
International Journal of Approximate Reasoning 165 (2024) 109088

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar

A probabilistic analysis of selected notions of iterated 

conditioning under coherence
Lydia Castronovo a,∗,1,2, Giuseppe Sanfilippo b,∗,1,2

a Dep. of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
b Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Coherence
Conditional random quantities
Trivalent logics
Compound and iterated conditionals
Import-export principle
Bayes’ rule

It is well known that basic conditionals satisfy some desirable basic logical and probabilistic 
properties, such as the compound probability theorem. However checking the validity of these 
becomes trickier when we switch to compound and iterated conditionals. Herein we consider 
de Finetti’s notion of conditional both in terms of a three-valued object and as a conditional 
random quantity in the betting framework. We begin by recalling the notions of conjunction 
and disjunction among conditionals in selected trivalent logics. Then we analyze the notions of 
iterated conditioning in the frameworks of the specific three-valued logics introduced by Cooper-
Calabrese, by de Finetti, and by Farrel. By computing some probability propagation rules we show 
that the compound probability theorem and other important properties are not always preserved 
by these formulations. Then, for each trivalent logic we introduce an iterated conditional as a 
suitable random quantity which satisfies the compound prevision theorem as well as some other 
desirable properties. We also check the validity of two generalized versions of Bayes’ Rule for 
iterated conditionals. We study the p-validity of generalized versions of Modus Ponens and two-

premise centering for iterated conditionals. Finally, we observe that all the basic properties are 
satisfied within the framework of iterated conditioning followed in recent papers by Gilio and 
Sanfilippo in the setting of conditional random quantities.

1. Introduction

The study of conditionals (typically expressed by “if – then” sentences), compound conditionals (which are obtained by combining 
conditionals with the logical operators such as “and”, “or”, “not”), and iterated conditionals (where both antecedent and consequent 
are conditionals) is a relevant research topic in many fields, such as philosophy of science, psychology of uncertain reasoning, 
probability theory, and conditional logics. See for example, [1,3,9,15,17,18,22,23,32,42,45,48,53,55–57,63,64]. Compound and 
iterated conditionals are largely used in natural language to describe decisions and inferences based on incomplete or uncertain 
information. Thus, the issue of how to interpret and combine conditionals so to represent human rational reasoning realistically 
is a key question in the AI community. Recently there has been a growing interest in using conditionals in the field of AI and of 
knowledge representation. See [10,21,26,28,35,44,46,54].
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Among the several tools for managing conditional uncertainty, the theory of subjective probability allows one to evaluate uncer-
tainty on a conditional by means of a conditional probability assessment, interpreted as a degree of belief. In the subjective theory, 
the probability 𝑃 (𝐸), that an individual in a given state of uncertain knowledge attributes to an event 𝐸, is a measure of one’s 
degree of belief in the occurrence of 𝐸. In order to assess consistent probabilities operationally, de Finetti proposed a coherence 
principle based on a suitable betting scheme ([19]). In this framework, probability is assessed only for the events involved, and 
coherence amounts to the avoidance of a “Dutch Book”. All the classical properties of a finitely additive probability follow from the 
coherence principle. This approach is therefore more flexible than the formalist set-theoretic characterization of probability because 
it is not necessary to give probability values to each event of a given Boolean algebra. The subjective theory has been extended to 
conditionals by means of conditional probability assessments.

In this framework, given two events 𝐴 and 𝐵, the conditional if 𝐴 then 𝐵 is represented not by the material conditional event 
not-𝐴 or 𝐵, but rather by a conditional event designated as 𝐵|𝐴. This is a three-valued object which can be assessed as true, 
false, or void ([20]). In this formulation, the probability of the conditional if 𝐴 then 𝐵 is interpreted by the conditional probability 
𝑃 (𝐵|𝐴). Subjective conditional probability is primitive, it does not require an unconditional probability assessment and hence it can 
be properly defined even if the conditioning event has probability zero (see Remark 1). In particular an (unconditional) event 𝐵
coincides with the conditional event 𝐵|Ω and hence 𝑃 (𝐵) = 𝑃 (𝐵|Ω).

Trivalent logics have usually been used to combine conditionals, as found in [1,5,16,20,24,25]. Conjoined and disjoined con-
ditionals are interpreted in these logics as three-valued objects. However, such interpretations lead to the invalidity of some basic 
logical properties. Then, some basic probabilistic properties are not preserved when logical operations among conditionals belong to 
a trivalent logic ([40,59]). In this paper we will study different definitions of iterated conditioning by showing that similar problems 
arise both when iterated conditionals are represented as three-valued objects and when they depend on conjoined conditionals de-
fined in trivalent logics. As a consequence, human-like reasoning about conditionals under uncertainty cannot properly be formalized 
in such terms.

A different approach to compound and iterated conditionals has been followed in [45], and in [52] relevant to the definition of 
conjunction. A related study has been developed in the setting of coherence in the recent papers [34,35,37,39]. In this approach, 
conjoined, disjoined, and iterated conditionals are defined not as three-valued objects, but rather as suitable conditional random 
quantities having possibly more than three values in the unit interval [0, 1]. A betting interpretation governs these objects in a 
coherent-setting. An attractive advantage of this approach is that all the basic algebraic and probabilistic properties are preserved. 
These include De Morgan’s Laws and Fréchet-Hoeffding bounds. For a synthesis see [39].

A way to build a Boolean algebra of conditionals satisfying suitable properties has been introduced in [28]. In this context, the 
atomic structure defines the compound conditionals at a formal algebraic level. A general theory of compound conditionals in the 
framework of conditional random quantities can be framed in such a structure [26]. Then based on a particular extension of a full 
conditional probability to this Boolean structure ([28]), some probabilistic properties of compound conditionals coincide with results 
obtained under coherence in the framework of conditional random quantities ([27]).

Conjunctions and disjunctions among conditionals have been introduced and studied quite commonly in three-valued logics 
([1,2,5,8,12,13,16,20,24,25,42]). Moreover, de Finetti in 1935 ([20]) proposed a three-valued logic for conditional events by in-
troducing suitably defined notions of conjunction and disjunction. These coincide with features of Kleen-Lukasiewicz-Heyting logic 
[13] (see also [47]). Further, Calabrese ([5]) and Cooper ([16]) introduced an algebra of conditionals by using the notions of quasi 
conjunction and quasi disjunction, similarly studied by Adams ([1]). In his trivalent logic de Finetti introduced an operation of 
iterated conditioning called “subordination” and denoted here by |𝑑𝐹 . This respects the requirement that, among other properties, 
the Import-Export principle ([52]) is satisfied (29). Farrell also introduced an operation of iterated conditioning (denoted here by |𝐹 ) in his trivalent logic ([25]), which uses the same notions of conjunction and disjunction as de Finetti. This also satisfies the 
Import-Export principle. Cooper and Calabrese also introduced an operation of iterated conditioning (denoted here by |𝐶 ) in their 
trivalent logic, which satisfies the Import-Export principle as well.

We should recall that the validity of such a principle, jointly with the requirement of preserving classical probabilistic properties, 
leads to the well-known Lewis’ triviality results [51]. However, the notion of iterated conditioning studied in the framework of 
conditional random quantities under coherence avoids the Lewis’ triviality results because the Import-Export Principle is not satisfied, 
even satisfying basic probabilistic properties (see [34,60,62]). This operation of iterated conditioning, denoted here by |𝑔𝑠, is based 
on the notion of the conjunction of two conditionals defined as a conditional random quantity (∧𝑔𝑠) by means of the following 
structure ([60]) □|○ =□ ∧○ +ℙ(□|○) s○, where ℙ is the symbol of prevision, □ and ○ are (indicators of) conditional events, and 
□ ∧○ is a conditional random quantity with value in [0, 1]. In the framework of subjective probability, the prevision 𝜇 = ℙ(□|○)
represents the amount that you agree to pay, knowing that you will receive the random quantity □ ∧○ + ℙ(□|○)s○. Moreover, 
by the linearity property of a coherent prevision and by observing that s○ = 1 − ○, from the previous structure it follows that 
ℙ(□|○) = ℙ(□ ∧ ○) + ℙ(□|○)[1 − ℙ(○)], that is ℙ(□ ∧ ○) = ℙ(□|○)ℙ(○). This last equation is a generalized version of the 
compound probability theorem, whose standard version is 𝑃 (𝐴 ∧ 𝐵) = 𝑃 (𝐵|𝐴)𝑃 (𝐴). Indeed, when □ and ○ are two events 𝐴
and 𝐵, in a conditional bet on 𝐵|𝐴, the structure above allows to numerically interpret the indicator of the conditional event 
𝐵|𝐴 as the random win 𝐴 ∧ 𝐵 + 𝑃 (𝐵|𝐴) s𝐴, which takes value 1, or 0, or 𝑃 (𝐵|𝐴), according to whether 𝐴𝐵 is true, or 𝐴 s𝐵 is 
true, or s𝐴 is true ([30,49] see also [34]). Then, when □ denotes 𝐵|𝐾 , ○ denotes 𝐴|𝐻 (and hence s○ denotes Ę𝐴|𝐻 = s𝐴|𝐻), and 
□ ∧○ is the conjunction (𝐵|𝐾) ∧𝑔𝑠 (𝐴|𝐻), the iterated conditional (𝐵|𝐾)|𝑔𝑠(𝐴|𝐻) is defined as (𝐵|𝐾) ∧𝑔𝑠 (𝐴|𝐻) + 𝜇 ( s𝐴|𝐻), where 
𝜇 = ℙ[(𝐵|𝐾)|𝑔𝑠(𝐴|𝐻)]. In addition, □ and ○ can be also replaced by conjoined conditionals and hence the previous structure allows 
to introduce a more general notion of iterated conditional □|○ as done in [38]. The purpose of this paper is to investigate some of 
2

the basic properties valid for events and conditional events with a view to different operations of iterated conditioning. Indeed, things 
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get more problematic when we replace events with conditional events and we move to the properties of iterated conditionals. We 
recall four selected notions of conjunction in trivalent logics: Kleene-Lukasiewicz-Heyting-de Finetti (∧𝐾 ), Lukasiewicz (∧𝐿), Bochvar-
Kleene (∧𝐵), and Sobocinski or quasi conjunction (∧𝑆 ). After recalling some logical and probabilistic results in the trivalent logics, we 
study basic properties for the notions of iterated conditioning introduced by Cooper-Calabrese (|𝐶 ), by de Finetti (|𝑑𝐹 ), and by Farrell 
(|𝐹 ), respectively. For each of them we also compute some sets of coherent assessments on families of conditional events involving 
iterated conditionals. This study is based on a geometrical approach for coherence checking of conditional probability assessments, 
which allows zero probability for conditioning events ([30]). Then, we observe that none of these operations of iterated conditioning 
preserves the compound probability theorem. By exploiting the structure □|○ =□ ∧○ + ℙ(□|○) s○, for each conjunction among 
the four selected trivalent logics we introduce, in the framework of conditional random quantity, a suitable notion of iterated 
conditioning (|𝐾 , |𝐿, |𝐵 and |𝑆 ). We observe that all of them satisfy the compound prevision theorem, we check the validity of some 
other basic properties, the Import-Export principle and two generalized versions of the Bayes’ Rule for iterated conditioning. Then, 
we study the p-validity of generalized versions of Modus Ponens and two-premise centering for iterated conditionals. Finally, we 
remark that, among the selected iterated conditionals, |𝑔𝑠 is the only one which satisfies all the basic properties.

The paper is organized as follows. In Section 2 we recall some basic notions and results which concern coherence, conditional 
random quantities, trivalent logics and logical operations among conditional events. We also give two examples on the geometri-
cal interpretation of coherence. We end the section by recalling some logical and probabilistic properties satisfied by events and 
conditional events and we generalize them to compound and iterated conditionals. Then, we check the validity of those selected 
properties for the iterated conditioning defined by Cooper-Calabrese (|𝐶 , Section 3), by de Finetti (|𝑑𝐹 , Section 4) and by Farrell 
(|𝐹 , Section 5). In order to check some probabilistic properties, we also compute sets of coherent assessments on suitable families of 
conditional events. In Section 6, we recall some results on |𝑔𝑠 and we introduce and study the iterated conditioning |𝐾, |𝐿, |𝐵 , and |𝑆 in the framework of conditional random quantities under coherence. We also consider the validity of two generalized versions of 
Bayes’ Rule. In Section 7, for selected operations of iterated conditioning we check the p-validity of two generalized inference rules: 
Modus Ponens and two-premise centering. We also consider two examples of natural language. Finally, in Section 8 we illustrate 
a brief summary on the validity of the basic properties, we give some conclusions and an outlook to future work. To improve the 
readability of the paper we put some proofs in Appendix A.

This paper is a revised and expanded version of the conference paper [11]. We reorganized the structure of the conference paper 
and we added proofs, examples, and new results. In particular, we expanded Section 2 by also adding two new examples. We included 
the proofs in Section 3 and in Section 4. We added several new results in Section 6 (Theorems 12–18). We also added Section 5 and 
Section 7.

2. Preliminary notions, results, and basic properties

In this section we first recall some preliminary notions and results on coherence, conditional events and conditional random 
quantities. We also give some examples and we deepen some aspects of conditional random quantities. Then, we recall the logical 
operations among conditional events in selected trivalent logics and in the framework of conditional random quantities. Finally, we 
recall some basic logical and probabilistic properties satisfied by events and conditional events and we rewrite them for compound 
and iterated conditionals.

2.1. Events, conditional events, conditional random quantities and coherence

An event 𝐴 is a two-valued logical entity which is either true, or false. We use the same symbol to refer to an event and its 
indicator, which can take value 1, or 0, according to whether, the event is true, or false, respectively. We denote by Ω the sure event 
and by ∅ the impossible one. We denote by 𝐴 ∧𝐵 (resp., 𝐴 ∨𝐵), or simply by 𝐴𝐵, the conjunction (resp., disjunction) of 𝐴 and 𝐵. 
By s𝐴 we denote the negation of 𝐴. We simply write 𝐴 ⊆ 𝐵 to denote that 𝐴 logically implies 𝐵, i.e., 𝐴𝐵 = 𝐴. Given two events 𝐴
and 𝐻 , with 𝐻 ≠ ∅, the conditional event 𝐴|𝐻 is a three-valued logical entity which is true, or false, or void, according to whether 
𝐴𝐻 is true, or s𝐴𝐻 is true, or Ď𝐻 is true, respectively. Notice that conditional events are three-valued logical entities and hence they 
are not in general events. However, as already observed, a conditional event 𝐴|𝐻 reduces to the (unconditional) event 𝐴, when 𝐻 is 
the sure event Ω, i.e. 𝐴|Ω =𝐴. We recall that, given any conditional event 𝐴|𝐻 , it holds that 𝐴𝐻|𝐻 =𝐴|𝐻 . Moreover, the negation 
Ę𝐴|𝐻 is defined as Ę𝐴|𝐻 = s𝐴|𝐻 . Given two conditional events 𝐴|𝐻 and 𝐵|𝐾 , we say that 𝐴|𝐻 logically implies 𝐵|𝐾 , denoted by 
𝐴|𝐻 ⊆𝐵|𝐾 , if and only if 𝐴𝐻 logically implies 𝐵𝐾 and s𝐵𝐾 logically implies s𝐴𝐻 , that is ([41]),

𝐴|𝐻 ⊆𝐵|𝐾 ⟺ 𝐴𝐻 ⊆𝐵𝐾 and s𝐵𝐾 ⊆ s𝐴𝐻. (1)

In the betting framework of subjective probability, to assess 𝑃 (𝐴|𝐻) = 𝑥 amounts to say that, for every real number 𝑠, you are 
willing to pay an amount 𝑠 𝑥 and to receive 𝑠, or 0, or 𝑠 𝑥, according to whether 𝐴𝐻 is true, or s𝐴𝐻 is true, or Ď𝐻 is true (the bet 
is called off), respectively. Hence, for the random gain 𝐺 = 𝑠𝐻(𝐴 − 𝑥), the possible values are 𝑠(1 − 𝑥), or −𝑠 𝑥, or 0, according to 
whether 𝐴𝐻 is true, or s𝐴𝐻 is true, or Ď𝐻 is true, respectively.

We denote by 𝑋 a random quantity, that is an uncertain real quantity, which has a well-determined but unknown value. In this 
paper we assume that 𝑋 has a finite set of possible values. Given any event 𝐻 ≠ ∅, agreeing to the betting metaphor, if you assess 
that the prevision of “𝑋 conditional on 𝐻” (or short: “𝑋 given 𝐻”), ℙ(𝑋|𝐻), is equal to 𝜇, this means that for any given real number 
𝑠 you are willing to pay an amount 𝑠𝜇 and to receive 𝑠𝑋, or 𝑠𝜇, according to whether 𝐻 is true, or false (bet called off), respectively. 
3
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𝐺 = 𝑠(𝑋𝐻 + 𝜇Ď𝐻) − 𝑠𝜇 = 𝑠𝐻(𝑋 − 𝜇). (2)

In particular, when 𝑋 is (the indicator of) an event 𝐴, then

ℙ(𝑋|𝐻) = 𝑃 (𝐴|𝐻). (3)

Given a prevision function ℙ defined on an arbitrary family K of finite conditional random quantities, consider a finite subfamily 
F = {𝑋1|𝐻1, … , 𝑋𝑛|𝐻𝑛} ⊆ K and the vector M = (𝜇1, … , 𝜇𝑛), where 𝜇𝑖 = ℙ(𝑋𝑖|𝐻𝑖) is the assessed prevision for the conditional 
random quantity 𝑋𝑖|𝐻𝑖, 𝑖 ∈ {1, … , 𝑛}. With the pair (F , M) we associate the random gain 𝐺 =

∑𝑛
𝑖=1 𝑠𝑖𝐻𝑖(𝑋𝑖 − 𝜇𝑖). We denote by 

GH𝑛 the set of possible values of 𝐺 restricted to H𝑛 =𝐻1 ∨⋯ ∨𝐻𝑛. Then, the notion of coherence is defined as below.

Definition 1. The function ℙ defined on K is coherent if and only if ∀𝑛 ≥ 1, ∀ 𝑠1, … , 𝑠𝑛, ∀ F = {𝑋1|𝐻1, … , 𝑋𝑛|𝐻𝑛} ⊆K , it holds that: 
minGH𝑛 ≤ 0 ≤maxGH𝑛 .

In other words, ℙ on K is incoherent (i.e., it is not coherent), if and only if there exists a finite combination of 𝑛 bets such that, 
after discarding the case where all the bets are called off, the values of the random gain are all positive or all negative. In the particular 
case where K is a family of conditional events, by recalling (3), then Definition 1 becomes the well-known definition of coherence for 
a conditional probability function, denoted as 𝑃 . In this case, for a finite subfamily of conditional events F = {𝐸1|𝐻1, … , 𝐸𝑛|𝐻𝑛}, we 
denote by P = (𝑝1, … , 𝑝𝑛), with 𝑝𝑖 = 𝑃 (𝐸𝑖|𝐻𝑖), 𝑖 = 1, … , 𝑛, the restriction of 𝑃 to F . We observe that, for the checking of coherence 
of the probability assessment 𝑝 on a conditional event 𝐴|𝐻 , only the cases in which the bet is not called off are considered. Then, 
we do not consider objects 𝐴|𝐻 with 𝐻 = ∅, that is conditional events with an impossible conditioning event, because in this case 
a bet on 𝐴|∅ can only be called off. Given a conditional event 𝐴|𝐻 , with 𝐻 ≠ ∅, if ∅ ≠ 𝐴𝐻 ≠𝐻 , then any value 𝑃 (𝐴|𝐻) ∈ [0, 1]
is a coherent assessment for 𝐴|𝐻 . Coherence requires that 𝑃 (𝐴𝐻|𝐻) = 𝑃 (𝐻|𝐻) = 1 (resp., 𝑃 (𝐴|𝐻) = 𝑃 (∅|𝐻) = 0) when 𝐴𝐻 =𝐻
(resp., 𝐴𝐻 = ∅).

2.2. Geometrical interpretation of coherence

Given a family F = {𝑋1|𝐻1, … , 𝑋𝑛|𝐻𝑛} of 𝑛 conditional random quantities, for each 𝑖 ∈ {1, … , 𝑛} we denote by {𝑥𝑖1, … , 𝑥𝑖𝑟𝑖}
the set of possible values of 𝑋𝑖 when 𝐻𝑖 is true; then, we set 𝐴𝑖𝑗 = (𝑋𝑖 = 𝑥𝑖𝑗 ), 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑟𝑖. We observe that, for each 𝑖, the 
family {𝐴𝑖1𝐻𝑖, … , 𝐴𝑖𝑟𝑖𝐻𝑖, Ď𝐻𝑖}, or equivalently {(𝑋𝑖 = 𝑥𝑖1), … , (𝑋𝑖 = 𝑥𝑖𝑟𝑖 ), 

Ď𝐻𝑖}, is a partition of the sure event Ω, with 𝐴𝑖𝑗𝐻𝑖 = 𝐴𝑖𝑗
and 

⋁𝑟𝑖
𝑗=1𝐴𝑖𝑗 =𝐻𝑖. Then,

Ω= (𝐴11 ∨⋯ ∨𝐴1𝑟1 ∨
Ď𝐻1) ∧⋯ ∧ (𝐴𝑛1 ∨⋯ ∨𝐴𝑛𝑟𝑛 ∨

Ď𝐻𝑛). (4)

By applying the distributive property, the expression in (4) becomes a disjunction of (𝑟1 + 1)⋯ (𝑟𝑛 + 1) conjunctions. The non-
impossible conjunctions are the constituents, or possible elementary outcomes, generated by the family F . We denote by 𝐶0 the 
constituent Ď𝐻1⋯ Ď𝐻𝑛 (if non-impossible) and we denote by 𝐶1, … , 𝐶𝑚 the (remaining) constituents which logically imply H𝑛 =
𝐻1 ∨⋯ ∨𝐻𝑛, that is 𝐶ℎ ⊆H𝑛, ℎ = 1, … , 𝑚. Of course, 𝐶0, 𝐶1, … , 𝐶𝑚 form a partition of the sure event Ω.

With each 𝐶ℎ, ℎ ∈ {1, … , 𝑚}, we associate a vector 𝑄ℎ = (𝑞ℎ1, … , 𝑞ℎ𝑛), where 𝑞ℎ𝑖 = 𝑥𝑖𝑗 if 𝐶ℎ ⊆ 𝐴𝑖𝑗 , 𝑗 = 1, … , 𝑟𝑖, while 𝑞ℎ𝑖 = 𝜇𝑖 if 
𝐶ℎ ⊆ Ď𝐻𝑖; with 𝐶0 we associate 𝑄0 =M = (𝜇1, … , 𝜇𝑛). Denoting by I the convex hull of 𝑄1, … , 𝑄𝑚, the condition M ∈ I amounts to 
the existence of a vector (𝜆1, … , 𝜆𝑚) such that: 

∑𝑚
ℎ=1 𝜆ℎ𝑄ℎ =M , 

∑𝑚
ℎ=1 𝜆ℎ = 1 , 𝜆ℎ ≥ 0 , ∀ ℎ; in other words, M ∈ I is equivalent to 

the solvability of the system (Σ), associated with (F , M),

(Σ)
∑𝑚
ℎ=1 𝜆ℎ𝑞ℎ𝑖 = 𝜇𝑖 , 𝑖 ∈ {1,… , 𝑛} ,

∑𝑚
ℎ=1 𝜆ℎ = 1, 𝜆ℎ ≥ 0 , ℎ ∈ {1,… ,𝑚} . (5)

Given the assessment M = (𝜇1, … , 𝜇𝑛) on F = {𝑋1|𝐻1, … , 𝑋𝑛|𝐻𝑛}, let 𝑆 be the set of solutions Λ = (𝜆1, … , 𝜆𝑚) of system (Σ). We 
point out that the solvability of system (Σ) is a necessary (but not sufficient) condition for coherence of M on F . When (Σ) is solvable, 
that is 𝑆 ≠ ∅, we define:

Φ𝑖(Λ) = Φ𝑖(𝜆1,… , 𝜆𝑚) =
∑
𝑟∶𝐶𝑟⊆𝐻𝑖

𝜆𝑟, 𝑖 ∈ {1,… , 𝑛}, Λ∈ 𝑆;
𝑀𝑖 =maxΛ∈𝑆 ,Φ𝑖(Λ), 𝑖 ∈ {1,… , 𝑛} ;
𝐼0 = {𝑖 ∶ 𝑀𝑖 = 0} ,F0 =

⋃
𝑖∈𝐼0 {𝑋𝑖|𝐻𝑖}.

(6)

We also denote by M0 the sub-assessment of M on the sub-family F0. For what concerns the probabilistic meaning of 𝐼0, it holds 
that 𝑖 ∈ 𝐼0 if and only if the (unique) coherent extension of M to 𝐻𝑖|H𝑛 is zero. Then, the following theorem can be proved (see e.g., 
[37])

Theorem 1. A conditional prevision assessment M = (𝜇1, … , 𝜇𝑛) on the family F = {𝑋1|𝐻1, … , 𝑋𝑛|𝐻𝑛} is coherent if and only if the 
following conditions are satisfied: (𝑖) the system (Σ) defined in (5) is solvable; (𝑖𝑖) if 𝐼0 ≠ ∅, then M0 is coherent.

Let S′ be a nonempty subset of the set of solutions S of system (Σ). We denote by 𝐼 ′0 the set 𝐼0 defined as in (6), where S is 
replaced by S′, that is
4

𝐼 ′0 = {𝑖 ∶ 𝑀 ′
𝑖 = 0}, where 𝑀 ′

𝑖 = max
Λ∈S′

Φ𝑖(Λ) , 𝑖 ∈ {1,… , 𝑛}. (7)
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Fig. 1. Convex hull of the points 𝑄1 , 𝑄2 , 𝑄3, 𝑄4 associated with the pair (F , P), where F = {𝐵|𝐾, 𝐵|(𝐾 ∧(Ď𝐻 ∨𝐴))} and P = (𝑝1, 𝑝2). In the figure the numerical values 
are: 𝑝1 = 0.4 and 𝑝2 = 0.6.

Moreover, we denote by (F ′
0 , M

′
0) the pair associated with 𝐼 ′0. Then, we obtain

Theorem 2. The assessment M on F is coherent if and only if the following conditions are satisfied: (𝑖) the system (Σ) associated with the 
pair (F , M) is solvable; (𝑖𝑖) if 𝐼 ′0 ≠ ∅, then M′

0 is coherent.

Of course, the previous results can be used in the case of a probability assessment, which will be denoted by P, on a family of 
conditional events F . More precisely, given a family F = {𝐸1|𝐻1, … , 𝐸𝑛|𝐻𝑛} of 𝑛 conditional events, we observe that, for each 𝑖, the 
family {𝐸𝑖𝐻𝑖, s𝐸𝑖𝐻𝑖, Ď𝐻𝑖} is a partition of Ω. Then, Ω =

⋀𝑛
𝑖=1(𝐸𝑖𝐻𝑖 ∨ s𝐸𝑖𝐻𝑖 ∨ Ď𝐻𝑖). By applying the distributive property it follows that 

Ω can also be written as the disjunction of 3𝑛 logical conjunctions, some of which may be impossible. The remaining ones, denoted by 
𝐶0, 𝐶1, … , 𝐶𝑚, where 𝐶0 = Ď𝐻1⋯ Ď𝐻𝑛 (if non-impossible), are the constituents generated by F . Of course, 𝑚 + 1 ≤ 3𝑛, with 𝑚+ 1 = 3𝑛
when, for example, the events in F are logically independent. Let P = (𝑝1, … , 𝑝𝑛) be a probability assessment on F . In this case, 
for each constituent 𝐶ℎ, ℎ = 1, … , 𝑚, it holds that 𝑄ℎ = (𝑞ℎ1, … , 𝑞ℎ𝑛), where 𝑞ℎ𝑖 = 1, or 0, or 𝑝𝑖, according to whether 𝐶ℎ ⊆ 𝐸𝑖𝐻𝑖, 
or 𝐶ℎ ⊆ s𝐸𝑖𝐻𝑖, or 𝐶ℎ ⊆ Ď𝐻𝑖. The point 𝑄0 = P is associated with 𝐶0. In the following example, which will be useful in Section 3 to 
prove Theorem 5, we illustrate how the constituents and the associated points are generated in order to check the coherence of a 
probability assessment.

Example 1. Let F = {𝐸1|𝐻1, 𝐸2|𝐻2} = {𝐵|𝐾, 𝐵|(𝐾 ∧ (Ď𝐻 ∨ 𝐴))}, where 𝐴, 𝐵, 𝐻 , 𝐾 are four logically independent events, and let 
P = (𝑝1, 𝑝2) be a probability assessment on F . We verify that P is coherent for every (𝑝1, 𝑝2) ∈ [0, 1]2. It holds that

Ω= (𝐸1𝐻1 ∨ s𝐸1𝐻1 ∨ Ď𝐻1) ∧ (𝐸2𝐻2 ∨ s𝐸2𝐻2 ∨ Ď𝐻2) =
= [𝐵𝐾 ∨ s𝐵𝐾 ∨ s𝐾] ∧ [(𝐵𝐾 ∧ (Ď𝐻 ∨𝐴)) ∨ ( s𝐵𝐾 ∧ (Ď𝐻 ∨𝐴)) ∨ ( s𝐾 ∨ s𝐴𝐻)] =
= (𝐵𝐾 ∧ (Ď𝐻 ∨𝐴)) ∨ ∅ ∨ s𝐴𝐻𝐵𝐾 ∨ ∅ ∨ ( s𝐵𝐾 ∧ (Ď𝐻 ∨𝐴)) ∨ s𝐴𝐻 s𝐵𝐾 ∨ ∅ ∨ ∅ ∨ ( s𝐾 ∨ s𝐴𝐻 s𝐾) =
= 𝐶1 ∨𝐶2 ∨𝐶3 ∨𝐶4 ∨𝐶0,

where the constituents are

𝐶1 =𝐵𝐾 ∧ (Ď𝐻 ∨𝐴) =𝐴𝐻𝐵𝐾 ∨ Ď𝐻𝐵𝐾, 𝐶2 = s𝐴𝐻𝐵𝐾,𝐶3 = s𝐵𝐾 ∧ (Ď𝐻 ∨𝐴) =𝐴𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾,
𝐶4 = s𝐴𝐻 s𝐵𝐾, 𝐶0 = s𝐾 ∨ s𝐴𝐻 s𝐾 = s𝐾.

The points 𝑄ℎ ’s associated with the pair (F , P) are

𝑄1 = (1,1), 𝑄2 = (1, 𝑝2), 𝑄3 = (0,0), 𝑄4 = (0, 𝑝2), 𝑄0 = P = (𝑝1, 𝑝2).

We denote by I the convex hull of points 𝑄1, 𝑄2, 𝑄3, 𝑄4 (see Fig. 1). The system (Σ) in (5) associated with the pair (F , P) is

⎧⎪⎨⎪⎩
𝜆1 + 𝜆2 = 𝑝1,
𝜆1 + 𝑝2𝜆2 + 𝑝2𝜆4 = 𝑝2,
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1,
𝜆𝑖 ≥ 0, ∀𝑖 = 1,… ,4.

(8)

We observe that P = (𝑝1, 𝑝2) = 𝑝1𝑄2 + (1 − 𝑝1)𝑄4 and hence the system (8) is solvable and a solution is Λ = (0, 𝑝1, 0, 1 − 𝑝1), with 
5

𝑝1 ∈ [0, 1].
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By considering the function 𝜙 as defined in (6), it holds that

𝜙1(Λ) =
∑

ℎ∶𝐶ℎ⊆𝐻
𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1,

𝜙2(Λ) =
∑

ℎ∶𝐶ℎ⊆(𝐾∧(𝐴∨Ď𝐻))
𝜆ℎ = 𝜆1 + 𝜆3 = 0.

We set S′ = {Λ} and we get I′0 = {2}. We observe that the sub-assessment 𝑝2 on 𝐵|(𝐾 ∧ (Ď𝐻 ∨𝐴)) is coherent for every 𝑝2 ∈ [0, 1]. 
Thus, by Theorem 2, the assessment P = (𝑝1, 𝑝2) on F is coherent ∀(𝑝1, 𝑝2) ∈ [0, 1]2.

The next example, which is related to the compound prevision theorem listed in Section 2.5, illustrates how to check coherence 
for (conditional) prevision assessments.

Example 2. 3[Compound prevision theorem] Let F = {𝑋𝐻, 𝑋|𝐻, 𝐻}, where 𝐻 is an event, with 𝐻 ≠ ∅, 𝐻 ≠ Ω, and 𝑋 is a 
finite random quantity. We denote by {𝑥1, … , 𝑥𝑛} the possible values of 𝑋 when 𝐻 is true. We also set 𝑥′ = min{𝑥1, … , 𝑥𝑛} and 
𝑥′′ = max{𝑥1, … , 𝑥𝑛}. Let M = (𝑧, 𝜇, 𝑝) be a prevision assessment on F . We verify that M is coherent if and only if 𝜇 ∈ [𝑥′, 𝑥′′], 
𝑝 ∈ [0, 1], and 𝑧 = 𝜇𝑝. Of course, coherence requires that 𝑝 ∈ [0, 1]. It holds that

Ω= 𝐶1 ∨⋯ ∨𝐶𝑛 ∨𝐶𝑛+1,

where the constituents are

𝐶1 = (𝑋 = 𝑥1),⋯ ,𝐶𝑛 = (𝑋 = 𝑥𝑛), 𝐶𝑛+1 = Ď𝐻.

