϕ ∈ M}.
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Proof For every ϕ ∈ M, the GNS representation π◦
ϕ is M-regular, then, if a ∈

RM(A), it is π◦
ϕ(a) = 0, and hence, ϕ(a, a) = ‖π◦

ϕ(a)ξϕ‖ = 0.
Conversely, if a ∈ A is such that ϕ(a, a) = 0, ∀ϕ ∈ M, since M is balanced, it is
ϕx (a, a) = 0 for all x ∈ A0 and for all ϕ ∈ M, and hence

ϕx (a, a) = ϕ(ax, ax) = ‖π◦
ϕ(a)λϕ(x)‖2 = 0,

and by the density of λϕ(A0) in Hϕ , this implies that π◦
ϕ(a) = 0. Now, let π be a

M-regular *-representation of A, then for every ξ ∈ Dπ , the form ϕξ ∈ M and by
what we have seen before it is π◦

ϕξ
(a) = 0. For every ξ ∈ Dπ , there exists a cyclic

vector η for the GNS representation π◦
ϕξ
, such that

‖π(a)ξ‖2 = ‖π◦
ϕξ

(a)η‖2 = 0;

this implies that π(a) = 0. By the arbitrariness of the M-regular *-representation π

of A, it follows that a ∈ RM(A). This concludes the proof. ��
Remark 4.19 The set RM(A) is clearly a sort of *-radical; however, its nature is purely
algebraic here.

5 Topologies defined by families of sesquilinear forms

The properties we have discussed in the previous section are all of pure algebraic
nature; but families of sesquilinear forms of IA0(A) can be used to define, in rather
natural way, topologies on (A,A0). Our next goal is in fact to define in A topologies
that mimick the uniform topologies of families of operators.

Throughout this section, we will suppose that (A,A0) is a quasi *-algebra with unit
e and that M ⊂ IA0(A) is a sufficient set of forms. Then, M defines the topologies
τM
w , τM

s , τM
s∗ generated, respectively, by the following families of seminorms:

τM
w : a �→ |ϕ(ax, y)|, a ∈ A, ϕ ∈ M, x, y ∈ A0;

τM
s : a �→ ϕ(a, a)1/2, a ∈ A, ϕ ∈ M;

τM
s∗ : a �→ max

{

ϕ(a, a)1/2, ϕ(a∗, a∗)1/2
}

, a ∈ A, ϕ ∈ M.

Definition 5.1 Let F be a subset of M. We say that F is bounded if

sup
ϕ∈F

ϕ(a, a) < ∞, ∀a ∈ A.

The family F of bounded subsets of forms inM has the following properties:

(a)
⋂

n∈N Fn ∈ F, Fn ∈ F;
(b) F ∪ G ∈ F, F ,G ∈ F.

If F ∈ F, we put

pF (a) := sup
ϕ∈F

ϕ(a, a)1/2, a ∈ A.
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Lemma 5.2 Let F ∈ F. Then

(a) pF is a seminorm on A;
(b) the set F x = {ϕx , ϕ ∈ F}, x ∈ A0, is bounded;
(c) for every x ∈ A0,

pF (ax) = pF x
(a), ∀a ∈ A.

Proof As for (c), we have

pF (ax) = sup
ϕ∈F

ϕ(ax, ax)1/2 = sup
ϕ∈F

ϕx (a, a)1/2 = sup
ψ∈F x

ψ(a, a)1/2 = pF x
(a).

��
SinceM is sufficient, then {pF ;F ∈ F} is a separating family of seminorms; thus,

it defines on A a Hausdorff locally convex topology which we denote by τF.
Let us assume that (A,A0) has a unit e. If F ∈ F, we define

pF (a) := sup
ϕ∈F

|ϕ(a, e)|, a ∈ A.

Then

pF (a) ≤ γF pF (a), ∀a ∈ A,

with γF = supϕ∈F ϕ(e, e)1/2, and the following holds:

pF (a∗) = pF (a), ∀a ∈ A;
pF (ax) ≤ pF (x)pF (a∗), ∀a ∈ A, x ∈ A0;
pF (a∗�a) = pF (a)2, ∀a ∈ A, such that a∗�a is well defined.

By τF, we will denote the locally convex topology on A generated by the family
of seminorms {pF ;F ∈ F} (to simplify notations, we do not mention explicitly the
dependence on M). Note that τF need not be Hausdorff, in general.

Remark 5.3 We notice that if a∗�a is well defined and a∗�a = 0, then pF (a) = 0 for
every bounded set F∈ F and, therefore, a = 0.

