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Abstract: Statins, the intestinal cholesterol transporter inhibitor (ezetimibe), and PCSK9 inhibitors
can reduce serum LDL-C levels, leading to a significant reduction in cardiovascular events. However,
these events cannot be fully prevented even when maintaining very low LDL-C levels. Hypertriglyc-
eridemia and reduced HDL-C are known as residual risk factors for ASCVD. Hypertriglyceridemia
and/or low HDL-C can be treated with fibrates, nicotinic acids, and n-3 polyunsaturated fatty acids.
Fibrates were demonstrated to be PPARα agonists and can markedly lower serum TG levels, yet were
reported to cause some adverse effects, including an increase in the liver enzyme and creatinine levels.
Recent megatrials of fibrates have shown negative findings on the prevention of ASCVD, which were
supposed to be due to their low selectivity and potency for binding to PPAR α. To overcome the
off-target effects of fibrates, the concept of a selective PPARα modulator (SPPARMα) was proposed.
Kowa Company, Ltd. (Tokyo, Japan), has developed pemafibrate (K-877). Compared with fenofibrate,
pemafibrate showed more favorable effects on the reduction of TG and an increase in HDL-C. Fibrates
worsened liver and kidney function test values, although pemafibrate showed a favorable effect on
liver function test values and little effect on serum creatinine levels and eGFR. Minimal drug–drug
interactions of pemafibrate with statins were observed. While most of the fibrates are mainly excreted
from the kidney, pemafibrate is metabolized in the liver and excreted into the bile. It can be used
safely even in patients with CKD, without a significant increase in blood concentration. In the
megatrial of pemafibrate, PROMINENT, for dyslipidemic patients with type 2 diabetes, mild-to-
moderate hypertriglyceridemia, and low HDL-C and LDL-C levels, the incidence of cardiovascular
events did not decrease among those receiving pemafibrate compared to those receiving the placebo;
however, the incidence of nonalcoholic fatty liver disease was lower. Pemafibrate may be superior to
conventional fibrates and applicable to CKD patients. This current review summarizes the recent
findings on pemafibrate.

Keywords: PPARα; SPPARMα; pemafibrate; triglycerides; dyslipidemia

Metabolites 2023, 13, 626. https://doi.org/10.3390/metabo13050626 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo13050626
https://doi.org/10.3390/metabo13050626
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0001-6645-4185
https://orcid.org/0000-0002-9549-8504
https://orcid.org/0000-0001-7523-7166
https://doi.org/10.3390/metabo13050626
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo13050626?type=check_update&version=1


Metabolites 2023, 13, 626 2 of 18

1. Introduction

Currently available fibrates target PPARα, eliciting their biological effects, including
the reduction of serum TG levels and an increase in serum HDL-C levels [1,2]. Although
fibrates-mediated PPARα activation improves serum TG and HDL-C levels, off-target
effects such as abnormal hepatic and renal function tests were often noted. In megatri-
als of fibrates, such as HHS [3] and VA-HIT [4], gemfibrozil reduced the CV event rate
significantly. However, when gemfibrozil was used in combination with cerivastatin,
rhabdomyolysis often occurred [5]. Afterward, cerivastatin disappeared from the market.

In subsequent megatrials such as the BIP Study, which used bezafibrate [6], the FIELD
Study, which used fenofibrate in type 2 diabetic patients [7], and the ACCORD-Lipid Study,
which used fenofibrate added to simvastatin in type 2 diabetic patients [8], all primary
endpoints were statistically negative. Thus, the administration of fibrates could not prove
clinical benefits to prevent CV events.

