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Abstract

Quasi *-algebras possessing a sufficient family M of invariant positive sesquilinear
forms carry several topologies related to M which make every *-representation con-
tinuous. This leads to define the class of locally convex quasi GA*-algebras whose
main feature consists in the fact that the family of their bounded elements, with respect
to the family M, is a dense C*-algebra.

Keywords Invariant positive sesquilinear form - *-Representation - Locally convex
quasi *-algebra
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1 Introduction

Locally / convex quasi *-algebras (A[7], 2,) arise often when taking the completion
A := Ap[r] of a locally convex *-algebra 2dp[r] with separately (but not jointly)
continuous multiplication (this was, in fact, the case considered at an early stage
of the theory, concerning applications in quantum physics). Concrete examples are
provided by families of operators acting in rigged Hilbert spaces or by certain families
of unbounded operators acting on a common domain D of a Hilbert space H. For a
synthesis of the theory and of its applications, we refer to [6].
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The study of this structure and the analysis performed also in [1, 4, 5, 7, 9] made
it clear that the most regular situation occurs when the locally convex quasi *-algebra
(R[], o) under consideration possesses a sufficiently rich family Zg, () of invariant
positive sesquilinear forms on 2( x 2 (see below for definitions); they allow a GNS
construction similar to that defined by a positive linear functional on a *-algebra .
The basic idea where this paper moves from is to consider a quasi *-algebra (2(, 2,)
where one can introduce a locally convex topology by means of the set of sesquilinear
forms Zg, () itself. In the best circumstances, we expect a behavior analogous to that
of a *-algebra By whose topology can be defined via families of C*-seminorms

pux) = sup w2
weM;w(e)=1

where M is a convenient set of positive linear functionals on B [10].

For this reason, we start from a pure algebraic setup, i.e., (2, 2,) is a quasi *-algebra
and we suppose that it has a sufficiently large Zg(, () (in the sense that, for some con-
venient subset M C Zg, (%) and for every a € 2, a # 0, there exists ¢ € M, such
that ¢(a, a) > 0). Starting from this set M, we undertake the construction of locally
convex topologies on 2 selecting in particular those under which each (sufficiently
regular) *-representation is continuous. This analysis leads to the selection of a class of
locally convex quasi *-algebras (A[7], ;) (called locally convex quasi GA*-algebras)
whose bounded elements constitute a C*-algebra. The paper is organized as follows.
In Sect.2, some preliminary notions on quasi *-algebras, their topologies, and their
representations are summarized. In Sect. 3, we introduce the order defined by a family
M C Zg, () whose related wedge becomes a cone when the family M is sufficiently
rich. In Sect. 4, given M C Zg, (), we introduce two notions of bounded elements:
those bounded with respect to a family M and those related to the order defined by
M. These two notions turn out to be equivalent and every *-representation produces
a bounded operator when acting on a bounded element. In Sect. 5 the topologies gen-
erated by a family M C Zg(, () are investigated, and in Sect. 6, we finally introduce
locally convex quasi GA*-algebras and study some properties of them. Locally convex
quasi GA*-algebras are characterized by the fact that their topology is equivalent to
that generated by some M C Zg(, (20) as in Sect. 5.

2 Basic definitions and facts

We begin with some preliminaries; we refer to [6] for details.
A quasi *-algebra (2, 2,) is a pair consisting of a vector space 2l and a *-algebra
2, contained in 2 as a subspace and such that

(i) A carries an involution a +— a™ extending the involution of 2l;
(i) RAisabimodule over 2y and the module multiplications extend the multiplication
of 2. In particular, the following associative laws hold:

(xa)y = x(ay); a(xy) = (ax)y, Vael x,yel;
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(iii) (ax)* = x*a*, for every a € 2 and x € ,.

The identity of (A, 2A,), if any, is a necessarily unique element e € 2, such that
ae =a = eaq, forall a € 2.
We will always suppose that

ax =0, VxeAy=>a=0
ax =0, VaeA=x=0.

These two conditions are clearly satisfied if (2, 2(y) has an identity e.

Definition 2.1 A quasi *-algebra (2(, 2(,) is said to be locally convex if 2l is a locally
convex vector space, with a topology t enjoying the following properties:

(Ic1) x — x*, x € 2, is continuous;

(Ic2) for every a € 2, the maps x — ax and x — xa, from 2|, into A, x € 2, are
continuous;

(Ic3) %T =2A;i.e., A, is dense in A[].

In particular, if 7 is a norm topology, with norm || - ||, and
(bg*) lla*|| = llall, Ya € 2,
then CA[|| - |1, ™Ap) is called a normed quasi *-algebra and a Banach quasi *-algebra

if the normed vector space 2A[|| - ||] is complete.

Let D be a dense vector subspace of a Hilbert space H. Let us consider the following
families of linear operators acting on D:

L7 (D, H) = {X closable, D(X) = D; D(X*) D> D}
LID)={XeL\(D,H): XD cD; X*D C D}
LT (D), = {Y € LT(D); Y bounded},

where Y denotes the closure of Y. The involution in £(D, H) is defined by X' :=
X* | D, the restriction of X*, the adjoint of X, to D

The set L7(D) is a *-algebra; more precisely, it is the maximal O*-algebra on D,
(for the theories of O*-algebras and *-representations, we refer to [8]).