Proposition 5.4 Let M be sufficient and suppose that τF = τF. Then, A[τF] is a
locally convex space with the following properties:

(i) the involution a �→ a∗ is continuous;
(ii) for every bounded set F∈ F, there exists a bounded set G∈ F

pF (ax) ≤ pG(a)pG(x), ∀a ∈ A, x ∈ A0;

which implies that the left and right multiplications are jointly continuous.
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In particular, if A0 is τF-dense in A, then (A[τF],A0) is a locally convex quasi *-
algebra.

In general, the involution a �→ a∗ in not continuous for τF. To circumvent this
problem, we define the topology τ

F∗ generated by the family of seminorms

pF∗ (a) = max
{

pF (a), pF (a∗)
}

, a ∈ A, F ∈ F.

Clearly, τF � τF � τ
F∗ , and if τF = τF, then τF = τF = τ

F∗ .
Let (A,A0) be a quasi *-algebra and suppose that the setM is sufficient. It is clear

that every ϕ ∈ M is automatically continuous for τM
s and for any finer topology such

as τM
s∗ , τF∗ or τF.
Our next goal is to investigate the properties of (A,A0) when A is endowed with

one of the topologies defined by the family M defined above.
We could wonder whether (A[τF∗ ],A0) is a locally convex quasi *-algebra. The

left and right multiplications by an element x ∈ A0 are continuous if we make an
additional assumption: let us suppose that for every x ∈ A0, there exists γx > 0, such
that

ϕ(xa, xa) ≤ γxϕ(a, a), ∀ϕ ∈ M,∀a ∈ A. (5.1)

By (5.1), it follows that every x ∈ A0 is M-bounded and for every bounded subset
F ⊂ M

pF (xa) ≤ γ
1/2
x pF (a), ∀a ∈ A.

This inequality, together with (c) of Lemma 5.2 and the continuity of the involution,
implies that, for every x ∈ A0, the maps a �→ ax , a �→ xa are τ

F∗ -continuous. The
*-algebra A0 is not τ

F∗ -dense in A in general, and hence, to get a locally convex quasi

*-algebra with topology τ
F∗ , we could take as A the completion ˜A0

τ
F∗ . Now, we prove

the following.

Lemma 5.5 Let (A,A0) be a quasi *-algebra. Assume thatM is sufficient and directed
upward w.r.to the order

ϕ ≤ ψ ⇔ ϕ(a, a) ≤ ψ(a, a), ∀a ∈ A.

Then, A0 is dense in A[τMs ].
Proof Let us begin with proving that given a ∈ A, we can find a net {xα} ⊂ A0, such
that ϕ(xα − a, xα − a) → 0 for every ϕ ∈ M. We put ϕ[a] := ϕ(a, a), ϕ ∈ M,
a ∈ A.

Since ϕ ∈ M, λϕ(A0) is dense inHϕ (withHϕ defined as in Proposition 2.4). This
implies that, for every a ∈ A, there exists a sequence {xϕ

n }, such that λϕ(xϕ
n − a) → 0
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or, equivalently ϕ[xϕ
n − a] → 0. Then

∀n ∈ N, ∃nϕ ∈ N : ϕ[xϕ
nϕ

− a] <
1

n
.

If ϕ,ψ ∈ M, we define (ϕ, nϕ) ≤ (ψ, nψ) if ϕ ≤ ψ and nϕ ≤ nψ . Since M is
directed, {(ϕ, nϕ)} is directed and {x(ϕ,nϕ)} is a net, with x(ϕ,nϕ) := xϕ

nϕ
. We prove

that, for every ψ ∈ M ψ[xϕ
nϕ

− a] → 0. Indeed, let ε > 0 and n ∈ N, such that
1
n < ε. Then, if (ϕ, nϕ) ≥ (ψ, nψ)

ψ[xϕ
nϕ

− a] ≤ ϕ[xϕ
nϕ

− a] <
1

n
< ε.

This proves that A0 is dense in A[τMs ]. ��
The representation π◦

ϕ is (τF, ts)-continuous. Indeed, if F is any bounded subset
of M containing ϕ,

‖π◦
ϕ(a)λϕ(x)‖ = ϕ(ax, ax)1/2 ≤ pF (ax) ≤ pF x

(a), ∀a ∈ A; x ∈ A0

as in Lemma 5.2.

Proposition 5.6 Let (A,A0) be a quasi *-algebra with sufficient M ⊂ IA0(A). If A
is τMs∗ -complete, then A is also τ

F∗ -complete.