The points 𝑄ℎ ’s associated with the pair (F , M) are

𝑄1 = (𝑞11, 𝑞12, 𝑞13) = (𝑥1, 𝑥1,1),… , 𝑄𝑛 = (𝑞𝑛1, 𝑞𝑛2, 𝑞𝑛3) = (𝑥𝑛, 𝑥𝑛,1),
𝑄𝑛+1 = (𝑞(𝑛+1)1, 𝑞(𝑛+1)2, 𝑞(𝑛+1)3) = (0, 𝜇,0).

We denote by I the convex hull of points 𝑄1, … , 𝑄𝑛+1. The system (Σ) in (5) associated with the pair (F , M) is

⎧⎪⎪⎨⎪⎪⎩

𝜆1𝑥1 +⋯+ 𝜆𝑛𝑥𝑛 = 𝑧,
𝜆1𝑥1 +⋯+ 𝜆𝑛𝑥𝑛 + 𝜆𝑛+1𝜇 = 𝜇,
𝜆1 +⋯+ 𝜆𝑛 = 𝑝,
𝜆1 +⋯+ 𝜆𝑛+1 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… , 𝑛+ 1.

⟺

⎧⎪⎪⎨⎪⎪⎩

𝜆1𝑥1 +⋯+ 𝜆𝑛𝑥𝑛 = 𝑧,
𝑧 = 𝜇𝑝,
𝜆1 +⋯+ 𝜆𝑛 = 𝑝,
𝜆𝑛+1 = 1 − 𝑝,
𝜆𝑖 ≥ 0, 𝑖 = 1,… , 𝑛+ 1.

(9)

We distinguish two cases: (𝑖) 𝑝 = 0; and 𝑝 ∈ (0, 1].
Case (𝑖). System (9) is solvable only if 𝑧 = 0, with the unique solution given by Λ = (𝜆1, … , 𝜆𝑛, 𝜆𝑛+1) = (0, … , 0, 1). By considering the 
function 𝜙 as defined in (6), it holds that

𝜙1(Λ) = 𝜙3(Λ) =
∑

ℎ∶𝐶ℎ⊆Ω
𝜆ℎ = 𝜆1 +⋯+ 𝜆𝑛+1 = 1 > 0

and

𝜙2(Λ) =
∑

ℎ∶𝐶ℎ⊆𝐻
𝜆ℎ = 𝜆1 +⋯+ 𝜆𝑛 = 𝑝 = 0.

Then 𝐼0 = {2}. We consider the sub-assessment M0 = (𝜇) on F0 = {𝑋|𝐻}. It can be easily proved that 𝜇 = ℙ(𝑋|𝐻) is coherent if 
and only if 𝜇 ∈ [𝑥′, 𝑥′′]. Then, by Theorem 1, the assessment M = (0, 𝜇, 0) on F is coherent if and only if 𝜇 ∈ [𝑥′, 𝑥′′].
Case (𝑖𝑖). In this case System (9) becomes

⎧⎪⎪⎨⎪⎪⎩

𝑧 = 𝜇𝑝,
𝜇 = 𝑧

𝑝
= 𝜆1𝑥1+⋯+𝜆𝑛𝑥𝑛

𝜆1+⋯+𝜆𝑛
,

𝜆1 +⋯+ 𝜆𝑛 = 𝑝,
𝜆𝑛+1 = 1 − 𝑝,
𝜆𝑖 ≥ 0, 𝑖 = 1,… , 𝑛+ 1,

(10)

which is solvable when 𝑧 = 𝜇𝑝 and 𝜇 ∈ [𝑥′, 𝑥′′], because 𝜇 is a convex linear combination of {𝑥1, … , 𝑥𝑛} with weights 
𝜆1

𝜆1+⋯+𝜆𝑛
, ⋯ , 𝜆𝑛

𝜆1+⋯+𝜆𝑛
. For each solution Λ of System (10) it holds that 𝜙1(Λ) = 𝜙3(Λ) = 1 > 0 and 𝜙2(Λ) = 𝑝 > 0. Then, as 𝐼0 = ∅, by 

Theorem 1 the assessment (𝑧, 𝜇, 𝑝), with 𝑝 ∈ (0, 1] is coherent if and only if 𝜇 ∈ [𝑥′, 𝑥′′] and 𝑧 = 𝜇𝑝.

3 This example was inspired by Angelo Gilio’s talk “On Coherence and Conditionals” presented at the workshop “Reasoning and uncertainty: probabilistic, logical, 
6

and psychological perspectives”, Regensburg, August 9-10, 2022.



International Journal of Approximate Reasoning 165 (2024) 109088L. Castronovo and G. Sanfilippo

Therefore M is coherent if and only if 𝜇 ∈ [𝑥′, 𝑥′′], 𝑝 ∈ [0, 1], and 𝑧 = 𝜇𝑝. We now show that, in agreement to Definition 1, an 
incoherent assessment leads to the existence of a combination of bets where the values of the random gain are all positive or all 
negative (Dutch Book). We set M = (𝑧, 𝜇, 𝑝), with 𝑝 ∈ [0, 1], 𝜇 ∈ [𝑥′, 𝑥′′] and 𝑧 ≠ 𝜇𝑝. We observe that the points 𝑄1, … , 𝑄𝑛+1 belong 
to the plane 𝜋 ∶ −X + Y + 𝜇Z = 𝜇, where X, Y, Z are the axes coordinates. Moreover, M does not belong to the convex hull I
because, as 𝑧 ≠ 𝜇𝑝, System (9) is not solvable. Now, by considering the function 𝑓 (X, Y, Z) = −X +Y + 𝜇Z − 𝜇, we observe that 
for each constant 𝑘 the equation 𝑓 (X, Y, Z) = 𝑘 represents a plane which is parallel to 𝜋 and coincides with 𝜋 when 𝑘 = 0. Then, 
𝑓 (𝑄1) =⋯ = 𝑓 (𝑄𝑛+1) = 0. Moreover, 𝑓 (𝑄ℎ) − 𝑓 (M) = 𝑧 − 𝜇𝑝 ≠ 0, ℎ = 1, … , 𝑛 + 1. We recall that for ℎ = 1, … , 𝑛 + 1, the value 𝑔ℎ, of 
the random gain

𝐺 = 𝑠1(𝑋𝐻 − 𝑧) + 𝑠2𝐻(𝑋 − 𝜇) + 𝑠3(𝐻 − 𝑝)

associated to the constituent 𝐶ℎ is

𝑔ℎ = 𝑠1(𝑞ℎ1 − 𝑧) + 𝑠2𝐻(𝑞ℎ2 − 𝜇) + 𝑠3(𝑞ℎ3 − 𝑝).

We observe that, by setting the stakes 𝑠1 = −1, 𝑠2 = 1, 𝑠3 = −𝜇, it holds that 𝑔ℎ = 𝑓 (𝑄ℎ) − 𝑓 (M) = 𝑧 − 𝜇𝑝 ≠ 0, ℎ = 1, … , 𝑛 + 1. 
Therefore, min𝑔ℎ ⋅max𝑔ℎ > 0, when 𝑠1 = −1, 𝑠2 = 1, 𝑠3 = −𝜇, that is a combination of bets where the values of the random gain are 
all positive or all negative.

Remark 1. By Example 2 coherence requires that (compound prevision theorem)

ℙ[𝑋𝐻] = ℙ[𝑋|𝐻]𝑃 (𝐻). (11)

In particular, when 𝑋 is (the indicator of) an event 𝐸, Equation (11) becomes (compound probability theorem)

𝑃 (𝐸 ∧𝐻) = 𝑃 (𝐸|𝐻)𝑃 (𝐻). (12)

Moreover, under logical independence of 𝐸 and 𝐻 , Example 2 shows that 𝑃 (𝐸|𝐻) coincides with the ratio 𝑃 (𝐸∧𝐻)
𝑃 (𝐻) when 𝑃 (𝐻) > 0, 

and 𝑃 (𝐸|𝐻) can be any value in [0, 1] when 𝑃 (𝐻) = 0. Then, differently from the “standard” approach where 𝑃 (𝐸|𝐻) is defined 
only when 𝑃 (𝐻) > 0 by the ratio 𝑃 (𝐸∧𝐻)

𝑃 (𝐻) , in the coherence-based approach the conditional probability 𝑃 (𝐸|𝐻) is a primitive notion 
which is properly defined even if 𝑃 (𝐻) = 0.

2.3. Numerical interpretation of a conditional random quantity

Given a conditional event 𝐴|𝐻 , with 𝑃 (𝐴|𝐻) = 𝑥, the indicator of 𝐴|𝐻 , denoted by the same symbol, is the following random 
quantity (see, e.g., [30,49])

𝐴|𝐻 =𝐴𝐻 + 𝑥Ď𝐻 =𝐴𝐻 + 𝑥(1 −𝐻) =
⎧⎪⎨⎪⎩
1, if 𝐴𝐻 is true,
0, if s𝐴𝐻 is true,
𝑥, if Ď𝐻 is true.

(13)

Notice that, by the linearity property of a coherent prevision, it holds that

ℙ[𝐴𝐻 + 𝑥Ď𝐻] = 𝑥𝑃 (𝐻) + 𝑥𝑃 (Ď𝐻) = 𝑥 = 𝑃 (𝐴|𝐻).

Then, in a conditional bet on 𝐴|𝐻 , the indicator in (13) represents the random win that you receive when you pay the amount 
𝑃 (𝐴|𝐻) = 𝑥 ∈ [0, 1]. Indeed, you receive 1 (you win), or 0 (you lose), or 𝑥 (the bet is called off), according to whether 𝐴𝐻 is true, 
or s𝐴𝐻 is true, or Ď𝐻 is true, respectively.

We also observe that, the value 𝑥 of the random quantity 𝐴|𝐻 (subjectively) depends on the assessed probability 𝑃 (𝐴|𝐻) = 𝑥. 
When 𝐻 ⊆𝐴 (i.e., 𝐴𝐻 =𝐻), it holds that 𝑃 (𝐴|𝐻) = 1; then, for the indicator 𝐴|𝐻 , when 𝐻 ⊆𝐴, it holds that 𝐴|𝐻 =𝐴𝐻 + 𝑥Ď𝐻 =
𝐻 + Ď𝐻 = 1. Similarly, if 𝐴𝐻 = ∅, as 𝑃 (𝐴|𝐻) = 0, it follows that 𝐴|𝐻 = 0 + 0Ď𝐻 = 0. For the indicator of the negation of 𝐴|𝐻 , as 
𝑃 ( s𝐴|𝐻) = 1 − 𝑃 (𝐴|𝐻), it holds that s𝐴|𝐻 = 1 − 𝐴|𝐻 . Given two conditional events 𝐴|𝐻 and 𝐵|𝐾 , for every coherent assessment 
(𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾}, it holds that ([39, formula (15)])

𝐴𝐻 + 𝑥Ď𝐻 ≤𝐵𝐾 + 𝑦 s𝐾 ⟺ either 𝐴|𝐻 ⊆𝐵|𝐾, or 𝐴𝐻 = ∅, or 𝐾 ⊆𝐵,

that is, between the numerical values of 𝐴|𝐻 and 𝐵|𝐾 , under coherence it holds that

𝐴|𝐻 ≤𝐵|𝐾 ⟺ either 𝐴|𝐻 ⊆𝐵|𝐾, or 𝐴𝐻 = ∅, or 𝐾 ⊆𝐵. (14)

Of course, the relation 𝐴|𝐻 ≤𝐵|𝐾 requires that 𝑃 (𝐴|𝐻) = 𝑥 ≤ 𝑦 = 𝑃 (𝐵|𝐾). Then,

𝑃 (𝐴|𝐻) ≤ 𝑃 (𝐵|𝐾) ∀coherent 𝑃 ⟺ either 𝐴|𝐻 ⊆𝐵|𝐾, or 𝐴𝐻 = ∅, or 𝐾 ⊆𝐵, (15)
7

which, when 𝐻 =𝐾 =Ω, reduces to
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𝑃 (𝐴) ≤ 𝑃 (𝐵) ∀coherent 𝑃 ⟺𝐴⊆𝐵⟺𝐴 ≤𝐵.

By following the approach given in [14,34,50], once a coherent assessment 𝜇 = ℙ(𝑋|𝐻) is specified, the conditional random quantity 
𝑋|𝐻 (is not looked at as the restriction to 𝐻 , but) is defined as 𝑋, or 𝜇, according to whether 𝐻 is true, or Ď𝐻 is true; that is,

𝑋|𝐻 =𝑋𝐻 + 𝜇Ď𝐻. (16)

As shown in (16), given any random quantity 𝑋 and any event 𝐻 ≠ ∅, in the framework of subjective probability, in order to define 
𝑋|𝐻 we just need to specify the value 𝜇 of the conditional prevision ℙ(𝑋|𝐻). Indeed, once the value 𝜇 is specified, the object 𝑋|𝐻
is (subjectively) determined. We observe that (16) is consistent because

ℙ[𝑋𝐻 + 𝜇Ď𝐻] = ℙ[𝑋𝐻] + 𝜇𝑃 (Ď𝐻) = ℙ[𝑋|𝐻]𝑃 (𝐻) + 𝜇𝑃 (Ď𝐻) = 𝜇𝑃 (𝐻) + 𝜇𝑃 (Ď𝐻) = 𝜇.

By (16), the random gain associated with a bet on 𝑋|𝐻 can be represented as 𝐺 = 𝑠(𝑋|𝐻 − 𝜇), that is 𝐺 is the difference between 
what you receive, 𝑠𝑋|𝐻 , and what you pay, 𝑠𝜇. In what follows, for any given conditional random quantity 𝑋|𝐻 , we assume that, 
when 𝐻 is true, the set of possible values of 𝑋 is finite. In this case we say that 𝑋|𝐻 is a finite conditional random quantity. Denoting 
by {𝑥1, … , 𝑥𝑟} the set of possible values of 𝑋 restricted to 𝐻 and by setting 𝐴𝑗 = (𝑋 = 𝑥𝑗 ), 𝑗 = 1, … , 𝑟, it holds that 

⋁𝑟
𝑗=1𝐴𝑗 =𝐻

and 𝑋|𝐻 =𝑋𝐻 + 𝜇Ď𝐻 = 𝑥1𝐴1 +⋯ + 𝑥𝑟𝐴𝑟 + 𝜇Ď𝐻 .
The result below ([34, Theorem 4]) shows that if two conditional random quantities 𝑋|𝐻 , 𝑌 |𝐾 coincide when 𝐻 ∨𝐾 is true, 

then 𝑋|𝐻 and 𝑌 |𝐾 also coincide when 𝐻 ∨𝐾 is false, and hence 𝑋|𝐻 coincides with 𝑌 |𝐾 in all cases.

Theorem 3. Given any events 𝐻 ≠ ∅ and 𝐾 ≠ ∅, and any random quantities 𝑋 and 𝑌 , let Π be the set of the coherent prevision assessments 
ℙ[𝑋|𝐻] = 𝜇 and ℙ[𝑌 |𝐾] = 𝜈.

(𝑖) Assume that, for every (𝜇, 𝜈) ∈Π, 𝑋|𝐻 = 𝑌 |𝐾 when 𝐻 ∨𝐾 is true; then 𝜇 = 𝜈 for every (𝜇, 𝜈) ∈ Π.

(𝑖𝑖) For every (𝜇, 𝜈) ∈Π, 𝑋|𝐻 = 𝑌 |𝐾 when 𝐻 ∨𝐾 is true if and only if 𝑋|𝐻 = 𝑌 |𝐾 .

Remark 2. Theorem 3 has been generalized in [35, Theorem 6] by replacing the symbol “=” by “≤” in statements (𝑖) and (𝑖𝑖). In 
other words, if 𝑋|𝐻 ≤ 𝑌 |𝐾 when 𝐻 ∨𝐾 is true, then ℙ[𝑋|𝐻] ≤ ℙ[𝑌 |𝐾] and hence 𝑋|𝐻 ≤ 𝑌 |𝐾 in all cases.

2.4. Trivalent logics, logical operations of conditionals and conditional random quantities

We recall some notions of conjunction among conditional events in some trivalent logics: Kleene-Lukasiewicz-Heyting conjunction 
(∧𝐾 ), or de Finetti conjunction ([20]); Lukasiewicz conjunction (∧𝐿); Bochvar internal conjunction, or Kleene weak conjunction (∧𝐵); 
Sobocinski conjunction, or quasi conjunction (∧𝑆 ). In all these definitions the result of the conjunction is still a conditional event 
with set of truth values {true, false, void} (see, e.g., [12,13]). We also recall the notions of conjunction among conditional events, 
∧𝑔𝑠, introduced as a suitable conditional random quantity in a betting-scheme context ([34,35], see also [45,52]). We list below in 
an explicit way the five conjunctions and the associated disjunctions obtained by De Morgan’s law ([40]):

1. (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) =𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨𝐴𝐻 ∨𝐵𝐾) =𝐴𝐻𝐵𝐾|(𝐻𝐾 ∨𝐴𝐻 ∨𝐵𝐾),
(𝐴|𝐻) ∨𝐾 (𝐵|𝐾) = (𝐴𝐻 ∨𝐵𝐾)|( s𝐴𝐻 s𝐵𝐾 ∨𝐴𝐻 ∨𝐵𝐾);

2. (𝐴|𝐻) ∧𝐿 (𝐵|𝐾) =𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨𝐴𝐻 ∨ 𝐵𝐾 ∨𝐻𝐾),
(𝐴|𝐻) ∨𝐿 (𝐵|𝐾) = (𝐴𝐻 ∨𝐵𝐾)|( s𝐴𝐻 s𝐵𝐾 ∨𝐴𝐻 ∨𝐵𝐾 ∨𝐻𝐾);

3. (𝐴|𝐻) ∧𝐵 (𝐵|𝐾) =𝐴𝐻𝐵𝐾|𝐻𝐾 ,
(𝐴|𝐻) ∨𝐵 (𝐵|𝐾) = (𝐴 ∨𝐵)|𝐻𝐾 ;

4. (𝐴|𝐻) ∧𝑆 (𝐵|𝐾) = ((𝐴𝐻 ∨𝐻) ∧ (𝐵𝐾 ∨𝐾))|(𝐻 ∨𝐾),
(𝐴|𝐻) ∨𝑆 (𝐵|𝐾) = (𝐴𝐻 ∨𝐵𝐾)|(𝐻 ∨𝐾);

5. (𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾) = (𝐴𝐻𝐵𝐾 + 𝑃 (𝐴|𝐻)Ď𝐻𝐵𝐾 + 𝑃 (𝐵|𝐾)𝐴𝐻 s𝐾)|(𝐻 ∨𝐾),
(𝐴|𝐻) ∨𝑔𝑠 (𝐵|𝐾) = (𝐴𝐻 ∨𝐵𝐾 + 𝑃 (𝐴|𝐻)Ď𝐻 s𝐵𝐾 + 𝑃 (𝐵|𝐾) s𝐴𝐻 s𝐾)|(𝐻 ∨𝐾).

The operations above are all commutative and associative. By setting 𝑃 (𝐴|𝐻) = 𝑥, 𝑃 (𝐵|𝐾) = 𝑦, 𝑃 ((𝐴|𝐻) ∧𝑖 (𝐵|𝐾)) = 𝑧𝑖, 𝑖 ∈
{𝐾, 𝐿, 𝐵, 𝑆}, and ℙ[(𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾)] = 𝑧𝑔𝑠, based on (13) and on (16) the conjunctions (𝐴|𝐻) ∧𝑖 (𝐵|𝐾), 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠} can 
be also looked at as random quantities with set of possible value illustrated in Table 1. A similar interpretation can also be given 
for the associated disjunctions. In Table 2 we list the lower and upper bounds for the coherent extensions 𝑧𝑖 = 𝑃 ((𝐴|𝐻) ∧𝑖 (𝐵|𝐾)), 
𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆} ([59]) and 𝑧𝑔𝑠 = ℙ[(𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾)] ([34]) of the given assessment 𝑃 (𝐴|𝐻) = 𝑥 and 𝑃 (𝐵|𝐾) = 𝑦. Notice that, differ-
ently from conditional events which are three-valued objects, the conjunction (𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾) (and the associated disjunction) is no 
longer a three-valued object, but a five-valued object with values in [0, 1]. In betting terms, the prevision 𝑧𝑔𝑠 = ℙ[(𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾)]
represents the amount you agree to pay, with the proviso that you will receive the random quantity 𝐴𝐻𝐵𝐾 + 𝑥Ď𝐻𝐵𝐾 + 𝑦𝐴𝐻 s𝐾 , 
if 𝐻 ∨𝐾 is true, 𝑧𝑔𝑠 if Ď𝐻 s𝐾 is true. In other words by paying 𝑧𝑔𝑠 you receive: 1, if both conditional events are true; 0, if at least 
one of the conditional events is false; the probability of the conditional event that is void if one conditional event is void and the 
other one is true; the amount 𝑧𝑔𝑠 you paid if both conditional events are void. The notion of conjunction ∧𝑔𝑠 (and disjunction ∨𝑔𝑠) 
among conditional events has been generalized to the case of 𝑛 conditional events in [35]. For some applications see, e.g., [60,62]. 
8

Developments of this approach to general compound conditionals have been given in [26]. Differently from the other notions of 
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Table 1

Numerical values (of the indicator) of the conjunctions (𝐴|𝐻) ∧𝑖
(𝐵|𝐾), 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}. The triplet (𝑥, 𝑦, 𝑧𝑖) denotes a coherent 
assessment on {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝑖 (𝐵|𝐾)}.

𝐴|𝐻 𝐵|𝐾 ∧𝐾 ∧𝐿 ∧𝐵 ∧𝑆 ∧𝑔𝑠
𝐴𝐻𝐵𝐾 1 1 1 1 1 1 1
𝐴𝐻𝐵𝐾 1 0 0 0 0 0 0
𝐴𝐻𝐾 1 𝑦 𝑧𝐾 𝑧𝐿 𝑧𝐵 1 𝑦

𝐴𝐻𝐵𝐾 0 1 0 0 0 0 0
𝐴𝐻𝐵𝐾 0 0 0 0 0 0 0
𝐴𝐻𝐾 0 𝑦 0 0 𝑧𝐵 0 0
𝐻𝐵𝐾 𝑥 1 𝑧𝐾 𝑧𝐿 𝑧𝐵 1 𝑥

𝐻 𝐵𝐾 𝑥 0 0 0 𝑧𝐵 0 0
Ď𝐻 s𝐾 𝑥 𝑦 𝑧𝐾 0 𝑧𝐵 𝑧𝑆 𝑧𝑔𝑠

Table 2

Lower and upper bounds for the coherent extensions 𝑧𝑖 = 𝑃 ((𝐴|𝐻) ∧𝑖 (𝐵|𝐾)), 𝑖 ∈
{𝐾, 𝐿, 𝐵, 𝑆} and 𝑧𝑔𝑠 = ℙ[(𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾)] of the given assessment 𝑃 (𝐴|𝐻) = 𝑥 and 
𝑃 (𝐵|𝐾) = 𝑦.

Conjunction Lower bound Upper bound

(𝐴|𝐻) ∧𝐾 (𝐵|𝐾) 𝑧′
𝐾
= 0 𝑧′′

𝐾
=min{𝑥, 𝑦}

(𝐴|𝐻) ∧𝐿 (𝐵|𝐾) 𝑧′
𝐿
= 0 𝑧′′

𝐿
=min{𝑥, 𝑦}

(𝐴|𝐻) ∧𝐿 (𝐵|𝐾) 𝑧′
𝐵
= 0 𝑧′′

𝐵
= 1

(𝐴|𝐻) ∧𝑆 (𝐵|𝐾) 𝑧′
𝑆
=max{𝑥+ 𝑦− 1,0} 𝑧′′

𝑆
=

{
𝑥+𝑦−2𝑥𝑦
1−𝑥𝑦

, if (𝑥, 𝑦) ≠ (1,1)
1, if (𝑥, 𝑦) = (1,1)

conjunctions, ∧𝑔𝑠 preserves the classical logical and probabilistic properties valid for unconditional events (see, e.g., [39]). In partic-
ular, the Fréchet-Hoeffding bounds, i.e., the lower and upper bounds 𝑧′ = max{𝑥 + 𝑦 − 1, 0}, 𝑧′′ = min{𝑥, 𝑦}, obtained under logical 
independence in the unconditional case for the coherent extensions 𝑧 = 𝑃 (𝐴𝐵) of 𝑃 (𝐴) = 𝑥 and 𝑃 (𝐵) = 𝑦, when 𝐴 and 𝐵 are replaced 
by 𝐴|𝐻 and 𝐵|𝐾 , are only satisfied by 𝑧𝑔𝑠 (see Table 2).

2.5. Some basic properties and import-export principle

In this section, after recalling some basic logical and probabilistic properties satisfied by events and conditional events, we rewrite 
them for compound and iterated conditionals, by replacing events with conditional events. We also recall the Import-Export principle 
and its connection with the Lewis’ triviality results.

Given two events 𝐴 and 𝐵, with 𝐴 ≠ ∅, it is well-known the validity of following properties

1. 𝐵|𝐴 =𝐴𝐵|𝐴;
2. 𝐴𝐵 ≤𝐵|𝐴 and hence 𝑃 (𝐴𝐵) ≤ 𝑃 (𝐵|𝐴);
3. 𝑃 (𝐴𝐵) = 𝑃 (𝐵|𝐴)𝑃 (𝐴) (compound probability theorem, see Remark 1);
4. if 𝐴 and 𝐵 are logically independent, by setting 𝑃 (𝐴) = 𝑥 and 𝑃 (𝐵) = 𝑦, the extension 𝜇 = 𝑃 (𝐵|𝐴) is coherent if and only if 
𝜇 ∈ [𝜇′, 𝜇′′], where (see, e.g. [62, Theorem 6])

𝜇′ =

{
max{𝑥+𝑦−1,0}

𝑥
, if 𝑥 ≠ 0,

0, if 𝑥 = 0,
𝜇′′ =

{
min{𝑥,𝑦}

𝑥
, if 𝑥 ≠ 0,

1, if 𝑥 = 0.
(17)

By replacing events 𝐴, 𝐵 by conditional events 𝐴|𝐻, 𝐵|𝐾 , and for the compound conditionals the symbol of probability 𝑃 by the 
symbol of prevision ℙ, the properties 1, 2, 3, and 4 become:

P1. (𝐵|𝐾)|(𝐴|𝐻) = [(𝐴|𝐻) ∧ (𝐵|𝐾)]|(𝐴|𝐻);
P2. (𝐴|𝐻) ∧ (𝐵|𝐾) ≤ (𝐵|𝐾)|(𝐴|𝐻) and hence ℙ[(𝐴|𝐻) ∧ (𝐵|𝐾)] ≤ ℙ[(𝐵|𝐾)|(𝐴|𝐻)];
P3. ℙ[(𝐴|𝐻) ∧ (𝐵|𝐾)] = ℙ[(𝐵|𝐾)|(𝐴|𝐻)]𝑃 (𝐴|𝐻) (compound formula for iterated conditional);
P4. if 𝐴, 𝐵, 𝐻, 𝐾 are logically independent events, denoting 𝑃 (𝐴|𝐻) = 𝑥 and 𝑃 (𝐵|𝐻) = 𝑦, the extension 𝜇 on (𝐵|𝐾)|(𝐴|𝐻) is 

coherent if and only if 𝜇 ∈ [𝜇′, 𝜇′′], where 𝜇′ and 𝜇′′ are given in formula (17).

We will show in Example 3, Example 4, and Section 7 that when some of the properties P1-P4 are not satisfied, some counterintuitive 
probabilistic results are obtained. These are avoided by a suitable notion of iterated conditioning which satisfies properties P1-P4. 
Another classical property that can be checked for the iterated conditional is the Import-Export principle. Given three events 𝐵, 𝐾, 𝐴, 
9

with 𝐴𝐾 ≠ ∅, we say that the Import-Export principle ([52]) is satisfied for the iterated conditional (𝐵|𝐾)|𝐴, if
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(𝐵|𝐾)|𝐴 = 𝐵|𝐴𝐾. (18)

We also recall that the validity of the Import-Export principle (together with the validity of the total probability theorem) could 
lead to the counter-intuitive consequences related to Lewis’ triviality results ([51], see also [60]). Indeed, assuming that the total 
probability theorem holds for iterated conditionals, that is

𝑃 (𝐶|𝐴) = 𝑃 ((𝐶|𝐴) ∧𝐶) + 𝑃 ((𝐶|𝐴) ∧ s𝐶) = 𝑃 ((𝐶|𝐴)|𝐶)𝑃 (𝐶) + 𝑃 ((𝐶|𝐴)| s𝐶)𝑃 ( s𝐶),

if the Import-Export principle is valid, by applying (18) and by observing that 𝑃 (𝐶|𝐴𝐶) = 1 and 𝑃 (𝐶|𝐴 s𝐶) = 0, it follows that

𝑃 (𝐶|𝐴) = 𝑃 (𝐶|𝐴𝐶)𝑃 (𝐶) + 𝑃 (𝐶|𝐴 s𝐶)𝑃 ( s𝐶) = 𝑃 (𝐶), (19)

which of course is not valid in general for conditional events. Then, the non validity of the Import-Export principle may avoid Lewis’ 
triviality results.

In Sections 3, 4, 5, we will check the validity of the previous properties for notions of compound and iterated conditionals 
introduced in different trivalent logics as suitable conditional events (in these cases, in properties P2 and P4, the symbol of prevision 
ℙ is replaced by the symbol of probability 𝑃 , because the involved objects are conditional events). Then, in Section 6 we will 
check the basic properties for the iterated conditionals, defined as conditional random quantities, built using the structure □|○ =
□ ∧○ +ℙ(□|○) s○ and the different notions of conjunction in trivalent logic recalled in Section 2.4.

3. The iterated conditional in the trivalent logic of Cooper-Calabrese

In this section, in the framework of a trivalent logic, we study the validity of the Import-Export principle and of the properties 
P1-P4 for the notion of iterated conditional, here denoted by (𝐵|𝐾)|𝐶 (𝐴|𝐻), studied by Cooper ([16]) and by Calabrese ([5], see 
also [6,7]). We also give two results on the set of all coherent assessments for suitable families of conditional events which include 
the iterated conditional (𝐵|𝐾)|𝐶 (𝐴|𝐻).

We recall that the notions of conjunction and disjunction of conditionals used by Cooper and Calabrese coincide with ∧𝑆 and ∨𝑆 , 
respectively.4

Definition 2. Given any pair of conditional events 𝐴|𝐻 and 𝐵|𝐾 , the iterated conditional (𝐵|𝐾)|𝐶 (𝐴|𝐻) is defined as the following 
conditional event

(𝐵|𝐾)|𝐶 (𝐴|𝐻) =𝐵|(𝐾 ∧ (Ď𝐻 ∨𝐴)). (20)

We observe that in (20) the conditioning event is the conjunction of the conditioning event 𝐾 of the consequent 𝐵|𝐾 and the 
material conditional Ď𝐻 ∨𝐴 associated with the antecedent 𝐴|𝐻 .

Remark 3 (Import-Export principle for |𝐶 ). By applying Definition 2 with 𝐻 =Ω, it holds that

(𝐵|𝐾)|𝐶𝐴 =𝐴𝐵𝐾|𝐴𝐾 =𝐵|𝐴𝐾, (21)

which shows that the Import-Export principle is satisfied by |𝐶 .

3.1. Property P1

We observe that

((𝐴|𝐻) ∧𝑆 (𝐵|𝐾))|𝐶 (𝐴|𝐻) = ((𝐴𝐻𝐵𝐾 ∨𝐴𝐻 s𝐾 ∨ Ď𝐻𝐵𝐾)|(𝐻 ∨𝐾))|𝐶 (𝐴|𝐻) =
= (𝐴𝐻𝐵𝐾 ∨𝐴𝐻 s𝐾 ∨ Ď𝐻𝐵𝐾)|(𝐴𝐾 ∨ Ď𝐻𝐾 ∨𝐴𝐻 s𝐾). (22)

From (20) and (22) it follows that (𝐵|𝐾)|𝐶 (𝐴|𝐻) ≠ ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾))|𝐶 (𝐴|𝐻). Indeed, as illustrated by Table 3, when the constituent 
𝐴𝐻 s𝐾 is true, it holds that (𝐵|𝐾)|𝐶 (𝐴|𝐻) is void, while ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾))|𝐶 (𝐴|𝐻) is true. Then, property P1 is not satisfied by the 
pair (∧𝑆 , |𝐶 ).
3.2. Property P2

From Table 3 we also obtain that property P2 is not satisfied by (∧𝑆, |𝐶 ). Indeed, under logical independence, when 𝐴𝐻 s𝐾 is 
true, it holds that (𝐴|𝐻) ∧𝑆 (𝐵|𝐾) is true, while (𝐵|𝐾)|𝐶 (𝐴|𝐻) is void. Then, since 𝐴𝐻 ≠ ∅, 𝐾 ⊈ 𝐵, and ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) ⊈
(𝐵|𝐾)|𝐶 (𝐴|𝐻), from (14) it follows that ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) ≰ (𝐵|𝐾)|𝐶 (𝐴|𝐻).

4 Note that also Cantwell ([8]) defines the iterated conditional as Cooper and Calabrese, but, unlike them, in his trivalent logic conjunction and disjunction are 
10

defined by ∧𝐾 and ∨𝐾 , respectively.
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Table 3

Truth values of (𝐴|𝐻) ∧𝑆 (𝐵|𝐾), (𝐵|𝐾)|𝐶 (𝐴|𝐻), and ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾))|𝐶 (𝐴|𝐻).