Furthermore, £ (D, H) is also a partial *-algebra [2] with respect to the following
operations: the usual sum X + X», the scalar multiplication A X, the involution X >
X" := X*ID, and the (weak) partial multiplication:

X10X2 = X1 X, 2.1
defined whenever X is a weak right multiplier of X; (we shall write X, € RV (X)
or X1 € LV(X»)), that is, whenever XoD C D(X;"*) and X1*D C D(X»¥).
The following topologies on L (D, H) will be used in this paper.
The weak topology t,, on LT (D, H) is defined by the seminorms
ré,?](X)ZHXS'n)'v XGﬁT(D,H), Sa’)EID
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The strong topology ts on LT (D, H) is defined by the seminorms
ps(X) = | XEll, X € L(D.H), & €D.
The strong* topology ts+ on LT (D, H) is usually defined by the seminorms
pi(X) = max{||X£|, IX'€]}, & € D.

Then, (£1(D, H)[ts], LT (D)) is a complete locally convex quasi *-algebra [6,
Section 6.1].
Let us denote by #; the graph topology on D defined by the set of seminorms

£eD— |XE|l; X € L'(D,H).

The family of all bounded subsets of D[t;] is denoted by B.
We will indicate by tt,, t* and tZ, respectively, the uniform topologies defined by
the following families of seminorms:
for t,: ps(X) = sups s |(XEN), B € B;
for t*: pB(X) =supgcp |1 XEll, B € By
for tt: pB(X) = max{pB(X), pB(X")}, BeB.
It is easy to see that &, < t* <t}

ps(X) < y5 pP(X) < yspP (X), VX € L1(D, H);
moreover,
pr(XT0X) = pB(X)2 whenever X '0X is well defined.

As shown in [2, Proposition 4.2.3] £7(D, H)[t"] is complete.

Definition 2.2 Let (2, 2,) be a quasi *-algebra and D, a dense domain in a certain
Hilbert space H . A linear map 7 from 2l into LY (Dy, Hy) is called a *-representation
of (U, ), if the following properties are fulfilled:

(i) m@*) =n(@)', VYae;
(i) fora € A and x € A, 7w (a)Om (x) is well defined and 7 (a)0m (x) = 7 (ax).

If (A, Ap) has aunite € 2, we assume that for every *-representation 7w of (2, o),
m(e) = Ip_, the identity operator on the space Dj,.

If m, ;== | 2 is a *-representation of the *-algebra 2, into L7 (D,), we say that
7 is a qu*-representation of (2, o).

A *-representation 7 is called bounded if w(a) is a bounded operator in D, for
every a € 2.

Let (2, 2,) be a quasi *-algebra. We denote by Qg (2() the set of all sesquilinear
forms on 21 x 2, such that

(i) ¢ is positive, i.e., (a,a) >0, Va e,
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(i) glax,y) = @(x,a*y), Yae, x,y .
For every ¢ € Qg(,(2), the set

Nq,::{ae?l:go(a,a):O}={ate:(p(a,b)=0,Vbte}

is a subspace of 2.

Let Ay, : 2 — RA/N, be the usual quotient map, and for each a € £, let A, (a)
be the corresponding coset of 2(/N,,, which contains a. An inner product (-|-) is then
defined on A, (2A) = 2/N, by

(Ap(@)|Ay (D)) := @(a,b), Va,bel

Denote by H,, the Hilbert space obtained by the completion of the pre-Hilbert space
Ay ().

Definition 2.3 We denote by Zgy(, (1) the subset of forms ¢ € Qg () for which
Ao (2y) is dense in H,,. Elements of Zg, () are also called invariant positive sesquilin-
ear forms or briefly ips-forms.

Moreover, if (A[7], o) is a locally convex quasi *-algebra, we denote by 73510 ()
the family of elements ¢ of Qg () that are jointly T-continuous; i.e., there exists a
continuous seminorm p,, such that

lp(a, b)| < ps(@)ps(b), Va,b e

The sesquilinear forms of Zg,(*A) allow building up a GNS representation [6].
Indeed,

Proposition 2.4 Let (U, Ay) be a quasi *-algebra with unit e and ¢ a sesquilinear
form on A x A. The following statements are equivalent.

1) ¢ € Loy (W).

(ii) There exist a Hilbert space Hy, a dense domain Dy, of the Hilbert space H,, and
a closed cyclic *-representation 7, in L' (Dy, H,), with cyclic vector &, (in the
sense that 7w, ()&, is dense in Hy,), such that

p(a, b) = (my(a)syplmy(D)éy), Ya,b e

Remark 2.5 The *-representation 7, is in fact obtained by taking the closure of the
*-representation n(; defined on A, (%) by

n(;’(a))»w(x) =Aplax) a e x €.

If M C Zg, () is rich enough (in the sense that, for every a € %, there exists
¢ € M, such that ¢(a, a) > 0), then we can introduce a partial multiplication as in
[6, Definition 3.1.30].
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Indeed, in this case, we say that the weak multiplication, a<b, a,b € 2, is well
defined if there exists ¢ € 2, such that

pbx,a*y) = ¢(cx,y), Vx,ye€ and Yp € M. (2.2)

In this case, we put ab := c.
With these definitions, we conclude that [3, Proposition 4.4] 2l is also a partial
*-algebra with respect to the weak multiplication o.

Remark 2.6 The uniqueness of ¢ = ab is guaranteed by Proposition 3.3 below.
Clearly, this multiplication depends on the family M.

3 Families of forms and order structure

As discussed extensively in [6], the notion of bounded element of a locally convex
quasi *-algebra reveals to be important for undertaking a spectral analysis in this
structure. We propose here two different approaches similar to those developed in [3]
but without the continuity assumptions made therein.