However, when the effects of the fibrates were meta-analyzed [9,10], the CV event
rate was significantly reduced. Furthermore, the ACCORD Study was followed up with
the ACCORDION Study, which showed a favorable effect of fenofibrate on long-term CV
risk [11]. Reduced mortality was also shown in hypertriglyceridemic patients at the baseline
in the BIP Study [12]. Later meta-analyses showed supportive evidence of fibrates in both
primary and secondary CV prevention [13,14]. In contrast to the Cholesterol Treatment
Trialists’ (CTT) Collaboration meta-analyses [15–17], a significant decrease in total mortality
was not demonstrated by fibrates [9,10,13,14]. Adverse effects of fibrates such as abnormal
liver and kidney function test values may have overwhelmed their benefits. Therefore,
new treatment options for atherogenic dyslipidemia in patients with metabolic syndrome,
obesity, diabetes mellitus, and ASCVD have been long awaited.

2. Development of Selective Peroxisome Proliferator-Activated Receptor (PPAR)α
Modulators (SPPARMα)

Mechanisms through which fibrates exert hypolipidemic effects were not clear until
the discovery of PPARs. Fibrates are one of the agonists of PPARα. PPARα affects lipid and
lipoprotein metabolism by regulating the transcriptions of genes involved in the metabolism
of TG-rich lipoproteins and HDL [1,18]. PPARα activation induces the production of LPL
and apo A-V, while it decreases apo C-III, which inhibits LPL activity. Thus, PPARα
agonists enhance TG-rich lipoprotein catabolism, which results in a reduction in serum
TG levels [19–22]. PPARα activation also enhances the gene expressions involved in β-
oxidation. An enhanced β-oxidation and increased expression of hepatic ACS may reduce
fatty acid levels in the liver [23], leading to decreased production of VLDL particles by the
liver. PPARα activation decreases atherogenic small dense LDL particles [24].

Moreover, PPARα activation increases the synthesis of HDL by enhancing the gene
expressions of apo A-I and A-II, major components of HDL [25]. Enhanced LPL activity
accelerates TG-rich lipoproteins catabolism and increases the transfer of phospholipids
to HDL [26]. PPARα activation increases the gene expression of ABCA1 and ABCG1,
which accelerates the efflux of cholesterol from macrophages [27]. Activation of PPARα
increases the expression of SR-BI in the liver, which enhances the selective hepatic uptake
of cholesteryl ester via HDL [28]. Activation of PPARα also regulates glucose homeostasis,
attenuates inflammation and thrombogenesis, and improves vascular function [29]. Acti-
vation of PPARα ameliorates abnormal lipid and glucose metabolism and downregulates
the expression of proinflammatory genes in monocytes/macrophages, which may lead to
vascular protection against atherothrombosis.

To overcome the negative profiles of fibrates, Fruchart put forward a new concept
of SPPARMα [30,31]. This concept is similar to that of SERMs [32]. Tamoxifen is the first
estrogen receptor modulator that has antiestrogenic activity in mammary glands and partial
proestrogenic activity in bones and the uterus. However, contrary to expectations, the
long-term use of tamoxifen enhanced the incidence of uterine cancer. Then, raloxifene, a
second-generation SERM with tissue-specific activity was later developed.
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Kowa Company, Ltd. (Japan) has screened >1500 compounds to identify SPPARMα,
which possess tissue-specific and targeted gene-selective activities. They finally identi-
fied several candidates of agonists possessing a very potent PPARα activity as well as
high selectivity of PPARα. Kowa identified three compounds (R-24, R-35, and R-36) as
candidates, finally selecting R-36, named pemafibrate (K-877, Parmodia® tablet). We previ-
ously reviewed the development of pemafibrate for the application of dyslipidemia and
atherosclerosis [33,34]. Pemafibrate could activate PPARα > 2500 times more strongly than
fenofibric acid (the active form of fenofibrate). Pemafibrate is extremely selective for PPARα
(>5000-fold for PPARγ and >11,000-fold for PPARδ, respectively) [35,36].