𝐶ℎ (𝐴|𝐻) ∧𝑆 (𝐵|𝐾) (𝐵|𝐾)|𝐶 (𝐴|𝐻) ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾))|𝐶 (𝐴|𝐻)

𝐴𝐻𝐵𝐾 ∨ Ď𝐻𝐵𝐾 True True True
𝐴𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾 False False False
𝐴𝐻 s𝐾 True Void True
s𝐴𝐻 False Void Void
Ď𝐻 s𝐾 Void Void Void

Table 4

Constituents and points 𝑄ℎ ’s associated with F = {𝐴|𝐻,
(𝐵|𝐾)|𝐶 (𝐴|𝐻), (𝐴|𝐻) ∧𝑆 (𝐵|𝐾)} and P = (𝑥, 𝑦, 𝑧).

𝐶ℎ 𝐴|𝐻 (𝐵|𝐾)|𝐶 (𝐴|𝐻) (𝐴|𝐻) ∧𝑆 (𝐵|𝐾) 𝑄ℎ

𝐶1 𝐴𝐻𝐵𝐾 1 1 1 𝑄1
𝐶2

s𝐴𝐻 0 𝑦 0 𝑄2
𝐶3

Ď𝐻𝐵𝐾 𝑥 1 1 𝑄3
𝐶4 𝐴𝐻 s𝐵𝐾 1 0 0 𝑄4
𝐶5

Ď𝐻 s𝐵𝐾 𝑥 0 0 𝑄5
𝐶6 𝐴𝐻 s𝐾 1 𝑦 1 𝑄6
𝐶0

Ď𝐻 s𝐾 𝑥 𝑦 𝑧 𝑄0

3.3. Property P3

Now we focus our attention on the following result regarding the coherence of a probability assessment on {𝐴|𝐻, (𝐵|𝐾)|𝐶 (𝐴|𝐻),
(𝐴|𝐻) ∧𝑆 (𝐵|𝐾)} (Theorem 4), then we use this result in order to check the validity of property P3 for the pair (∧𝑆 , |𝐶 ).
Theorem 4. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. A probability assessment P = (𝑥, 𝑦, 𝑧) on the family of conditional events 
F = {𝐴|𝐻, (𝐵|𝐾)|𝐶 (𝐴|𝐻), (𝐴|𝐻) ∧𝑆 (𝐵|𝐾)} is coherent if and only if (𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 ∈ [𝑧′, 𝑧′′], where 𝑧′ = 𝑥𝑦 and 𝑧′′ =𝑚𝑎𝑥(𝑥, 𝑦).

Proof. The constituents 𝐶ℎ ’s and the points 𝑄ℎ ’s associated with the assessment P = (𝑥, 𝑦, 𝑧) on F are (see also Table 4)

𝐶1 =𝐴𝐻𝐵𝐾,𝐶2 = s𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 s𝐵𝐾 ∨ s𝐴𝐻 s𝐾 = s𝐴𝐻,𝐶3 = Ď𝐻𝐵𝐾,𝐶4 =𝐴𝐻 s𝐵𝐾,
𝐶5 = Ď𝐻 s𝐵𝐾,𝐶6 =𝐴𝐻 s𝐾,𝐶0 = Ď𝐻 s𝐾,

and

𝑄1 = (1,1,1), 𝑄2 = (0, 𝑦,0), 𝑄3 = (𝑥,1,1),𝑄4 = (1,0,0),
𝑄5 = (𝑥,0,0), 𝑄6 = (1, 𝑦,1),P =𝑄0 = (𝑥, 𝑦, 𝑧).

The system (Σ) in (5) associated with the pair (F , P) becomes

⎧⎪⎪⎨⎪⎪⎩

𝜆1 + 𝑥𝜆3 + 𝜆4 + 𝑥𝜆5 + 𝜆6 = 𝑥,
𝜆1 + 𝑦𝜆2 + 𝜆3 + 𝑦𝜆6 = 𝑦,
𝜆1 + 𝜆3 + 𝜆6 = 𝑧,
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,6.

(23)

Lower bound We first prove that the assessment (𝑥, 𝑦, 𝑥𝑦) is coherent for every (𝑥, 𝑦) ∈ [0, 1]2. Then, in order to prove that 𝑧′ = 𝑥𝑦 is 
the lower bound for 𝑧 = 𝑃 ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)), we verify that the assessment (𝑥, 𝑦, 𝑧) is not coherent when 𝑧 < 𝑧′ = 𝑥𝑦.

We observe that P = (𝑥, 𝑦, 𝑥𝑦) = 𝑥𝑦𝑄1 + (1 − 𝑥)𝑄2 + 𝑥(1 − 𝑦)𝑄4, so a solution of (23) is given by Λ = (𝑥𝑦, 1 − 𝑥, 0, 𝑥(1 − 𝑦), 0, 0).
Then, by considering the function 𝜙 as defined in (6), it holds that

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆6 = 𝑥𝑦+ (1 − 𝑥) + 𝑥(1 − 𝑦) = 1 > 0,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴∨Ď𝐻)∨𝐾 𝜆ℎ = 𝜆1 + 𝜆3 + 𝜆4 + 𝜆5 = 𝑥𝑦+ 𝑥(1 − 𝑦) = 𝑥,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻∨𝐾 𝜆ℎ = 𝜆1 +⋯+ 𝜆6 = 1 > 0.

Let S′ = {(𝑥𝑦, 1 − 𝑥, 0, 𝑥(1 − 𝑦), 0, 0)} denote a subset of the set S of all solutions of (23). We have that 𝑀 ′
1 = 1, 𝑀 ′

2 = 𝑥, 𝑀 ′
3 = 1

(as defined in (7)). We distinguish two cases: (𝑖) 𝑥 > 0, (𝑖𝑖) 𝑥 = 0. In the case (𝑖) we get 𝑀 ′
1 > 0, 𝑀 ′

2 > 0, 𝑀 ′
3 > 0 and then 𝐼 ′0 = ∅. 

By Theorem 1, the assessment (𝑥, 𝑦, 𝑥𝑦) is coherent ∀(𝑥, 𝑦) ∈ [0, 1]2. In the case (𝑖𝑖) we have that 𝑀 ′
1 > 0, 𝑀 ′

2 = 0, 𝑀 ′
3 > 0, hence 

𝐼 ′0 = 2. We observe that the sub-assessment P′0 = 𝑦 on F ′
0 = {(𝐵|𝐾)|𝐶 (𝐴|𝐻)} is coherent for every 𝑦 ∈ [0, 1]. Then, by Theorem 1, 

the assessment (𝑥, 𝑦, 𝑥𝑦) on F is coherent ∀(𝑥, 𝑦) ∈ [0, 1]2.
In order to verify that 𝑧′ = 𝑥𝑦 is the lower bound for 𝑧, we observe that the points 𝑄1, 𝑄2, 𝑄4 belong to the plane 𝜋 ∶ 𝑦𝑋+𝑌 −𝑍 =
11

𝑦, where 𝑋, 𝑌 , 𝑍 are the axes coordinates.
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Now, by considering the function 𝑓 (𝑋, 𝑌 , 𝑍) = 𝑦𝑋 + 𝑌 −𝑍 , we observe that for each constant 𝑘 the equation 𝑓 (𝑋, 𝑌 , 𝑍) = 𝑘
represents a plane which is parallel to 𝜋 and coincides with 𝜋 when 𝑘 = 𝑦. We also observe that 𝑓 (𝑄1) = 𝑓 (𝑄2) = 𝑓 (𝑄4) = 𝑦, 
𝑓 (𝑄3) = 𝑓 (𝑄5) = 𝑥𝑦 ≤ 𝑦 and 𝑓 (𝑄6) = 𝑓 (1, 𝑦, 1) = 𝑦 + 𝑦 − 1 = 2𝑦 − 1 ≤ 𝑦.

Then, for every P =
∑6
ℎ=1 𝜆ℎ𝑄ℎ, with 

∑6
ℎ=1 𝜆ℎ = 1 and 𝜆ℎ ≥ 0, that is P ∈ I, it holds that 𝑓 (P) = 𝑓 (

∑6
ℎ=1 𝜆ℎ𝑄ℎ) =∑6

ℎ=1 𝜆ℎ𝑓 (𝑄ℎ) ≤ 𝑦. On the other side, given 𝑎 > 0, by considering P = (𝑥, 𝑦, 𝑥𝑦 − 𝑎) it holds that 𝑓 (P) = 𝑦 + 𝑎 > 𝑦 and hence 
P = (𝑥, 𝑦, 𝑥𝑦 − 𝑎) ∉ I. Therefore, for any given 𝑎 > 0 the assessment (𝑥, 𝑦, 𝑥𝑦 − 𝑎) is not coherent because (𝑥, 𝑦, 𝑥𝑦 − 𝑎) ∉ I. Then 
the lower bound of 𝑧 = 𝑃 ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) is 𝑧′ = 𝑥𝑦.

Upper bound. We verify that the assessment (𝑥, 𝑦, max(𝑥, 𝑦)) on F is coherent for every (𝑥, 𝑦) ∈ [0, 1]2. Moreover, we show that 
𝑧′′ = max(𝑥, 𝑦) is the upper bound for 𝑧 = 𝑃 ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) by showing that any assessment (𝑥, 𝑦, 𝑧) on F with (𝑥, 𝑦) ∈ [0, 1]2 and 
𝑧 >max{𝑥, 𝑦} is not coherent. We distinguish two cases: (𝑖) 𝑥 ≥ 𝑦, (𝑖𝑖) 𝑥 < 𝑦.
(𝑖) We have that max(𝑥, 𝑦) = 𝑥 and hence

P = (𝑥, 𝑦, 𝑥) = (1 − 𝑥)𝑄2 + 𝑥𝑄6.

Then, the vector Λ = (0, 1 − 𝑥, 0, 0, 0, 𝑥) is a solution of (23). Moreover, it holds that

𝜙1(Λ) =
∑

ℎ∶𝐶ℎ⊆𝐻
𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆6 = 1 − 𝑥+ 𝑥 = 1 > 0,

𝜙2(Λ) =
∑

ℎ∶𝐶ℎ⊆(𝐾∧(𝐴∨�̄�))
𝜆ℎ = 𝜆1 + 𝜆3 + 𝜆4 + 𝜆5 = 0,

𝜙3(Λ) =
∑

ℎ∶𝐶ℎ⊆(𝐻∨𝐾)
𝜆ℎ = 𝜆1 +⋯+ 𝜆6 = 1 > 0.

Let S′ = {(0, 1 −𝑥, 0, 0, 0, 𝑥)} denote a subset of the set S of all solutions of (23). We have that 𝑀 ′
1 = 1, 𝑀 ′

2 = 0, 𝑀 ′
3 = 1. It follows that 

I′0 = 2. As the sub-assessment P′0 = 𝑦 on F ′
0 = {(𝐵|𝐾)|𝐶 (𝐴|𝐻)} is coherent ∀𝑦 ∈ [0, 1], by Theorem 1, it follows that the assessment 

(𝑥, 𝑦, max(𝑥, 𝑦)) is coherent.
In order to verify that 𝑧′′ = max(𝑥, 𝑦) = 𝑥 is the upper bound for 𝑧, we observe that if max{𝑥, 𝑦} = 1, then (1, 𝑦, 𝑧) with 𝑧 > 1 is 

incoherent. Let us assume that 𝑦 ≤ 𝑥 < 1. We observe that the points 𝑄2, 𝑄3, 𝑄6 belong to the plane 𝜋 ∶ 𝑋 + 1−𝑥
1−𝑦 𝑌 − 𝑍 = 𝑦(1−𝑥)

1−𝑦 , 
where 𝑋, 𝑌 , 𝑍 are the axes coordinates.

Now, by considering the function 𝑓 (𝑋, 𝑌 , 𝑍) = 𝑋 + 1−𝑥
1−𝑦 𝑌 − 𝑍 − 𝑦(1−𝑥)

1−𝑦 , we observe that 𝑓 (𝑄1) = 1 − 𝑥 > 0, 𝑓 (𝑄2) = 𝑓 (𝑄3) =

𝑓 (𝑄6) = 0, 𝑓 (𝑄4) = 1 − 𝑦 1−𝑥
1−𝑦 ≥ 0, 𝑓 (𝑄5) =

𝑥−𝑦
1−𝑦 ≥ 0. Then, for every P =

∑6
ℎ=1 𝜆ℎ𝑄ℎ, with 

∑6
ℎ=1 𝜆ℎ = 1 and 𝜆ℎ ≥ 0, that is P ∈ I, 

it holds that 𝑓 (P) = 𝑓 (
∑6
ℎ=1 𝜆ℎ𝑄ℎ) =

∑6
ℎ=1 𝜆ℎ𝑓 (𝑄ℎ) ≥ 0. On the other side, given 𝑧 > 𝑥, by considering P = (𝑥, 𝑦, 𝑧) it holds that 

𝑓 (P) = 𝑥 −𝑧 < 0 and hence P = (𝑥, 𝑦, 𝑧) ∉ I. Therefore, for any given 𝑧 > 𝑥 the assessment (𝑥, 𝑦, 𝑧) is not coherent because (𝑥, 𝑦, 𝑧) ∉ I. 
Then the upper bound on 𝑧 is 𝑧′′ = 𝑧 =max{𝑥, 𝑦}.
(𝑖𝑖) In this case max(𝑥, 𝑦) = 𝑦. We prove that the assessment (𝑥, 𝑦, max(𝑥, 𝑦)) is coherent. We observe that

(𝑥, 𝑦, 𝑦) = 𝑦𝑄3 + (1 − 𝑦)𝑄5.

Then, the vector Λ = (0, 0, 𝑦, 0, 1 − 𝑦, 0) is a solution of (23). We have

𝜙1(Λ) =
∑

ℎ∶𝐶ℎ⊆𝐻
𝜆ℎ = 0; 𝜙2(Λ) =

∑
ℎ∶𝐶ℎ⊆(𝐾∧(𝐴∨�̄�))

𝜆ℎ = 1 > 0; 𝜙3(Λ) =
∑

ℎ∶𝐶ℎ⊆(𝐻∨𝐾)
𝜆ℎ = 1 > 0.

Let S′ = {(0, 0, 𝑦, 0, 1 − 𝑦, 0)} denote a subset of the set S of all solutions of (23). We have that 𝑀 ′
1 = 0, 𝑀 ′

2 = 1, 𝑀 ′
3 = 1. It follows 

that I′0 = 1. The sub-assessment 𝑥 on {𝐴|𝐻} is coherent ∀𝑥 ∈ [0, 1]. Then, by Theorem 1, the assessment (𝑥, 𝑦, max(𝑥, 𝑦)) on F is 
coherent ∀(𝑥, 𝑦) ∈ [0, 1]2.

In order to verify that 𝑧′′ = max(𝑥, 𝑦) = 𝑦 is the upper bound for 𝑧, we observe that if max{𝑥, 𝑦} = 1, then (𝑥, 1, 𝑧) with 𝑧 > 1 is 
incoherent. Let us assume that 𝑥 ≤ 𝑦 < 1. We observe that the points 𝑄3, 𝑄5, 𝑄6 belong to the plane 𝜋 ∶ 1−𝑦

1−𝑥𝑋 − 𝑥(1−𝑦)
1−𝑥 + 𝑌 −𝑍 = 0, 

where 𝑋, 𝑌 , 𝑍 are the axes coordinates.
Now, by considering the function 𝑓 (𝑋, 𝑌 , 𝑍) = 1−𝑦

1−𝑥𝑋 − 𝑥(1−𝑦)
1−𝑥 + 𝑌 − 𝑍 , we observe that 𝑓 (𝑄1) = 𝑓 (𝑄4) = 1 − 𝑦 > 0, 𝑓 (𝑄2) =

𝑦−𝑥
1−𝑥 > 0 𝑓 (𝑄3) = 𝑓 (𝑄5) = 𝑓 (𝑄6) = 0. Then, for every P =

∑6
ℎ=1 𝜆ℎ𝑄ℎ, with 

∑6
ℎ=1 𝜆ℎ = 1 and 𝜆ℎ ≥ 0, that is P ∈ I, it holds that 

𝑓 (P) = 𝑓 (
∑6
ℎ=1 𝜆ℎ𝑄ℎ) =

∑6
ℎ=1 𝜆ℎ𝑓 (𝑄ℎ) ≥ 0. On the other side, given 𝑧 > 𝑦, by considering P = (𝑥, 𝑦, 𝑧) it holds that 𝑓 (P) = 𝑦 − 𝑧 < 0

and hence P = (𝑥, 𝑦, 𝑧) ∉ I. Therefore, for any given 𝑧 > 𝑦 the assessment (𝑥, 𝑦, 𝑧) is not coherent because (𝑥, 𝑦, 𝑧) ∉ I. Then the upper 
bound on 𝑧 is 𝑧′′ = 𝑦 =max{𝑥, 𝑦}.

Finally, for each given (𝑥, 𝑦) ∈ [0, 1], as (𝑥, 𝑦, 𝑧′) and (𝑥, 𝑦, 𝑧′′) are coherent, by the Fundamental theorem of probability, any 
assessment (𝑥, 𝑦, 𝑧) with 𝑧 ∈ [𝑧′, 𝑧′′] is coherent too. Then, the assessment (𝑥, 𝑦, 𝑧) on F is coherent for every (𝑥, 𝑦) ∈ [0, 1]2 and 
𝑧 ∈ [𝑧′, 𝑧′′]. □

Remark 4 (Property P3). From Theorem 4 it follows that any probability assessment (𝑥, 𝑦, 𝑧) ∈ [0, 1]3 on F = {𝐴|𝐻, (𝐵|𝐾)|𝐶 (𝐴|𝐻),
(𝐴|𝐻) ∧𝑆 (𝐵|𝐾)}, for which 𝑧 = 𝑥𝑦, is coherent. In other words, any assessment which satisfies property P3 is coherent. For instance, 
12

the assessment (1, 0, 0) on F is coherent. However, when 𝑥𝑦 <max{𝑥, 𝑦}, there are coherent probability assessments which do not 
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satisfy property P3. Indeed, any assessment (𝑥, 𝑦, 𝑧), with 𝑥𝑦 < 𝑧 ≤max{𝑥, 𝑦}, is coherent. Then, property P3 is not satisfied in general 
by the pair (∧𝑆 , |𝐶 ). For instance the assessment (1, 0, 1) on F is coherent. However, the assessment (1, 0, 1), on {𝐴, 𝐵|𝐴, 𝐴𝐵} is not 
coherent because does not satisfy the compound probability theorem.

We illustrate in the following example some counterintuitive (probabilistic) aspects of the invalidity of properties P1, P2, and P3.

Example 3. Let two independent random quantities 𝑋 and 𝑌 be given. We assume that 𝑋 ∈ {1, … , 6}, with 𝑃 (𝑋 = ℎ) = 1
6 , ℎ =

1, … , 6, and 𝑌 ∈ {0, 1}, with 𝑃 (𝑌 = 0) = 𝑃 (𝑌 = 1) = 1
2 . We set 𝐴 = (𝑋 ≥ 3), 𝐻 = (𝑋 ≥ 2), 𝐵 = (𝑌 = 1), and 𝐾 = (𝑌 = 0). From (20), 

as 𝐵 = s𝐾 , it follows that

(𝐵|𝐾)|𝐶 (𝐴|𝐻) = s𝐾|(𝐾 ∧ (Ď𝐻 ∨𝐴)) = ∅|(𝐾 ∧ (Ď𝐻 ∨𝐴)). (24)

Moreover, since

(𝐴|𝐻) ∧𝑆 (𝐵|𝐾) = (Ď𝐻 ∨𝐴𝐻) ∧ ( s𝐾 ∨𝐵𝐾)|(𝐻 ∨𝐾) = (𝐴𝐻 s𝐾)|(𝐻 ∨𝐾), (25)

and (𝐻 ∨𝐾) ∧ (Ď𝐻 ∨𝐴) =𝐴𝐻 ∨ Ď𝐻𝐾 , it holds that

((𝐴|𝐻) ∧𝑆 (𝐵|𝐾))|𝐶 (𝐴|𝐻) = (𝐴𝐻 s𝐾|(𝐻 ∨𝐾))|𝐶 (𝐴|𝐻) =𝐴𝐻 s𝐾|((𝐻 ∨𝐾) ∧ (Ď𝐻 ∨𝐴)) =
=𝐴𝐻 s𝐾|(𝐴𝐻 ∨ Ď𝐻𝐾). (26)

From (24) and (26) it follows that ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾))|𝐶 (𝐴|𝐻) ≠ (𝐵|𝐾)|𝐶 (𝐴|𝐻), and hence property P1 is not satisfied. Concerning 
the probabilistic aspects we observe that 𝑃 ((𝐵|𝐾)|𝐶 (𝐴|𝐻)) = 0, while

𝑃 (((𝐴|𝐻) ∧𝑆 (𝐵|𝐾))|𝐶 (𝐴|𝐻)) = 𝑃 (𝐴𝐻 s𝐾|(𝐴𝐻 ∨ Ď𝐻𝐾)) = 𝑃 (𝐴 s𝐾)
𝑃 (𝐴𝐻) + 𝑃 (Ď𝐻𝐾)

=
4
6
1
2

4
6 +

1
6
1
2

= 4
9
≠ 0.

From (24) and (25) it holds that (𝐴|𝐻) ∧𝑆 (𝐵|𝐾) ≰ (𝐵|𝐾)|𝐶 (𝐴|𝐻) and hence property P2 is not satisfied. Moreover,

𝑃 ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) = 𝑃 (𝐴𝐻 s𝐾|(𝐻 ∨𝐾)) = 𝑃 (𝐴 s𝐾)
𝑃 (𝐻 ∨𝐾)

=
4
6 ⋅

1
2

5
6 +

1
2 −

5
6 ⋅

1
2

= 4
11

> 0 = 𝑃 ((𝐵|𝐾)|𝐶 (𝐴|𝐻)).

We also obtain (the counterintuitive result) that the probability of the conjunction is greater than the probability of one of the two 
conjuncts, indeed it holds that 𝑃 ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) = 4

11 > 0 = 𝑃 (𝐵|𝐾). Therefore,

0 = 𝑃 (𝐴|𝐻)𝑃 ((𝐵|𝐾)|𝐶 (𝐴|𝐻)) ≠ 𝑃 ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) = 4
11

and hence property P3 is not satisfied.

3.4. Property P4

We check the validity of property P4 for the iterated conditioning |𝐶 by studying the set of all coherent probability assessments 
on the family {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐶 (𝐴|𝐻)} (Theorem 5).

Theorem 5. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The probability assessment P = (𝑥, 𝑦, 𝑧) on the family of conditional events 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐶 (𝐴|𝐻)} is coherent for every (𝑥, 𝑦, 𝑧) ∈ [0, 1]3.

Proof. We recall that (𝐵|𝐾)|𝐶 (𝐴|𝐻) = 𝐵|(𝐾 ∧ (Ď𝐻 ∨𝐴)). Then, the constituents 𝐶ℎ’s and the points 𝑄ℎ ’s associated with the assess-
ment P = (𝑥, 𝑦, 𝑧) on F = {𝐴|𝐻, 𝐵|𝐾, 𝐵|(𝐾 ∧ (Ď𝐻 ∨𝐴))} are (see also Table 5)

𝐶1 =𝐴𝐻𝐵𝐾, 𝐶2 =𝐴𝐻 s𝐵𝐾, 𝐶3 =𝐴𝐻 s𝐾, 𝐶4 = s𝐴𝐻𝐵𝐾, 𝐶5 = s𝐴𝐻 s𝐵𝐾,
𝐶6 = s𝐴𝐻 s𝐾, 𝐶7 = Ď𝐻𝐵𝐾, 𝐶8 = Ď𝐻 s𝐵𝐾, 𝐶0 = Ď𝐻 s𝐾,

and

𝑄1 = (1,1,1),𝑄2 = (1,0,0),𝑄3 = (1, 𝑦, 𝑧),𝑄4 = (0,1, 𝑧),𝑄5 = (0,0, 𝑧),
𝑄6 = (0, 𝑦, 𝑧),𝑄7 = (𝑥,1,1),𝑄8 = (𝑥,0,0),P =𝑄0 = (𝑥, 𝑦, 𝑧).

We denote by I the convex hull of points 𝑄1, … , 𝑄8 (see Fig. 2). The system (Σ) in (5) associated with the pair (F , P) becomes

⎧⎪⎪⎨⎪
𝜆1 + 𝜆2 + 𝜆3 + 𝑥𝜆7 + 𝑥𝜆8 = 𝑥,
𝜆1 + 𝑦𝜆3 + 𝜆4 + 𝑦𝜆6 + 𝜆7 = 𝑦,
𝜆1 + 𝑧𝜆3 + 𝑧𝜆4 + 𝑧𝜆5 + 𝑧𝜆6 + 𝜆7 = 𝑧,
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7 + 𝜆8 = 1,

(27)
13

⎪⎩ 𝜆𝑖 ≥ 0, 𝑖 = 1,… ,8.
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Table 5

Constituents and points 𝑄ℎ ’s associated with F = {𝐴|𝐻, 𝐵|𝐾,
(𝐵|𝐾)|𝐶 (𝐴|𝐻)} and P = (𝑥, 𝑦, 𝑧).

𝐶ℎ 𝐴|𝐻 𝐵|𝐾 (𝐵|𝐾)|𝐶 (𝐴|𝐻) 𝑄ℎ

𝐶1 𝐴𝐻𝐵𝐾 1 1 1 𝑄1
𝐶2 𝐻 s𝐵𝐾 1 0 0 𝑄2
𝐶3 𝐴𝐻 s𝐾 1 𝑦 𝑧 𝑄3
𝐶4

s𝐴𝐻𝐵𝐾 0 1 𝑧 𝑄4
𝐶5

s𝐴𝐻 s𝐵𝐾 0 0 𝑧 𝑄5
𝐶6

s𝐴𝐻 s𝐾 0 𝑦 𝑧 𝑄6
𝐶7

Ď𝐻𝐵𝐾 𝑥 1 1 𝑄7
𝐶8

Ď𝐻 s𝐵𝐾 𝑥 0 0 𝑄8
𝐶0

Ď𝐻 s𝐾 𝑥 𝑦 𝑧 𝑄0

Fig. 2. Convex hull of the points 𝑄𝑖 for 𝑖 = 1, … , 8 associated with the pair (F , P), where P = (𝑥, 𝑦, 𝑧) and F = {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐶 (𝐴|𝐻)}. In the figure the numerical 
values are: 𝑥 = 0.5, 𝑦 = 1, 𝑧 = 0.5.

We observe that P belongs to the segment with end points 𝑄3, 𝑄6; indeed (𝑥, 𝑦, 𝑧) = 𝑥𝑄3 + (1 −𝑥)𝑄6 = 𝑥(1, 𝑦, 𝑧) + (1 −𝑥)(0, 𝑦, 𝑧). The 
vector Λ = (0, 0, 𝑥, 0, 0, 1 − 𝑥, 0, 0) is a solution of (27), with

𝜙1(Λ) =
∑

ℎ∶𝐶ℎ⊆𝐻
𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 = 1 > 0,

𝜙2(Λ) =
∑

ℎ∶𝐶ℎ⊆𝐾
𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 + 𝜆7 + 𝜆8 = 0,

𝜙3(Λ) =
∑

ℎ∶𝐶ℎ⊆((𝐴∨Ď𝐻)∧𝐾)
𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆7 + 𝜆8 = 0.

We set S′ = {Λ} and we get I′0 = {2, 3}. So we obtain F ′
0 = {𝐵|𝐾, 𝐵|(𝐾 ∧ (Ď𝐻 ∨ 𝐴))} and P′0 = (𝑦, 𝑧). By recalling Example 1 the 

sub-assessment (𝑦, 𝑧) on {𝐵|𝐾, 𝐵|(𝐾 ∧ (Ď𝐻 ∨𝐴))} is coherent for every (𝑦, 𝑧) ∈ [0, 1]2. Thus, by Theorem 2, the assessment (𝑥, 𝑦, 𝑧) on 
F is coherent ∀(𝑥, 𝑦, 𝑧) ∈ [0, 1]3. □

Remark 5 (Property P4). We observe that the probability propagation rule valid for unconditional events (Property P4) is no 
longer valid for Cooper-Calabrese’s iterated conditional. Indeed, from Theorem 5, any probability assessment (𝑥, 𝑦, 𝑧) on F =
{𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐶 (𝐴|𝐻)}, with (𝑥, 𝑦, 𝑧) ∈ [0, 1]3 is coherent. For instance, the assessment (1, 1, 0) on F is coherent, while it is 
not coherent on {𝐴, 𝐵, 𝐵|𝐴}.

We briefly sum up here the results obtained in this section (see also Table 11) for the iterated conditioning |𝐶 . We verified that |𝐶
does not satisfy any of the desirable properties P1-P4 we considered in Section 2.5. More precisely, we verified that (𝐵|𝐾)|𝐶 (𝐴|𝐻) ≠
((𝐴|𝐻) ∧𝑆 (𝐵|𝐾))|𝐶 (𝐴|𝐻). Thus, P1 does not hold. Furthermore, ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) ≰ (𝐵|𝐾)|𝐶 (𝐴|𝐻). So P2 does not hold either. 
14

Still further, 𝑃 (𝐴|𝐻)𝑃 ((𝐵|𝐾)|𝐶 (𝐴|𝐻)) ≠ 𝑃 ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) for some probability 𝑃 . Thus, P3 does not hold. Finally, we proved 
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Table 6

Truth table of (𝐴|𝐻) ∧𝐾 (𝐵|𝐾), (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻), and ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾))|𝑑𝐹 (𝐴|𝐻).

𝐶ℎ (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻) ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾))|𝑑𝐹 (𝐴|𝐻)

𝐴𝐻𝐵𝐾 True True True
𝐴𝐻 s𝐵𝐾 False False False
𝐴𝐻 s𝐾 ∨ Ď𝐻𝐵𝐾 ∨ Ď𝐻 s𝐾 Void Void Void
s𝐴𝐻 ∨ Ď𝐻 s𝐵𝐾 False Void Void

that every assessment (𝑥, 𝑦, 𝑧) ∈ [0, 1]3 on {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐶 (𝐴|𝐻)} is coherent. From this it follows that P4 does not hold. We 
also observed that Import-Export Principle is satisfied.

4. The iterated conditional in the trivalent logic of de Finetti

In this section we analyze the notion of iterated conditional introduced by de Finetti in [20]. After recalling that the notion of 
conjunction and disjunction of conditionals introduced by de Finetti in [20] coincide with ∧𝐾 and ∨𝐾 (see Section 2.4), we check the 
validity of the Import-Export principle and of the properties P1-P4 for this iterated conditional in the corresponding trivalent logic.

Definition 3. Given any pair of conditional events 𝐴|𝐻 and 𝐵|𝐾 , de Finetti iterated conditional, denoted by (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻), is 
defined as

(𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻) =𝐵|(𝐴𝐻𝐾). (28)

Remark 6 (Import-Export principle for |𝑑𝐹 ). By applying Definition 3 with 𝐻 =Ω, it holds that

(𝐵|𝐾)|𝑑𝐹𝐴 =𝐵|𝐴𝐾, (29)

which shows that the Import-Export principle [52] is satisfied by |𝑑𝐹 . Then, from (21), it follows that

(𝐵|𝐾)|𝐶𝐴 = (𝐵|𝐾)|𝑑𝐹𝐴 = 𝐵|𝐴𝐾.
4.1. Property P1

To check property P1 we observe that from (28) it holds that

((𝐴|𝐻) ∧𝐾 (𝐵|𝐾))|𝑑𝐹 (𝐴|𝐻) = (𝐴𝐻𝐵𝐾|(𝐻𝐾 ∨ s𝐴𝐻 ∨ s𝐵𝐾))|𝑑𝐹 (𝐴|𝐻) =
𝐴𝐻𝐵𝐾|(𝐴𝐻𝐾 ∨𝐴𝐻 s𝐵𝐾) =𝐴𝐻𝐵𝐾|𝐴𝐻𝐾 = (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻). (30)

Then, property P1 is satisfied by the pair (∧𝐾, |𝑑𝐹 ) (see also Table 6).

4.2. Property P2

From Table 6 we also observe that relation P2 is satisfied by (∧𝐾, |𝑑𝐹 ). Indeed, according to (1), if (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) is true, then 
(𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻) is true; if (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻) is false, then (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) is false. Thus, since (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) ⊆ (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻), 
from (14) it follows that (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) ≤ (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻).

4.3. Property P3

We consider now the following result regarding the coherence of a probability assessment on {𝐴|𝐻, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾
(𝐵|𝐾)} (Theorem 6) in order to check the validity of property P3 for the pair (∧𝐾 , |𝑑𝐹 ).
Theorem 6. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. A probability assessment P = (𝑥, 𝑦, 𝑧) on the family of conditional events 
F = {𝐴|𝐻, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾 (𝐵|𝐾)} is coherent if and only if (𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 ∈ [𝑧′, 𝑧′′], where 𝑧′ = 0 and 𝑧′′ = 𝑥𝑦.

Proof. See Appendix A.1. □

Remark 7 (Property P3). From Theorem 6 any probability assessment (𝑥, 𝑦, 𝑧) on F = {𝐴|𝐻, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾 (𝐵|𝐾)}, with 
(𝑥, 𝑦) ∈ [0, 1]2 and 0 ≤ 𝑧 ≤ 𝑥𝑦, is coherent. Then, any assessment which satisfies property P3 is coherent. Moreover, as 𝑧 = 𝑥𝑦 is not 
the unique coherent extension of the conjunction (𝐴|𝐻) ∧𝐾 (𝐵|𝐾), the quantity 𝑃 ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾)) could not coincide with the 
product 𝑃 ((𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻))𝑃 (𝐴|𝐻). For example, if we choose the probability assessment P = (1, 1, 0), we observe that P is coherent 
on F because 0 ∈ [𝑧′, 𝑧′′] = [0, 1]. However, we observe that P on {𝐴, 𝐵|𝐴, 𝐴𝐵} is not coherent because 𝑃 (𝐴𝐵) = 0 ≠ 𝑃 (𝐵|𝐴)𝑃 (𝐴).
15

Then, property P3 is not satisfied by the pair (∧𝐾 , |𝑑𝐹 ).
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Table 7

Truth table of (𝐴|𝐻) ∧𝐾 (𝐵|𝐾), (𝐵|𝐾)|𝐹 (𝐴|𝐻), and ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾))|𝐹 (𝐴|𝐻).