Before going forth, we introduce some notions needed in what follows. In particular,
in analogy to [10],

Definition 3.1 A subset M C Zg, () is said to be

balanced if ¢ € M implies ¢* € M, for every x € 2y, where ¢*(a,b) =
¢(ax, bx) forall a, b € 2.

sufficient if it is balanced and if, for every a € A\{0}, there exists ¢ € M, such
that ¢(a, a) > 0.

Remark 3.2 If (A[t], A,) is a locally convex quasi *-algebra, then

(@) Py, () C Loty (D)
(b) 775(0 (21) is balanced.

Both (a) and (b) follow directly from the joint continuity of elements of 7?&0 Q0.

The following proposition allows us to deal with notion of sufficiency in other
equivalent ways.

Proposition 3.3 Let (A, o) be a quasi *-algebra, M a subset of Ly, () and a € 2.
Then, the following are equivalent:

1) glax,x) =0, forall p € M, x € p;
(i) @(ax,y) =0, forallp € M, x,y € Ap;
(iii) ¢(ax,ax) =0, forall p € M, x € .

If QA Ay) has unit e and M is balanced, then the previous statements are equivalent
to

(iv) ¢(a,a) =0, for every ¢ € M.
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In the case of a locally convex quasi *-algebra (2A[t], ), posmve elements have
been defined in [7] as the members of the closure AT := Qﬁ , Where

n
A+ = Zx,ka, xp €AUg, n €N
k=1

Here, as we have anticipated, we will start from a quasi *-algebra without a topology
and we will introduce the notion of positive element via a family M of forms of
IQ[() (Ql)

Definition 3.4 Let (2, 2p) be a quasi *-algebra. We call M-positive an elementa € 2,
such that

glax,x) >0, Yo e M,Vx €.
We put
Ky i={aed: plax,x) >0, Yo € M,Vx € Ap}.

If M = Ty, (), we denote the corresponding set by 7.

Lemma3.5 Let (AU, Ay) be a quasi *-algebra with a sufficient M C Iy, (). If a is
M-positive, then a = a*.

Proof The conclusion is a consequence of Proposition 3.3. O

The set Ko is a gm-admissible wedge, that is a + b € Kn, ka € K and
x*ax € Ky foralla,b € Ky, x € Ay and A > 0. If, moreover, 2 has a unit e, then
eec K.

As usual, one can define an order on the real vector space A, = {a eA:a= a*}
by

a<ub & b—acky, a,bef,.

Proposition 3.6 Let (A, o) be quasi *-algebra with unit e and let M be a balanced
subset of Loy, (). Then, the following are equivalent:

(1) M is sufficient;
(i) Km N (=Km) = {0}

Proof (i) = (ii) Leta € K N (=K ). Then, ¢(ax, x) = 0, for every ¢ € M and
every x € 2p; hence, by Proposition 3.3, and by the sufficiency of M, we geta = 0.
(i) = (i) Let us suppose by absurd that there existsa € 2, a # 0, suchthat¢(a, a) =
0, for every ¢ € M. Then, again, by Proposition 3.3, it follows that ¢(ax,x) = 0
for every x € 2y and every ¢ € M; this means that a € Ko N (=) = {0} a
contradiction. O

) Birkhauser



81 Page8o0f21 G. Bellomonte and C. Trapani

4 Bounded and order bounded elements

Definition 4.1 Let (2, %) be a quasi *-algebra with M C Zg, () sufficient. We say
that an element a € 2l is M-bounded if there exists y, = ¥, M > 0, such that

lp(ax, Y| < vapx, x)o(y, N2, Yo e M; ¥x,y € .

If a is M-bounded, we put

172

2oy, »2,

lall =inf{y, > 0 : |p(ax, y)| < vap(x, x)
peM, x,y e}

Remark 4.2 For future use, we notice that, in general and regardless to the M-
boundedness of a € 2, the following equalities hold:

1/2 1/2

Ag i=inf{y, > 0: |p(ax, y)| < yvap(x,x) “0(y,y) /7, ¢ € M, x,y € A}
=sup{|e(ax, Y); 9o e M, x,y € Ay, p(x,x) = @(y,y) =1}

= sup{llmy(@)ll: ¢ € M}.
Moreover, if a = a*
Aa = sup{le(az, 2)|; 9 € M,z € Ay, (z,2) = 1}.
TAl}te value of A, is finite if and only if a is M-bounded; by the definition itself,
lally”" = Aq.

Lemma4.3 Leta, b € A be M-bounded. Then

(i) a* is M-bounded too, and ||a* ||} = |a||M;
(i) a + b is M-bounded and ||a + b|IM < |l + ||b]M;
(iii) aa is M-bounded, Yo € C;
(iv) ifacb is well defined, the product asb is M-bounded and ||a-b||** < |la||} ||b|IM.

Proof We prove (iv). Suppose that a-b is well defined. Then, for every ¢ € M and
x,y €y, with o(x, x) = ¢(y,y) = 1, we have

172 1/2

lp((ab)x, y)| = lp(bx, a*y)| < ¢(bx, bx) “¢(a*y,a*y)

< llally b1
The statement then follows by taking the sup over ¢ € M. O

As in [3, Proposition 4.18], one can prove

Proposition 4.4 Let a, b be M-bounded elements of A and let ¢ € M. Then, if a-b is
well defined, 7, (a)Omy, (b) is also well defined and 7y (a-b) = my(a)Omy, (b).

Remark 4.5 Remark 4.2 and Proposition 4.4 imply that if a is M-bounded and a*<a
is well defined, then [|a*ea | = (||la||})>.
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The notion of M-positive element can be used to give a formally different definition
of bounded element. Let a € 2, put N(a) = %(a + a*), J(a) = %(a — a*). Then,
both R(a), J(a) € Ay and a = R(a) +iJ(a).