Proof Let {aα} be a τ
F∗ -Cauchy net. Since τMs∗ � τ

F∗ , there exists a ∈ A, such that
a = τMs∗ − limα aα . From the Cauchy condition, for every ε > 0 and every bounded
set F , there exists α, such that

max{ϕ(aα − aα′ , aα − aα′), ϕ(a∗
α − a∗

α′ , a∗
α − a∗

α′)} < ε, ∀ϕ ∈ F , α, α′ > α.

Then, taking limit over α′

max{ϕ(aα − a, aα − a), ϕ(a∗
α − a∗, a∗

α − a∗)} ≤ ε, ∀ϕ ∈ F , α > α.

Therefore, A is τ
F∗ -complete. ��

Theorem 5.7 LetM be sufficient and let property (C) hold too. If A is τMs∗ -complete,
then AM

b is a C*-algebra with the weak multiplication � and the norm ‖ · ‖M
b .

Proof By Theorem 4.17 and Remark 4.5, we only need to prove the completeness of
AM

b . Let {an} ⊂ AM
b be a Cauchy sequence with respect to the norm ‖ · ‖M

b . Then,
{a∗

n} is ‖ · ‖M
b -Cauchy too. By (4.2),

ϕ((an − am)x, (an − am)x) ≤ (‖an − am‖M
b )2ϕ(x, x), ∀ϕ ∈ M,∀x ∈ A0
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and

ϕ((a∗
n − a∗

m)x, (a∗
n − a∗

m)x) ≤ (‖a∗
n − a∗

m‖M
b )2ϕ(x, x), ∀ϕ ∈ M,∀x ∈ A0.

Therefore, both ϕ((an−am)x, (an−am)x) → 0 and ϕ((a∗
n −a∗

m)x, (a∗
n −a∗

m)x) → 0,
as n,m → ∞.

This is, in particular, true when x = e; hence, {an} is also Cauchy with respect to

τMs∗ and since A is τMs∗ -complete, there exists a ∈ A, such that an
τMs∗→ a. The limit

a ∈ AM
b ; indeed, for every ϕ ∈ M and x ∈ A0

|ϕ(ax, x)|2 ≤ ϕ(ax, ax)ϕ(x, x) = ϕ(x, x) lim sup
n→∞

ϕ(anx, anx)

≤ sup
n∈N

(‖an‖M
b )

2
ϕ(x, x)2.

Since {an} is Cauchy with respect to the norm ‖ · ‖M
b , for every ε > 0, there exists

nε ∈ N, such that ‖an − am‖M
b < ε1/2, for all n,m > nε . This implies that ϕ((an −

am)x, (an − am)x) < εϕ(x, x), ∀ϕ ∈ M,∀x ∈ A0, forall n,m > nε . Then, if we
fix n > nε and let m → ∞, we obtain ϕ((an − a)x, (an − a)x)≤εϕ(x, x),∀ϕ ∈
M,∀x ∈ A0. This implies that AM

b is complete with respect to the norm ‖ · ‖M
b . ��

To conclude, let us suppose that M ⊂ IA0(A) is balanced. We pose the question:
under what conditions is M also sufficient? Let us consider a locally convex quasi
*-algebra (A[τ ],A0) and choose M = Pτ

A0
(A). This set is certainly balanced, but it

is not necessarily sufficient. This property can be characterized (by negation) by the
following.

Proposition 5.8 Let (A[τ ],A0) be a locally convex quasi *-algebra with unit e. For
an element a ∈ A, the following statements are equivalent:

(i) a ∈ Ker π for every strongly continuous (i.e., ts -continuous) qu*-representation
π of (A[τ ],A0);

(ii) ϕ(a, a) = 0, for every ϕ ∈ Pτ
A0

(A);

(iii) pF (a) = 0, for every bounded subset F of Pτ
A0

(A).

6 Locally convex quasi GA*-algebras

The discussion of the previous sections suggests the following definition (which
strengthen an analogous one for partial *-algebras [3, Definition 4.26]).

Definition 6.1 Let (A,A0) be a quasi *-algebra. LetM be a family of forms ofIA0(A).
We say that M is strongly well behaved if

(wb1) M is sufficient;
(wb2) every x ∈ A0 isM-bounded;
(wb3) condition (C) holds;
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(wb4) A is τ
F∗ -complete.

Definition 6.2 Let (A[τ ],A0) be a locally convex quasi *-algebra. We say that
(A[τ ],A0) is a locally convex quasi GA*-algebra if there existsM ⊂ IA0(A) which
is strongly well behaved, and τ and τ

F∗ are equivalent (in symbols τ ≈ τ
F∗ ).