In preclinical studies, pemafibrate reduced serum TG and increased HDL-C levels
more strongly than fenofibrate, by inhibiting VLDL secretion and enhancing TG clearance
through activating LPL [37]. Moreover, the expression of the VLDL receptor was in-
creased by pemafibrate, leading to enhanced catabolism of VLDL and VLDL remnants [38].
Postprandial hyperlipidemia was attenuated by pemafibrate via inhibition of intestinal
cholesterol transporter NPC1L1 mRNA expression in small intestinal mucosa in mice fed a
high-fat diet [39,40]. Attenuation of postprandial hyperlipidemia may result from suppres-
sion of chylomicron synthesis and secretion by inhibiting NPC1L1-mediated cholesterol
absorption as well as PPARα activation in the small intestines. Pemafibrate enhances the
expression of genes related to fatty acid β-oxidation and decreases VLDL secretion from
the liver [35,39]. FGF21 accelerates fatty acid β-oxidation and PPARα is known to regulate
the expression of FGF21 [41,42], which decreases hepatic VLDL secretion by regulating
fatty acids uptake by adipose tissue [43]. Pemafibrate increases serum levels and tissue
expression of FGF21 [35,39,44]. Upregulation of FGF21 via PPARα by pemafibrate may
contribute to decreased serum TG and VLDL levels.

Plasma fibrinogen is linked with thrombosis. Fibrates were reported to decrease
fibrinogen levels by inhibiting its expression via PPARα activation [45]. Since fibrinogen
level predicted mortality in the BIP Study [46], bezafibrate-mediated reduction of fibrinogen
may be one of the factors predicting mortality. Pemafibrate reduces fibrinogen more than
fenofibrate [47].

3. Applications of Pemafibrate for Dyslipidemia
3.1. Pemafibrate Improves Lipid, Lipoprotein, and Apolipoprotein Metabolism

Kowa launched pemafibrate in June 2018 in Japan. JAS has classified pemafibrate
into a novel category of drug therapy for dyslipidemia “SPPARMα”, which is completely
different from fibrates [48]. Effects of pemafibrate on dyslipidemia from both a basic and
clinical point of view are summarized in Table S1.

Pemafibrate may have a better benefit-risk balance superior to fibrates. IAS and the
R3i Foundation have published a consensus statement on the concept of SPPARMα [49].
Clinical trials on pemafibrate have been performed mainly in Japan, as summarized below.

Chylomicron remnants and VLDL remnants (IDL) are called “remnant lipoproteins”
and are proatherogenic [50,51]. Small dense LDL particles are also proatherogenic. Hyper-
triglyceridemia is often associated with increased small dense LDL and decreased HDL-C.
Pemafibrate was demonstrated to significantly decrease remnant lipoprotein cholesterol
(RemL-C), non-HDL-C, and levels of apo B, apo B-48, and apo C-III. By GP-HPLC analysis,
pemafibrate was shown to dose-dependently reduce cholesterol concentrations of small
LDL and increase those of small HDL [47]. A meta-analysis of pemafibrate, in comparison
with fenofibrate, has established its efficacy and safety in patients with dyslipidemia [52].
The effects of pemafibrate on the reduction of serum TG and non-HDL-C levels and the
increase in HDL-C were comparable to those for fenofibrate.

Postprandial hypertriglyceridemia is markedly atherogenic because atherogenic chy-
lomicron remnants are increased in this condition. Pemafibrate attenuated postprandial
hypertriglyceridemia in patients with dyslipidemia, while both fasting and non-fasting
levels of serum TG, RemL-C, and apo B-48 were reduced [53]. Pemafibrate administration
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significantly reduced the AUC for postprandial TG level. Similar results were reported in
pemafibrate-treated diabetic patients [54].

The particle number of each lipoprotein subclass can also be evaluated by GP-HPLC [55].
Pemafibrate reduced the particle number of atherogenic small LDL, while it increased that
of small HDL, which is assumed to be antiatherogenic [56]. The effect of pemafibrate on
the cholesterol efflux capacity of HDL from macrophages was investigated in patients with
dyslipidemia [53]. HDL-C, HDL3-C, preβ1HDL, and apo A-1 levels were significantly
increased by pemafibrate. The HDL from pemafibrate-treated patients possessed a sig-
nificantly greater cholesterol efflux capacity compared with that from the placebo-treated
patients. It increased the levels of FGF21, which may increase the expression of ABCA1
and ABCG1 involved in cholesterol efflux [35,37–39,53,57].