𝐶ℎ (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) (𝐵|𝐾)|𝐹 (𝐴|𝐻) ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾))|𝐹 (𝐴|𝐻)

𝐴𝐻𝐵𝐾 True True True
𝐴𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾 False False False
𝐴𝐻 s𝐾 ∨ Ď𝐻𝐵𝐾 ∨ Ď𝐻 s𝐾 Void Void Void
s𝐴𝐻 False Void Void

4.4. Property P4

To check the validity of property P4 for the iterated conditioning |𝑑𝐹 we study the set of all coherent probability assessments on 
the family {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)} (Theorem 7).

Theorem 7. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The probability assessment P = (𝑥, 𝑦, 𝑧) on the family of conditional events 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)} is coherent for every (𝑥, 𝑦, 𝑧) ∈ [0, 1]3.

Proof. See Appendix A.1. □

Remark 8 (Property P4). We observe that the probability propagation rule valid for unconditional events (property P4) is 
no longer valid for de Finetti’s iterated conditional. Indeed, from Theorem 7, any probability assessment (𝑥, 𝑦, 𝑧) on F =
{𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)}, with (𝑥, 𝑦, 𝑧) ∈ [0, 1]3 is coherent. For instance, the assessment (1, 1, 0) is coherent on F but it is 
not coherent on {𝐴, 𝐵, 𝐵|𝐴}.

We briefly sum up here the results obtained in this section (see also Table 11) for the iterated conditioning |𝑑𝐹 . We verified that |𝑑𝐹
satisfies both properties P1 and P2. Indeed, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻) = ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾))|𝑑𝐹 (𝐴|𝐻) and ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾)) ≤ (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻). 
However, the iterated conditioning |𝑑𝐹 does not satisfy property P3, because 𝑃 (𝐴|𝐻)𝑃 ((𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)) ≠ 𝑃 ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾)) for 
some probability 𝑃 . Moreover, we showed that every assessment (𝑥, 𝑦, 𝑧) ∈ [0, 1]3 on {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)} is coherent and 
from this it follows that property P4 does not hold. We also observed that Import-Export Principle is satisfied by |𝑑𝐹 .

5. The iterated conditional in the trivalent logic of Farrell

In this section we consider another definition of iterated conditional as a suitable conditional event which was proposed by 
Farrell in [25, p. 385] (see also [24]). In his trivalent logic, the author uses ∧𝐾 and ∨𝐾 as conjunction and disjunction of conditional 
events (see Section 2.4), respectively. We first recall the definition of the iterated conditional, then we check the validity of the 
Import-Export principle and of the properties P1-P4.

Definition 4. Given any pair of conditional events 𝐴|𝐻 and 𝐵|𝐾 , Farrell iterated conditional, here denoted by (𝐵|𝐾)|𝐹 (𝐴|𝐻), is 
defined as the conditional event

(𝐵|𝐾)|𝐹 (𝐴|𝐻) =𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨𝐴𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾). (31)

Remark 9 (Import-Export principle for |𝐹 ). By applying (31) with 𝐻 =Ω, it holds that

(𝐵|𝐾)|𝐹𝐴 =𝐴𝐵𝐾|(𝐴𝐵𝐾 ∨𝐴 s𝐵𝐾) = 𝐵|𝐴𝐾.
Then, as (𝐵|𝐾)|𝐹𝐴 =𝐵|𝐴𝐾 , the Import-Export principle is satisfied by |𝐹 . Moreover, by recalling (21) and (29), it follows that

(𝐵|𝐾)|𝐹𝐴 = (𝐵|𝐾)|𝐶𝐴 = (𝐵|𝐾)|𝑑𝐹𝐴 =𝐵|𝐴𝐾.
5.1. Property P1

By recalling that (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) =𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 ∨ s𝐵𝐾), from (31) it follows that

((𝐴|𝐻) ∧𝐾 (𝐵|𝐾))|𝐹 (𝐴|𝐻) = (𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 ∨ s𝐵𝐾))|𝐹 (𝐴|𝐻) =
𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨𝐴𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾) = (𝐵|𝐾)|𝐹 (𝐴|𝐻). (32)

Then, as ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾))|𝐹 (𝐴|𝐻) = (𝐵|𝐾)|𝐹 (𝐴|𝐻), Property P1 is satisfied by the pair (∧𝐾, |𝐹 ). This relation can also be obtained 
16

by observing that the truth values of (𝐵|𝐾)|𝐹 (𝐴|𝐻) and of ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾))|𝐹 (𝐴|𝐻) in Table 7 coincide.
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5.2. Property P2

We observe that (see Table 7) the iterated conditional (𝐵|𝐾)|𝐹 (𝐴|𝐻) is true when the conjunction (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) is true; 
moreover, the conjunction (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) is false when the iterated conditional (𝐵|𝐾)|𝐹 (𝐴|𝐻) is false. Then, (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) ⊆
(𝐵|𝐾)|𝐹 (𝐴|𝐻). Thus, it follows from (14) that (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) ≤ (𝐵|𝐾)|𝐹 (𝐴|𝐻), which means that P2 is satisfied by (∧𝐾, |𝐹 ).
5.3. Property P3

To check the validity of property P3 for (𝐵|𝐾)|𝐹 (𝐴|𝐻) we study the set of coherent probability assessments on the family 
F = {𝐴|𝐻, (𝐵|𝐾)|𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾 (𝐵|𝐾)}.

Theorem 8. Let 𝐴, 𝐵, 𝐻 , 𝐾 , be any logically independent events. A probability assessment P = (𝑥, 𝑦, 𝑧) on the family of conditional events 
F = {𝐴|𝐻, (𝐵|𝐾)|𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾 (𝐵|𝐾)} is coherent if and only if (𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 ∈ [𝑧′, 𝑧′′], where 𝑧′ = 0 and 𝑧′′ = 𝑇𝐻0 (𝑥, 𝑦), 
where

𝑇𝐻0 (𝑥, 𝑦) =

{
0, if 𝑥 = 0 or 𝑦 = 0

𝑥𝑦
𝑥+𝑦−𝑥𝑦 , if 𝑥 ≠ 0 and 𝑦 ≠ 0,

is the Hamacher t-norm with parameter 𝜆 = 0.

Proof. See Appendix A.2. □

Remark 10 (Property P3). From Theorem 8 it follows that any probability assessment (𝑥, 𝑦, 𝑧) on F = {𝐴|𝐻, (𝐵|𝐾)|𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾
(𝐵|𝐾)}, with (𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 = 𝑥𝑦, is coherent because 𝑥𝑦 ∈ [𝑧′, 𝑧′′], where 𝑧′ = 0 and 𝑧′′ = 𝑇𝐻0 (𝑥, 𝑦). Then, any assessment 
which satisfies property P3 is coherent. Moreover, as 𝑧 = 𝑥𝑦 is not the unique coherent extension, the quantity 𝑃 ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾))
could not coincide with the product 𝑃 ((𝐵|𝐾)|𝐹 (𝐴|𝐻))𝑃 (𝐴|𝐻). For example, if we choose the probability assessment P = (1, 1, 0), we 
observe that P is coherent on F , because 0 ∈ [𝑧′, 𝑧′′] = [0, 1]. However, we observe that the assessment P = (1, 1, 0) on {𝐴, 𝐵|𝐴, 𝐴𝐵}
is not coherent, because 𝑃 (𝐴𝐵) = 0 ≠ 𝑃 (𝐵|𝐴)𝑃 (𝐴) = 1. Then, property P3 is not satisfied by the pair (∧𝐾, |𝐹 ).
5.4. Property P4

To check the validity of property P4 for the iterated conditioning |𝐹 we study the set of all coherent probability assessments on 
the family {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐹 (𝐴|𝐻)}.

Theorem 9. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The probability assessment P = (𝑥, 𝑦, 𝑧) on the family of conditional events 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐹 (𝐴|𝐻)} is coherent for every (𝑥, 𝑦, 𝑧) ∈ [0, 1]3.

Proof. See Appendix A.3. □

Remark 11 (Property P4). We observe that the probability propagation rule valid for unconditional events (property P4) 
is no longer valid for Farrell’s iterated conditional. Indeed, from Theorem 9, any probability assessment (𝑥, 𝑦, 𝑧) on F =
{𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐹 (𝐴|𝐻)}, with (𝑥, 𝑦, 𝑧) ∈ [0, 1]3 is coherent. For instance, the assessment (1, 1, 0) is coherent on F but it is not 
coherent on {𝐴, 𝐵, 𝐵|𝐴}.

We briefly sum up here the results obtained in this section (see also Table 11) for the iterated conditioning |𝐹 . We verified that the |𝐹 satisfies both properties P1 and P2. Indeed, (𝐵|𝐾)|𝐹 (𝐴|𝐻) = ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾))|𝐹 (𝐴|𝐻) and ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾)) ≤ (𝐵|𝐾)|𝐹 (𝐴|𝐻). 
However, the iterated conditioning |𝐹 does not satisfy property P3, because 𝑃 (𝐴|𝐻)𝑃 ((𝐵|𝐾)|𝐹 (𝐴|𝐻)) ≠ 𝑃 ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾)) for 
some probability 𝑃 . Moreover, we showed that every assessment (𝑥, 𝑦, 𝑧) ∈ [0, 1]3 is coherent on {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐹 (𝐴|𝐻)} and 
hence property P4 is not satisfied. Finally, we observed that Import-Export Principle is satisfied by |𝐹 .

6. Iterated conditionals and compound prevision theorem

We observe that none of the iterated conditioning operations, |𝐶 , |𝑑𝐹 , and |𝐹 , studied in the previous sections satisfies the 
compound probability theorem P3. In this section, we consider iterated conditionals which, among other things, satisfy property P3. 
We first recall a structure used for defining, in the framework of conditional random quantities, the iterated conditioning |𝑔𝑠. Then, 
we introduce four notions of iterated conditioning which are based on the same structure and on the four conjunctions of trivalent 
logics recalled in Section 2. For all these new objects we check the validity of the basic properties.

We recall that in [60] (see also [34]), by using the structure
17

□|○ =□ ∧○+ℙ(□|○) s○, (33)
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with □ = 𝐵|𝐾 , ○ = 𝐴|𝐻 ≠ ∅, and □ ∧ ○ = (𝐵|𝐾) ∧𝑔𝑠 (𝐴|𝐻), the iterated conditional (𝐵|𝐾)|𝑔𝑠(𝐴|𝐻) has been defined as the 
following conditional random quantity

(𝐵|𝐾)|𝑔𝑠(𝐴|𝐻) = (𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾) + 𝜇𝑔𝑠 ( s𝐴|𝐻), (34)

where 𝜇𝑔𝑠 = ℙ[(𝐵|𝐾)|𝑔𝑠(𝐴|𝐻)]. We underline that when □ = 𝐴, ○ =𝐻 formula (33) reduces to formula (13). We also recall that 
([34])

ℙ[(𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾)] = ℙ[(𝐵|𝐾)|𝑔𝑠(𝐴|𝐻)]𝑃 (𝐴|𝐻). (35)

Moreover, in [38, Definition 7], by exploiting the structure (33), the iterated conditioning |𝑔𝑠 has been extended to the case of 
conjoined conditionals. More precisely, denoting by C(F1) (resp., C(F2)) the ∧𝑔𝑠-conjunction of the conditional events in a finite 
family of conditional events F1 (resp., F2), the iterated conditional C(F2)|𝑔𝑠C(F1) has been defined as

C(F2)|𝑔𝑠C(F1) = C(F2) ∧𝑔𝑠 C(F1) + 𝜇(1 − C(F1)) = C(F1 ∪ F2) + 𝜇(1 − C(F1)), (36)

where 𝜇 = ℙ[C(F2)|𝑔𝑠C(F1)]. In addition, it holds [38, Equation (8)] that

ℙ[C(F2) ∧𝑔𝑠 C(F1)] = ℙ[C(F2)|𝑔𝑠C(F1)]ℙ[C(F1)]. (37)

Formulas (35) and (37) generalize the compound probability theorem recalled in (12).
We now introduce the different notions of iterated conditioning, beyond |𝑔𝑠, obtained with the structure (33), by using the 

trivalent logic conjunctions ∧𝐾, ∧𝐿, ∧𝐵 , and ∧𝑆 , recalled in Section 2. Among other things, we will show that a formula like (35) still 
holds for each of these new objects.

Definition 5. Given two conditional events 𝐴|𝐻 , 𝐵|𝐾 , with 𝐴𝐻 ≠ ∅, for each 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, we define the iterated conditional 
(𝐵|𝐾)|𝑖(𝐴|𝐻) as

(𝐵|𝐾)|𝑖(𝐴|𝐻) = (𝐴|𝐻) ∧𝑖 (𝐵|𝐾) + 𝜇𝑖 ( s𝐴|𝐻), (38)

where 𝜇𝑖 = ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)].

Remark 12. In a betting framework, by setting ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)] = 𝜇𝑖, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, then for every real number 𝑠 you agree 
to pay an amount 𝑠𝜇𝑖 in order to receive the random quantity 𝑠 ⋅ (𝐵|𝐾)|𝑖(𝐴|𝐻). The associated random gain is

𝐺 = 𝑠[(𝐵|𝐾)|𝑖(𝐴|𝐻) − 𝜇𝑖] = 𝑠[(𝐴|𝐻) ∧𝑖 (𝐵|𝐾) + 𝜇𝑖 ( s𝐴|𝐻) − 𝜇𝑖]. (39)

We observe that, for each 𝑖 ∈ {𝐾, 𝐿, 𝑆, 𝑔𝑠}, if s𝐴|𝐻 is true, as (𝐴|𝐻) ∧𝑖 (𝐵|𝐾) = 0 (see Table 1), it follows that (𝐵|𝐾)|𝑖(𝐴|𝐻) = 𝜇𝑖, 
for every 𝜇𝑖, and hence 𝐺 = 𝑠(𝜇𝑖 − 𝜇𝑖) = 0. In other words, for 𝑖 ∈ {𝐾, 𝐿, 𝑆, 𝑔𝑠} the bet on (𝐵|𝐾)|𝑖(𝐴|𝐻) is called off when the 
antecedent 𝐴|𝐻 is false. Concerning 𝑖 =𝐵, if s𝐴𝐻𝐾 is true, as (𝐴|𝐻) ∧𝐵 (𝐵|𝐾) = 0 (see Table 1), it follows that (𝐵|𝐾)|𝐵(𝐴|𝐻) = 𝜇𝐵
and hence 𝐺 = 0. Then, the bet on (𝐵|𝐾)|𝐵(𝐴|𝐻) is called off when the antecedent 𝐴|𝐻 is false and 𝐵|𝐾 is not void. As we will see 
in Remark 14, for each iterated conditional (𝐵|𝐾)|𝑖(𝐴|𝐻), 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, there are other cases where the bet is called off, i.e. 
(𝐵|𝐾)|𝑖(𝐴|𝐻) = 𝜇𝑖.

Now, we check the validity of properties P1–P4, introduced in Section 2.5, for each iterated conditioning |𝑖, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}.

6.1. Property P1

In the next result we show that each iterated conditioning |𝑖, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆}, satisfies property P1.

Theorem 10. Given two conditional events 𝐴|𝐻 , 𝐵|𝐾 , with 𝐴𝐻 ≠ ∅, it holds that

((𝐴|𝐻) ∧𝑖 (𝐵|𝐾))|𝑖(𝐴|𝐻) = (𝐵|𝐾)|𝑖(𝐴|𝐻), 𝑖 ∈ {𝐾,𝐿,𝐵,𝑆}. (40)

Proof. Let 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆} be given. We set ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)] = 𝜇𝑖 and ℙ[((𝐴|𝐻) ∧(𝐵|𝐾))|𝑖(𝐴|𝐻)] = 𝜈𝑖. By Definition 5, as (𝐴|𝐻) ∧𝑖
(𝐴|𝐻) ∧𝑖 (𝐵|𝐾) = (𝐴|𝐻) ∧𝑖 (𝐵|𝐾), it holds that

((𝐴|𝐻) ∧𝑖 (𝐵|𝐾))|𝑖(𝐴|𝐻) = (𝐴|𝐻) ∧𝑖 (𝐵|𝐾) + 𝜈𝑖( s𝐴|𝐻). (41)

Then, as (𝐵|𝐾)|𝑖(𝐴|𝐻) = (𝐴|𝐻) ∧𝑖 (𝐵|𝐾) + 𝜇𝑖( s𝐴|𝐻), in order to prove (40) it is enough to verify that 𝜈𝑖 = 𝜇𝑖. We observe that 
((𝐴|𝐻) ∧𝑖 (𝐵|𝐾))|𝑖(𝐴|𝐻) − (𝐵|𝐾)|𝑖(𝐴|𝐻) = (𝜈𝑖 − 𝜇𝑖)( s𝐴|𝐻), where 𝜈𝑖 − 𝜇𝑖 = ℙ[((𝐴|𝐻) ∧𝑖 (𝐵|𝐾))|𝑖(𝐴|𝐻) − (𝐵|𝐾)|𝑖(𝐴|𝐻)]. By setting 
18

𝑃 (𝐴|𝐻) = 𝑥, it holds that
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(𝜈𝑖 − 𝜇𝑖)( s𝐴|𝐻) =
⎧⎪⎨⎪⎩
0, if 𝐴|𝐻 = 1,
𝜈𝑖 − 𝜇𝑖, if 𝐴|𝐻 = 0,
(𝜈𝑖 − 𝜇𝑖)(1 − 𝑥), if 𝐴|𝐻 = 𝑥, 0 < 𝑥 < 1.

Notice that, in the betting scheme, 𝜈𝑖 − 𝜇𝑖 is the amount to be paid in order to receive the random amount (𝜈𝑖 − 𝜇𝑖)( s𝐴|𝐻). Then, by 
coherence, 𝜈𝑖 − 𝜇𝑖 must be a linear convex combination of the possible values of (𝜈𝑖 − 𝜇𝑖)( s𝐴|𝐻), by discarding the cases where the 
bet is called off, that is the cases where you receive back the paid amount 𝜈𝑖 − 𝜇𝑖, whatever 𝜈𝑖 − 𝜇𝑖 is. In other words, coherence 
requires that 𝜈𝑖 − 𝜇𝑖 must belong to the convex hull of the set {0, (𝜈𝑖 − 𝜇𝑖)(1 − 𝑥)}, that is 𝜈𝑖 − 𝜇𝑖 = 𝛼 ⋅ 0 + (1 − 𝛼)(𝜈𝑖 − 𝜇𝑖)(1 − 𝑥), for 
some 𝛼 ∈ [0, 1]. Then, as 0 < 𝑥 < 1, we observe that the previous equality holds if and only if 𝜈𝑖 − 𝜇𝑖 = 0, that is 𝜈𝑖 = 𝜇𝑖. Therefore, 
equality (40) holds. □

We recall that |𝑔𝑠 satisfies property P1. Indeed, for the generalized iterated conditional (36) it holds that ([38, Theorem 5])

C(F2)|𝑔𝑠C(F1) = C(F1 ∪ F2)|𝑔𝑠C(F1). (42)

Then, by applying (42) with F1 = {𝐴|𝐻}, F2 = {𝐵|𝐾}, it follows that

(𝐵|𝐾)|𝑔𝑠(𝐴|𝐻) = ((𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾))|𝑔𝑠(𝐴|𝐻).

Thus, property P1 is satisfied by each iterated conditioning |𝑖 ∈ {|𝐾, |𝐿, |𝐵, |𝑆 , |𝑔𝑠}.

6.2. Property P2

We show that each iterated conditioning |𝑖, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, satisfies property P2. We observe that, coherence requires 𝜇𝑖 ≥ 0, 
𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠} (see Remark 13 in Section 6.3). Then, for each 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, as (𝐴|𝐻) ∧𝑖 (𝐵|𝐾) ≤ (𝐴|𝐻) ∧𝑖 (𝐵|𝐾) +𝜇𝑖( s𝐴|𝐻), 
from (38) it follows that

(𝐴|𝐻) ∧𝑖 (𝐵|𝐾) ≤ (𝐵|𝐾)|𝑖(𝐴|𝐻), (43)

and hence ℙ[(𝐴|𝐻) ∧𝑖 (𝐵|𝐾)] ≤ ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)].

6.3. Property P3

We already recalled in equation (35) that the iterated conditioning |𝑔𝑠 satisfies P3. Then, by setting 𝑧𝑔𝑠 = ℙ[(𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾)], 
𝜇𝑔𝑠 = ℙ[(𝐵|𝐾)|𝑔𝑠(𝐴|𝐻)], and 𝑥 = 𝑃 (𝐴|𝐻) it holds that 𝑧𝑔𝑠 = 𝑥𝜇𝑔𝑠. By exploiting the structure (33), we show below that P3 is also 
valid for |𝐾, |𝐿, |𝐵 , and |𝑆 . Indeed, by the linearity property of a coherent prevision, from (38) we obtain that

𝜇𝑖 = ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)] = 𝑃 ((𝐵|𝐾) ∧𝑖 (𝐴|𝐻)) + 𝜇𝑖𝑃 ( s𝐴|𝐻) =
= 𝑃 ((𝐵|𝐾) ∧𝑖 (𝐴|𝐻)) + 𝜇𝑖 𝑃 ( s𝐴|𝐻) = 𝑧𝑖 + 𝜇𝑖(1 − 𝑥) ,

(44)

where 𝑥 = 𝑃 (𝐴|𝐻) and 𝑧𝑖 = 𝑃 ((𝐴|𝐻) ∧𝑖 (𝐵|𝐾)), 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆}. As 𝜇𝑖 = 𝑧𝑖 + 𝜇𝑖(1 − 𝑥), it follows that

𝑧𝑖 = 𝜇𝑖𝑥, 𝑖 ∈ {𝐾,𝐿,𝐵,𝑆}.

Therefore, coherence requires that

ℙ[(𝐴|𝐻) ∧𝑖 (𝐵|𝐾)] = ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)]𝑃 (𝐴|𝐻), 𝑖 ∈ {𝐾,𝐿,𝐵,𝑆, 𝑔𝑠}, (45)

which states that the compound prevision formula for iterated conditionals (property P3) is valid for each iterated conditioning |𝑖, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}.

Remark 13. Notice that, as 𝑃 (𝐴|𝐻) ≥ 0 and ℙ[(𝐴|𝐻) ∧𝑖 (𝐵|𝐾)] ≥ 0 for 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, from (45) it follows that ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)]
≥ 0, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}.

We set 𝑃 (𝐴|𝐻) = 𝑥, 𝑃 (𝐵|𝐾) = 𝑦, 𝑃 ((𝐴|𝐻) ∧𝑖 (𝐵|𝐾)) = 𝑧𝑖, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆}, ℙ[(𝐴|𝐻) ∧𝑖 (𝐵|𝐾)] = 𝑧𝑔𝑠, and ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)] = 𝜇𝑖, 
𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}. Then, based on Definition 5 and on the compound prevision theorem, for each |𝑖, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, we obtain 
19

the random quantities (𝐵|𝐾)|𝑖(𝐴|𝐻) illustrated below.
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• (|𝐾 ). We recall that (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) =𝐴𝐻𝐵𝐾|(𝐻𝐾 ∨𝐴𝐻 ∨𝐵𝐾), then we have

(𝐵|𝐾)|𝐾 (𝐴|𝐻) =𝐴𝐻𝐵𝐾|(𝐻𝐾 ∨𝐴𝐻 ∨𝐵𝐾) + 𝜇𝐾 (�̄�|𝐻) =

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if 𝐴𝐻𝐵𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 is true,

𝑧𝐾 , if 𝐴𝐻 s𝐾 is true,

𝑧𝐾 + 𝜇𝐾 (1 − 𝑥), if Ď𝐻𝐵𝐾 ∨ Ď𝐻 s𝐾 is true,

𝜇𝐾 (1 − 𝑥), if Ď𝐻 s𝐵𝐾 is true,

𝜇𝐾 , if s𝐴𝐻 is true.

(46)

From (45), coherence requires that 𝑧𝐾 = 𝑥𝜇𝐾 and 𝑧𝐾 + 𝜇𝐾 (1 − 𝑥) = 𝜇𝐾 . Then, we obtain

(𝐵|𝐾)|𝐾 (𝐴|𝐻) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if 𝐴𝐻𝐵𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 is true,

𝑥𝜇𝐾 , if 𝐴𝐻 s𝐾 is true,

𝜇𝐾 (1 − 𝑥), if Ď𝐻 s𝐵𝐾 is true,

𝜇𝐾 , if s𝐴𝐻 ∨ Ď𝐻𝐵𝐾 ∨ Ď𝐻 s𝐾 is true.

(47)

• (|𝐿). We recall that (𝐴|𝐻) ∧𝐿 (𝐵|𝐾) =𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨𝐴𝐻 ∨ 𝐵𝐾 ∨𝐻𝐾), then we have

(𝐵|𝐾)|𝐿(𝐴|𝐻) =𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨𝐴𝐻 ∨ 𝐵𝐾 ∨𝐻𝐾) + 𝜇𝐿(�̄�|𝐻) =

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if 𝐴𝐻𝐵𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 is true,

𝑧𝐿, if 𝐴𝐻 s𝐾 is true,

𝑧𝐿 + 𝜇𝐿(1 − 𝑥), if Ď𝐻𝐵𝐾 is true,

𝜇𝐿(1 − 𝑥), if Ď𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐾 is true,

𝜇𝐿, if s𝐴𝐻 is true.

(48)

From (45), coherence requires that 𝑧𝐿 = 𝑥𝜇𝐿 and 𝑧𝐿 + 𝜇𝐿(1 − 𝑥) = 𝜇𝐿. Then, we obtain

(𝐵|𝐾)|𝐿(𝐴|𝐻) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if 𝐴𝐻𝐵𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 is true,

𝑥𝜇𝐿, if 𝐴𝐻 s𝐾 is true,

𝜇𝐿(1 − 𝑥), if Ď𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐾 is true,

𝜇𝐿, if s𝐴𝐻 ∨ Ď𝐻𝐵𝐾 is true.

(49)

• (|𝐵). We recall that (𝐴|𝐻) ∧𝐵 (𝐵|𝐾) =𝐴𝐻𝐵𝐾|𝐵𝐾 , then we have

(𝐵|𝐾)|𝐵(𝐴|𝐻) =𝐴𝐻𝐵𝐾|𝐻𝐾 + 𝜇𝐵(�̄�|𝐻) =

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if 𝐴𝐻𝐵𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 is true,

𝑧𝐵, if 𝐴𝐻 s𝐾 is true,

𝑧𝐵 + 𝜇𝐵, if s𝐴𝐻 s𝐾 is true,

𝑧𝐵 + 𝜇𝐵(1 − 𝑥), if Ď𝐻 is true,

𝜇𝐵, if s𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 s𝐵𝐾 is true.

(50)

From (45), coherence requires that 𝑧𝐵 = 𝑥𝜇𝐵 and 𝑧𝐵 + 𝜇𝐵(1 − 𝑥) = 𝜇𝐵 . Then, we obtain

(𝐵|𝐾)|𝐵(𝐴|𝐻) =

⎧⎪⎪⎪⎨⎪⎪
1, if 𝐴𝐻𝐵𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 is true,

𝑥𝜇𝐵, if 𝐴𝐻 s𝐾 is true,

𝜇𝐵(1 + 𝑥), if s𝐴𝐻 s𝐾 is true,

(51)
20

⎪⎩𝜇𝐵, if Ď𝐻 ∨ s𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 s𝐵𝐾 is true.
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Table 8

Numerical values of (𝐵|𝐾)|𝑖(𝐴|𝐻), 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}. We denote 𝑃 (𝐴|𝐻) = 𝑥, 𝑃 (𝐵|𝐾) = 𝑦, and 
ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)] = 𝜇𝑖 , 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}.

(𝐵|𝐾)|𝐾 (𝐴|𝐻) (𝐵|𝐾)|𝐿(𝐴|𝐻) (𝐵|𝐾)|𝐵 (𝐴|𝐻) (𝐵|𝐾)|𝑆 (𝐴|𝐻) (𝐵|𝐾)|𝑔𝑠(𝐴|𝐻)

𝐴𝐻𝐵𝐾 1 1 1 1 1
𝐴𝐻𝐵𝐾 0 0 0 0 0
𝐴𝐻𝐾 𝑥𝜇𝐾 𝑥𝜇𝐿 𝑥𝜇𝐵 1 𝑦

𝐴𝐻𝐵𝐾 𝜇𝐾 𝜇𝐿 𝜇𝐵 𝜇𝑆 𝜇𝑔𝑠
𝐴𝐻𝐵𝐾 𝜇𝐾 𝜇𝐿 𝜇𝐵 𝜇𝑆 𝜇𝑔𝑠
𝐴𝐻 𝐾 𝜇𝐾 𝜇𝐿 𝜇𝐵 (1 + 𝑥) 𝜇𝑆 𝜇𝑔𝑠
𝐻𝐵𝐾 𝜇𝐾 𝜇𝐿 𝜇𝐵 1+ 𝜇𝑆 (1 − 𝑥) 𝑥+ 𝜇𝑔𝑠(1 − 𝑥)
𝐻𝐵𝐾 𝜇𝐾 (1 − 𝑥) 𝜇𝐿(1 − 𝑥) 𝜇𝐵 𝜇𝑆 (1 − 𝑥) 𝜇𝑔𝑠(1 − 𝑥)
𝐻𝐾 𝜇𝐾 𝜇𝐿(1 − 𝑥) 𝜇𝐵 𝜇𝑆 𝜇𝑔𝑠

• (|𝑆 ). We recall that (𝐴|𝐻) ∧𝑆 (𝐵|𝐾) = ((𝐴𝐻 ∨𝐻) ∧ (𝐵𝐾 ∨𝐾)), then we have

(𝐵|𝐾)|𝑆 (𝐴|𝐻) = ((𝐴𝐻 ∨𝐻) ∧ (𝐵𝐾 ∨𝐾))|(𝐻 ∨𝐾) + 𝜇𝑆 ( s𝐴|𝐻) =

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if 𝐴𝐻𝐵 ∨𝐴𝐻 s𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 is true,

1 + 𝜇𝑆 (1 − 𝑥), if Ď𝐻𝐵𝐾 is true,

𝜇𝑆 (1 − 𝑥), if Ď𝐻 s𝐵𝐾 is true,

𝑧𝑆 + 𝜇𝑆 (1 − 𝑥), if Ď𝐻 s𝐾 is true,

𝜇𝑆 if s𝐴𝐻 is true.

(52)

From (45), coherence requires that 𝑧𝑆 = 𝑥𝜇𝑆 and 𝑧𝑆 + 𝜇𝑆 (1 − 𝑥) = 𝜇𝑆 . Then, we obtain

(𝐵|𝐾)|𝑆 (𝐴|𝐻) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if 𝐴𝐻𝐵 ∨𝐴𝐻 s𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 is true,

1 + 𝜇𝑆 (1 − 𝑥), if Ď𝐻𝐵𝐾 is true,

𝜇𝑆 (1 − 𝑥), if Ď𝐻 s𝐵𝐾 is true,

𝜇𝑆 if s𝐴𝐻 ∨ Ď𝐻 s𝐾 is true.

(53)

• (|𝑔𝑠). We recall that (𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾) = (𝐴𝐻 ∨𝐵𝐾 + 𝑥Ď𝐻 s𝐵𝐾 + 𝑦 s𝐴𝐻 s𝐾)|(𝐻 ∨𝐾), then we have ([34])

(𝐵|𝐾)|𝑔𝑠(𝐴|𝐻) = (𝐴𝐻𝐵𝐾 + 𝑥Ď𝐻𝐵𝐾 + 𝑦𝐴𝐻 s𝐾)|(𝐻 ∨𝐾) + 𝜇𝑔𝑠( s𝐴|𝐻) =

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if 𝐴𝐻𝐵𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 is true,

𝑦, if 𝐴𝐻 s𝐾 is true,

𝑥+ 𝜇𝑔𝑠(1 − 𝑥), if Ď𝐻𝐵𝐾 is true,

𝜇𝑔𝑠(1 − 𝑥), if Ď𝐻 s𝐵𝐾 is true,

𝑧𝑔𝑠 + 𝜇𝑔𝑠(1 − 𝑥), if Ď𝐻 s𝐾 is true,

𝜇𝑔𝑠, if s𝐴𝐻 is true.

(54)

From (45), coherence requires that 𝑧𝑔𝑠 = 𝑥𝜇𝑔𝑠 and 𝑧𝑔𝑠 + 𝜇𝑔𝑠(1 − 𝑥) = 𝜇𝑔𝑠. Then, we recall that

(𝐵|𝐾)|𝑔𝑠(𝐴|𝐻) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if 𝐴𝐻𝐵𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 is true,

𝑦, if 𝐴𝐻 s𝐾 is true,

𝑥+ 𝜇𝑔𝑠(1 − 𝑥), if Ď𝐻𝐵𝐾 is true,

𝜇𝑔𝑠(1 − 𝑥), if Ď𝐻 s𝐵𝐾 is true,

𝜇𝑔𝑠, if s𝐴𝐻 ∨ Ď𝐻 s𝐾 is true.

(55)

In Table 8 we summarize the possible values of the iterated conditionals (𝐵|𝐾)|𝑖(𝐴|𝐻), 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}.