Definition 4.6 Let (2, 2(,) be a quasi *-algebra. The element a € 2 is said /-
bounded if there exists y > 0, such that

{igo(?}i(a)x,ﬂ =yvex,x) Yo e M, x € Uy. 4.1)

To(S(a)x, x) < ye(x, x) ’
If (A, 2Ap) is unital, then we can rewrite (4.1), more syntetically, as
+9N(a) <pm ye, +3J(a) < ye.

We denote by 2, (K 1) the set of all K ,,-bounded elements of 2.
As in [7], the following result holds true:

Proposition 4.7 The couple (A,(KCpa0), Ae(Kas) (o) is a quasi *-algebra, and
hence, in particular

1. aa+ b € A, (K py) forany o, B € Cand a, b € A, (K 01);
2. a € A, (Kpr) & a* € A, (K pap)s

3. a € AUy(Krg), x € U (Kag) N Ao = xa € A, ()

4. x € A, (K)o © xx* € A, (a0 () Yo-

In particular, if (U, o) has a unit, then also (A, (K pq), A, (a0 (o) has a unit.

Theorem 4.8 Let (2, o) be a quasi *-algebra and M C Ly, (). Then, the following
are equivalent:

(i) a € A (Kr0);
(ii) a is M-bounded; i.e., (Definition 4.1), there exists y, > 0, such that

1/2

lp(ax, )| < vapx, 1) 2oy, /2, Vx,y € Ay,

for every ¢ € M;
(iil) there exists v, > 0, such that

p(ax,ax) < y,p(x, x), Vx € 2,

for every ¢ € M.
(iv) there exists vy, > 0, such that

lp(ax, x)| < v,/ e(x, x), Vx € Ay,
for every ¢ € M.

) Birkhauser
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Proof We prove it for symmetric elements.
(1) = (i) Itis clear that if a = a* € %, (ICry), then there exists y > 0, such that

lp(ax, x)| < yo(x,x), Yo € M,Vx €
hence
sup{lp(ax, x)|; ¢ € M, x € Uy, p(x,x) =1} < o0.

From Remark 4.2, it follows that ||a ||} < oo, i.e., a is M-bounded.
(ii) = (iii) Assume that a € 2 is M-bounded. If ¢ € M, denote by m,, the corre-
sponding GNS representation. Then

1/2 1/2

(7o (@) ()2 ()] = le(ax, )| < lally ¢, x) oy, )
= llaly 12Ol AN, Vx, y € Ao

This implies that, for every ¢ € M, the operator 7,(a) is bounded and ||y, (a)|| <
llal. Hence

plax,ax)'/? = |lmy @iy ()]
< llalMlrp ) = llale, x)'72, Vx, y e Ao (4.2)
(iii) = (iv) Suppose that a satisfies (iii). Let ¢ € M and x € 2. Then

/12

lp(ax, x)| < plax, ax)Zo(x, )" <y "o(x, x).

(iv) = (i) It is straightforward. m]

Remark 4.9 By the previous theorem, we also deduce the following equalities for the
norm of an M-bounded element a (see also Remark 4.2):

||a||]f"l =inf{y > 0: ¢(ax, ax) < yz(p(x,x), o e M, x ey}
= sup{p(ax, a)c)l/2 o eM, x e, px,x) =1}

In view of Theorem 4.8, we adopt the notation thM for the set of either M-bounded
or K »-bounded elements; i.e., we put A = 2, ().

Definition 4.10 Let (2, 2,) be a quasi *-algebra and let M C Zg, (). We say that a
*-representation 7 of 2 is M-regular if, for every § € Dy, the vector form ¢ defined
by

¢e(a, b) = (m(a)§|m(D)§), a,bel (4.3)

is a form in M.

W Birkhauser



Topological aspects of quasi *-algebras Page 11 of 21 81

In particular, if M = Zg, (), 7 is said to be regular [6]. We denote by Repr’M (A, 2Ay)
the set of M-regular *-representations of (A, ). If M = Zg, (), we denote it simply
by Rep” (21, 2,).

Remark 4.11 If M C Ty, (20) is balanced, then for every ¢ € M, the *-representation
n;’ is M-regular; see [6, Proposition 2.4.16].

Proposition 4.12 Let (U, o) be a quasi *-algebra with unit e and let a € 2.
If m(a) > O for every *-representation 7 of (A, o), then a € K. Conversely, if

M C Iy, () and a € K, then m(a) > O for every M-regular *-representation w
of (2, o).

Proof 1f (a) > 0 for every *-representation m of (2, o), then for every ¢ € Zg(, (1)
and every x € 2o,

plax, x) = (Ty(@)hy(x)|2y(x)) = 0.

Hence, a € K.

Conversely, let 7 be a M-regular *-representation. Then, for every & € Dy, the vector
form @¢ (a, b) = (w(a)é|m(b)E), with a, b € 2, belongs to M. Thus, froma € K,
it follows that ¢¢ (a, €) = (7 (a)§|§) > 0, for every & € D,. Hence, (a) > 0. ]

Remark 4.13 The first implication is also true if we consider only the GNS represen-
tations constructed from the forms ¢ € Zg,(); if ¢ € M C Zg, () and every
y(a) > 0, thena € Ky

Proposition 4.14 Let (A, 2Ay) be a quasi *-algebra with unit e and with sufficient
M C Ty, (). Then

() if a € UM, then 7w (a) is a bounded operator for every w € Rep”M(Ql, o) and
I (@] < llall*;

(i1) if m(a) is a bounded operator for every w € Repr’M A, Ap) and
sup{||z(a)|l; w € Rep” M, Ao)} < 00, then a € AM.