3.2. Pemafibrate in Combination with Statins

Combined treatment of fibrates in addition to statins increased the risk of rhabdomy-
olysis, particularly in CKD patients. The interaction of pemafibrate with high-dose statins
was evaluated in healthy male volunteers [58]. The coadministration of pemafibrate with
various statins (pravastatin, simvastatin, fluvastatin, atorvastatin, pitavastatin, or rosuvas-
tatin) did not increase AUC or Cmax of pemafibrate or statins, excluding the possibility of
drug–drug interactions between pemafibrate and statins.

Hypertriglyceridemic patients taking pitavastatin were given pemafibrate for 12 weeks [59].
The fasting TG levels were reduced by 46.1% in the 0.1 mg/day pemafibrate group, 53.4%
in the 0.2 mg/day group, and 52.0% in the 0.4 mg/day group, whereas it was decreased by
6.9% in the placebo group. Moreover, hypertriglyceridemic patients taking statins were
treated for 24 weeks with pemafibrate (0.2–0.4 mg/day), causing the serum TG level to
consistently reduce without any significant increases in adverse effects. Coadministration
of pemafibrate with statins resulted in an improvement in the liver function test values.
Pemafibrate treatment slightly increased serum creatinine and decreased eGFR, although
these changes were clinically negligible.

3.3. Pemafibrate for Patients with CKD

CKD patients, even under hemodialysis, do not show high LDL-C levels, except for
those with nephrotic syndrome. They are usually accompanied by an increase in TG and a
decrease in HDL-C [60]. In trials of patients with CKD, such as 4D [61] and AURORA [62],
statins did not prove to lower CV events. The SHARP study [63] demonstrated that
intestinal cholesterol transporter inhibitor ezetimibe significantly reduces CV events.

Typical lipoprotein abnormalities associated with CKD patients include hypertriglyc-
eridemia with increased remnants and small dense LDL as well as a reduction in HDL-C.
However, treatment of dyslipidemic patients with CKD was difficult because fibrates, ex-
cept for clinofibrate, were metabolized and excreted from the kidneys. In humans, the liver
mainly metabolizes pemafibrate, which is excreted from the liver into bile, with only 14.5%
excretion into urine [64]. Its metabolites in plasma are mainly oxidized form at the benzyl
position and a mixture of glucuronide conjugate of dicarboxylated form and N-dealkylated
form (Figure 1) [65]. Less than 0.5% of the unmetabolized pemafibrate is excreted into
urine and most of the metabolized compounds excreted into urine do not have PPARα
agonist activity.

The blood concentrations of fibrates, such as clofibrate, gemfibrozil, fenofibrate, and
bezafibrate, which are mainly metabolized in the kidney, are increased in CKD patients. In
contrast, serum concentrations of pemafibrate were not elevated in patients with severe
renal dysfunction [66]. Pemafibrate administration for long term was shown effective and
safe in dyslipidemic patients, including those with renal dysfunction [67]. Blood pemafi-
brate concentration was not increased, even after administering repeated dosages. A recent
pharmacokinetic study (PALT02) in patients with a marked renal dysfunction demonstrated
that the blood concentrations of pemafibrate were not significantly increased, even in those
receiving hemodialysis [68]. Considering its metabolic route and pharmacokinetic data,
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we can safely administer pemafibrate, even in patients with CKD. Compared with fibrates,
pemafibrate may have a better benefit–risk balance, and its administration may be beneficial
to patients for whom the use of conventional fibrates is limited.
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3.4. Characteristic Features of Pemafibrate in Comparison with Fibrates