Example 6.3 Let us consider the quasi *-algebra (L†(D,H),L†(D)b) of Sect. 2.
Assume that L†(D,H) is endowed with the topology ttu∗ and denote by L†(D,H)u
the ttu∗-closure of L†(D)b in L†(D,H), then (L†(D,H)u[ttu∗],L†(D)b) is a locally
convex quasi *-algebra. Let us take as M the space consisting of the restrictions to
L†(D,H)u of the ttu∗-continuous ips-forms on (L†(D,H),L†(D)b). We will see that
M is strongly well behaved and ttu∗ ≈ τ

F∗ : this makes of (L†(D,H)u[ttu∗],L†(D)b) a
locally convex quasi GA*-algebra. Due to the ttu∗-density ofL†(D)b inL†(D,H)u , we
can identifyMwith the space of all ttu∗-continuous ips-formson (L†(D,H)u,L†(D)b).
This implies [3, Theorem 3.10] that every ψ ∈ M can be written as follows:
ψ(A, B) = ∑n

i=1〈Aξi |Bξi 〉 A, B ∈ L†(D,H)u , for some vectors ξ1, ..., ξn ∈ D.
Hence, the set of M-bounded elements coincides with the set L†(D,H)b of all
bounded operators of L†(D,H), which can be identified with the C*-algebra B(H)

of all bounded operators in H.
These facts allow us to conclude easily thatM is strongly well behaved. In partic-

ular, we notice that (wb3) holds, since if A, B ∈ L†(D,H)b, then the multiplication
� (see (2.2)) is well defined and coincides with the weak multiplication � of oper-
ators (see (2.1)): A�B = A�B is certainly well defined; then if ϕ ∈ M, we have
πϕ(A)�πϕ(B) = πϕ(A�B) = πϕ(A�B), by definition of *-representation.

Example 6.4 Let K denote a compact subset of the real line with m(K ) > 0, where
m denotes the Lebesgue measure. Then, the pair (L p(K ,m),C(K )), where C(K )

denotes the C*-algebra of continuous functions on K , is a Banach quasi *-algebra.
LetM be the space of all jointly continuous ips-forms on (L p(K ,m),C(K )). Then, as
shown in [6, Example 3.1.44], if p ≥ 2,M can be completely described by functions
of Ls(K ,m), where s = p

p−2 ( 10 = ∞), in the following sense:

ϕ ∈ M ⇔ ∃w ∈ Ls(K ,m), w ≥ 0 : ϕ( f , g) =
∫

K
f gwdm,

∀ f , g ∈ L p(K ,m).

For this reason, we identifyM with Ls(K ,m). With this in mind

(a) a subset F ofM is bounded, if and only if it is contained in a ball centered at 0 in
Ls(K ,m);

(b) the topology τF (which equals τ
F∗ , in this case) is normed and the norm coincides

with ‖ · ‖p, since

sup
‖w‖s=1

∫

K
| f |2wdm = ‖| f |2‖p/2 = ‖ f ‖2p;

(c) the topology τF is also a norm topology and the norm coincides with ‖ · ‖p/2;
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(d) the set of M-bounded elements is the C*-algebra L∞(K ,m).

In conclusion, (L p(K ,m), L∞(K ,m)) is a Banach quasi GA*-algebra.

Example 6.5 The space L p
loc(R,m) of all (classes of) measurable functions onR, such

that the restriction f�K of f to K is in L p(K ,m), for every compact subset K ⊂ R,
behaves similarly to the case discussed in Example 6.4. The main difference consists,
of course, in the fact that we will not deal with norm topologies. More precisely, let us
consider the pair (L p

loc(R,m),Cb(R)) (where Cb(R) denotes the continuous bounded
functions onR), which is, as it is easy to check, a quasi *-algebra. The natural topology
τp of L p

loc(R,m) is then defined as the inductive limit of the norm topologies of the
spaces L p(K ), when K runs in the family of compact subsets of R.

LetM denote the space of all ips-forms on (L p
loc(R,m),Cb(R)) whose restriction

to L p(K ,m) is continuous for every compact subset K ⊂ R. Then, if p ≥ 2, one can
easily prove that M can be described by functions of Ls

loc(R,m) where, as before,
s = p

p−2 (again, 1
0 = ∞). It is easily seen that M is strongly well behaved. In

this case, the set of M-bounded elements is the C*-algebra L∞(R,m). The pair
(L p

loc(R,m), L∞(R,m)) is a locally convex quasi GA*-algebra.

The following theorem motivates in our opinion the attention devoted to locally
convex quasi GA*-algebras.