Remark 14. In addition to the cases considered in Remark 12, based on property P3 (see Table 8), for each 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, 
21

there are other situations where (𝐵|𝐾)|𝑖(𝐴|𝐻) = 𝜇𝑖, for every 𝜇𝑖, and hence the associated bet is called off. For example, the iterated 
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conditional (𝐵|𝐾)|𝐾 (𝐴|𝐻) coincides with 𝜇𝐾 not only when s𝐴|𝐻 is true, but also when Ď𝐻𝐵𝐾 , or Ď𝐻 s𝐾 , is true. Moreover, a bet on 
these iterated conditionals could also be called off for values of 𝑥 as well. For instance, (𝐵|𝐾)|𝐾 (𝐴|𝐻) reduces to 𝜇𝐾 , when 𝑥 = 1
and 𝐴𝐻 s𝐾 is true, or when 𝑥 = 0 and Ď𝐻 s𝐵𝐾 is true.

6.4. Property P4

In this section, for each 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆}, we find the set of all coherent assessments on the family {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝑖
(𝐵|𝐾), (𝐵|𝐾)|𝑖(𝐴|𝐻)}. Moreover, for each 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆}, we determine the interval of coherent extensions on (𝐵|𝐾)|𝑖(𝐴|𝐻)
and we check the validity of property P4. Then, we recall that property P4 is satisfied by |𝑔𝑠 .
The iterated conditioning |𝐾 .

Theorem 11. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The set Π of all the coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on the family 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐾 (𝐵|𝐾), (𝐵|𝐾)|𝐾 (𝐴|𝐻)} is Π = Π′ ∪ Π′′, where Π′ = {(𝑥, 𝑦, 𝑧, 𝜇) ∶ 𝑥 ∈ (0, 1], 𝑦 ∈ [0, 1], 𝑧 ∈ [𝑧′, 𝑧′′], 𝜇 = 𝑧

𝑥
}

with 𝑧′ = 0, 𝑧′′ =𝑚𝑖𝑛{𝑥, 𝑦}, and Π′′ = {(0, 𝑦, 0, 𝜇) ∶ (𝑦, 𝜇) ∈ [0, 1]2}.

Proof. It is well-known that the assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾} is coherent for every (𝑥, 𝑦) ∈ [0, 1]2. By Table 2, the assessment 
𝑧 = 𝑃 ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾)) is a coherent extension of (𝑥, 𝑦) if and only if 𝑧 ∈ [𝑧′, 𝑧′′] where 𝑧′ = 0 and 𝑧′′ = 𝑚𝑖𝑛{𝑥, 𝑦}. Assuming 𝑥 > 0, 
from (45), it holds that 𝜇 = 𝑧

𝑥
. Then, every (𝑥, 𝑦, 𝑧, 𝜇) ∈ Π′ is coherent, i.e., Π′ ⊆ Π. Of course, if 𝑥 > 0 and (𝑥, 𝑦, 𝑧, 𝜇) ∉ Π′, then the 

assessment (𝑥, 𝑦, 𝑧, 𝜇) is not coherent, i.e. (𝑥, 𝑦, 𝑧, 𝜇) ∉ Π.
Let us consider now the case 𝑥 = 0, so that 𝑧′ = 0 and 𝑧′′ = 0. We show that the assessment (0, 𝑦, 0, 𝜇) is coherent if and only if 

(𝑦, 𝜇) ∈ [0, 1]2, that is Π′′ ⊆Π.
As 𝑥 = 0, from (47), it holds that

(𝐵|𝐾)|𝐾 (𝐴|𝐻) =
⎧⎪⎨⎪⎩
1, if 𝐴𝐻𝐵𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 ∨𝐴𝐻 s𝐾 is true,

𝜇, if s𝐴𝐻 ∨ Ď𝐻𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐾 is true,

(56)

that is (𝐵|𝐾)|𝐾 (𝐴|𝐻) = 𝐴𝐻𝐵𝐾 + 𝜇( s𝐴 ∨ Ď𝐻). Moreover we have that 𝐴𝐻𝐵𝐾 + 𝜇( s𝐴 ∨ Ď𝐻) and the conditional event 𝐵𝐾|𝐴𝐻 =
𝐴𝐻𝐵𝐾 + 𝜂( s𝐴 ∨ Ď𝐻), where 𝜂 = 𝑃 (𝐵𝐾|𝐴𝐻), coincide when 𝐴𝐻 is true. Then, from Theorem 3, it follows that 𝜇 = 𝜂 and 
hence (𝐵|𝐾)|𝐾 (𝐴|𝐻) and 𝐵𝐾|𝐴𝐻 should also coincide when 𝐴𝐻 is false. Thus, (𝐵|𝐾)|𝐾 (𝐴|𝐻) and 𝐵𝐾|𝐴𝐻 coincide in all 
cases. Therefore F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐾 (𝐵|𝐾), (𝐵|𝐾)|𝐾 (𝐴|𝐻)} = {𝐴|𝐻, 𝐵|𝐾, 𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨ 𝐴𝐻 ∨ 𝐵𝐾), 𝐵𝐾|𝐴𝐻} and 
H4 = 𝐻 ∨ 𝐾 ∨ (𝐴𝐻𝐵𝐾 ∨ 𝐴𝐻 ∨ 𝐵𝐾) ∨ 𝐴𝐻 = 𝐻 ∨ 𝐾 . The constituents 𝐶ℎ’s and the points 𝑄ℎ’s associated with (F , P), where 
P = (0, 𝑦, 0, 𝜇) are the following:

𝐶1 =𝐴𝐻𝐵𝐾,𝐶2 =𝐴𝐻 s𝐵𝐾,𝐶3 =𝐴𝐻 s𝐾,𝐶4 = s𝐴𝐻𝐵𝐾,𝐶5 = s𝐴𝐻 s𝐵𝐾,
𝐶6 = s𝐴𝐻 s𝐾,𝐶7 = Ď𝐻𝐵𝐾,𝐶8 = Ď𝐻 s𝐵𝐾,𝐶0 = Ď𝐻 s𝐾,

and

𝑄1 = (1,1,1,1),𝑄2 = (1,0,0,0),𝑄3 = (1, 𝑦,0,0),𝑄4 = (0,1,0, 𝜇),𝑄5 = (0,0,0, 𝜇),
𝑄6 = (0, 𝑦,0, 𝜇),𝑄7 = (0,1,0, 𝜇),𝑄8 = (0,0,0, 𝜇),𝑄0 = (0, 𝑦,0, 𝜇).

The constituents contained in H4 =𝐻 ∨𝐾 are 𝐶1, … , 𝐶8. The system (Σ) in (5) associated with the pair (F , P) is

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜆1 + 𝜆2 + 𝜆3 = 0,
𝜆1 + 𝑦𝜆3 + 𝜆4 + 𝑦𝜆6 + 𝜆7 = 𝑦,
𝜆1 = 0,
𝜆1 + 𝜇𝜆4 + 𝜇𝜆5 + 𝜇𝜆6 + 𝜇𝜆7 + 𝜇𝜆8 = 𝜇
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7 + 𝜆8 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,8.

(57)

We observe that, as 𝑦 ∈ [0, 1], P belongs to the segment with end points 𝑄4, 𝑄5 because P = 𝑦𝑄4 + (1 −𝑦)𝑄5. Then, Λ = (0, 0, 0, 𝑦, 1 −
𝑦, 0, 0, 0) is a solution of (57) with

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 = 1 > 0,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 + 𝜆7 + 𝜆8 = 1 > 0,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐵𝐾∨𝐴𝐻∨𝐵𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆8 = 1 > 0,

𝜙4(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐴𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 = 0.

Let S′ = {(0, 0, 0, 𝑦, 1 − 𝑦, 0, 0, 0)} denote a subset of the set S of all solutions of (57). We have that 𝑀 ′
1 =𝑀

′
2 =𝑀

′
3 = 1 and 𝑀 ′

4 = 0
(as defined in (7)). It follows that 𝐼 ′0 = {4}. As the sub-assessment P′0 = 𝜇 on F ′

0 = {𝐵𝐾|𝐴𝐻} is coherent ∀𝜇 ∈ [0, 1], by Theorem 1, 
22

it follows that the assessment (0, 𝑦, 0, 𝜇) on F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐾 (𝐵|𝐾), (𝐵|𝐾)|𝐾 (𝐴|𝐻)} is coherent for every (𝑦, 𝜇) ∈ [0, 1]2, 
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that is (0, 𝑦, 0, 𝜇) ∈Π′′. Thus Π′′ ⊆Π. Of course, if (0, 𝑦, 𝑧, 𝜇) ∉Π′′ the assessment (0, 𝑦, 𝑧, 𝜇) is not coherent and hence (0, 𝑦, 𝑧, 𝜇) ∉Π. 
Therefore Π =Π′ ∪ Π′′. □

Based on Theorem 11, we obtain

Theorem 12. Let 𝐴, 𝐵, 𝐻, 𝐾 be any logically independent events. Given any assessment (𝑥, 𝑦) ∈ [0, 1]2 on {𝐴|𝐻, 𝐵|𝐾}, for the iterated 
conditional (𝐵|𝐾)|𝐾 (𝐴|𝐻) the extension 𝜇𝐾 = ℙ((𝐵|𝐾)|𝐾 (𝐴|𝐻)) is coherent if and only if 𝜇𝐾 ∈ [𝜇′

𝐾
, 𝜇′′
𝐾
], where

𝜇′
𝐾
= 0, 𝜇′′

𝐾
=

{
min

{
1, 𝑦

𝑥

}
, if 𝑥 > 0;

1, if 𝑥 = 0.
(58)

Proof. Of course, the assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾} is coherent. Assume that 𝑥 > 0. We simply write 𝜇 instead of 𝜇𝐾 . From 
Theorem 11, it follows that the set of all coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐾 (𝐵|𝐾), (𝐵|𝐾)|𝐾 (𝐴|𝐻)} is 
Π′ = {(𝑥, 𝑦, 𝑧, 𝜇) ∶ 0 < 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 𝑧′ ≤ 𝑧 ≤ 𝑧′′, 𝜇 = 𝑧

𝑥
}, where 𝑧′ = 0 and 𝑧′′ = min{𝑥, 𝑦} (2). Then, 𝜇 is a coherent extension of 

(𝑥, 𝑦) if and only if 𝜇 ∈ [𝜇′, 𝜇′′], where 𝜇′ = 0 and 𝜇′′ = 𝑧′′

𝑥
= min

{
1, 𝑦

𝑥

}
. Assume that 𝑥 = 0. From Theorem 11, it follows that the 

set of all coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on F = {𝐴|𝐻, 𝐵|𝐾 , (𝐴|𝐻) ∧𝐾 (𝐵|𝐾), (𝐵|𝐾)|𝐾 (𝐴|𝐻)} is Π′′ = {(0, 𝑦, 0, 𝜇) ∶ (𝑦, 𝜇) ∈ [0, 1]2}. 
Then, 𝜇 is a coherent extension to (𝐵|𝐾)|𝐾 (𝐴|𝐻) of (0, 𝑦) on {𝐴|𝐻, 𝐵|𝐾} if and only if 𝜇 ∈ [𝜇′, 𝜇′′], where 𝜇′ = 0 and 𝜇′′ = 1. □

Remark 15. We notice that the lower and upper bounds 𝜇′
𝐾

and 𝜇′′
𝐾

for (𝐵|𝐾)|𝐾 (𝐴|𝐻), given in (58), do not coincide with the lower 
and upper bound 𝜇′ and 𝜇′′ for 𝐵|𝐴, given in (17). In particular, the extension 𝜇𝐾 = 0 to (𝐵|𝐾)|𝐾 (𝐴|𝐻) of (1, 1) on {𝐴|𝐻, 𝐵|𝐾} is 
coherent because, as 𝜇′

𝐾
= 0, the assessment (1, 1, 0) on {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐾 (𝐴|𝐻)} is coherent. However, 𝜇 = 0 is not a coherent 

extension to 𝐵|𝐴 of (1, 1) on {𝐴, 𝐵}, because, as 𝜇′ = max{1+1−1,0}
1 = 1, the assessment (1, 1, 0) on {𝐴, 𝐵, 𝐵|𝐴} is not coherent. 

Therefore, property P4 is not satisfied by |𝐾 .

In the following example we show that the invalidity of property P4 leads to some counterintuitive aspects.

Example 4. In a random experiment we are supposed to pick a ball from one of two bags, 𝑈 and 𝑉 , both containing white balls. We 
do not know which of the two bags is selected. We set 𝐻 =“the ball is picked from the bag 𝑈” (and hence Ď𝐻 =“the ball is picked 
from the bag 𝑉 ”) and 𝐴 =“the drawn ball is white”. Of course 𝑃 (𝐴|𝐻) = 𝑃 (𝐴|Ď𝐻) = 1. Based on (46) it holds that

(𝐴|Ď𝐻)|𝐾 (𝐴|𝐻) = (𝐴|Ď𝐻) ∧𝐾 (𝐴|𝐻) + 𝜇𝐾 ( s𝐴|𝐻) =𝐴𝐻Ď𝐻|(𝐻Ď𝐻 ∨ s𝐴𝐻 ∨ s𝐴 Ď𝐻) + 𝜇𝐾 ( s𝐴|𝐻) =
= ∅| s𝐴+ 𝜇𝐾 ( s𝐴|𝐻) = 0 + 𝜇𝐾 ( s𝐴|𝐻) = 0,

because, by coherence, 𝜇𝐾 = 0. Then, ℙ[(𝐴|Ď𝐻)|𝐾 (𝐴|𝐻)] = 0 is the unique coherent extension of 𝑃 (𝐴|𝐻) = 𝑃 (𝐴|Ď𝐻) = 1. Thus, when 
using |𝐾 , the iterated conditional if the drawn ball is white if picked from 𝑈 , then it is white if picked from 𝑉 has a prevision of 0, even 
if both conditionals, the drawn ball is white if picked from 𝑈 and the drawn ball is white if picked from 𝑉 , have probability 1.

The iterated conditioning |𝐿. We obtain results similar to the case |𝐾 . Indeed we have

Theorem 13. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The set Π of all the coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on the family 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐿 (𝐵|𝐾), (𝐵|𝐾)|𝐿(𝐴|𝐻)} is Π = Π′ ∪ Π′′, where Π′ = {(𝑥, 𝑦, 𝑧, 𝜇) ∶ 𝑥 ∈ (0, 1], 𝑦 ∈ [0, 1], 𝑧 ∈ [𝑧′, 𝑧′′], 𝜇 = 𝑧

𝑥
}

with 𝑧′ = 0, 𝑧′′ =𝑚𝑖𝑛{𝑥, 𝑦}, and Π′′ = {(0, 𝑦, 0, 𝜇) ∶ (𝑦, 𝜇) ∈ [0, 1]2}.

Proof. See Appendix A.4. □

Based on Theorem 13, we obtain

Theorem 14. Let 𝐴, 𝐵, 𝐻, 𝐾 be any logically independent events. Given a coherent assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾}, for the iterated 
conditional (𝐵|𝐾)|𝐿(𝐴|𝐻) the extension 𝜇𝐿 = ℙ((𝐵|𝐾)|𝐿(𝐴|𝐻)) is coherent if and only if 𝜇𝐿 ∈ [𝜇′

𝐿
, 𝜇′′
𝐿
], where

𝜇′
𝐿
= 0, 𝜇′′

𝐿
=

{
min

{
1, 𝑦

𝑥

}
, if 𝑥 > 0;

1, if 𝑥 = 0.
(59)

Proof. The proof is the same as in Theorem 12 where 𝐾 is replaced by 𝐿 and Theorem 11 is replaced by Theorem 13. □

Remark 16. Theorem 14 shows that the interval of coherent extensions [𝜇′
𝐿
, 𝜇′′
𝐿
] for 𝜇𝐿 = ℙ[(𝐵|𝐾)|𝐿(𝐴|𝐻)] does not coincide with 
23

the interval [𝜇′, 𝜇′′] of coherent assessment for 𝜇 = 𝑃 (𝐵|𝐴) where 𝜇′ and 𝜇′′ are as in (17). Thus, property P4 is not satisfied by |𝐿.
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The iterated conditioning |𝐵 . We continue by analyzing the set of coherent extensions for the iterated conditional |𝐵 . We first show 
that, when we evaluate ℙ[(𝐵|𝐾)|𝐵(𝐴|𝐻)], if 𝑃 (𝐴|𝐻) = 0, then coherence requires that 𝑃 ((𝐴|𝐻) ∧𝐵 (𝐵|𝐾)) = 0.

Remark 17. We recall that, given any (𝑥, 𝑦) ∈ [0, 1]2, where 𝑥 = 𝑃 (𝐴|𝐻) and 𝑦 = 𝑃 (𝐵|𝐾), the interval of coherent extensions on 𝑧𝐵 =
𝑃 ((𝐴|𝐻) ∧𝐵 (𝐵|𝐾)) is [𝑧′

𝐵
, 𝑧′′
𝐵
] = [0, 1] (Table 2). In particular it is coherent to assess (0, 𝑦, 𝑧𝐵), with 𝑧𝐵 > 0, on {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐵

(𝐵|𝐾)}. However, for the object (𝐵|𝐾)|𝐵(𝐴|𝐻) coherence also requires that 𝑧𝐵 = 𝜇𝐵𝑥 (see (44)). Then, coherence requires that 
𝑧𝐵 = 0 when we consider the assessment (0, 𝑦, 𝑧𝐵, 𝜇𝐵) on {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐵 (𝐵|𝐾), (𝐵|𝐾)|𝐵(𝐴|𝐻)}.

Theorem 15. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The set Π of all the coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on the family 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐵 (𝐵|𝐾), (𝐵|𝐾)|𝐵(𝐴|𝐻)} is Π = Π′ ∪ Π′′, where Π′ = {(𝑥, 𝑦, 𝑧, 𝜇) ∶ 𝑥 ∈ (0, 1], 𝑦 ∈ [0, 1], 𝑧 ∈ [𝑧′, 𝑧′′], 𝜇 = 𝑧

𝑥
}

with 𝑧′ = 0, 𝑧′′ = 1, and Π′′ = {(0, 𝑦, 0, 𝜇) ∶ (𝑦, 𝜇) ∈ [0, 1]2}.

Proof. See Appendix A.5. □

Theorem 16. Let 𝐴, 𝐵, 𝐻, 𝐾 be any logically independent events. Given a coherent assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾}, for the iterated 
conditional (𝐵|𝐾)|𝐵(𝐴|𝐻) the extension 𝜇𝐵 = ℙ[(𝐵|𝐾)|𝐵(𝐴|𝐻)] is coherent if and only if 𝜇𝐵 ∈ [𝜇′

𝐵
, 𝜇′′
𝐵
], where

𝜇′
𝐵
= 0, 𝜇′′

𝐵
=
{ 1

𝑥
, if 0 < 𝑥 < 1,

1, if 𝑥 = 0 ∨ 𝑥 = 1.
(60)

Proof. See Appendix A.6. □

Remark 18. We notice that the lower and upper bounds 𝜇′
𝐵

and 𝜇′′
𝐵

for (𝐵|𝐾)|𝐵(𝐴|𝐻), given in (60), do not coincide with the lower 
and upper bound 𝜇′ and 𝜇′′ for 𝐵|𝐴, given in (17). In particular, the extension 𝜇𝐵 = 1

𝑥
to (𝐵|𝐾)|𝐵(𝐴|𝐻) of (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾}, 

with 0 < 𝑥 < 1, is coherent. Indeed, as 𝜇′′
𝐵
= 1

𝑥
, from (60), the assessment (𝑥, 𝑦, 1

𝑥
) on {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐵(𝐴|𝐻)} is coherent. 

However, we recall that 𝜇 = 1
𝑥

is not a coherent extension to 𝐵|𝐴 of (𝑥, 𝑦) on {𝐴, 𝐵}, with 0 < 𝑥 < 1. Indeed, as 1
𝑥
> 1 ≥ 𝜇′′ =

𝑚𝑖𝑛{𝑥, 𝑦}, from (17) the assessment (𝑥, 𝑦, 1
𝑥
) on {𝐴, 𝐵, 𝐵|𝐴} is not coherent. Therefore, property P4 is not satisfied by |𝐵 .

We also notice that, when 𝑃 (𝐴|𝐻) > 0, as (𝐴|𝐻) ∧𝐵 (𝐵|𝐾) =𝐴𝐻|𝐵𝐾 , from (45) it holds that

ℙ[(𝐵|𝐾)|𝐵(𝐴|𝐻)] =
𝑃 ((𝐴|𝐻) ∧𝐵 (𝐵|𝐾))

𝑃 (𝐴|𝐻)
= 𝑃 (𝐴𝐻|𝐵𝐾)

𝑃 (𝐴|𝐻)
. (61)

We point out that the prevision of (𝐵|𝐾)|𝐵(𝐴|𝐻) given in (61) coincides with the probability of the super-conditional event 𝐵𝐾 |𝐴𝐻 , 
denoted by 𝑃 ∗(𝐵𝐾 |𝐴𝐻 ), introduced in [4, formula (20)]. As 𝑃 ∗(𝐵𝐾 |𝐴𝐻 ) can assume values greater than 1, in [4] it has been called 
conditional hyper-probability.

The iterated conditioning |𝑆 . We first show that, when we evaluate ℙ[(𝐵|𝐾)|𝑆 (𝐴|𝐻)], if 𝑃 (𝐴|𝐻) = 0, then coherence requires that 
𝑃 ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) = 0.

Remark 19. We recall that, given any (𝑥, 𝑦) ∈ [0, 1]2, where 𝑥 = 𝑃 (𝐴|𝐻) and 𝑦 = 𝑃 (𝐵|𝐾), the interval of coherent extensions on 
𝑧𝑆 = 𝑃 ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) is [𝑧′, 𝑧′′] where (see Table 2)

𝑧′ = max{𝑥+ 𝑦− 1,0} and 𝑧′′ =

{
𝑥+𝑦−2𝑥𝑦
1−𝑥𝑦 , if (𝑥, 𝑦) ≠ (1,1),

1, if (𝑥, 𝑦) = (1,1).

In particular it is coherent to assess 𝑧𝑆 > 0 when 𝑥 = 0. However, for the object (𝐵|𝐾)|𝑆 (𝐴|𝐻) coherence also requires that 𝑧𝑆 =
𝜇𝑆𝑥 (see (44)). Then, coherence requires that 𝑧𝑆 = 0 when we consider the assessment (0, 𝑦, 𝑧𝑆, 𝜇𝑆 ) on {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝑆
(𝐵|𝐾), (𝐵|𝐾)|𝑆 (𝐴|𝐻)}.

Theorem 17. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The set Π of all the coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on the family 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝑆 (𝐵|𝐾), (𝐵|𝐾)|𝑆 (𝐴|𝐻)} is Π =Π′ ∪ Π′′, where

Π′ = {(𝑥, 𝑦, 𝑧, 𝜇) ∶ 𝑥 ∈ (0,1], 𝑦 ∈ [0,1], 𝑧 ∈ [𝑧′, 𝑧′′], 𝜇 = 𝑧
𝑥
},

with 𝑧′ = max{𝑥+ 𝑦− 1,0}, 𝑧′′ =

{
𝑥+𝑦−2𝑥𝑦
1−𝑥𝑦 , if (𝑥, 𝑦) ≠ (1,1),

1, if (𝑥, 𝑦) = (1,1),
(62)

and

Π′′ = {(0, 𝑦,0, 𝜇) ∶ 𝑦 ∈ [0,1], 𝜇 ≥ 0}. (63)
24

Proof. See Appendix A.7. □
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Table 9

Interval [𝜇′
𝑖 , 𝜇′′

𝑖 ] of coherent extensions of the assessment (𝑥, 𝑦) ∈ [0, 1]2 on {𝐴|𝐻, 𝐵|𝐾} to 
the iterated conditional (𝐵|𝐾)|𝑖(𝐴|𝐻), 𝑖 ∈ {𝐶, 𝑑𝐹 , 𝐹 , 𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, under the assumption 
that 𝐴, 𝐻, 𝐵, 𝐾 are logically independent.

Iterated conditioning Interval of coherent extensions|𝐶 [0,1]|𝑑𝐹 [0,1]|𝐹 [0,1]

|𝐾 [
0,

{
min

{
1, 𝑦

𝑥

}
, if 𝑥 ≠ 0;

1, if 𝑥 = 0.

]

|𝐿 [
0,

{
min

{
1, 𝑦

𝑥

}
, if 𝑥 ≠ 0;

1, if 𝑥 = 0.

]

|𝐵 [
0,

{ 1
𝑥
, if 0 < 𝑥 < 1,

1, if 𝑥 = 0 ∨ 𝑥 = 1.

]

|𝑆 ⎧⎪⎨⎪⎩
[
max{ 𝑥+𝑦−1

𝑥
,0},

{
𝑥+𝑦−2𝑥𝑦
𝑥(1−𝑥𝑦)

, if (𝑥, 𝑦) ≠ (1,1);
1, if (𝑥, 𝑦) = (1,1).

]
if 𝑥 ≠ 0;

𝜇 ≥ 0, if 𝑥 = 0;

|𝑔𝑠 [{
max{ 𝑥+𝑦−1

𝑥
,0}, if 𝑥 ≠ 0,

0, if 𝑥 = 0,
,

{
min{1, 𝑦

𝑥
}, if 𝑥 ≠ 0,

1, if 𝑥 = 0.

]

Remark 20. From Theorem 17 we observe that, when 𝑥 = 0, the set of all coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on F is Π′′ given in (63). 
Then, in this case, 𝜇 = ℙ[(𝐵|𝐾)|𝑆 (𝐴|𝐻)] = ℙ[(𝐴𝐻𝐵𝐾 +𝐴𝐻 s𝐾 + (1 + 𝜇)Ď𝐻𝐵𝐾)|(𝐴𝐻 ∨ Ď𝐻𝐵𝐾)] is coherent for every value 𝜇 ≥ 0.

Based on Theorem 17, when 𝑥 > 0, we obtain the following result on the lower and upper bounds for ℙ[(𝐵|𝐾)|𝑆 (𝐴|𝐻)].

Theorem 18. Let 𝐴, 𝐵, 𝐻, 𝐾 be any logically independent events. Given a coherent assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾}, with 𝑥 ≠ 0, for the 
iterated conditional (𝐵|𝐾)|𝑆 (𝐴|𝐻) the extension 𝜇𝑆 = ℙ[(𝐵|𝐾)|𝑆 (𝐴|𝐻)] is coherent if and only if 𝜇𝑆 ∈ [𝜇′

𝑆
, 𝜇′′
𝑆
], where

𝜇′𝑆 =max{𝑥+ 𝑦− 1
𝑥

,0} and 𝜇′′𝑆 =

{
𝑥+𝑦−2𝑥𝑦
𝑥(1−𝑥𝑦) , if(𝑥, 𝑦) ≠ (1,1);
1, if (𝑥, 𝑦) = (1,1).

(64)

Proof. See Appendix A.8. □

Remark 21. We observe that the lower and upper bounds 𝜇′
𝑆

and 𝜇′′
𝑆

for (𝐵|𝐾)|𝑆 (𝐴|𝐻), given in (64), do not coincide with the 
lower and upper bound 𝜇′ and 𝜇′′ for 𝐵|𝐴, given in (17). Then, formula P4 is not satisfied by |𝑆 . In particular the extension 𝜇𝑆 = 1

𝑥

to (𝐵|𝐾)|𝑆 (𝐴|𝐻) of (𝑥, 1) on {𝐴|𝐻, 𝐵|𝐾}, with 0 < 𝑥 < 1, is coherent because 𝜇′′
𝑆
= 1−𝑥

𝑥(1−𝑥) =
1
𝑥

. However, the assessment 𝜇 = 1
𝑥

is 

not a coherent extension on 𝜇 = 𝑃 (𝐵|𝐴) of 𝑃 (𝐴) = 𝑥, 𝑃 (𝐵) = 1, because by (17) it holds that 𝜇′′ ≤ 1 < 1
𝑥

. We also notice that in a bet 
on the iterated conditional (𝐵|𝐾)|𝑆 (𝐴|𝐻), by paying (the coherent assessment) 𝜇𝑆 = 1

𝑥
, with 𝑥 ∈ (0, 1), the amount 1, received when 

both the conditional events 𝐴|𝐻 and 𝐵|𝐾 are true, does not coincide with the maximum value of the random win. In other words, 
we obtain that the associated random gain 𝐺 = (𝐵|𝐾)|𝑆 (𝐴|𝐻) − 𝜇𝑆 is negative even when both the antecedent and the consequent 
of the iterated conditional are true. For instance, by setting 𝑥 = 1

3 and 𝜇𝑆 = 1
𝑥
= 3, if the event Ď𝐻 s𝐵𝐾 is true, then the iterated 

conditional (𝐵|𝐾)|𝑆 (𝐴|𝐻) = 1
𝑥
− 1 = 3 − 1 = 2 > 1 and hence 𝐺 = 2 − 3 = −1.

The iterated conditioning |𝑔𝑠. We recall that |𝑔𝑠, unlike all the other iterated conditioning, satisfies property P4 ([62, Theorem 4]). 
Indeed, given a coherent assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾}, under logical independence, for the iterated conditional (𝐵|𝐾)|𝑔𝑠(𝐴|𝐻)
the extension 𝜇 = ℙ[(𝐵|𝐾)|𝑔𝑠(𝐴|𝐻)] is coherent if and only if 𝜇 ∈ [𝜇′𝑔𝑠, 𝜇

′′
𝑔𝑠], where

𝜇′𝑔𝑠 =

{
max{ 𝑥+𝑦−1

𝑥
,0}, if 𝑥 ≠ 0,

0, if 𝑥 = 0,
𝜇′′𝑔𝑠 =

{
min{1, 𝑦

𝑥
}, if 𝑥 ≠ 0,

1, if 𝑥 = 0,

which coincide with 𝜇′ and 𝜇′′ given in (17), respectively. As we can see from Table 9, only the iterated conditioning |𝑔𝑠 satisfies 
25

property P4.
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Table 10

Numerical values of (𝐵|𝐾)|𝑖𝐴, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠} and of the conditional event 𝐵|𝐴𝐾 . We 
denote 𝑥 = 𝑃 (𝐴), 𝑦 = 𝑃 (𝐵|𝐾), 𝑧 = 𝑃 (𝐵|𝐴𝐾) and 𝜇𝑖 = ℙ[(𝐵|𝐾)|𝑖𝐴], 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}. We 
observe that (𝐵|𝐾)|𝑖𝐴 ≠ 𝐵|𝐴𝐾 , 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}.

(𝐵|𝐾)|𝐾𝐴 (𝐵|𝐾)|𝐿𝐴 (𝐵|𝐾)|𝐵𝐴 (𝐵|𝐾)|𝑆𝐴 (𝐵|𝐾)|𝑔𝑠𝐴 𝐵|𝐴𝐾
𝐴𝐵𝐾 1 1 1 1 1 1

𝐴𝐵𝐾 0 0 0 0 0 0

𝐴𝐾 𝑥𝜇𝐾 𝑥𝜇𝐿 𝑥𝜇𝐵 1 𝑦 𝑧

𝐴𝐵𝐾 𝜇𝐾 𝜇𝐿 𝜇𝐵 𝜇𝑆 𝜇𝑔𝑠 𝑧

𝐴 𝐵𝐾 𝜇𝐾 𝜇𝐿 𝜇𝐵 𝜇𝑆 𝜇𝑔𝑠 𝑧

𝐴𝐾 𝜇𝐾 𝜇𝐿 𝜇𝐵 (1 + 𝑥) 𝜇𝑆 𝜇𝑔𝑠 𝑧

6.5. Import-export principle

In this section we show that none of the iterated conditioning |𝐾 , |𝐿, |𝐵, |𝑆 , |𝑔𝑠 satisfies the Import-Export principle. We recall 
that the Import-Export principle is valid when (𝐵|𝐾)|𝐴 =𝐵|𝐴𝐾 (see equation (18)). We remind that, in agreement with [1,45] and 
differently from [52], for the iterated conditional (𝐵|𝐾)|𝑔𝑠(𝐴|𝐻) the Import-Export principle is not valid. As a consequence, as shown 
in [34] (see also [60,62]), Lewis’ triviality results ([51]) are avoided by |𝑔𝑠. For what concerns the iterated conditioning |𝐾, |𝐿, |𝐵, |𝑆 , 
it holds that (𝐵|𝐾)|𝑖𝐴 ≠ 𝐵|𝐴𝐾 , 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆}, because there are some constituents where the two objects may assume different 
values (see Table 10). For instance, when 𝐴 s𝐾 is true and 𝑧 = 𝑃 (𝐵|𝐴𝐾) ≠ 1, it follows that (𝐵|𝐾)|𝑆𝐴 = 1 ≠ 𝑧 = 𝐵|𝐴𝐾 . Then, none 
of the iterated conditioning |𝐾, |𝐿, |𝐵, |𝑆 , |𝑔𝑠 satisfies the Import-Export principle. However, we observe that Import-Export principle 
could be satisfied under some suitable logical relations among the events 𝐴, 𝐵, 𝐾 . For instance, if 𝐴 s𝐾 = ∅, it can be easily proved 
that (𝐵|𝐾)|𝑖𝐴 = 𝐵|𝐴𝐾 , 𝑖 ∈ {𝐾, 𝐿, 𝑆, 𝑔𝑠}. Thus, when 𝐴 s𝐾 = ∅, the Import-Export principle is satisfied by (𝐵|𝐾)|𝐾𝐴, (𝐵|𝐾)|𝐿𝐴, 
(𝐵|𝐾)|𝑆𝐴, and (𝐵|𝐾)|𝑔𝑠𝐴.

6.6. Generalized versions of Bayes’ rule

In this section, by exploiting property P4, we analyze generalized versions of Bayes’ Rule for the iterated conditioning |𝐾 , |𝐿, |𝐵, |𝑆 , 
and |𝑔𝑠.