Compared with fenofibrate, pemafibrate showed better efficacy in the first three
clinical trials [47,69,70]. TG-lowering effect of pemafibrate 0.4 mg/day (0.2 mg BID) was
stronger than for fenofibrate 100 mg/day and was comparable to fenofibrate 200 mg/day.
The increment of serum HDL-C by pemafibrate is usually larger than for fenofibrate [47].
Incidence of adverse events was not significantly different between patients treated with
pemafibrate and the placebo, while it was markedly lower in pemafibrate-treated patients
than in fenofibrate-treated patients. Fibrates were often reported to worsen the values of
the renal function test, such as serum levels of creatinine and cystatin C, and eGFR [71–73].
Kidney function-related adverse events were markedly rare in pemafibrate-treated patients.
In contrast, fenofibrate increased serum creatinine and cystatin C levels and decreased
eGFR levels. Characteristic features of SPPARMα and pemafibrate are summarized in
Table 1.
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Table 1. Characteristics Features of SPPARMα, Pemafibrate.

� Is mainly metabolized in the liver, not affected by renal function
� Shows little influence on renal function
� Can be used with statins as it has no known drug-drug interactions with statins
� Increases LPL, but decreases apoC-III, thereby activating LPL
� Decreases TG, remnant lipoproteins and small dense LDL
� Improves postprandial hyperlipidemia
� Increases HDL-C (especially small spherical HDL and preb HDL) and activates

anti-atherosclerotic HDL function
� Enhances β-oxidation in the liver
� Decreases fibrinogen
� Favorably affects liver function and may improve NASH/NAFLD
� Improves insulin resistance and glucose metabolism

Abbreviations: LPL, lipoprotein lipase; apo, apolipoprotein; TG, triglyceride; LDL, low-density lipoprotein; HDL-C,
high-density lipoprotein cholesterol; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis.

Fibrates often increased the values of the liver function test, such as ALT and γ-GT,
and its mechanism was attributed to the activation of PPARα [74]. However, pemafibrate
treatment rather decreased these values. Differences between pemafibrate and fenofibrate
were remarkable, with the regard to liver function tests and levels of serum creatinine
and FGF21. Especially, pemafibrate reduced ALT, γ-GT, and ALP levels by approximately
8 U/L, 24 U/L, and 70–80 U/L, respectively. Pemafibrate-mediated changes in liver and
kidney function test values may be the most striking characteristic features of pemafibrate.

Pemafibrate enhanced the expression of cholesterol efflux-related genes in macrophages
such as ABCA1 and ABCG1 and attenuated that of proinflammatory genes, including
VCAM1, F4/80 (macrophages), and IL-6. The effects on basic parameters were markedly
different between pemafibrate and fenofibrate [34].

4. Pemafibrate Affects Glucose Metabolism and Insulin Resistance

Twenty-four-week treatment with pemafibrate in type 2 diabetic patients with hyper-
triglyceridemia demonstrated effects on lipids and lipoproteins similar to those reported
in phase 2 and 3 studies. It is noteworthy that pemafibrate significantly decreased fasting
levels of blood glucose and insulin in comparison to the placebo [54]. In the PROVIDE
study, 52-week treatment with pemafibrate in type 2 diabetic patients with hypertriglyc-
eridemia [75] markedly decreased serum TG and non-HDL-C levels, and increased HDL-
C levels.

A post-hoc analysis of six phase 2 and phase 3 randomized double-blind placebo-
controlled trials in Japan evaluated the effects of pemafibrate on glucose metabolism
markers in 1253 patients, randomized to placebo or pemafibrate 0.1 mg/day, 0.2 mg/day,
or 0.4 mg/day [76]. Pemafibrate significantly decreased fasting glucose, insulin, and
HOMA-IR compared to the placebo, with the greatest decrease observed in pemafibrate
0.4 mg/day. These results indicated that pemafibrate may ameliorate insulin resistance.