Proof (i) By Theorem 4.8, a € M implies ¢ (ax, ax)'/? < [a|Mp(x, x)1/?, Vo €
M; x e . If w is M-regular, for every § € Dy, p¢ € M where gg(a, b) =
(m(a)§|m(b)§). Then

I (@x)& |l = gz (ax, ax)'/? < JlalMee (x, )"/ = [lalM |7 (E].
The quasi *-algebra is supposed to be unital and also 7 (e) = Ip, . Then

@&l < lally" ], V& € Dy.

Hence, |7 (a)|| < [la|".
@ii) Put y :=sup{||l7r(a)|; 7 € Rep”M(Q[, Ay)}. By hypothesis

I7p @i < 7AYo € M, x €,

) Birkhauser
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that is
p(ax,ax) < y>p(x,x), Yo e M, x e,

and by Theorem 4.8, it is equivalent to say that a € AM. O

Remark 4.15 Let ¢ € M and denote, as before, by 7, the corresponding GNS repre-
sentation. If a € Ql{,"‘, then 7, (a) is a bounded operator. Indeed, for every x € 2,

700 (@) Ay ()II* = @lax, ax) < (lall?)e(x, x) = (lallX)? A, (11,
regardless of whether 7, is M-regular or not.

The following additional condition will be used:

(C) ifa,b € Ql{,"‘, then there exists ¢ € 2, such that 7, (a)0m, (b) = 7, (c), for every
@ e M.

Remark 4.16 The uniqueness of ¢ in condition (C) is guaranteed by the sufficiency of
M. Moreover, ¢ € Q[lf"l, as we shall see in Theorem 4.17.

Theorem 4.17 Let (2, ) be a quasi *-algebra. Let M C Ly, () be sufficient and
assume that condition (C) holds. Then, Ql{,\" is a normed *-algebra with the weak
multiplication - and the norm || - | M.

Proof As we have seen until now, Ql]ﬁ"‘ is a normed space (the sufficiency of M
guarantees that if [|a[|} = 0, then a = 0), such that if a € AM, then a* is M-
bounded and [|a*|M = |la||}* and, whenever a<b is well defined, the product asb
is M-bounded and |lab|M < |la||}||b||M. Now, if ¢ € M and a,b € AM, the
operator 1, (a)0m, (b) is well defined, since, by Remark 4.15, 7, (a) and 7, (b) are
bounded operators; of course, 7, (a)07, (b) is also bounded. Thus, by (C), there exists
a unique ¢ € Qllf"‘, such that 7, (a)5m, (b) = 7, (c), for every ¢ € M. Hence, for all
¢ € Mandx, y € %, we have

@(bx,a*y) = (my(D)he (x) |7y (@) Ap (1)) = (7 (@)Tmy (D) (X)1g (V)
= (14 (DA (X) |2y (¥)) = @(cx, y).

Thus, ¢ = ab is well defined and is M-bounded by Lemma 4.3. This completes the
proof. O

Proposition 4.18 Let (A, %) be a quasi *-algebra with unit e. Let M C Ly, ()

be balanced and denote by RM Q) the intersection of the kernels of all M-regular
*-representations of A on some Hilbert space. Then

RM®Q) = {a € Al p(a, a) =0, Yo € M}.
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Proof For every ¢ € M, the GNS representation n;, is M-regular, then, if a €
RM &), itis n;(a) = 0, and hence, ¢(a, a) = ||n(;(a)$¢|| =0.

Conversely, if a € 2 is such that ¢(a,a) = 0, V¢ € M, since M is balanced, it is
¢*(a,a) = 0 for all x € Yy and for all ¢ € M, and hence

¢*(a,a) = p(ax, ax) = |7g(@)ry()]* =0,

and by the density of A,(2lo) in H,,, this implies that 71(; (a) = 0. Now, let & be a
M-regular *-representation of 2, then for every £ € D, the form ¢ € M and by
what we have seen before it is JT(;E (a) = 0. For every & € Dy, there exists a cyclic
vector 7 for the GNS representation nos, such that

Iz @& = llg, (@nl* = 0;

this implies that 7w (a) = 0. By the arbitrariness of the M-regular *-representation
of 2, it follows that a € R (21). This concludes the proof. O

Remark 4.19 The set RM () is clearly a sort of *-radical; however, its nature is purely
algebraic here.

5 Topologies defined by families of sesquilinear forms

The properties we have discussed in the previous section are all of pure algebraic
nature; but families of sesquilinear forms of Zg,(2() can be used to define, in rather
natural way, topologies on (2, 2l,). Our next goal is in fact to define in 2 topologies
that mimick the uniform topologies of families of operators.

Throughout this section, we will suppose that (2, 2l,) is a quasi *-algebra with unit
e and that M C Zgy(, () is a sufficient set of forms. Then, M defines the topologies

", M, T generated, respectively, by the following families of seminorms:
' ars |elax,y)|, aed, g e M, x,y €Ay
™M ae pa,a)!?, aed, e M,
X't a > max {(p(a, a)'?, p(a*, a*)l/z}, ac, g e M.

Definition 5.1 Let F be a subset of M. We say that F is bounded if

sup ¢(a,a) < oo, Va e
peF

The family § of bounded subsets of forms in M has the following properties:

(a) mneN}—n €f, Fued:
(b) FUGeF, F,Ge3.