From (45) it follows that ℙ[(𝐵|𝐾) ∧𝑖 (𝐴|𝐻)] = ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)]𝑃 (𝐴|𝐻) = ℙ[(𝐴|𝐻)|𝑖(𝐵|𝐾)]𝑃 (𝐵|𝐾), 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}. Then, 
when 𝑃 (𝐴|𝐻) > 0 it holds that

ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)] =
ℙ[(𝐴|𝐻)|𝑖(𝐵|𝐾)]𝑃 (𝐵|𝐾)

𝑃 (𝐴|𝐻)
, 𝑖 ∈ {𝐾,𝐿,𝐵,𝑆, 𝑔𝑠}. (65)

Formula (65) is a generalization of the following well-known version of Bayes’s Rule

𝑃 (𝐵|𝐴) = 𝑃 (𝐴|𝐵)𝑃 (𝐵)
𝑃 (𝐴)

, if 𝑃 (𝐴) > 0,

where the events 𝐴, 𝐵 are replaced by the conditional events 𝐴|𝐻 , 𝐵|𝐾 , respectively, and the conditioning operator | is replaced 
by the iterated conditioning |𝑖, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}. We also recall that, given two events 𝐴 and 𝐵, it holds that 𝐴 = 𝐴𝐵 ∨𝐴 s𝐵, and 
hence 𝑃 (𝐴) = 𝑃 (𝐴𝐵) + 𝑃 (𝐴 s𝐵) = 𝑃 (𝐴|𝐵)𝑃 (𝐵) + 𝑃 (𝐴| s𝐵)𝑃 (𝐵). Then, we obtain the following version of Bayes’ Rule

𝑃 (𝐵|𝐴) = 𝑃 (𝐴|𝐵)𝑃 (𝐵)
𝑃 (𝐴|𝐵)𝑃 (𝐵) + 𝑃 (𝐴| s𝐵)𝑃 ( s𝐵)

. (66)

We now check, for each iterated conditioning |𝑖, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, the validity of the following generalized version of formula (66)

ℙ[(𝐵|𝐾)|(𝐴|𝐻)] = ℙ[(𝐴|𝐻)|(𝐵|𝐾)]𝑃 (𝐵|𝐾)
ℙ[(𝐴|𝐻)|(𝐵|𝐾)]𝑃 (𝐵|𝐾) +ℙ[(𝐴|𝐻)|( s𝐵|𝐾)]𝑃 ( s𝐵|𝐾)

. (67)

Based on (45), for each 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, it follows that

ℙ[(𝐴|𝐻) ∧𝑖 (𝐵|𝐾)] +ℙ[(𝐴|𝐻) ∧𝑖 ( s𝐵|𝐾)] = ℙ[(𝐴|𝐻)|𝑖(𝐵|𝐾)]𝑃 (𝐵|𝐾) +ℙ[(𝐴|𝐻)|𝑖( s𝐵|𝐾)]𝑃 ( s𝐵|𝐾). (68)

We recall that when 𝐴, 𝐵, and s𝐵 in the equality 𝐴 = (𝐴 ∧𝐵) ∨ (𝐴 ∧ s𝐵) are replaced by the conditional events 𝐴|𝐻, 𝐵|𝐾 , and s𝐵|𝐾 , 
respectively, and the conjunction ∧ is replaced by ∧𝑖, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆}, it holds that the corresponding equality is not satisfied. Indeed 
we have that

(𝐴|𝐻) ≠ [(𝐴|𝐻) ∧𝑖 (𝐵|𝐾)] ∨𝑖 [(𝐴|𝐻) ∧𝑖 ( s𝐵|𝐾)], 𝑖 ∈ {𝐾,𝐿,𝐵,𝑆}.

More precisely, it holds that (see [40, Section 4.1])

• [(𝐴|𝐻) ∧𝐾 (𝐵|𝐾)] ∨𝐾 [(𝐴|𝐻) ∧𝐾 ( s𝐵|𝐾)] =𝐴𝐻𝐾|(𝐴𝐻𝐾 ∨ s𝐴𝐻) ≠𝐴|𝐻 ;
• [(𝐴|𝐻) ∧𝐿 (𝐵|𝐾)] ∨𝐿 [(𝐴|𝐻) ∧𝐿 ( s𝐵|𝐾)] =𝐴𝐻𝐾|(𝐻 ∨ s𝐾) ≠𝐴|𝐻 ;
26

• [(𝐴|𝐻) ∧𝐵 (𝐵|𝐾)] ∨𝐵 [(𝐴|𝐻) ∧𝐵 ( s𝐵|𝐾)] =𝐴|(𝐻𝐾) ≠𝐴|𝐻 ;
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• [(𝐴|𝐻) ∧𝑆 (𝐵|𝐾)] ∨𝑆 [(𝐴|𝐻) ∧𝑆 ( s𝐵|𝐾)] = (𝐴 ∨ Ď𝐻)|(𝐻 ∨𝐾) ≠𝐴|𝐻 .

Moreover, for each 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆}, we observe that the conditional probability 𝑃 (𝐴|𝐻) does not necessarily coincide with

𝑃 ((𝐴|𝐻) ∧𝑖 (𝐵|𝐾)) + 𝑃 ((𝐴|𝐻) ∧𝑖 ( s𝐵|𝐾)).

Indeed, it can be proved that the assessment (1, 0, 0) on {𝐴|𝐻, (𝐴|𝐻) ∧𝑖 (𝐵|𝐾), (𝐴|𝐻) ∧𝑖 ( s𝐵|𝐾)}, 𝑖 ∈ {𝐾, 𝐿, 𝐵}, as well as the 
assessment (1, 1, 1) on {𝐴|𝐻, (𝐴|𝐻) ∧𝑆 (𝐵|𝐾), (𝐴|𝐻) ∧𝑆 ( s𝐵|𝐾)}, is coherent. As a consequence, from (68), we obtain that the 
probability 𝑃 (𝐴|𝐻) does not necessarily coincide with

ℙ[(𝐴|𝐻)|𝑖(𝐵|𝐾)]𝑃 (𝐵|𝐾) +ℙ[(𝐴|𝐻)|𝑖( s𝐵|𝐾)]𝑃 ( s𝐵|𝐾).

Thus, for each iterated conditioning |𝑖, 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆}, the generalized version of Bayes’s Rule given in formula (67) is not satisfied. 
However, we recall that ([36])

(𝐴|𝐻) = (𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾) + (𝐴|𝐻) ∧𝑔𝑠 ( s𝐵|𝐾).

Then, by the linearity property of a coherent prevision and by (68), it follows that

𝑃 (𝐴|𝐻) = ℙ[(𝐴|𝐻) ∧𝑔𝑠 (𝐵|𝐾)] +ℙ[(𝐴|𝐻) ∧𝑔𝑠 ( s𝐵|𝐾)] =
= ℙ[(𝐴|𝐻)|𝑔𝑠(𝐵|𝐾)]𝑃 (𝐵|𝐾) +ℙ[(𝐴|𝐻)|𝑔𝑠( s𝐵|𝐾)]𝑃 ( s𝐵|𝐾).

Hence, when 𝑃 (𝐴|𝐻) > 0, it holds that

ℙ[(𝐵|𝐾)|𝑔𝑠(𝐴|𝐻)] =
ℙ[(𝐴|𝐻)|𝑔𝑠(𝐵|𝐾)]𝑃 (𝐵|𝐾)

ℙ[(𝐴|𝐻)|𝑔𝑠(𝐵|𝐾)]𝑃 (𝐵|𝐾) +ℙ[(𝐴|𝐻)|𝑔𝑠( s𝐵|𝐾)]𝑃 ( s𝐵|𝐾)
. (69)

Therefore, the generalization of the second version of Bayes’ Rule only holds for |𝑔𝑠 and does not hold for |𝐾 , |𝐿, |𝐵 , and |𝑆 .

7. Generalized version of Modus Ponens and two premise centering

In this section, for selected definitions of the iterated conditioning with possible value in [0, 1], based on the probability prop-
agation rules obtained in the previous sections and exploited for checking the validity of property P4 (see Table 9), we study the 
p-validity of the generalization of two inference rules: Modus Ponens and two-premise centering. We first recall the notions of p-
consistency and p-entailment for conditional random quantities, which take values in a finite subset of [0, 1] ([62]). These concepts 
are based on the notions of p-consistency and p-entailment given for conditional events by Adams ([1]) and also studied in the setting 
of coherence in [31].

Definition 6. Let F𝑛 = {𝑋𝑖|𝐻𝑖 , 𝑖 = 1, … , 𝑛} be a family of 𝑛 conditional random quantities which take values in a finite subset of 
[0, 1]. Then, F𝑛 is p-consistent if and only if, the (prevision) assessment (𝜇1, 𝜇2, … , 𝜇𝑛) = (1, 1, … , 1) on F𝑛 is coherent.

Definition 7. A p-consistent family F𝑛 = {𝑋𝑖|𝐻𝑖 , 𝑖 = 1, … , 𝑛} p-entails a conditional random quantity 𝑋|𝐻 , which takes values in a 
finite subset of [0, 1], denoted by F𝑛 ⇒𝑝 𝑋|𝐻 , if and only if for any coherent (prevision) assessment (𝜇1, … , 𝜇𝑛, 𝑧) on F𝑛 ∪ {𝑋|𝐻}: 
if 𝜇1 =⋯ = 𝜇𝑛 = 1, then 𝑧 = 1.

We say that the inference from a p-consistent family of premises F𝑛 to a conclusion 𝑋|𝐻 is p-valid if and only if F𝑛 p-entails 
𝑋|𝐻 .

We recall that as the iterated conditionals (𝐵|𝐾)|𝐶 (𝐴|𝐻), (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻), and (𝐵|𝐾)|𝐹 (𝐴|𝐻) are conditional events, their 
indicators take values in the interval [0,1]. Moreover, from Table 8 we observe that the iterated conditionals (𝐵|𝐾)|𝐾 (𝐴|𝐻), 
(𝐵|𝐾)|𝐿(𝐴|𝐻) and (𝐵|𝐾)|𝑔𝑠(𝐴|𝐻) take values in [0, 1]. On the other hand, the iterated conditionals (𝐵|𝐾)|𝐵(𝐴|𝐻) and 
(𝐵|𝐾)|𝑆 (𝐴|𝐻) may take values outside the interval [0, 1]. Thus, in order to examine the p-validity of generalized inference rules, we 
will only consider the iterated conditionals (𝐵|𝐾)|𝑖(𝐴|𝐻), 𝑖 ∈ {𝐶, 𝑑𝐹 , 𝐹 , 𝐾, 𝐿, 𝑔𝑠}.

7.1. Modus Ponens

We recall that, given two events 𝐴 and 𝐵 the Modus Ponens inference, with (p-consistent) premise set {𝐴, 𝐵|𝐴} and conclusion 
𝐵, is p-valid ([65], see also [33,43]), that is

{𝐴,𝐵|𝐴}⇒𝑝 𝐵. (70)

For each 𝑖 ∈ {𝐶, 𝑑𝐹 , 𝐹 , 𝐾, 𝐿, 𝑔𝑠}, we will study the p-validity of the generalized version of Modus Ponens obtained when the 
events 𝐴, 𝐵 are replaced by the conditional events 𝐴|𝐻, 𝐵|𝐾 and the conditional event 𝐵|𝐴 is replaced by the iterated conditional 
(𝐵|𝐾)|𝑖(𝐴|𝐻).5 An example of this generalization is (see also [29,61]):
27

5 The particular case where 𝐾 =Ω and |𝑖 = |𝑔𝑠 has been studied in [61].
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𝐴|𝐻
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

The cup is fragile if made of glass .

If

𝐴|𝐻
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

the cup is fragile if made of glass , then

𝐵|𝐾
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

it breaks if dropped .

Therefore,

𝐵|𝐾
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

the cup breaks if dropped .

Then, we check the p-validity of the generalized version of Modus Ponens where the premise set is {𝐴|𝐻, (𝐵|𝐾)|𝑖(𝐴|𝐻)} and the 
conclusion is 𝐵|𝐾 , that is

𝑃 (𝐴|𝐻) = 1, ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)] = 1 ⟹ 𝑃 (𝐵|𝐾) = 1. (71)

It is easy to verify (see Table 9) that the family {𝐴|𝐻, (𝐵|𝐾)|𝑖(𝐴|𝐻)} is p-consistent, 𝑖 ∈ {𝐶, 𝑑𝐹 , 𝐹 , 𝐾, 𝐿, 𝑔𝑠}. We will show 
that the generalized version of Modus Ponens is p-valid for |𝑖 ∈ {|𝐾, |𝐿, |𝑔𝑠}. Indeed, in these cases from Table 9 it follows that 
ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)] ≤ 𝜇′′𝑖 =min{1, 𝑦

𝑥
} = 𝑦 = 𝑃 (𝐵|𝐾), when 𝑃 (𝐴|𝐻) = 𝑥 = 1. Then, 𝑃 (𝐵|𝐾) is necessarily equal to 1, when 𝑃 (𝐴|𝐻) = 1

and ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)] = 1 and hence formula (71) is satisfied. Thus,

{𝐴|𝐻, (𝐵|𝐾)|𝑖(𝐴|𝐻)} ⇒𝑝 𝐵|𝐾, 𝑖 ∈ {𝐾,𝐿,𝑔𝑠}. (72)

For 𝑖 ∈ {𝐶, 𝑑𝐹 , 𝐹 }, as illustrated in Table 9, the interval of coherent extensions [𝜇′𝑖 , 𝜇
′′
𝑖 ] on (𝐵|𝐾)|𝑖(𝐴|𝐻) of the assessment 

(1, 0) on {𝐴|𝐻, 𝐵|𝐾} coincides with the unit interval [0, 1]. In particular the assessment (1, 1, 0) on {𝐴|𝐻, (𝐵|𝐾)|𝑖(𝐴|𝐻), (𝐵|𝐾)} is 
coherent and hence formula (71) is not satisfied for 𝑖 ∈ {𝐶, 𝑑𝐹 , 𝐹 }, that is

{𝐴|𝐻, (𝐵|𝐾)|𝑖(𝐴|𝐻)} ⇏𝑝 𝐵|𝐾, 𝑖 ∈ {𝐶,𝑑𝐹 ,𝐹 }. (73)

Concerning the example above, from 𝑃 (the cup is fragile if made of glass) = 1 and ℙ[If the cup is fragile if made of glass, then it breaks 
if dropped] = 1, it follows (as a natural result) that 𝑃 (the cup breaks if dropped) = 1 when the iterated conditioning is interpreted as |𝐾, |𝐿, |𝑔𝑠, because (71) is satisfied in these cases. However, the same conclusion does not follow (which is strange) when the iterated 
conditioning is interpreted as |𝐶 , |𝑑𝐹 , and |𝐹 because (71) does not hold in these cases.

7.2. Two-premise centering

We recall that the inference of two-premise centering, that is inferring if 𝐴 then 𝐵 from the two separate premises 𝐴 and 𝐵, is 
p-valid ([62]). Indeed, given two events 𝐴 and 𝐵 it holds that

{𝐴,𝐵}⇒𝑝 𝐵|𝐴. (74)

For each 𝑖 ∈ {𝐶, 𝑑𝐹 , 𝐹 , 𝐾, 𝐿, 𝑔𝑠}, we will study the p-validity of the generalized version of two-premise centering, where the 
unconditional events 𝐴, 𝐵 are replaced by the conditional events 𝐴|𝐻 , 𝐵|𝐾 , respectively, and the conditional event 𝐵|𝐴 is replaced 
by the iterated conditional (𝐵|𝐾)|𝑖(𝐴|𝐻). An example of this generalization is

𝐴|𝐻
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

The cup is fragile if made of glass .
𝐵|𝐾

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

The cup breaks if dropped .

Therefore, if

𝐴|𝐻
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

the cup is fragile if made of glass , then it

𝐵|𝐾
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

breaks if dropped .

For each 𝑖, we consider as premise set {𝐴|𝐻, 𝐵|𝐾}, as conclusion the iterated conditional (𝐵|𝐾)|𝑖(𝐴|𝐻) and we check the 
p-validity of the generalized version of two-premise centering, that is

𝑃 (𝐴|𝐻) = 1, 𝑃 (𝐵|𝐾) = 1 ⟹ ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)] = 1. (75)

Of course, as the assessment (𝑥, 𝑦) = (1, 1) on {𝐴|𝐻, 𝐵|𝐾} is coherent, the premise set {𝐴|𝐻, 𝐵|𝐾} is p-consistent. We recall that 
generalized two-premise centering is p-valid for |𝑔𝑠 ([62, Equation (13)]), that is

{𝐴|𝐻,𝐵|𝐾}⇒𝑝 (𝐵|𝐾)|𝑔𝑠(𝐴|𝐻). (76)

The previous result can be also obtained from Table 9, by observing that the lower bound of the coherent extensions on 
(𝐵|𝐾)|𝑔𝑠(𝐴|𝐻) of the assessment 𝑥 = 𝑦 = 1 is 𝜇′𝑖 =max{ 𝑥+𝑦−1

𝑥
, 0} = 1. Moreover, for 𝑖 ∈ {𝐶, 𝑑𝐹 , 𝐹 , 𝐾, 𝐿}, from Table 9 it follows that 

any value in [0, 1] is a coherent extension on (𝐵|𝐾)|𝑖(𝐴|𝐻) of 𝑃 (𝐴|𝐻) = 𝑃 (𝐵|𝐾) = 1. Thus, (75) is not satisfied by |𝐶 , |𝑑𝐹 , |𝐹 , |𝐾, |𝐿, 
28

and hence
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Table 11

Properties P1-P4, the non validity of Import-Export Principle (No IE), and iterated conditionals in their own logic. 
The symbol ✓ means that the property is satisfied. The blank space means that the property is not satisfied.

Property |𝐶 |𝑑𝐹 |𝐹 |𝐾 |𝐿 |𝐵 |𝑆 |𝑔𝑠
No IE (𝐵|𝐾)|𝐴 ≠𝐵|𝐴𝐾 ✓ ✓ ✓ ✓ ✓

P1 (𝐵|𝐾)|(𝐴|𝐻) = [(𝐴|𝐻) ∧ (𝐵|𝐾)]|(𝐴|𝐻) ✓ ✓ ✓ ✓ ✓ ✓ ✓

P2 (𝐴|𝐻) ∧ (𝐵|𝐾) ≤ (𝐵|𝐾)|(𝐴|𝐻) ✓ ✓ ✓ ✓ ✓ ✓ ✓

P3 ℙ[(𝐴|𝐻) ∧ (𝐵|𝐾)] = ℙ[(𝐵|𝐾)|(𝐴|𝐻)]𝑃 (𝐴|𝐻) ✓ ✓ ✓ ✓ ✓

P4 Lower and upper bounds for (𝐵|𝐾)|(𝐴|𝐻) ✓

{𝐴|𝐻,𝐵|𝐾}⇏𝑝 (𝐵|𝐾)|𝑖(𝐴|𝐻), 𝑖 ∈ {𝐶,𝑑𝐹 ,𝐹 ,𝐾,𝐿}. (77)

Concerning the example above, from 𝑃 (the cup is fragile if made of glass) = 1 and 𝑃 (the cup breaks if dropped) = 1 it follows that 
ℙ[If the cup is fragile if made of glass, then it breaks if dropped] = 1, when the iterated conditioning is interpreted as |𝑔𝑠, because 
the generalized two-premise centering is p-valid. However, the same conclusion does not follow when the iterated conditioning is 
interpreted as |𝐶 , |𝑑𝐹 , |𝐹 , |𝐾, |𝐿, because the generalized two-premise centering is p-invalid in these cases.

8. Conclusions

We recalled the trivalent logics of Kleene-Lukasiewicz-Heyting-de Finetti, Lukasiewicz, Bochvar-Kleene, and Sobociński and the 
notion of compound conditional as conditional random quantity. We considered four basic logical and probabilistic properties, P1-
P4, valid for events and conditional events. We generalized them by replacing events 𝐴 and 𝐵 with conditional events 𝐴|𝐻 and 
𝐵|𝐾 and we checked their validity and the validity of the Import-Export principle for selected notions of iterated conditioning. 
In particular, we studied the iterated conditioning introduced in trivalent logics by Cooper-Calabrese (|𝐶 ), de Finetti (|𝑑𝐹 ), and 
Farrel (|𝐹 ), by also focusing on the numerical representation of the truth-values. We observed that the notions of conjunction and 
disjunction of conditional events used by Cooper and Calabrese coincide with ∧𝑆 and ∨𝑆 , respectively. Farrell and de Finetti defined 
two different structures of iterated conditioning in the same trivalent logic where conjunction and disjunction are ∧𝐾 and ∨𝐾 , 
respectively. We computed the set of coherent probability assessments on the families of events {𝐴|𝐻, (𝐵|𝐾)|𝐶 (𝐴|𝐻), (𝐴|𝐻) ∧𝑆
(𝐵|𝐾)}, {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐶 (𝐴|𝐻)}, as well as {𝐴|𝐻, (𝐵|𝐾)|𝑖(𝐴|𝐻), (𝐴|𝐻) ∧𝐾 (𝐵|𝐾)} and {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝑖(𝐴|𝐻)} with 𝑖 ∈
{𝑑𝐹 , 𝐹 }. In Table 11 we summarize the results for the properties given in Section 2.5. We observe that |𝐶 , |𝑑𝐹 , and |𝐹 satisfy the 
Import-Export principle and none of these objects, defined in the framework of trivalent logics, satisfies the compound probability 
theorem (P3).

By exploiting the structure □|○ = □ ∧ ○ + ℙ(□|○) s○ used in order to define |𝑔𝑠 from the conjunction ∧𝑔𝑠, for each 
𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆}, we defined the iterated conditioning |𝑖 from the conjunction ∧𝑖. We observed that the iterated conditionals 
(𝐵|𝐾)|𝑖(𝐴|𝐻), 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}, are all conditional random quantities (not always in [0,1]) which satisfy the compound pre-
vision theorem (property P3). We also noticed that properties P1, P2 and the non validity of the Import-Export principle are satisfied 
by |𝐾, |𝐿, |𝐵, |𝑆 , and |𝑔𝑠 (see Table 11). However, property P4 is not satisfied by |𝐾, |𝐿, |𝐵 , and |𝑆 . We observed that all the basic 
logical and probabilistic properties are satisfied only by the iterated conditioning |𝑔𝑠. We also showed that a generalized version 
of the Bayes’ Rule 𝑃 (𝐵|𝐴) = 𝑃 (𝐴|𝐵)𝑃 (𝐵)

𝑃 (𝐴) for iterated conditionals is satisfied by |𝑖 with 𝑖 ∈ {𝐾, 𝐿, 𝐵, 𝑆, 𝑔𝑠}. However, a generalized 

version of the Bayes’ Rule in the following version 𝑃 (𝐵|𝐴) = 𝑃 (𝐴|𝐵)𝑃 (𝐵)
𝑃 (𝐴|𝐵)𝑃 (𝐵)+𝑃 (𝐴| s𝐵)𝑃 ( s𝐵) for iterated conditionals, only holds for |𝑔𝑠 and 

does not hold for |𝐾 , |𝐿, |𝐵, |𝑆 .
We discussed the implications of the obtained results on the probability propagation rules from {𝐴|𝐻, 𝐵|𝐾} to the iterated con-

ditional (𝐵|𝐾)|𝑖(𝐴|𝐻), by studying the p-validity of the generalized versions of Modus Ponens and two-premise centering, which 
involve conditional events and iterated conditionals. We observed that for |𝐵 and |𝑆 , as the iterated conditionals (𝐵|𝐾)|𝐵(𝐴|𝐻)
and (𝐵|𝐾)|𝑆 (𝐴|𝐻) can take value outside the interval [0,1], the study of p-validity is meaningless. For the remaining ones |𝐶 , |𝑑𝐹 , |𝐹 , |𝐾, |𝐿, and |𝑔𝑠, we showed that only for the iterated conditioning |𝑔𝑠 turns out that both generalized versions of the 
inference rules are p-valid. We also examined two examples of the generalized inference rules in natural language by observing 
that, when we adopt the notion of iterated conditioning |𝑖, with |𝑖 ∈ {|𝐶 , |𝑑𝐹 , |𝐹 , |𝐾, |𝐿}, some results which are counterintuitive in 
commonsense reasoning can be obtained.

Therefore, based on the results illustrated above, only the iterated conditioning |𝑔𝑠 , which is based on the conjunction ∧𝑔𝑠 in-
troduced in the framework of conditional random quantities, preserves all the basic logical and probabilistic properties; moreover, 
Lewis’ triviality results are avoided in particular because the Import-Export Principle is not satisfied. However, some basic proba-
bilistic properties are not preserved when the other notions of iterated conditioning are adopted. Then, the ‘probability’ of these 
iterated conditionals does not properly allow to represent uncertainty in conditional sentences of human reasoning and the study of 
uncertainty is necessary for understanding human and artificial rationality in general.

Then, the results obtained in this paper can be useful in AI in order to build a theory of formal reasoning which properly manages 
the uncertainty present in conditional or compound conditional sentences. Once it is described how the conditionals and the logical 
operations among them are interpreted, by means of our results, it is possible, for instance, to understand how a (coherent) agent 
29

propagates the uncertainty present in the conditionals 𝐴|𝐻 and 𝐵|𝐾 to the iterated conditional (𝐵|𝐾)|𝑖(𝐴|𝐻). Then, it is crucial 
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Table A.12

Constituents and points 𝑄ℎ ’s associated with F = {𝐴|𝐻, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻),
(𝐴|𝐻) ∧𝐾 (𝐵|𝐾)} and P = (𝑥, 𝑦, 𝑧).

𝐶ℎ 𝐴|𝐻 (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻) (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) 𝑄ℎ

𝐶1 𝐴𝐻𝐵𝐾 1 1 1 𝑄1
𝐶2

s𝐴𝐻 0 𝑦 0 𝑄2
𝐶3 𝐴𝐻 s𝐵𝐾 1 0 0 𝑄3
𝐶4

Ď𝐻 s𝐵𝐾 𝑥 𝑦 0 𝑄4
𝐶5 𝐴𝐻 s𝐾 1 𝑦 𝑧 𝑄5
𝐶0

Ď𝐻𝐵𝐾 ∨ Ď𝐻 s𝐾 𝑥 𝑦 𝑧 𝑄0

to know, for each iterated conditioning, which (desirable) basic logical and probabilistic properties are preserved. In particular, 
our results allow to know that when the iterated conditioning |𝑖 belongs to {|𝐶 , |𝑑𝐹 , |𝐹 , |𝐾, |𝐿}, as the two-premise centering is not 
p-valid, then the agent agrees with the following probabilistically non-informative inference: from 𝑃 (𝐴|𝐻) = 1 and 𝑃 (𝐵|𝐾) = 1 infer 
that every ℙ[(𝐵|𝐾)|𝑖(𝐴|𝐻)] ∈ [0, 1] is coherent.

As already done for the iterated conditioning |𝑔𝑠 in [38], future work will concern the (possible) characterization of the p-
entailment of Adams in the setting of coherence by means of the iterated conditioning |𝐾, |𝐿, |𝐵 , and |𝑆 . We will also study the 
different notions of iterated conditioning in the framework of nonmonotonic reasoning in System P and in other non-classical logics, 
like connexive logic ([58]). Finally, as done in [38] for the case of conjoined conditionals, in the more general theory of compound 
conditionals as suitable conditional random quantities ([10]), based on the structure □|○ =□ ∧○ +ℙ(□|○) s○, future work for this 
group of research could be devoted to the study of the (extended) iterated conditioning |𝑔𝑠 to the case where □ and ○ are compound 
conditionals.
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Appendix A

A.1. Proof of Theorem 6

Theorem 6. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. A probability assessment P = (𝑥, 𝑦, 𝑧) on the family of conditional events 
F = {𝐴|𝐻, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾 (𝐵|𝐾)} is coherent if and only if (𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 ∈ [𝑧′, 𝑧′′], where 𝑧′ = 0 and 𝑧′′ = 𝑥𝑦.

Proof. The constituents 𝐶ℎ ’s and the point 𝑄ℎ ’s associated with the assessment P = (𝑥, 𝑦, 𝑧) on F are (see also Table A.12)

𝐶1 =𝐴𝐻𝐵𝐾,𝐶2 = s𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 s𝐵𝐾 ∨ s𝐴𝐻 s𝐾 = s𝐴𝐻,𝐶3 =𝐴𝐻 s𝐵𝐾,𝐶4 = Ď𝐻 s𝐵𝐾,𝐶5 =𝐴𝐻 s𝐾,𝐶0 = Ď𝐻𝐵𝐾 ∨ Ď𝐻 s𝐾,

and

𝑄1 = (1,1,1),𝑄2 = (0, 𝑦,0),𝑄3 = (1,0,0),𝑄4 = (𝑥, 𝑦,0),𝑄5 = (1, 𝑦, 𝑧),P =𝑄0 = (𝑥, 𝑦, 𝑧).

We denote by I the convex hull of points 𝑄1, … , 𝑄5 (see Fig. A.3). The system (Σ) in (5) associated with the pair (F , P) becomes

⎧⎪⎪⎨⎪
𝜆1 + 𝜆3 + 𝑥𝜆4 + 𝜆5 = 𝑥,
𝜆1 + 𝑦𝜆2 + 𝑦𝜆4 + 𝑦𝜆5 = 𝑦,
𝜆1 + 𝑧𝜆5 = 𝑧,
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 = 1,

(A.1)
30

⎪⎩ 𝜆𝑖 ≥ 0, 𝑖 = 1,… ,5.
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Lower bound. We first prove that the assessment (𝑥, 𝑦, 0) is coherent for every (𝑥, 𝑦) ∈ [0, 1]2. We observe that P = (𝑥, 𝑦, 0) =𝑄4, so 
a solution of (A.1) is given by Λ = (0, 0, 0, 1, 0).

Then, by considering the function 𝜙 as defined in (6), it holds that

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆5 = 0,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐾) 𝜆ℎ = 𝜆1 + 𝜆3 = 0,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐵𝐾∨�̄�𝐻∨�̄�𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1 > 0.

Let S′ = {(0, 0, 0, 1, 0)} denote a subset of the set S of all solutions of (A.1). We have that 𝑀 ′
1 = 0, 𝑀 ′

2 = 0, 𝑀 ′
3 = 1 (as defined 

in (7)). Then 𝐼 ′0 = {1, 2} and we set K = F ′
0 = {𝐴|𝐵, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)} and V = P′0 = (𝑥, 𝑦). The constituents 𝐶ℎ’s and the point 𝑄ℎ ’s 

associated with the assessment P0 on F0 are

𝐶1 =𝐴𝐻𝐵𝐾,𝐶2 = s𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 s𝐵𝐾 ∨ s𝐴𝐻 s𝐾 = s𝐴𝐻,
𝐶3 =𝐴𝐻 s𝐵𝐾,𝐶4 =𝐴𝐻 s𝐾,𝐶0 = Ď𝐻 s𝐾 ∨ Ď𝐻𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾 = Ď𝐻,

and

𝑄1 = (1,1), 𝑄2 = (0, 𝑦), 𝑄3 = (1,0), 𝑄4 = (1, 𝑦),P =𝑄0 = (𝑥, 𝑦).

The system (Σ) in (5) associated with the pair (K , V) becomes

⎧⎪⎨⎪⎩
𝜆1 + 𝜆3 + 𝜆4 = 𝑥,
𝜆1 + 𝑦𝜆2 + 𝑦𝜆4 = 𝑦,
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4+ = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,4.

(A.2)

We observe that (𝑥, 𝑦) = (1 − 𝑥)𝑄2 + 𝑥𝑄4 so a solution of (A.2) is Λ = (0, 1 − 𝑥, 0, 𝑥).
By considering the function 𝜙 as defined in (6), it holds that

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐾) 𝜆ℎ = 𝜆1 + 𝜆3 = 0.

Let S′ = {(0, 1 − 𝑥, 0, 𝑥)} denote a subset of the set S of all solutions of (A.2). We have that 𝑀 ′
1 = 0, 𝑀 ′

2 = 1, (as defined in (7)). 
Then, the set 𝐼 ′0 associated with (K , V) is 𝐼 ′0 = {2}. We observe that the sub-assessment 𝑦 on {(𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)} is coherent for every 
𝑦 ∈ [0, 1]. Then, by Theorem 1, the assessment (𝑥, 𝑦, 0) on F is coherent ∀(𝑥, 𝑦) ∈ [0, 1]2.

Upper bound. We verify that the assessment (𝑥, 𝑦, 𝑥𝑦) on F is coherent for every (𝑥, 𝑦) ∈ [0, 1]2. Moreover, we show that 𝑧′′ = 𝑥𝑦
is the upper bound for 𝑧 = 𝑃 ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾)) by showing that any assessment (𝑥, 𝑦, 𝑧) on F with (𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 > 𝑥𝑦 is not 
coherent.

We observe that

(𝑥, 𝑦, 𝑥𝑦) = 𝑥𝑦𝑄1 + (1 − 𝑥)𝑄2 + 𝑥(1 − 𝑦)𝑄3.

Then, the vector Λ = (𝑥𝑦, 1 − 𝑥, 𝑥(1 − 𝑦), 0, 0) is a solution of (A.1). Moreover, it holds that

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆5 = 1 > 0,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐾) 𝜆ℎ = 𝜆1 + 𝜆3 = 𝑥𝑦+ 1 − 𝑥,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐵𝐾∨�̄�𝐻∨�̄�𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1 > 0.