Theorem 6.6 Let (A[τ ],A0) be a locally convex quasi GA*-algebras with unit and a
well behaved M ⊂ IA0(A). Then:

(a) every ϕ ∈ M is jointly τ -continuous;
(b) every M-regular *-representation of (A[τ ],A0) is (τ, ts∗)-continuous;
(c) the set AM

b of bounded elements is a C*-algebra with respect to the norm ‖ · ‖M
b .

Proof (a): Each ϕ is τ
F∗ -continuous by the construction itself of τF∗ ; the statement then

follows from the assumption τ ≈ τ
F∗ .

(b): This follows from (a). Indeed, if π is M-regular, then for every ξ ∈ Dπ , the
sesquilinear form ϕξ (see (4.3)) is inM; then, it is τ

F∗ -continuous. Then, there exists
F ∈ F, such that

|〈π(a)ξ |π(b)ξ〉| ≤ pF∗ (a)pF∗ (b);

hence

‖π(a)ξ‖ ≤ pF∗ (a), and ‖π(a∗)ξ‖ ≤ pF∗ (a∗) = pF∗ (a), ∀a ∈ A,

then for every ξ ∈ Dπ , there exists F ∈ F, such that

p∗
ξ (π(a)) = max{‖π(a)ξ‖, ‖π(a)†ξ‖} ≤ pF∗ (a).

(c): We have just to prove the completeness of the set AM
b with respect to the norm

‖·‖M
b . Let {an} ⊂ AM

b be a ‖·‖M
b -Cauchy sequence, then for every ε > 0, there exists
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nε ∈ N, such that for all n,m ≥ nε , it is both ‖an −am‖M
b < ε and ‖a∗

n −a∗
m‖M

b < ε.
Since {an} ⊂ AM

b , for every ϕ ∈ M and every x0 ∈ A0, it is

ϕ((an − am)x, (an − am)x) ≤ (‖an − am‖M
b )2ϕ(x, x), ∀n,m ∈ N

and

ϕ((a∗
n − a∗

m)x, (a∗
n − a∗

m)x) ≤ (‖a∗
n − a∗

m‖M
b )2ϕ(x, x), ∀n,m ∈ N;

hence, if F ∈ F:

sup
ϕ∈F

ϕ((an − am)x, (an − am)x)1/2 ≤ ‖an − am‖M
b sup

ϕ∈F
ϕ(x, x)1/2, ∀n,m ∈ N

and

sup
ϕ∈F

ϕ((a∗
n − a∗

m)x, (a∗
n − a∗

m)x)1/2 ≤ ‖a∗
n − a∗

m‖M
b sup

ϕ∈F
ϕ(x, x)1/2, ∀n,m ∈ N

by the previous inequalities, for every F ∈ F, we get

pF∗ (an − am) = max
{

pF (an − am), pF ((an − am)∗)
}

< ε pF (e), ∀n,m ≥ nε .

Then, {an} is a τ
F∗ -Cauchy sequence. SinceA is τ

F∗ -complete, there exists a ∈ A, such

that an
τ
F∗→ a.

The limit a isM-bounded; indeed, if ϕ ∈ M and x ∈ A0, we have

ϕ(ax, ax) = lim
n→∞ ϕ(anx, anx) ≤ lim sup

n→∞
(‖an‖M

b )
2
ϕ(x, x).

The sequence {‖an‖M
b } is Cauchy too and bounded; therefore, a is M-bounded. To

prove that ‖an − a‖M
b → 0 as n → ∞, it suffices to use the same arguments as in

Theorem 5.7. ��

7 Conclusion

In this paperwe have constructed some topologies on a quasi *-algebra (A,A0) starting
from a sufficiently rich family of sesquilinear forms that behave regularly. This study
led us to introduce a new class of locally convex quasi *-algebras, that we have named
GA*, since their definition closely recalls that one of A*-algebras. Several questions
remain, however, still open. We mention some of them.

(a) When does a (locally convex) quasi *-algebra (A,A0) possess a sufficient family
M of sesquilinear forms of IA0(A)?
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(b) Under what conditions is a locally convex quasi *-algebra (A[τ ],A0) a locally
convex quasi GA*-algebra? We already know that there exist Banach quasi *-
algebras (A[‖ ·‖],A0) for which the set of continuous elements of IA0(A) reduces
to {0} [6, Example 3.1.29] and the sesquilinear forms of a well-behaved familyM
of ips-forms are automatically continuous in a locally convex quasi GA*-algebra.
Hence, in general, the two notions do not coincide.

(c) Under which conditions is it possible to lighten the definition of well-behaved
family of ips-forms (Definition 6.1) by removing (wb3) and/or (wb4)?

We hope to discuss these problems in a future paper.
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