Using a hyperinsulinemic-euglycemic clamp to evaluate liver or peripheral insulin
resistance [77], pemafibrate was shown to significantly increase the hepatic glucose uptake
rate, suggesting that it ameliorates insulin resistance. Pemafibrate was demonstrated to
attenuate high-fat diet-induced weight gain and decrease plasma glucose and insulin levels
in diet-induced obesity mice, by increasing plasma FGF21 [44]. Pemafibrate enhanced the
expression of genes involved in thermogenesis and fatty acid β-oxidation and improved
obesity-induced metabolic abnormalities.

ABCA1 plays a crucial role in cholesterol and phospholipids efflux from cells to HDL.
A deficiency of ABCA1 causes Tangier disease characterized by a marked reduction in HDL-
C, orange tonsils, hepatosplenomegaly, and enhanced atherosclerosis [78]. The oral glucose
tolerance test in patients with Tangier disease indicated a progressive increase in plasma
glucose, yet not insulin concentration, suggesting a lower insulinogenic index in patients
than in the non-diabetic controls [79]. Since pancreatic β-cells express ABCA1, glucose-
stimulated insulin secretion may be impaired in Tangier disease patients. Pancreatic ABCA1
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may play a role in β cell cholesterol homeostasis, thus, affecting insulin secretion [80].
Pemafibrate increased ABCA1 mRNA and protein levels, decreased cellular cholesterol
content in INS-1 cells, and enhanced insulin secretion by regulation of ABCA1 expression
in β cells [81]. Furthermore, it improved HOMA-IR, suggesting that it may attenuate
insulin resistance in a meta-analysis [52]. Figure 2 illustrates the possible main targets
of pemafibrate in conditions of dyslipidemia resulting from visceral obesity, metabolic
syndrome, and NAFLD/NASH.

Metabolites 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 

 

 

 
Figure 2. Possible main targets of pemafibrate in conditions of dyslipidemia resulting from visceral 
obesity, metabolic syndrome, and NAFLD/NASH. Modified from a Figure in Reference [34]. * Both 
ApoC-III and ANGPTL3 inhibit LPL activity. ⍐: Increase ⍗: Decrease. 
5. Pemafibrate for NAFLD, NASH, and PBC 
5.1. NAFLD 

Recently, NAFLD and NASH are important because they are associated with en-
hanced ASCVD. PPARα-null mice showed advanced fatty liver and steatohepatitis [82], 
while patients with NASH demonstrated a reduction in hepatic PPARα expression [83]. 
PPARα agonists can be applicable for NAFLD. However, unsuccessful CV event outcomes 
in fibrates were attributed partly to adverse reactions, such as liver and renal dysfunction. 
In contrast, clinical trials on pemafibrate had consistently decreased levels of serum ALT, 
ALP, γ-GT, and total bilirubin. More prominent effects were observed in patients with 

De novo synthesis of HDL

Reduction of TG Increase in HDL-C

β oxidation of fatty acids

Liver

VLDL synthesis 
and secretion

ABC A1 ⬆ ApoA-I synthesis

ABC A1 expression
ABC G 1 expression Vessel w all M acrophages

C learance of C M  rem nants

Serum  TG

LPL activity

ApoC -Ⅲ＊

ANG PTL3＊

＊ Inhibits LPL activity

VLDL

ＨＤＬ3

VLDL 
rem nants 
(IDL)

SR-BI ⬆

C E

Pre β HDL ⬆FG F21

Rem nant-R

sdLDL

C atabolism  of VLDL 
&  VLDL rem nants

Sm all Intestines

Sm all Intestines

ApoB-48
NPC 1L1

ABC A1

C holesterol efflux from  m acrophages

C holesterol efflux 
capacity

related

Large 
LDL

⬆

LDL-R

C M

C M  
rem nants 

⬆

⬆

⬆

⬆

⬆
⬆

⬆

⬆

⬆

⬆

⬆

⬇⬇

⬇
⬇

⬇

⬇

⬆

⬆

⬇
⬇

⬇

⬇

LPL activity ⬆

C M  synthesis 
and secretion ⬇

C learance of LDL⬆

Increased LPL

ApoC -Ⅲ＊

ANG PTL3＊

⬇
⬇

VLDL-R ⬆

⬇

Im provem ent of 
NAFLD/NASH

TG  content⬇

Im provem ent of insulin 
resistance/m etabolic syndrom e 

and visceral obesity

Pem afibrate-induced 
activation of PPARα Macrophage, TNFα

Collagen fiber, Collagen1α 1
Liver stiffness ( MRE)   