Let S′ = {(𝑥𝑦, 1 − 𝑥, 𝑥(1 − 𝑦), 0, 0)} denote a subset of the set S of all solutions of (A.1). We have that 𝑀 ′
1 = 1, 𝑀 ′

2 = 𝑥𝑦 + 1 − 𝑥, 
𝑀 ′

3 = 1 (as defined in (7)). We distinguish two cases: (𝑖) (𝑥 ≠ 1) ∨ (𝑦 ≠ 0), (𝑖𝑖) (𝑥 = 1) ∧ (𝑦 = 0). In the case (𝑖) we get 𝑀 ′
1 > 0, 𝑀 ′

2 > 0, 
𝑀 ′

3 > 0 and hence 𝐼 ′0 = ∅. By Theorem 1, the assessment (𝑥, 𝑦, 𝑥𝑦) is coherent ∀(𝑥, 𝑦) ∈ [0, 1]2. In the case (𝑖𝑖) we get 𝑀 ′
1 > 0, 𝑀 ′

2 = 0, 
𝑀 ′

3 > 0, then 𝐼 ′0 = {2}. We observe that the sub-assessment P′0 = 𝑦 on F ′
0 = {(𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)} is coherent for every 𝑦 ∈ [0, 1]. Then, 

by Theorem 1, the assessment (𝑥, 𝑦, 𝑥𝑦) on F is coherent ∀(𝑥, 𝑦) ∈ [0, 1]2.
We verify that 𝑧′′ = 𝑥𝑦 is the upper bound for 𝑧, by showing that the assessment (𝑥, 𝑦, 𝑧) is incoherent when 𝑧 > 𝑥𝑦.
Let 𝑧 > 𝑥𝑦. We distinguish the following cases: (𝑎) 𝑦 ≠ 0; (𝑏) 𝑦 = 0.

Case (𝑎). We observe that the points 𝑄1, 𝑄2, 𝑄3 belong to the plane 𝜋 ∶ 𝑦𝑋 + 𝑌 −𝑍 = 𝑦, where 𝑋, 𝑌 , 𝑍 are the axes coordinates. We 
set 𝑓 (𝑋, 𝑌 , 𝑍) = 𝑦𝑋 + 𝑌 −𝑍 and we observe that 𝑓 (P) = 𝑓 (𝑥, 𝑦, 𝑧) = 𝑦𝑥 + 𝑦 − 𝑧. For each ℎ = 1, 2, 3, 4, 5, we compute the difference 
𝑓 (𝑄ℎ) − 𝑓 (P). We have

𝑓 (𝑄1) − 𝑓 (P) = 𝑓 (𝑄2) − 𝑓 (P) = 𝑓 (𝑄3) − 𝑓 (P) = 𝑧− 𝑥𝑦;
𝑓 (𝑄4) − 𝑓 (P) = 𝑧; 𝑓 (𝑄5) − 𝑓 (P) = 𝑦− 𝑥𝑦 = 𝑦(1 − 𝑥);

We consider the sub-cases: (𝑖) 𝑥 < 1; (𝑖𝑖) 𝑥 = 1.
(𝑖) We recall that, by setting the stakes 𝑠1 = 𝑦, 𝑠2 = 1, 𝑠3 = −1, it holds that 𝑔ℎ = 𝑓 (𝑄ℎ) − 𝑓 (P), ℎ = 1, … , 5, where 𝑔ℎ is the value 
31

of the random gain 𝐺 associated with the constituent 𝐶ℎ ⊆H . As 𝑥 < 1, it follows that 𝑔ℎ = 𝑓 (𝑄ℎ) − 𝑓 (P) > 0, ℎ = 1, … , 5. Thus, as 
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Fig. A.3. Convex hull of the points 𝑄1 , 𝑄2, 𝑄3, 𝑄4 , 𝑄5 associated with the pair (F , P), where F = {𝐴|𝐻, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾 (𝐵|𝐾)} and P = (𝑥, 𝑦, 𝑧). In the 
figure the numerical values are: 𝑥 = 1, 𝑦 = 0.5, 𝑧 = 0.5. Notice that 𝑄5 = P.

there exist (𝑠1, 𝑠2, 𝑠3) such that min𝐺H max𝐺H > 0, it follows that the assessment (𝑥, 𝑦, 𝑧) is not coherent when 𝑧 > 𝑥𝑦 and 𝑥 < 1.
(𝑖𝑖). In this case, as 𝑥 = 1, it follows that P = (𝑥, 𝑦, 𝑧) = (1, 𝑦, 𝑧) =𝑄5 ∈ I. Then, the vector Λ = (0, 0, 0, 0, 1) is a solution of (A.1). Then, 
by considering the function 𝜙 as defined in (6), it holds that

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆5 = 1 > 0,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐾) 𝜆ℎ = 𝜆1 + 𝜆3 = 0,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐵𝐾∨�̄�𝐻∨�̄�𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 0.

Then, we get I0 ⊆ {2, 3}. and we study the coherence of the sub-assessment P0 = (𝑦, 𝑧) on F0 = {(𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾
(𝐵|𝐾)}.

The constituents 𝐶ℎ ’s and the point 𝑄ℎ ’s associated with the pair (P0, F0) are

𝐶1 =𝐴𝐻𝐵𝐾, 𝐶2 = s𝐴𝐻 ∨ Ď𝐻 s𝐵𝐾,𝐶3 =𝐴𝐻 s𝐵𝐾, 𝐶0 = Ď𝐻 s𝐾 ∨𝐴𝐻 s𝐾 ∨ Ď𝐻𝐵𝐾,

with 𝐶ℎ ⊆H =𝐻𝐵𝐾 ∨ s𝐴𝐻 ∨ s𝐵𝐾 , ℎ = 1, 2, 3. The associated points 𝑄ℎ ’s are

𝑄1 = (1,1), 𝑄2 = (𝑦,0), 𝑄3 = (0,0), P =𝑄0 = (𝑥, 𝑦, 𝑧).

As shown in Fig. A.4 the convex hull I of the points 𝑄1, 𝑄2, and 𝑄3 is the triangle of vertices (1, 1), (𝑦, 0), and (0, 0). We observe that 
P0 = (𝑦, 𝑧) ∉ I because 𝑧 > 𝑦. Then, the sub-assessment P0 on F0 is not coherent. Therefore, by Theorem 1 the assessment P = (1, 𝑦, 𝑧)
on F is not coherent too.

Notice that, if 𝑦 = 0, (0, 𝑧) ∈ I ⟺ 𝑧 = 0, so if 𝑧 > 0 the assessment is not coherent.
So in this case we have that the probability assessment is coherent if and only if 𝑧 ≤ 𝑥𝑦.

Case (𝑏). In this case 𝑦 = 0. We have already analyzed the situation (𝑥 = 1) ∧ (𝑦 = 0) in the precedent case, so let’s assume 𝑥 ≠ 1.
We observe that the points 𝑄1, 𝑄2, 𝑄5 belong to the plane 𝜋 ∶ 𝑧𝑋 + (1 − 𝑧)𝑌 −𝑍 = 0, where 𝑋, 𝑌 , 𝑍 are the axes coordinates. 

We set 𝑓 (𝑋, 𝑌 , 𝑍) = 𝑧𝑋 + (1 − 𝑧)𝑌 −𝑍 and we observe that 𝑓 (P) = 𝑓 (𝑥, 𝑦, 𝑧) = −(1 − 𝑥)𝑧. For each ℎ = 1, 2, 3, 4, 5, we consider the 
quantity 𝑓 (𝑄ℎ) − 𝑓 (𝑃 ). Then, we obtain

𝑓 (𝑄1) − 𝑓 (P) = 𝑧(1 − 𝑥);
𝑓 (𝑄2) − 𝑓 (P) = 𝑧(1 − 𝑥);
𝑓 (𝑄3) − 𝑓 (P) = 𝑧(2 − 𝑥);
𝑓 (𝑄4) − 𝑓 (P) = 𝑧;
𝑓 (𝑄5) − 𝑓 (P) = 𝑧(1 − 𝑥).

We recall that, by setting the stakes 𝑠1 = 𝑧, 𝑠2 = 1 − 𝑧, 𝑠3 = −1, it holds that 𝑔ℎ = 𝑓 (𝑄ℎ) − 𝑓 (P), ℎ = 1, … , 5, where 𝑔ℎ is the value 
of the random gain 𝐺 associated with the constituent 𝐶ℎ ⊆H . As 𝑥 < 1, it follows that 𝑔ℎ = 𝑓 (𝑄ℎ) − 𝑓 (P) > 0, ℎ = 1, … , 5. Thus, as 
there exist (𝑠1, 𝑠2, 𝑠3) such that min𝐺H max𝐺H > 0, it follows that the assessment (𝑥, 𝑦, 𝑧) is not coherent when 𝑧 > 𝑥𝑦 and 𝑦 = 0.
32

We conclude that 𝑧′′ = 𝑥𝑦 is the upper bound for 𝑧. □
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Fig. A.4. Convex hull of the points 𝑄1 , 𝑄2, 𝑄3 associated with the pair (P0 , F0), where P0 = (𝑦, 𝑧) and F0 = {(𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾 (𝐵|𝐾)}. In the figure the 
numerical values are 𝑦 = 0.5, 𝑧 = 0.6, and P0 is denoted by P.

Table A.13

Constituents and points 𝑄ℎ ’s associated with F = {𝐴|𝐻, 𝐵|𝐾,
(𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)} and P = (𝑥, 𝑦, 𝑧).

𝐶ℎ 𝐴|𝐻 𝐵|𝐾 (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻) 𝑄ℎ

𝐶1 𝐴𝐻𝐵𝐾 1 1 1 𝑄1
𝐶2 𝐴𝐻 s𝐵𝐾 1 0 0 𝑄2
𝐶3 𝐴𝐻 s𝐾 1 𝑦 𝑧 𝑄3
𝐶4

s𝐴𝐻𝐵𝐾 0 1 𝑧 𝑄4
𝐶5

s𝐴𝐻 s𝐵𝐾 0 0 𝑧 𝑄5
𝐶6

s𝐴𝐻 s𝐾 0 𝑦 𝑧 𝑄6
𝐶7

Ď𝐻𝐵𝐾 𝑥 1 𝑧 𝑄7
𝐶8

Ď𝐻 s𝐵𝐾 𝑥 0 𝑧 𝑄8
𝐶0

Ď𝐻 s𝐾 𝑥 𝑦 𝑧 𝑄0

Proof of Theorem 7

Theorem 7. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The probability assessment P = (𝑥, 𝑦, 𝑧) on the family of conditional events 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)} is coherent for every (𝑥, 𝑦, 𝑧) ∈ [0, 1]3.

Proof. The constituents 𝐶ℎ ’s and the points 𝑄ℎ ’s associated with the assessment P = (𝑥, 𝑦, 𝑧) on F are (see also Table A.13)

𝐶1 =𝐴𝐻𝐵𝐾,𝐶2 =𝐴𝐻 s𝐵𝐾,𝐶3 =𝐴𝐻 s𝐾,𝐶4 = s𝐴𝐻𝐵𝐾,𝐶5 = s𝐴𝐻 s𝐵𝐾,
𝐶6 = s𝐴𝐻 s𝐾,𝐶7 = Ď𝐻𝐵𝐾,𝐶8 = Ď𝐻 s𝐵𝐾,𝐶0 = Ď𝐻 s𝐾,

and

𝑄1 = (1,1,1),𝑄2 = (1,0,0),𝑄3 = (1, 𝑦, 𝑧),𝑄4 = (0,1, 𝑧),𝑄5 = (0,0, 𝑧),
𝑄6 = (0, 𝑦, 𝑧),𝑄7 = (𝑥,1, 𝑧),𝑄8 = (𝑥,0, 𝑧),P =𝑄0 = (𝑥, 𝑦, 𝑧).

The system (Σ) in (5) associated with the pair (F , P) becomes⎧⎪⎪⎨⎪⎪⎩

𝜆1 + 𝜆2 + 𝜆3 + 𝑥𝜆7 + 𝑥𝜆8 = 𝑥,
𝜆1 + 𝑦𝜆3 + 𝜆4 + 𝑦𝜆6 + 𝜆7 = 𝑦,
𝜆1 + 𝑧𝜆3 + 𝑧𝜆4 + 𝑧𝜆5 + 𝑧𝜆6 + 𝑧𝜆7 + 𝑧𝜆8 = 𝑧,
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7 + 𝜆8 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,8.

(A.3)

We observe that P belongs to the segment with end points 𝑄3, 𝑄6, indeed (𝑥, 𝑦, 𝑧) = 𝑥𝑄3 + (1 −𝑥)𝑄6 = 𝑥(1, 𝑦, 𝑧) + (1 −𝑥)(0, 𝑦, 𝑧). The 
point P also belongs the segment with end points 𝑄7 and 𝑄8 because (𝑥, 𝑦, 𝑧) = 𝑦𝑄7 + (1 − 𝑦)𝑄8 = 𝑦(𝑥, 1, 𝑧) + (1 − 𝑦)(𝑥, 0, 𝑧). Then

(𝑥, 𝑦, 𝑧) = 𝑥
2
(1, 𝑦, 𝑧) + 1 − 𝑥

2
(0, 𝑦, 𝑧) + 𝑦

2
(𝑥,1, 𝑧) + 1 − 𝑦

2
(𝑥,0, 𝑧),
33

so the vector Λ = (0, 0, 𝑥2 , 0, 0, 
1−𝑥
2 , 𝑦2 , 

1−𝑦
2 ) is a solution of (A.3), with
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Table A.14

Constituents and points 𝑄ℎ ’s associated with F = {𝐴|𝐻, (𝐵|𝐾)|𝐹 (𝐴|𝐻),
(𝐴|𝐻) ∧𝐾 (𝐵|𝐾)} and P = (𝑥, 𝑦, 𝑧).

𝐶ℎ 𝐴|𝐻 (𝐵|𝐾)|𝐹 (𝐴|𝐻) (𝐴|𝐻) ∧𝐾 (𝐵|𝐾) 𝑄ℎ

𝐶1 𝐴𝐻𝐵𝐾 1 1 1 𝑄1
𝐶2 𝐴𝐻 s𝐵𝐾 1 0 0 𝑄2
𝐶3 𝐴𝐻 s𝐾 1 𝑦 𝑧 𝑄3
𝐶4

s𝐴𝐻 0 𝑦 0 𝑄4
𝐶5

Ď𝐻 s𝐵𝐾 𝑥 0 0 𝑄5
𝐶0

Ď𝐻𝐵𝐾 ∨ Ď𝐻 s𝐾 𝑥 𝑦 𝑧 𝑄0

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5𝜆6 =

1
2 > 0,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 + 𝜆7 + 𝜆8 =

1
2 ,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐴𝐻𝐾 𝜆ℎ = 𝜆1 + 𝜆2 = 0.

Let S′ = {(0, 0, 𝑥2 , 0, 0, 
1−𝑥
2 , 𝑦2 , 

1−𝑦
2 )} denote a subset of the set S of all solutions of (A.3). We have that 𝑀 ′

1 =
1
2 , 𝑀 ′

2 =
1
2 , 𝑀 ′

3 = 0 (7). 
We get I′0 = {3}. We observe that the sub-assessment 𝑧 on {(𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)} is coherent for every 𝑧 ∈ [0, 1]. Then, by Theorem 1, 
the assessment (𝑥, 𝑦, 𝑧) on F is coherent ∀(𝑥, 𝑦, 𝑧) ∈ [0, 1]3. □

A.2. Proof of Theorem 8

Theorem 8. Let 𝐴, 𝐵, 𝐻 , 𝐾 , be any logically independent events. A probability assessment P = (𝑥, 𝑦, 𝑧) on the family of conditional events 
F = {𝐴|𝐻, (𝐵|𝐾)|𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾 (𝐵|𝐾)} is coherent if and only if (𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 ∈ [𝑧′, 𝑧′′], where 𝑧′ = 0 and 𝑧′′ = 𝑇𝐻0 (𝑥, 𝑦), 
where

𝑇𝐻0 (𝑥, 𝑦) =

{
0, if 𝑥 = 0 or 𝑦 = 0

𝑥𝑦
𝑥+𝑦−𝑥𝑦 , if 𝑥 ≠ 0 and 𝑦 ≠ 0,

is the Hamacher t-norm with parameter 𝜆 = 0.

Proof. We recall that {𝐴|𝐻, (𝐵|𝐾)|𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾 (𝐵|𝐾)} = {𝐴|𝐻, 𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨ 𝐴𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾), 𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨
s𝐴𝐻 ∨ s𝐵𝐾)}. Then, H3 =𝐻 ∨(𝐴𝐻𝐵𝐾 ∨𝐴𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾) ∨(𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 ∨ s𝐵𝐾) =𝐻 ∨ Ď𝐻 s𝐵𝐾 . The constituents 𝐶ℎ’s and the points 
𝑄ℎ ’s associated with the assessment P = (𝑥, 𝑦, 𝑧) on F are (see Table A.14)

𝐶1 =𝐴𝐻𝐵𝐾, 𝐶2 =𝐴𝐻 s𝐵𝐾, 𝐶3 =𝐴𝐻 s𝐾, 𝐶4 = s𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 s𝐵𝐾 ∨ s𝐴𝐻 s𝐾 = s𝐴𝐻, 𝐶5 = Ď𝐻 s𝐵𝐾, 𝐶0 = Ď𝐻𝐵𝐾 ∨ Ď𝐻 s𝐾,

and

𝑄1 = (1,1,1), 𝑄2 = (1,0,0), 𝑄3 = (1, 𝑦, 𝑧), 𝑄4 = (0, 𝑦,0), 𝑄5 = (𝑥,0,0), P =𝑄0 = (𝑥, 𝑦, 𝑧).

The system (Σ) in (5) associated with the pair (F , P) becomes

⎧⎪⎪⎨⎪⎪⎩

𝜆1 + 𝜆2 + 𝜆3 + 𝑥𝜆5 = 𝑥,
𝜆1 + 𝑦𝜆3 + 𝑦𝜆4 = 𝑦,
𝜆1 + 𝑧𝜆3 = 𝑧,
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,5.

(A.4)

Upper bound. We first prove that the assessment (𝑥, 𝑦, 0) is coherent for every (𝑥, 𝑦) ∈ [0, 1]2. We observe that P = (𝑥, 𝑦, 0) = 𝑥𝑄3 +
(1 − 𝑥)𝑄4, so a solution of (A.4) is given by Λ = (0, 0, 𝑥, 1 − 𝑥, 0).

Then, by considering the function 𝜙 as defined in (6), it holds that

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1 > 0,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐵𝐾∨𝐴𝐻 s𝐵𝐾∨Ď𝐻 s𝐵𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆5 = 0,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐵𝐾∨�̄�𝐻∨�̄�𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 = 1 − 𝑥.

Let S′ = {(0, 0, 𝑥, 1 −𝑥, 0)} denote a subset of the set S of all solutions of (A.4). We have that 𝑀 ′
1 = 1, 𝑀 ′

2 = 0, 𝑀 ′
3 = 1 −𝑥 (as defined 

in (7)). We distinguish two cases: (𝑖) 𝑥 ≠ 1; (𝑖𝑖) 𝑥 = 1.

(𝑖) In this case, 𝑀 ′
1 > 0, 𝑀 ′

2 = 0, 𝑀 ′
3 > 0 and hence 𝐼 ′0 = {2}. We observe that the sub-assessment P′0 = 𝑦 on F ′

0 = {(𝐵|𝐾)|𝐹 (𝐴|𝐻)}
is coherent for every 𝑦 ∈ [0, 1]. Then, by Theorem 2, the assessment (𝑥, 𝑦, 0) on F is coherent ∀(𝑥, 𝑦) ∈ [0, 1]2;

(𝑖𝑖) We have that 𝑀 ′
1 > 0, 𝑀 ′

2 =𝑀
′
3 = 0 and hence 𝐼 ′0 = {2, 3}. We set K = F ′

0 = {(𝐵|𝐾)|𝐹 (𝐴|𝐻), (𝐴|𝐻) ∧𝐾 (𝐵|𝐾)} and V = P′0 =
34

(𝑦, 0). By Theorem 2, as (A.4) is solvable and 𝐼 ′0 = {2, 3}, it is sufficient to check the coherence of the sub-assessment V on 
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K in order to check the coherence of (𝑥, 𝑦, 0). We have that H2 = (𝐴𝐻𝐵𝐾 ∨ 𝐴𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾) ∨ (𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 ∨ s𝐵𝐾) =
𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 ∨ s𝐵𝐾 . The constituents 𝐶ℎ’s and the point 𝑄ℎ ’s associated with the assessment V on K are

𝐶1 =𝐴𝐻𝐵𝐾, 𝐶2 =𝐴𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾, 𝐶3 = s𝐴𝐻,𝐶0 =𝐴𝐻 s𝐾 ∨ Ď𝐻 s𝐾 ∨ Ď𝐻𝐵𝐾,

and

𝑄1 = (1,1), 𝑄2 = (0,0), 𝑄3 = (𝑦,0), P′0 =𝑄0 = (𝑦,0).

We have that H2 = 𝐶1 ∨⋯ ∨𝐶3 =𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 ∨ s𝐵𝐾 . The system (Σ) in (5) associated with the pair (K , V) becomes

⎧⎪⎨⎪⎩
𝜆1 + 𝑦𝜆3 = 𝑦,
𝜆1 = 0,
𝜆1 + 𝜆2 + 𝜆3 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,3.

(A.5)

We observe that V = (𝑦, 0) =𝑄3 so a solution of (A.5) is Λ = (0, 0, 1).
By considering the function 𝜙 as defined in (6), it holds that

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐵𝐾∨𝐴𝐻 s𝐵𝐾∨Ď𝐻 s𝐵𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 = 0,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐵𝐾∨ s𝐴𝐻∨ s𝐵𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 = 1.

Let S′ = {(0, 0, 1)} denote a subset of the set S of all solutions of (A.4). We have that 𝑀 ′
1 = 0, 𝑀 ′

2 = 1, (as defined in (7)). 
Then, the set 𝐼 ′0 associated with (K , V) is 𝐼 ′0 = 1. We observe that the sub-assessment 𝑦 on {(𝐵|𝐾)|𝑑𝐹 (𝐴|𝐻)} is coherent for 
every 𝑦 ∈ [0, 1]. Then, by Theorem 2, the sub-assessment (𝑦, 0) on K is coherent for every 𝑦 ∈ [0, 1] and hence the assessment 
(𝑥, 𝑦, 0) on F is coherent ∀(𝑥, 𝑦) ∈ [0, 1]2. Thus, 𝑧′ = 0 is the lower bound of 𝑧 = 𝑃 ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾)), for every (𝑥, 𝑦) ∈ [0, 1] on 
{𝐴|𝐻, (𝐵|𝐾)|𝐹 (𝐴|𝐻)}.

Upper bound. To study the upper bound 𝑧′′ of 𝑧 = 𝑃 ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾)) we distinguish the following cases: (𝑎) 𝑥 = 0; (𝑏) 𝑦 = 0; (𝑐)
𝑥 ≠ 0 and 𝑦 ≠ 0.
(𝑎). In this case system (A.4) associated to the pair (F , (0, 𝑦, 𝑧)) becomes

⎧⎪⎪⎨⎪⎪⎩

𝜆1 + 𝜆2 + 𝜆3 = 0,
𝜆1 + 𝑦𝜆3 + 𝑦𝜆4 = 𝑦,
𝜆1 + 𝑧𝜆3 = 𝑧,
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,5.

⟺

⎧⎪⎪⎨⎪⎪⎩

𝜆1 = 𝜆2 = 𝜆3 = 0,
𝑦𝜆4 = 𝑦
𝑧 = 0,
𝜆4 + 𝜆5 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 4,5,

(A.6)

which is solvable only if 𝑧 = 0. We have already verified that P = (𝑥, 𝑦, 0) is coherent on F for all (𝑥, 𝑦) ∈ [0, 1]2, hence, in particular, 
(0, 𝑦, 0) is coherent. We observe that system (A.6) with 𝑧 > 0 is not solvable, then the assessment (0, 𝑦, 𝑧), with 𝑧 > 0 is not coherent. 
Thus, 𝑧′′ = 0 is the upper bound for 𝑧 when 𝑥 = 0 and 𝑦 ∈ [0, 1].
(𝑏). We recall that the pair (∧𝐾, |𝐹 ) satisfies property P2, that is 𝑧 ≤ 𝑦. As 𝑦 = 0, it follows that 𝑧 = 0. We have already verified that 
P = (𝑥, 𝑦, 0) is coherent on F for all (𝑥, 𝑦) ∈ [0, 1]2, hence, in particular, (𝑥, 0, 0) is coherent. We also observe that the assessment 
(𝑥, 0, 𝑧), with 𝑧 > 0 is not coherent, because the pair (𝑦 = 0, 𝑧) violates property P2. Thus, 𝑧′′ = 0 is the upper bound for 𝑧 when 
𝑥 ∈ [0, 1] and 𝑦 = 0.
(c) First of all, we verify that the assessment P = (𝑥, 𝑦, 𝑥𝑦

𝑥+𝑦−𝑥𝑦 ) on F is coherent. Then, we verify that 𝑧′′ = 𝑥𝑦
𝑥+𝑦−𝑥𝑦 is the upper bound 

for 𝑧, by showing that (𝑥, 𝑦, 𝑧), with 𝑧 > 𝑧′′, is incoherent for every (𝑥, 𝑦) ∈ [0, 1]2.
We observe that

P = (𝑥, 𝑦, 𝑥𝑦

𝑥+ 𝑦− 𝑥𝑦
) = 𝑥𝑦

𝑥+ 𝑦− 𝑥𝑦
𝑄1 +

𝑦(1 − 𝑥)
𝑥+ 𝑦− 𝑥𝑦

𝑄4 +
𝑥(1 − 𝑦)
𝑥+ 𝑦− 𝑥𝑦

𝑄5.

Then a solution of (A.4) is Λ = ( 𝑥𝑦
𝑥+𝑦−𝑥𝑦 , 0, 0, 

𝑦(1−𝑥)
𝑥+𝑦−𝑥𝑦 , 

𝑥(1−𝑦)
𝑥+𝑦−𝑥𝑦 ) and it holds that

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 =

𝑦
𝑥+𝑦−𝑥𝑦 ,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐵𝐾∨𝐴𝐻 s𝐵𝐾∨Ď𝐻 s𝐵𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆5 =

𝑥
𝑥+𝑦−𝑥𝑦 ,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐵𝐾∨�̄�𝐻∨�̄�𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 = 1 > 0.

Let S′ = {( 𝑥𝑦
𝑥+𝑦−𝑥𝑦 , 0, 0, 

𝑦(1−𝑥)
𝑥+𝑦−𝑥𝑦 , 

𝑥(1−𝑦)
𝑥+𝑦−𝑥𝑦 )} be a subset S of all solutions of (A.4). We have that 𝑀 ′

1 > 0, 𝑀 ′
2 > 0, 𝑀 ′

3 > 0 (as defined in 
(7)). Then, by Theorem 2 the assessment (𝑥, 𝑦, 𝑥𝑦

𝑥+𝑦−𝑥𝑦 ) is coherent for every 𝑥 ≠ 0 and 𝑦 ≠ 0.

Now we prove that in this case 𝑧′′ = 𝑥𝑦
𝑥+𝑦−𝑥𝑦 is the upper bound for 𝑧.

We distinguish two sub-cases: (𝑖) 𝑥 = 1, (𝑖𝑖) 𝑥 ≠ 1.
(𝑖) We recall that the pair (∧𝐾, |𝐹 ) satisfies property P2 and hence 𝑧 ≤ 𝑦. Then, when 𝑥 = 1, as 𝑥𝑦

𝑥+𝑦−𝑥𝑦 = 𝑦, we have that any 
35

assessment 𝑧 > 𝑥𝑦
𝑥+𝑦−𝑥𝑦 = 𝑦 is not coherent. Therefore, 𝑧′′ = 𝑥𝑦

𝑥+𝑦−𝑥𝑦 = 𝑦 is the upper bound for 𝑧 = 𝑃 ((𝐴|𝐻) ∧𝐾 (𝐵|𝐾)).
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Table A.15

Constituents and points 𝑄ℎ ’s associated with F = {𝐴|𝐻, 𝐵|𝐾,
(𝐵|𝐾)|𝐹 (𝐴|𝐻)} and P = (𝑥, 𝑦, 𝑧).

𝐶ℎ 𝐴|𝐻 𝐵|𝐾 (𝐵|𝐾)|𝐹 (𝐴|𝐻) 𝑄ℎ

𝐶1 𝐴𝐻𝐵𝐾 1 1 1 𝑄1
𝐶2 𝐴𝐻 s𝐵𝐾 1 0 0 𝑄2
𝐶3 𝐴𝐻 s𝐾 1 𝑦 𝑧 𝑄3
𝐶4

s𝐴𝐻𝐵𝐾 0 1 𝑧 𝑄4
𝐶5

s𝐴𝐻 s𝐵𝐾 0 0 𝑧 𝑄5
𝐶6

s𝐴𝐻 s𝐾 0 𝑦 𝑧 𝑄6
𝐶7

Ď𝐻𝐵𝐾 𝑥 1 𝑧 𝑄7
𝐶8

Ď𝐻 s𝐵𝐾 𝑥 0 0 𝑄8
𝐶0

Ď𝐻 s𝐾 𝑥 𝑦 𝑧 𝑄0

(𝑖𝑖) We recall that in this case 𝑥 ∈ (0, 1) and 𝑦 ≠ 0. We observe that the points 𝑄1, 𝑄4, 𝑄5 belong to the plane 𝜋 ∶ 𝑦𝑋 + 𝑥𝑌 − (𝑥 +
𝑦 − 𝑥𝑦)𝑍 = 𝑥𝑦, where 𝑋, 𝑌 , 𝑍 are the axes coordinates. We set 𝑓 (𝑋, 𝑌 , 𝑍) = 𝑦𝑋 + 𝑥𝑌 − (𝑥 + 𝑦 − 𝑥𝑦)𝑍 − 𝑥𝑦, we choose P = (𝑥, 𝑦, 𝑧)
with 𝑧 > 𝑥𝑦

𝑥+𝑦−𝑥𝑦 , i.e. (𝑥 + 𝑦 − 𝑥𝑦)𝑧 − 𝑥𝑦 > 0, and we observe that 𝑓 (P) = 𝑥𝑦 − (𝑥 + 𝑦 − 𝑥𝑦)𝑧. For each ℎ = 1, … , 5, we consider the 
quantity 𝑓 (𝑄ℎ) − 𝑓 (𝑃 ). Then, we obtain

𝑓 (𝑄1) − 𝑓 (P) = (𝑥+ 𝑦− 𝑥𝑦)𝑧− 𝑥𝑦 > 0;
𝑓 (𝑄2) − 𝑓 (P) = 𝑦(1 − 𝑥) + (𝑥+ 𝑦− 𝑥𝑦)𝑧− 𝑥𝑦 > 0;
𝑓 (𝑄3) − 𝑓 (P) = 𝑦− 𝑥𝑦 = 𝑦(1 − 𝑥) > 0;
𝑓 (𝑄4) − 𝑓 (P) = (𝑥+ 𝑦− 𝑥𝑦)𝑧− 𝑥𝑦 > 0;
𝑓 (𝑄5) − 𝑓 (P) = (𝑥+ 𝑦− 𝑥𝑦)𝑧− 𝑥𝑦 > 0.

(A.7)

We recall that, by setting the stakes 𝑠1 = 𝑦, 𝑠2 = 𝑥, 𝑠3 = −𝑥 − 𝑦 + 𝑥𝑦, it holds that 𝑔ℎ = 𝑓 (𝑄ℎ) − 𝑓 (P), ℎ = 1, … , 5, where 𝑔ℎ is the 
value of the random gain 𝐺 associated with the constituent 𝐶ℎ ⊆H3. From (A.7) we obtain that 𝑔ℎ = 𝑓 (𝑄ℎ) − 𝑓 (P) > 0, ℎ = 1, … , 5. 
Thus, as there exist (𝑠1, 𝑠2, 𝑠3) such that min𝐺H max𝐺H > 0, it follows that the assessment (𝑥, 𝑦, 𝑧) is not coherent when 𝑧 > 𝑥𝑦

𝑥+𝑦−𝑥𝑦 .

We conclude that 𝑧′′ = 𝑥𝑦
𝑥+𝑦−𝑥𝑦 is the upper bound for 𝑧.

Therefore 𝑧′′ = 𝑇𝐻0 (𝑥, 𝑦) is the upper bound for 𝑧, for every (𝑥, 𝑦) ∈ [0, 1]2. □

A.3. Proof of Theorem 9

Theorem 9. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The probability assessment P = (𝑥, 𝑦, 𝑧) on the family of conditional events 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐵|𝐾)|𝐹 (𝐴|𝐻)} is coherent for every (𝑥, 𝑦, 𝑧) ∈ [0, 1]3.

Proof. The constituents 𝐶ℎ ’s and the points 𝑄ℎ ’s associated with the assessment P = (𝑥, 𝑦, 𝑧) on F are (see also Table A.15)

𝐶1 =𝐴𝐻𝐵𝐾,𝐶2 =𝐴𝐻 s𝐵𝐾,𝐶3 =𝐴𝐻 s𝐾,𝐶4 = s𝐴𝐻𝐵𝐾,𝐶5 = s𝐴𝐻 s𝐵𝐾,
𝐶6 = s𝐴𝐻 s𝐾,𝐶7 = Ď𝐻𝐵𝐾,𝐶8 = Ď𝐻 s𝐵𝐾,𝐶0 = Ď𝐻 s𝐾,

and

𝑄1 = (1,1,1),𝑄2 = (1,0,0),𝑄3 = (1, 𝑦, 𝑧),𝑄4 = (0,1, 𝑧),𝑄5 = (0,0, 𝑧),
𝑄6 = (0, 𝑦, 𝑧),𝑄7 = (𝑥,1, 𝑧),𝑄8 = (𝑥,0,0),P =𝑄0 = (𝑥, 𝑦, 𝑧).