If F € §, we put

p]:(a) = sup (p(a,a)1/2, a e
peF
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Lemma5.2 Let F € §. Then

(a) p]E is a seminorm on 2;
(b) the set F* = {¢*, ¢ € F}, x € Uy, is bounded;
(c) forevery x € A,

p]:(ax) = p}—x (@), Va e
Proof As for (c), we have

p}—(ax) = sup (,0(ax,ax)l/2 = sup gz)x(a,a)l/2 = sup 1ﬂ(a,a)l/2 = p]:x(a).
peF peF yeF*

O

Since M is sufficient, then { p]: ; F € §}is a separating family of seminorms; thus,
it defines on 2( a Hausdorff locally convex topology which we denote by 5.
Let us assume that (2, ;) has a unit e. If 7 € §, we define

pr(a) := sup |p(a,e)|, aec
peF

Then

pr(a) <yrp’(a), Vae4,

with yr = sup,c 7 ¢(e, e)1/2 and the following holds:

pr(a®) = pr(a), Va el
prlax) < p” (0)pF @), YaeUxeUy;
pr(a*ea) = pf(a)2, Va € 2, such that a*a is well defined.

By 13, we will denote the locally convex topology on 2l generated by the family
of seminorms {pr; F € §} (to simplify notations, we do not mention explicitly the
dependence on M). Note that tz need not be Hausdorft, in general.

Remark 5.3 We notice that if a*a is well defined and a*ea = 0, then p7 (a) = 0 for
every bounded set F e § and, therefore, a = 0.

Proposition 5.4 Let M be sufficient and suppose that tg = 3. Then, A[tS] is a
locally convex space with the following properties:

(1) the involution a — a* is continuous;
(ii) for every bounded set F € §, there exists a bounded set GE §

pr(ax) < p9@)p9(x), VaeA x €W
which implies that the left and right multiplications are jointly continuous.
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In particular, if Ay is T5-dense in A, then (A[tS], Wo) is a locally convex quasi *-
algebra.

In general, the involution @ + a* in not continuous for 7% To circumvent this
problem, we define the topology rf generated by the family of seminorms

p7(a) = max{pf(a),pf(a*)], acU Feg.

Clearly, g < ¥ < rf, and if 13 = 7% then T3 = ¥ = rf.

Let (2, 2ly) be a quasi *-algebra and suppose that the set M is sufficient. It is clear
that every ¢ € M is automatically continuous for t;** and for any finer topology such
as T', S or 3.

Our next goal is to investigate the properties of (2, 2(,) when 2 is endowed with
one of the topologies defined by the family M defined above.

We could wonder whether (Q[['L’E 1, %4y) is a locally convex quasi *-algebra. The
left and right multiplications by an element x € 2{, are continuous if we make an
additional assumption: let us suppose that for every x € 2, there exists y, > 0, such
that

o(xa, xa) < yrp(a,a), Vo € M,Va € . 5.1)

By (5.1), it follows that every x € %, is M-bounded and for every bounded subset
FcM

pT (xa) <P pT (@), Va e

This inequality, together with (c) of Lemma 5.2 and the continuity of the involution,

implies that, for every x € 2, the maps a — ax, a — xa are ‘L'*S -continuous. The

*-algebra 2, is not 85 -dense in A in general, and hence, to get a locally convex quasi
~ 5

*-algebra with topology rf , we could take as 2 the completion A" . Now, we prove

the following.

Lemma 5.5 Let (A, o) be a quasi *-algebra. Assume that M is sufficient and directed
upward w.r.to the order

0 <Y & ¢a,a) <¥a,a), Vae
Then, 2, is dense in Ql[rSM].
Proof Let us begin with proving that given a € 2, we can find a net {xq} C %, such
that ¢ (xy — a,xq —a) — 0 for every ¢ € M. We put ¢[a] := ¢(a,a), p € M,
ae

Since ¢ € M, 1,(2o) is dense in H,, (with H,, defined as in Proposition 2.4). This
implies that, for every a € 2, there exists a sequence {x}, such that Ag &Y —a)—>0
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or, equivalently ¢[x; — a] — 0. Then
1
vneN, In,eN: (p[x,‘f«) —al < —.
n

If o, € M, we define (p,ny,) < (Y,ny) if ¢ < ¥ and n, < ny. Since M is
directed, {(¢, ny)} is directed and {x(y n,} is a net, with x(y ) = x,‘fw. We prove
that, for every ¥ € M w[x,‘fw —a] — 0. Indeed, let ¢ > 0 and n € N, such that
L < €. Then, if (9, ny) > (¥, ny)

n
I//[X,“f(p —al < w[x,‘fw —al < - <e.

This proves that 2, is dense in Ql[tSM]. O

The representation 71(; is (1’3 , tg)-continuous. Indeed, if F is any bounded subset
of M containing ¢,

||7r(;(a))\¢(x)|| = g(ax, ax)'? < p}—(ax) < p}—x (a), Va e, x €U

as in Lemma 5.2.

Proposition 5.6 Let (U, 2,) be a quasi *-algebra with sufficient M C Ly, (). If A

is rs/}/l-complete, then A is also tf -complete.

Proof Let {a,} be a tf -Cauchy net. Since rs/l/l =< tf , there exists a € 2, such that

a= ‘L'X'/l/l — limy ay. From the Cauchy condition, for every € > 0 and every bounded

set F, there exists «, such that
max{@(dy — ay', do — ag'), 9lay —al, ay —as)} <€, Vo € F,a, o > @.
Then, taking limit over o’

max{@(ay —a, aq —a), ¢(ay —a*,ay —a*)} <€, Vo € F,a > Q.