⬇
⬇

⬇

Figure 2. Possible main targets of pemafibrate in conditions of dyslipidemia resulting from visceral
obesity, metabolic syndrome, and NAFLD/NASH. Modified from a Figure in Reference [34]. * Both
ApoC-III and ANGPTL3 inhibit LPL activity. n: Increase o: Decrease.

5. Pemafibrate for NAFLD, NASH, and PBC
5.1. NAFLD

Recently, NAFLD and NASH are important because they are associated with enhanced
ASCVD. PPARα-null mice showed advanced fatty liver and steatohepatitis [82], while
patients with NASH demonstrated a reduction in hepatic PPARα expression [83]. PPARα
agonists can be applicable for NAFLD. However, unsuccessful CV event outcomes in
fibrates were attributed partly to adverse reactions, such as liver and renal dysfunction.
In contrast, clinical trials on pemafibrate had consistently decreased levels of serum ALT,
ALP, γ-GT, and total bilirubin. More prominent effects were observed in patients with
higher liver function values than in those with normal values [76], suggesting a possible
application of pemafibrate for patients with NAFLD or NASH.

The effects of pemafibrate on NAFLD/NASH from a basic and clinical point of view
are summarized in Table S2 In the NAFLD/NASH mouse model, pemafibrate reduced liver
function test values and improved fatty liver, ballooning, inflammation, and fibrosis [84–87].
Regarding the mechanisms through which pemafibrate ameliorates NAFLD, the genes for
β-oxidation in, and lipid transport out of the liver are enhanced and the energy metabolism
is also upregulated via the induction of the UCP3 gene. Kanno et al. [87] evaluated the effect
of pemafibrate on hepatic steatosis in a novel mouse model of diet-induced steatohepatitis-
related cardiomyopathy fed a high-fat, high-cholesterol, high-sucrose, and bile acid diet
(NASH diet). Mice were fed an 8-week NASH diet with or without pemafibrate (0.1 mg/kg).
More macrophage infiltration and fibrosis were demonstrated in the livers of the NASH diet
group compared to the control diet group. Steatohepatitis with increased free cholesterol
content and cholesterol crystals was established. Free cholesterol was also accumulated
in the heart accompanied by concentric hypertrophy and impaired left ventricular ejec-
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tion fraction. Enhancement of the NOD-like receptor and PI3 kinase-Akt pathways was
observed. The mRNA and protein expression of inflammasome-related genes, including
caspase-1, NLRP3, and IL-1β were upregulated in the liver and heart. Thus, these data
demonstrated that pemafibrate attenuated hepatic steatosis, steatohepatitis, and cardiac
dysfunction. Pemafibrate can recover hepatic fibrosis and cardiac dysfunction, even after
the development of steatohepatitis-related cardiomyopathy.

To examine possible clinical applications of pemafibrate in patients with NAFLD,
several single-arm preliminary studies, in Japan, retrospectively evaluated the efficacy of
pemafibrate in a small number of patients with NAFLD [88–93]. These studies consistently
showed that pemafibrate improved serum levels of ALT, ALP, and γ-GT as well as fibrosis
markers such as AST/platelet ratio index and FIB-4 index, although there were some
variations. A prospective single-arm study also evaluated the efficacy of pemafibrate
in a small number of 20 NAFLD patients with dyslipidemia, who were administered
pemafibrate (0.1 mg BID) for 12 weeks [94]. The change in serum ALT levels from the
baseline to week 12 was set as a primary endpoint. Serum ALT levels were significantly
decreased from the baseline to week 12. Serum TG, HDL-C, total fatty acid, saturated fatty
acid, and unsaturated fatty acid levels were significantly improved.