We observe that 𝐶1 ∨⋯ ∨𝐶8 =𝐻 ∨𝐾 =H3. The system (Σ) in (5) associated with the pair (F , P) becomes

⎧⎪⎪⎨⎪⎪⎩

𝜆1 + 𝜆2 + 𝜆3 + 𝑥𝜆7 + 𝑥𝜆8 = 𝑥,
𝜆1 + 𝑦𝜆3 + 𝜆4 + 𝑦𝜆6 + 𝜆7 = 𝑦,
𝜆1 + 𝑧𝜆3 + 𝑧𝜆4 + 𝑧𝜆5 + 𝑧𝜆6 + 𝑧𝜆7 = 𝑧,
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7 + 𝜆8 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,8.

(A.8)

We observe that P belongs to the segment with end points 𝑄3, 𝑄6; indeed (𝑥, 𝑦, 𝑧) = 𝑥𝑄3 + (1 − 𝑥)𝑄6 = 𝑥(1, 𝑦, 𝑧) + (1 − 𝑥)(0, 𝑦, 𝑧). 
Then, the vector Λ = (0, 0, 𝑥, 0, 0, 1 − 𝑥, 0, 0) is a solution of (A.8), with

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 = 1,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 + 𝜆7 + 𝜆8 = 0,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆[𝐴𝐻𝐵𝐾∨𝐴𝐻 s𝐵𝐾∨Ď𝐻 s𝐵𝐾] 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆8 = 0.

Let S′ = {(0, 0, 𝑥, 0, 0, 1 − 𝑥, 0, 0)} be a subset S of all solutions of (A.8). We have that 𝑀 ′
1 > 0, 𝑀 ′

2 = 0, 𝑀 ′
3 = 0 (as defined in (7)). 

Then, 𝐼 ′0 = {2, 3}. We check the coherence of the sub-assessment P′0 = (𝑦, 𝑧) on F ′
0 = {𝐵|𝐾, (𝐵|𝐾)|𝐹 (𝐴|𝐻)}. The constituents 𝐶ℎ ’s 
36

and the point 𝑄ℎ ’s associated with the assessment P′0 on F ′
0 are
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𝐶1 =𝐴𝐻𝐵𝐾,𝐶2 =𝐴𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾,
𝐶3 = s𝐴𝐻𝐵𝐾 ∨ Ď𝐻𝐵𝐾,𝐶4 = s𝐴𝐻 s𝐵𝐾,𝐶0 = s𝐾,

and

𝑄1 = (1,1), 𝑄2 = (0,0), 𝑄3 = (1, 𝑧), 𝑄4 = (0, 𝑧),P =𝑄0 = (𝑦, 𝑧).

We observe that 𝐶1 ∨⋯ ∨𝐶4 =𝐾 =H2. The system (Σ) in (5) associated with the pair (F0, P0) becomes

⎧⎪⎨⎪⎩
𝜆1 + 𝜆3 = 𝑦,
𝜆1 + 𝑧𝜆3 + 𝑧𝜆4 = 𝑧,
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,4.

(A.9)

We observe that (𝑦, 𝑧) = 𝑦𝑄3 + (1 − 𝑦)𝑄4 so a solution of ((A.9) is Λ0 = (0, 0, 𝑦, 1 − 𝑦). By considering the function 𝜙′ it holds that

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆[𝐴𝐻𝐵𝐾∨𝐴𝐻 s𝐵𝐾∨Ď𝐻 s𝐵𝐾] 𝜆ℎ = 𝜆1 + 𝜆2 = 0.

Let S′ = {(0, 0, 𝑦, 1 − 𝑦)} be a subset S of all solutions of (A.9). We have that 𝑀 ′
1 > 0, 𝑀 ′

2 = 0 (as defined in (7)). Then, 𝐼 ′0 = {2}. We 
observe that the sub-assessment 𝑧 on {(𝐵|𝐾)|𝐹 (𝐴|𝐻)} is coherent for every 𝑧 ∈ [0, 1]. Then, by Theorem 2, the assessment (𝑥, 𝑦, 𝑧)
on F is coherent ∀(𝑥, 𝑦, 𝑧) ∈ [0, 1]3. □

A.4. Proof of Theorem 13

Theorem 13. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The set Π of all the coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on the family 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐿 (𝐵|𝐾), (𝐵|𝐾)|𝐿(𝐴|𝐻)} is Π = Π′ ∪ Π′′, where Π′ = {(𝑥, 𝑦, 𝑧, 𝜇) ∶ 𝑥 ∈ (0, 1], 𝑦 ∈ [0, 1], 𝑧 ∈ [𝑧′, 𝑧′′], 𝜇 = 𝑧

𝑥
}

with 𝑧′ = 0, 𝑧′′ =𝑚𝑖𝑛{𝑥, 𝑦}, and Π′′ = {(0, 𝑦, 0, 𝜇) ∶ (𝑦, 𝜇) ∈ [0, 1]2}.

Proof. It is well-known that the assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾} is coherent for every (𝑥, 𝑦) ∈ [0, 1]2. By Table 2, the assessment 
𝑧 = 𝑃 ((𝐴|𝐻) ∧𝐿 (𝐵|𝐾)) is a coherent extension of (𝑥, 𝑦) if and only if 𝑧 ∈ [𝑧′, 𝑧′′] where 𝑧′ = 0 and 𝑧′′ = 𝑚𝑖𝑛{𝑥, 𝑦}. Assuming 𝑥 > 0, 
from (44) it holds that 𝜇 = 𝑧

𝑥
. Then, every (𝑥, 𝑦, 𝑧, 𝜇) ∈ Π′ is coherent, i.e., Π′ ⊆ Π. Of course, if 𝑥 > 0 and (𝑥, 𝑦, 𝑧, 𝜇) ∉ Π′, then the 

assessment (𝑥, 𝑦, 𝑧, 𝜇) is not coherent, i.e. (𝑥, 𝑦, 𝑧, 𝜇) ∉ Π.
Let us consider now the case 𝑥 = 0, so that 𝑧′ = 0 and 𝑧′′ = 0. We show that the assessment (0, 𝑦, 0, 𝜇) is coherent if and only if 

(𝑦, 𝜇) ∈ [0, 1]2, that is Π′′ ⊆Π. As 𝑥 = 0, from (49), it holds that

(𝐵|𝐾)|𝐿(𝐴|𝐻) =
⎧⎪⎨⎪⎩
1, if 𝐴𝐻𝐵𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 ∨𝐴𝐻 s𝐾 is true,

𝜇𝐿, if s𝐴𝐻 ∨ Ď𝐻𝐵𝐾 ∨ Ď𝐻 s𝐵𝐾 ∨ Ď𝐻 s𝐾 is true.

(A.10)

that is (𝐵|𝐾)|𝐿(𝐴|𝐻) = 𝐵𝐾|𝐴𝐻 (see proof of Theorem 11). Therefore F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐿 (𝐵|𝐾), (𝐵|𝐾)|𝐿(𝐴|𝐻)} =
{𝐴|𝐻, 𝐵|𝐾, 𝐴𝐻𝐵𝐾|(𝐴𝐻𝐵𝐾 ∨ 𝐴𝐻 ∨ 𝐵𝐾 ∨𝐻𝐾), 𝐵𝐾|𝐴𝐻} and H4 =𝐻 ∨𝐾 ∨ (𝐴𝐻𝐵𝐾 ∨ 𝐴𝐻 ∨ 𝐵𝐾 ∨𝐻𝐾) ∨ 𝐴𝐻 = Ω. The con-
stituents 𝐶 ′

ℎ
𝑠 and the points 𝑄′

ℎ
𝑠 associated with (F , P), where P = (0, 𝑦, 0, 𝜇), are the following (see also Table A.16):

𝐶1 =𝐴𝐻𝐵𝐾,𝐶2 =𝐴𝐻 s𝐵𝐾,𝐶3 =𝐴𝐻 s𝐾,𝐶4 = s𝐴𝐻𝐵𝐾,𝐶5 = s𝐴𝐻 s𝐵𝐾,
𝐶6 = s𝐴𝐻 s𝐾,𝐶7 = Ď𝐻𝐵𝐾,𝐶8 = Ď𝐻 s𝐵𝐾,𝐶9 = Ď𝐻 s𝐾,

and

𝑄1 = (1,1,1,1),𝑄2 = (1,0,0,0),𝑄3 = (1, 𝑦,0,0),𝑄4 = (0,1,0, 𝜇),𝑄5 = (0,0,0, 𝜇),
𝑄6 = (0, 𝑦,0, 𝜇),𝑄7 = (0,1,0, 𝜇),𝑄8 = (0,0,0, 𝜇),𝑄9 = (0, 𝑦,0, 𝜇).

The system (Σ) in (5) associated with the pair (F , P) is

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜆1 + 𝜆2 + 𝜆3 = 0,
𝜆1 + 𝑦𝜆3 + 𝜆4 + 𝑦𝜆6 + 𝜆7 + 𝑦𝜆9 = 𝑦,
𝜆1 = 0,
𝜆1 + 𝜇𝜆4 + 𝜇𝜆5 + 𝜇𝜆6 + 𝜇𝜆7 + 𝜇𝜆8 + 𝜇𝜆9 = 𝜇
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7 + 𝜆8 + 𝜆9 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,9.

(A.11)

We observe that P belongs to the segment with end points 𝑄4, 𝑄5; indeed (0, 𝑦, 0, 𝜇) = 𝑦𝑄4 +(1 −𝑦)𝑄5 = 𝑦(0, 1, 0, 𝜇) +(1 −𝑦)(0, 0, 0, 𝜇). 
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Then, the vector Λ = (0, 0, 0, 𝑦, 1 − 𝑦, 0, 0, 0, 0) is a solution of (A.11), with
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Table A.16

Constituents and points 𝑄ℎ ’s associated with F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐿
(𝐵|𝐾), (𝐵|𝐾)|𝐿(𝐴|𝐻)} and P = (0, 𝑦, 0, 𝜇).

𝐶ℎ 𝐴|𝐻 𝐵|𝐾 (𝐴|𝐻) ∧𝐿 (𝐵|𝐾) (𝐵|𝐾)|𝐿(𝐴|𝐻) 𝑄ℎ

𝐶1 𝐴𝐻𝐵𝐾 1 1 1 1 𝑄1
𝐶2 𝐴𝐻 s𝐵𝐾 1 0 0 0 𝑄2
𝐶3 𝐴𝐻 s𝐾 1 𝑦 0 0 𝑄3
𝐶4

s𝐴𝐻𝐵𝐾 0 1 0 𝜇 𝑄4
𝐶5

s𝐴𝐻 s𝐵𝐾 0 0 0 𝜇 𝑄5
𝐶6

s𝐴𝐻 s𝐾 0 𝑦 0 𝜇 𝑄6
𝐶7

Ď𝐻𝐵𝐾 0 1 0 𝜇 𝑄7
𝐶8

Ď𝐻 s𝐵𝐾 0 0 0 𝜇 𝑄8
𝐶9

Ď𝐻 s𝐾 0 𝑦 0 𝜇 𝑄9

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 = 1 > 0,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 = 1 > 0,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻𝐵𝐾∨ s𝐴𝐻∨ s𝐵𝐾∨Ď𝐻 s𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆8 + 𝜆9 = 1 > 0,

𝜙4(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐴𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 = 0.

Let S′ = {(0, 0, 0, 𝑦, 1 −𝑦, 0, 0, 0, 0)} denote a subset of the set S of all solutions of (A.11). We have that 𝑀 ′
1 =𝑀

′
2 =𝑀

′
3 = 1 and 𝑀 ′

4 = 0
(as defined in (7)). It follows that 𝐼 ′0 = {4}. As the sub-assessment P′0 = 𝜇 on F ′

0 = {𝐵𝐾|𝐴𝐻} is coherent ∀𝜇 ∈ [0, 1], by Theorem 1, 
it follows that the assessment (0, 𝑦, 0, 𝜇) on F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐿 (𝐵|𝐾), (𝐵|𝐾)|𝐿(𝐴|𝐻)} is coherent for every (𝑦, 𝜇) ∈ [0, 1]2, 
that is (0, 𝑦, 0, 𝜇) ∈Π′′. Thus Π′′ ⊆Π. Of course, if (0, 𝑦, 𝑧, 𝜇) ∉Π′′ the assessment (0, 𝑦, 𝑧, 𝜇) is not coherent and hence (0, 𝑦, 𝑧, 𝜇) ∉Π. 
Therefore Π =Π′ ∪ Π′′. □

A.5. Proof of Theorem 15

Theorem 15. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The set Π of all the coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on the family 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐵 (𝐵|𝐾), (𝐵|𝐾)|𝐵(𝐴|𝐻)} is Π = Π′ ∪ Π′′, where Π′ = {(𝑥, 𝑦, 𝑧, 𝜇) ∶ 𝑥 ∈ (0, 1], 𝑦 ∈ [0, 1], 𝑧 ∈ [𝑧′, 𝑧′′], 𝜇 = 𝑧

𝑥
}

with 𝑧′ = 0, 𝑧′′ = 1, and Π′′ = {(0, 𝑦, 0, 𝜇) ∶ (𝑦, 𝜇) ∈ [0, 1]2}.

Proof. Of course the assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾} is coherent for every (𝑥, 𝑦) ∈ [0, 1]2. By Table 2, the assessment 𝑧 =
𝑃 ((𝐴|𝐻) ∧𝐵 (𝐵|𝐾)) is a coherent extension of (𝑥, 𝑦) if and only if 𝑧 ∈ [𝑧′, 𝑧′′] where 𝑧′ = 0 and 𝑧′′ = 1. Assuming 𝑥 > 0, from 
(44) it holds that 𝜇 = 𝑧

𝑥
. Then, every (𝑥, 𝑦, 𝑧, 𝜇) ∈ Π′ is coherent, i.e., Π′ ⊆ Π. Of course, if 𝑥 > 0 and (𝑥, 𝑦, 𝑧, 𝜇) ∉ Π′, then the 

assessment (𝑥, 𝑦, 𝑧, 𝜇) is not coherent, i.e. (𝑥, 𝑦, 𝑧, 𝜇) ∉ Π.
Let us consider now the case 𝑥 = 0. We recall that it is coherent to assess (0, 𝑦, 𝑧), with 𝑧 > 0, on {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐵 (𝐵|𝐾)}

(see Table 2). However, for the further object (𝐵|𝐾)|𝐵(𝐴|𝐻) coherence also requires that 𝑧 = 𝜇𝑥 (see (44)). Then, coherence requires 
that 𝑧 = 0 when we consider the assessment (0, 𝑦, 𝑧, 𝜇) on {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐵 (𝐵|𝐾), (𝐵|𝐾)|𝐵(𝐴|𝐻)}. We show that the assessment 
(0, 𝑦, 0, 𝜇) is coherent if and only if (𝑦, 𝜇) ∈ [0, 1]2, that is Π′′ ⊆Π. As 𝑥 = 0, from (51), it holds that

(𝐵|𝐾)|𝐵(𝐴|𝐻) =
⎧⎪⎨⎪⎩
1, if 𝐴𝐻𝐵𝐾 is true,

0, if 𝐴𝐻 s𝐵𝐾 ∨𝐴𝐻 s𝐾 is true,

𝜇𝐵, if Ď𝐻 ∨ s𝐴𝐻𝐵𝐾 ∨ s𝐴𝐻 s𝐵𝐾 ∨ s𝐴𝐻 s𝐾 is true,

(A.12)

that is (𝐵|𝐾)|𝐵(𝐴|𝐻) =𝐵𝐾|𝐴𝐻 (see proof Theorem 11). We show that the assessment P = (0, 𝑦, 0, 𝜇) on F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐵
(𝐵|𝐾), (𝐵|𝐾)|𝐵(𝐴|𝐻)} = {𝐴|𝐻, 𝐵|𝐾, 𝐴𝐻𝐵𝐾|𝐻𝐾, 𝐵𝐾|𝐴𝐻} is coherent if and only if (𝑦, 𝜇) ∈ [0, 1]2, that is Π′′ ⊆ Π. We observe 
that H4 =𝐻 ∨𝐾 ∨𝐻𝐾 ∨𝐴𝐻 =𝐻 ∨𝐾 . The constituents 𝐶 ′

ℎ
𝑠 and the points 𝑄′

ℎ
𝑠 associated with (F , P), where P = (0, 𝑦, 0, 𝜇), are 

the following:

𝐶1 =𝐴𝐻𝐵𝐾,𝐶2 =𝐴𝐻 s𝐵𝐾,𝐶3 =𝐴𝐻 s𝐾,𝐶4 = s𝐴𝐻𝐵𝐾,𝐶5 = s𝐴𝐻 s𝐵𝐾,
𝐶6 = s𝐴𝐻 s𝐾,𝐶7 = Ď𝐻𝐵𝐾,𝐶8 = Ď𝐻 s𝐵𝐾,𝐶0 = Ď𝐻 s𝐾,

and

𝑄1 = (1,1,1,1),𝑄2 = (1,0,0,0),𝑄3 = (1, 𝑦,0,0),𝑄4 = (0,1,0, 𝜇),𝑄5 = (0,0,0, 𝜇),
𝑄6 = (0, 𝑦,0, 𝜇),𝑄7 = (0,1,0, 𝜇),𝑄8 = (0,0,0, 𝜇),P =𝑄0 = (0, 𝑦,0, 𝜇).
38

The system (Σ) in (5) associated with the pair (F , P) is
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜆1 + 𝜆2 + 𝜆3 = 0,
𝜆1 + 𝑦𝜆3 + 𝜆4 + 𝑦𝜆6 + 𝜆7 = 𝑦,
𝜆1 = 0,
𝜆1 + 𝜇𝜆4 + 𝜇𝜆5 + 𝜇𝜆6 + 𝜇𝜆7 + 𝜇𝜆8 = 𝜇
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7 + 𝜆8 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,8.

(A.13)

We observe that P belongs to the segment with end points 𝑄4, 𝑄5; indeed (0, 𝑦, 0, 𝜇) = 𝑦𝑄4 +(1 −𝑦)𝑄5 = 𝑦(0, 1, 0, 𝜇) +(1 −𝑦)(0, 0, 0, 𝜇).
Then the vector Λ = (0, 0, 0, 𝑦, 1 − 𝑦, 0, 0, 0) is a solution of (A.13), with

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 = 1 > 0,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 + 𝜆7 + 𝜆8 = 1 > 0,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 = 1 > 0,

𝜙4(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐴𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 = 0.

Let S′ = {(0, 0, 0, 𝑦, 1 − 𝑦, 0, 0, 0)} denote a subset of the set S of all solutions of (A.13). We have that 𝑀 ′
1 =𝑀

′
2 =𝑀

′
3 = 1 and 𝑀 ′

4 = 0
(as defined in (7)). It follows that 𝐼 ′0 = {4}. As the sub-assessment P′0 = 𝜇 on F ′

0 = {𝐵𝐾|𝐴𝐻} is coherent ∀𝜇 ∈ [0, 1], by Theorem 1, 
it follows that the assessment (0, 𝑦, 0, 𝜇) on F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝐵 (𝐵|𝐾), (𝐵|𝐾)|𝐵(𝐴|𝐻)} is coherent for every (𝑦, 𝜇) ∈ [0, 1]2, 
that is (0, 𝑦, 0, 𝜇) ∈Π′′. Thus Π′′ ⊆Π. Of course, if (0, 𝑦, 𝑧, 𝜇) ∉Π′′ the assessment (0, 𝑦, 𝑧, 𝜇) is not coherent and hence (0, 𝑦, 𝑧, 𝜇) ∉Π. 
Therefore Π =Π′ ∪ Π′′. □

A.6. Proof of Theorem 16

Theorem 16. Let 𝐴, 𝐵, 𝐻, 𝐾 be any logically independent events. Given a coherent assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾}, for the iterated 
conditional (𝐵|𝐾)|𝐵(𝐴|𝐻) the extension 𝜇𝐵 = ℙ[(𝐵|𝐾)|𝐵(𝐴|𝐻)] is coherent if and only if 𝜇𝐵 ∈ [𝜇′

𝐵
, 𝜇′′
𝐵
], where

𝜇′
𝐵
= 0, 𝜇′′

𝐵
=
{ 1

𝑥
, if 0 < 𝑥 < 1,

1, if 𝑥 = 0 ∨ 𝑥 = 1.

Proof. Assume that 𝑥 > 0. We simply write 𝜇 instead of 𝜇𝐵 . From Theorem 15 it follows that the set of all coherent assessments 
(𝑥, 𝑦, 𝑧, 𝜇) on F is Π′ = {(𝑥, 𝑦, 𝑧, 𝜇) ∶ 0 < 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 𝑧′ ≤ 𝑧 ≤ 𝑧′′, 𝜇 = 𝑧

𝑥
}, where 𝑧′ = 0 and 𝑧′′ = 1 (see Table 2). Then, 𝜇 is a 

coherent extension of (𝑥, 𝑦) if and only if 𝜇 ∈ [𝜇′, 𝜇′′], where 𝜇′ = 0 and 𝜇′′ = 𝑧′′

𝑥
= 1

𝑥
. Assume that 𝑥 = 0. From Theorem 15 it follows 

that the set of all coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on F = {𝐴|𝐻, 𝐵|𝐾 , (𝐴|𝐻) ∧𝐵 (𝐵|𝐾), (𝐵|𝐾)|𝐵(𝐴|𝐻)} is Π′′ = {(0, 𝑦, 0, 𝜇) ∶ (𝑦, 𝜇) ∈
[0, 1]2}. Then, 𝜇 is a coherent extension to (𝐵|𝐾)|𝐵(𝐴|𝐻) of the assessment (0, 𝑦) on {𝐴|𝐻, 𝐵|𝐾} if and only if 𝜇 ∈ [𝜇′, 𝜇′′], where 
𝜇′ = 0 and 𝜇′′ = 1. □

A.7. Proof of Theorem 17

Theorem 17. Let 𝐴, 𝐵, 𝐻 , 𝐾 be any logically independent events. The set Π of all the coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on the family 
F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝑆 (𝐵|𝐾), (𝐵|𝐾)|𝑆 (𝐴|𝐻)} is Π =Π′ ∪ Π′′, where

Π′ = {(𝑥, 𝑦, 𝑧, 𝜇) ∶ 𝑥 ∈ (0,1], 𝑦 ∈ [0,1], 𝑧 ∈ [𝑧′, 𝑧′′], 𝜇 = 𝑧
𝑥
},

with 𝑧′ = max{𝑥+ 𝑦− 1,0}, 𝑧′′ =

{
𝑥+𝑦−2𝑥𝑦
1−𝑥𝑦 , if (𝑥, 𝑦) ≠ (1,1),

1, if (𝑥, 𝑦) = (1,1),

and

Π′′ = {(0, 𝑦,0, 𝜇) ∶ 𝑦 ∈ [0,1], 𝜇 ≥ 0}.

Proof. We know that the assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾} is coherent for every (𝑥, 𝑦) ∈ [0, 1]2. We also recall that the assessment 
𝑧 = 𝑃 ((𝐴|𝐻) ∧𝑆 (𝐵|𝐾)) is a coherent extension of (𝑥, 𝑦) if and only if 𝑧 ∈ [𝑧′, 𝑧′′], where (see Table 2)

𝑧′ = max{𝑥+ 𝑦− 1,0}and 𝑧′′ =

{
𝑥+𝑦−2𝑥𝑦
1−𝑥𝑦 , if (𝑥, 𝑦) ≠ (1,1),

1, if (𝑥, 𝑦) = (1,1).

Assuming 𝑥 > 0, then it follows from (44) that 𝜇 = 𝑧
𝑥

. Thus, as every (𝑥, 𝑦, 𝑧, 𝜇) ∈ Π′ is coherent, it holds that Π′ ⊆ Π. Of course, if 
𝑥 > 0 and (𝑥, 𝑦, 𝑧, 𝜇) ∉ Π′, then (𝑥, 𝑦, 𝑧, 𝜇) is not coherent, i.e. (𝑥, 𝑦, 𝑧, 𝜇) ∉ Π.

Let us consider now the case 𝑥 = 0. From Remark 19, coherence requires that 𝑧 = 0. We show that the assessment M = (0, 𝑦, 0, 𝜇)
39

is coherent if and only if 𝑦 ∈ [0, 1] and 𝜇 ≥ 0, and hence Π′′ ⊆Π. As 𝑥 = 0, by (53) it holds that
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(𝐵|𝐾)|𝑆 (𝐴|𝐻) =
⎧⎪⎨⎪⎩
1, if 𝐴𝐻𝐵𝐾 ∨𝐴𝐻 s𝐾 is true,
0, if 𝐴𝐻 s𝐵𝐾 is true,
𝜇, if s𝐴𝐻 ∨ Ď𝐻 s𝐾 ∨ Ď𝐻 s𝐵𝐾 is true,
1 + 𝜇, if Ď𝐻𝐵𝐾 is true,

(A.14)

that is, when 𝑥 = 0,

(𝐵|𝐾)|𝑆 (𝐴|𝐻) = [𝐴𝐻𝐵𝐾 +𝐴𝐻 s𝐾 + (1 + 𝜇)Ď𝐻𝐵𝐾]|(𝐴𝐻 ∨ Ď𝐻𝐵𝐾).

Then, we have F = {𝐴|𝐻, 𝐵|𝐾, (𝐴𝐻 ∨ Ď𝐻) ∧ (𝐵𝐾 ∨ s𝐾)|(𝐻 ∨𝐾), (𝐴𝐻𝐵𝐾 +𝐴𝐻 s𝐾 + (1 + 𝜇)Ď𝐻𝐵𝐾)|(𝐴𝐻 ∨ Ď𝐻𝐵𝐾)}, with H4 =𝐻 ∨
𝐾 ∨ (𝐻 ∨𝐾) ∨ (𝐴𝐻 ∨ Ď𝐻𝐵𝐾) =𝐻 ∨𝐾 . Therefore, the constituents and the points 𝑄ℎ ’s associated with (F , M) are

𝐶1 =𝐴𝐻𝐵𝐾,𝐶2 =𝐴𝐻 s𝐵𝐾,𝐶3 =𝐴𝐻 s𝐾,𝐶4 = s𝐴𝐻𝐵𝐾,𝐶5 = s𝐴𝐻 s𝐵𝐾,
𝐶6 = s𝐴𝐻 s𝐾,𝐶7 = Ď𝐻𝐵𝐾,𝐶8 = Ď𝐻 s𝐵𝐾,𝐶0 = Ď𝐻 s𝐾,

and

𝑄1 = (1,1,1,1),𝑄2 = (1,0,0,0),𝑄3 = (1, 𝑦,1,1),𝑄4 = (0,1,0, 𝜇),𝑄5 = (0,0,0, 𝜇),
𝑄6 = (0, 𝑦,0, 𝜇), 𝑄7 = (0,1,1,1 + 𝜇),𝑄8 = (0,0,0, 𝜇),M =𝑄0 = (0, 𝑦,0, 𝜇).

The system (Σ) in (5) associated with the pair (F , M) is

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜆1 + 𝜆2 + 𝜆3 = 0,
𝜆1 + 𝑦𝜆3 + 𝜆4 + 𝑦𝜆6 + 𝜆7 = 𝑦,
𝜆1 + 𝜆3 + 𝜆7 = 0,
𝜆1 + 𝜆3 + 𝜇𝜆4 + 𝜇𝜆5 + 𝜇𝜆6 + (1 + 𝜇)𝜆7 + 𝜇𝜆8 = 𝜇,
𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7 + 𝜆8 = 1,
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,8.

(A.15)

We observe that M belongs to the segment with end points 𝑄4, 𝑄5; indeed (0, 𝑦, 0, 𝜇) = 𝑦𝑄4 + (1 − 𝑦)𝑄5 = 𝑦(0, 1, 0, 𝜇) + (1 −
𝑦)(0, 0, 0, 𝜇).

Then, the vector Λ = (0, 0, 0, 𝑦, 1 − 𝑦, 0, 0, 0) is a solution of (A.15), with

𝜙1(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 = 1 > 0,

𝜙2(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆4 + 𝜆5 + 𝜆7 + 𝜆8 = 1 > 0,

𝜙3(Λ) =
∑
ℎ∶𝐶ℎ⊆𝐻∨𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7 + 𝜆8 = 1 > 0,

𝜙4(Λ) =
∑
ℎ∶𝐶ℎ⊆(𝐴𝐻∨Ď𝐻𝐵𝐾) 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆7 = 0.

Let S′ = {(0, 0, 0, 𝑦, 1 − 𝑦, 0, 0, 0)} denote a subset of the set S of all solutions of (A.15). We have that 𝑀 ′
1 =𝑀

′
2 =𝑀

′
3 = 1 and 𝑀 ′

4 = 0
(as defined in (7)). It follows that 𝐼 ′0 = {4}. We set F ′

0 = {(𝐴𝐻𝐵𝐾 +𝐴𝐻 s𝐾 +(1 +𝜇)Ď𝐻𝐵𝐾)|(𝐴𝐻 ∨ Ď𝐻𝐵𝐾)} and M′
0 = 𝜇. By exploiting 

the betting scheme, we show that the assessment 𝜇 on the conditional random quantity (𝐴𝐻𝐵𝐾 + 𝐴𝐻 s𝐾 + (1 + 𝜇)Ď𝐻𝐵𝐾)|(𝐴𝐻 ∨
Ď𝐻𝐵𝐾) is coherent for every 𝜇 ≥ 0. By recalling (2), the random gain for the assessment 𝜇 is

𝐺 = 𝑠(𝐴𝐻 + Ď𝐻𝐵𝐾)(𝐴𝐻𝐵𝐾 +𝐴𝐻 s𝐾 + (1 + 𝜇)Ď𝐻𝐵𝐾 − 𝜇).

Without loss of generality we can assume 𝑠 = 1. The constituents in 𝐴𝐻 ∨ Ď𝐻𝐵𝐾 are 𝐶1 = 𝐴𝐻𝐵𝐾, 𝐶2 = 𝐴𝐻 s𝐵𝐾, 𝐶3 = 𝐴𝐻 s𝐾, 𝐶4 =
Ď𝐻𝐵𝐾 and the corresponding values for the random gain 𝐺 are 𝑔1 = 1 − 𝜇, 𝑔2 = −𝜇, 𝑔3 = 1 − 𝜇 = 𝑔1, 𝑔4 = 1. Hence the set of values 
of 𝐺 restricted to 𝐴𝐻 ∨ Ď𝐻𝐵𝐾 is G𝐴𝐻∨Ď𝐻𝐵𝐾 = {𝑔1, 𝑔2, 𝑔4} = {1 − 𝜇, −𝜇, 1}. We distinguish two cases: (𝑖) 𝜇 < 0; (𝑖𝑖) 𝜇 ≥ 0.
Case (𝑖). We observe that, 1 − 𝜇 > 0, −𝜇 > 0, and hence minG𝐴𝐻∨Ď𝐻𝐵𝐾 > 0. Then the assessment M0 on F0 is incoherent.
Case (𝑖𝑖). We observe that, minG𝐴𝐻∨Ď𝐻𝐵𝐾 = −𝜇 ≤ 0 and maxG𝐴𝐻∨Ď𝐻𝐵𝐾 = 1 > 0. Then, as

minG𝐴𝐻∨Ď𝐻𝐵𝐾 ⋅maxG𝐴𝐻∨Ď𝐻𝐵𝐾 ≤ 0,

the assessment M0 on F0 is coherent. Then, as System (A.15) is solvable and M0 on F0 is coherent, by Theorem 2 it follows that 
every assessment (0, 𝑦, 0, 𝜇) on F is coherent if and only if (0, 𝑦, 0, 𝜇) ∈ Π′′ = {(0, 𝑦, 0, 𝜇) ∶ 𝑦 ∈ [0, 1], 𝜇 ≥ 0}. Thus, Π′′ ⊆Π. Of course, 
if (0, 𝑦, 𝑧, 𝜇) ∉ Π′′ the assessment (0, 𝑦, 𝑧, 𝜇) is not coherent and hence (0, 𝑦, 𝑧, 𝜇) ∉ Π. Therefore Π =Π′ ∪ Π′′. □

A.8. Proof of Theorem 18

Theorem 18. Let 𝐴, 𝐵, 𝐻, 𝐾 be any logically independent events. Given a coherent assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾}, with 𝑥 ≠ 0, for the 
iterated conditional (𝐵|𝐾)|𝑆 (𝐴|𝐻) the extension 𝜇𝑆 = ℙ[(𝐵|𝐾)|𝑆 (𝐴|𝐻)] is coherent if and only if 𝜇𝑆 ∈ [𝜇′

𝑆
, 𝜇′′
𝑆
], where

′ 𝑥+ 𝑦− 1 ′′

{
𝑥+𝑦−2𝑥𝑦
𝑥(1−𝑥𝑦) , if (𝑥, 𝑦) ≠ (1,1);
40

𝜇𝑆 =max{
𝑥

,0} and 𝜇𝑆 =
1, if (𝑥, 𝑦) = (1,1).
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Proof. We simply write 𝜇 instead of 𝜇𝑆 . As 𝑥 > 0, from Theorem 17 it follows that the set of all coherent assessments (𝑥, 𝑦, 𝑧, 𝜇) on 
F = {𝐴|𝐻, 𝐵|𝐾 , (𝐴|𝐻) ∧𝑆 (𝐵|𝐾), (𝐵|𝐾)|𝑆 (𝐴|𝐻)} is the set Π′ given in Theorem 17. Then, 𝜇 is a coherent extension of (𝑥, 𝑦) if and 
only if 𝜇 ∈ [𝜇′, 𝜇′′], where 𝜇′ and 𝜇′′ are

𝜇′ = 𝑧′

𝑥
=max{𝑥+ 𝑦− 1

𝑥
,0} and 𝜇′′ = 𝑧′′

𝑥
=

{
𝑥+𝑦−2𝑥𝑦
𝑥(1−𝑥𝑦) , if (𝑥, 𝑦) ≠ (1,1);
1, if (𝑥, 𝑦) = (1,1).

□
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