Therefore, 2A is tf -complete. O

Theorem 5.7 Let M be sufficient and let property (C) hold too. If U is ;YA,Z‘ -complete,
then AM is a C*-algebra with the weak multiplication - and the norm || - |M.

Proof By Theorem 4.17 and Remark 4.5, we only need to prove the completeness of
AM. Let {a,} C AM be a Cauchy sequence with respect to the norm || - [|. Then,
{a*}is || - |M-Cauchy too. By (4.2),

@@y — am)x, (an — am)x) < (lan — am)*@(x, x), Yo € M, Vx € 2y
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and
o((a} — ap)x, (@ —ai)x) < (laf — a1 e(x, x), Yo € M, ¥x € .

Therefore, both ¢ ((a, —a)x, (a, —an)x) — 0and ¢((a;; —a)x, (a; —a})x) — 0,
asn, m — o0.
This is, in particular, true when x = e; hence, {a,} is also Cauchy with respect to

M
T * . .
rsfl’l and since 2 is tﬁ’l-complete, there exists a € 2, such that @, = a. The limit

a € AM; indeed, for every ¢ € M and x € 2,

lp(ax, x)l2 < @(ax,ax)p(x, x) = ¢(x, x) lim sup p(a,x, a,x)
n—oQ

2
< sup (lay 1) @ (x, x)*.
neN

Since {a,} is Cauchy with respect to the norm || - [, for every € > 0, there exists
ne € N, such that ||a, — am||g"’ < €2 forall n,m > ne. This implies that p((a, —
am)x, (ap, — ay)x) < €p(x,x), Vo € M,Vx € p, forall n, m > n. Then, if we
fix n > ne and let m — o0, we obtain ¢((a, — a)x, (@, — a)x)<ep(x,x),Vp €
M, V¥x € . This implies that Ql,f"‘ is complete with respect to the norm || - ||,f‘/‘. O

To conclude, let us suppose that M C Zg,, (20) is balanced. We pose the question:
under what conditions is M also sufficient? Let us consider a locally convex quasi
*-algebra (A[r], 2Ay) and choose M = 735[0 (20). This set is certainly balanced, but it
is not necessarily sufficient. This property can be characterized (by negation) by the
following.

Proposition 5.8 Let (U[t],2y) be a locally convex quasi *-algebra with unit e. For
an element a € 2, the following statements are equivalent:

(i) a € Ker & for every strongly continuous (i.e., ts-continuous) qu*-representation
7 of (AUlt], Ao);
(i1) ¢(a,a) =0, for every ¢ € 77510 ),
(iii) p7 (a) = 0, for every bounded subset F of 735[0 20).

6 Locally convex quasi GA*-algebras

The discussion of the previous sections suggests the following definition (which
strengthen an analogous one for partial *-algebras [3, Definition 4.26]).

Definition 6.1 Let (A, %) be a quasi *-algebra. Let M be a family of forms of Zgy,, ().
We say that M is strongly well behaved if

(wby) M is sufficient;
(wby) every x € 2, is M-bounded;
(wb3) condition (C) holds;
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(wby) RLis tf -complete.

Definition 6.2 Let (A[t], 2y) be a locally convex quasi *-algebra. We say that
(AU, o) is a locally convex quasi GA*-algebra if there exists M C Zgy(, () which
is strongly well behaved, and t and tf are equivalent (in symbols 7 & rf ).

Example 6.3 Let us consider the quasi *-algebra (L7(D, H), L' (D)) of Sect.2.
Assume that £7(D, H) is endowed with the topology tt“ and denote by LT(D, H),
the t“-closure of L'(D), in LT(D, H), then (L'(D, H),[t"], LT (D)) is a locally
convex quasi *-algebra. Let us take as M the space consisting of the restrictions to
L7(D, H), of the t"-continuous ips-forms on (L7(D, H), LT(D);). We will see that
M is strongly well behaved and t & 7 : this makes of (£(D, H),[t“], £T(D)) a
locally convex quasi GA*-algebra. Due to the t“-density of L7(D)p, in LT (D, H),, we
can identify M with the space of all t“-continuous ips-forms on (L (D, H),, LT (D)).
This implies [3, Theorem 3.10] that every ¢ € M can be written as follows:
V(A,B) = Y ! (A&|B&) A, B € LY (D, H),, for some vectors &, ..., £, € D.
Hence, the set of M-bounded elements coincides with the set £7(D, H);, of all
bounded operators of £7(D, ), which can be identified with the C*-algebra B(H)
of all bounded operators in H.

These facts allow us to conclude easily that M is strongly well behaved. In partic-
ular, we notice that (wbs) holds, since if A, B € LT (D, H),, then the multiplication
o (see (2.2)) is well defined and coincides with the weak multiplication O of oper-
ators (see (2.1)): AeB = AOB is certainly well defined; then if ¢ € M, we have
7, (A)Omy, (B) = 7, (ADB) = 7, (A<B), by definition of *-representation.

Example 6.4 Let K denote a compact subset of the real line with m(K) > 0, where
m denotes the Lebesgue measure. Then, the pair (L” (K, m), C(K)), where C(K)
denotes the C*-algebra of continuous functions on K, is a Banach quasi *-algebra.
Let M be the space of all jointly continuous ips-forms on (L? (K, m), C(K)). Then, as
shown in [6, Example 3.1.44], if p > 2, M can be completely described by functions
of LS(K, m), where s = ﬁ (é = 00), in the following sense:

peM&Iwe Ll (K,m), w>0: co(f,g)=f fgwdm,
K
Vf,g € Ll(K,m).

For this reason, we identify M with L5 (K, m). With this in mind

(a) asubset F of M is bounded, if and only if it is contained in a ball centered at 0 in
L (K, m);

(b) the topology t5 (which equals 3, in this case) is normed and the norm coincides
with || - || ,, since

sup /K|f|2wdm=|||f|2||p/z=||f||§,;

lwils=1

(c) the topology 75 is also a norm topology and the norm coincides with || - || ,/2;
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(d) the set of M-bounded elements is the C*-algebra L>*°(K, m).
In conclusion, (L?(K,m), L°°(K, m)) is a Banach quasi GA*-algebra.

Example 6.5 The space LloC (R, m) of all (classes of) measurable functions on R, such
that the restriction fx of f to K isin L7 (K, m), for every compact subset K C R,
behaves similarly to the case discussed in Example 6.4. The main difference consists,
of course, in the fact that we will not deal with norm topologies. More precisely, let us
consider the pair (LloC (R, m), Cp(R)) (where Cp(R) denotes the continuous bounded
functions on R), which is, as it is easy to check, a quasi *-algebra. The natural topology
7, of LIOC(R, m) is then defined as the inductive limit of the norm topologies of the
spaces L”(K), when K runs in the family of compact subsets of R.

Let M denote the space of all ips-forms on (Lloc (R, m), Cp(R)) whose restriction
to LP (K, m) is continuous for every compact subset K C R. Then, if p > 2, one can
easily prove that M can be described by functions of LloC (R, m) where, as before,
s = p72 (again, g = 00). It is easily seen that M is strongly well behaved. In
this case, the set of M-bounded elements is the C*-algebra L°°(R, m). The pair
(L 10C(R m), L°° (R, m)) is a locally convex quasi GA*-algebra.

The following theorem motivates in our opinion the attention devoted to locally
convex quasi GA*-algebras.

Theorem 6.6 Let (A[t], ™Uy) be a locally convex quasi GA*-algebras with unit and a
well behaved M C Ly, (). Then:

(a) every ¢ € M is jointly t-continuous;
(b) every M-regular *-representation of (U[t], 2Ay) is (t, tg)-continuous;

(c) the set A of bounded elements is a C*-algebra with respect to the norm | - ||}M.
Proof (a): Each ¢ is rf -continuous by the construction itself of rf ; the statement then

follows from the assumption 7 ~ rf .

(b): This follows from (a). Indeed, if 7 is M-regular, then for every £ € D, the

sesquilinear form ¢¢ (see (4.3)) is in M; then, it is rf -continuous. Then, there exists

F € §, such that
(@& |7 (B)E)| < pl (@)p] (b);
hence
I@gll < pl (@), and |7(@*)El < pl (a*) = p] (@), Vaeq,
then for every & € Dy, there exists F € §, such that
pi(r(a)) = max{|7 @kl |7 (@'¢} < pf (@)

(c): We have just to prove the completeness of the set 2™ with respect to the norm
M. Let {a,} C AM be a || - ||™-Cauchy sequence, then for every € > 0, there exists
b b b Yy seq y
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ne € N, such that for all n, m > ne, itis both ||a, —a, [ < € and ||af —ak |M < €.
Since {a,} C AM, for every ¢ € M and every xg € 2, itis

o((an — am)x, (an —ap)x) < (lla, — am”f,”)zfp()f, x), Vu,m € N
and
p(a) — ai)x, (af —a)x) < (laf —ak M *(x, x), Yo, m € N;

hence, if F € §:

sup ¢((ay — am)x, (an — am)x)"? < llay — an | sup o(x, )%, ¥n,m e N
peF peF
and

sup g((af — ax)x, (af —a)x)V? < |laf — a|IM sup p(x, x)'/2, Vn,m € N
peF peF

by the previous inequalities, for every F € §, we get
Pl @ = an) = max {p7 (@ = an), 07 (@ = an)") | < epT (@), Vi m = ne.

Then, {a,}isa tf -Cauchy sequence. Since 2 is tf -complete, there exists a € 2, such

that a,, % a.
The limit a is M-bounded; indeed, if ¢ € M and x € 2, we have

@(ax,ax) = lim ¢(a,x,a,x) <lim SUP(IIanllﬁ)zw(x,X).
n—o0 n—00

The sequence {||a,[|*'} is Cauchy too and bounded; therefore, a is M-bounded. To
prove that ||a, — al|} — 0asn — oo, it suffices to use the same arguments as in
Theorem 5.7. O

7 Conclusion

In this paper we have constructed some topologies on a quasi *-algebra (2, 2,) starting
from a sufficiently rich family of sesquilinear forms that behave regularly. This study
led us to introduce a new class of locally convex quasi *-algebras, that we have named
GA¥*, since their definition closely recalls that one of A*-algebras. Several questions
remain, however, still open. We mention some of them.

(a) When does a (locally convex) quasi *-algebra (2, 2{,) possess a sufficient family
M of sesquilinear forms of Zg, (2A)?
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(b) Under what conditions is a locally convex quasi *-algebra (A[t], 2(,) a locally
convex quasi GA*-algebra? We already know that there exist Banach quasi *-
algebras (A[|| - ||], %) for which the set of continuous elements of Zg, () reduces
to {0} [6, Example 3.1.29] and the sesquilinear forms of a well-behaved family M
of ips-forms are automatically continuous in a locally convex quasi GA*-algebra.
Hence, in general, the two notions do not coincide.

(c) Under which conditions is it possible to lighten the definition of well-behaved
family of ips-forms (Definition 6.1) by removing (wb3) and/or (wby)?

We hope to discuss these problems in a future paper.
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