A double-blind, placebo-controlled, randomized multicenter, phase 2 trial in Japan
has been reported recently [95]. A total of 118 patients were randomized to either 0.2 mg
pemafibrate or placebo, twice daily, and treated for 72 weeks. As inclusion criteria, the
following patients were enrolled: liver fat content of ≥10% by MRI-PDFF; liver stiffness
of ≥2.5 kPa by MRE; elevated ALT levels. The percentage change in MRI-PDFF from
the baseline to week 24 was set as the primary endpoint. MRE-based liver stiffness, ALT,
serum liver fibrosis markers, and lipid parameters were the secondary endpoints. No
significant difference was observed between the groups in the primary endpoint, however,
MRE-based liver stiffness was significantly reduced by pemafibrate at week 48 compared to
placebo and was maintained until week 72. Significant reductions in ALT and LDL-C were
also demonstrated. Thus, pemafibrate showed a significant reduction in MRE-based liver
stiffness, yet not liver fat content, suggesting that it may be a promising new therapeutic
agent for NAFLD/NASH and a candidate for combination therapy with agents that may
reduce liver fat content. Another trial is in progress to evaluate the efficacy and safety of a
combination of pemafibrate-extended-release (ER) and SGLT-2 inhibitor, tofogliflozin, in
patients with NASH and liver fibrosis (NCT05327127) [96].

5.2. PBC

Fenofibrate [97] and bezafibrate [98] lowered liver function test values in PBC patients.
Pemafibrate demonstrated favorable effects on liver function test values in patients with
dyslipidemia, suggesting that it may improve liver function in PBC patients. To prove the
safety issues, a pharmacokinetic study of pemafibrate is currently ongoing on patients with
PBC (JapicCTI-173728). In a recent pilot study, pemafibrate was shown to improve liver
function tests in a small number of patients with PBC [99]. It may be crucial to explore the
effects of pemafibrate for patients with PBC in a large-scale multicenter trial.

6. Effects of Pemafibrate on Endothelial Function, Neointimal Formation,
Inflammation, and Atherosclerosis

Effects of pemafibrate on endothelial function, neointimal formation, inflammation,
and atherosclerosis from a basic and clinical point of view are summarized in Table S3.

6.1. Endothelial Function

The effect of pemafibrate on revascularization was evaluated in a mouse model of
hindlimb ischemia [100]. It enhanced blood flow recovery and capillary formation in
ischemic limbs, and phosphorylation of eNOS was increased. Cultured endothelial cells
treated with pemafibrate increased the formation of the network and migratory activity,
which was attenuated by a NOS inhibitor. Pemafibrate increased plasma levels of FGF21.
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Adenovirus-mediated FGF21overexpression increased blood flow recovery, the density
of capillaries, and phosphorylation of eNOS in ischemic limbs in mice. Endothelial cell
network formation and migration in cultured endothelial cells were enhanced by treat-
ment with the FGF21 protein, which was canceled by NOS inhibitor pretreatment or in
eNOS knockout mice. Revascularization in response to ischemia by pemafibrate may be
induced partly via direct and FGF21-mediated modulation of endothelial cell function.
Yoshida et al. [101] investigated the effect of the combined administration of pitavastatin
and pemafibrate on endothelial dysfunction in a Dahl rat model of salt-sensitive hyperten-
sion and insulin resistance. A combination of high-dose pitavastatin and pemafibrate signif-
icantly increased acetylcholine-induced endothelial relaxation rates compared to the vehicle,
suggesting that endothelial dysfunction is ameliorated. Endothelium-dependent vascu-
lar responses to acetylcholine were also evaluated in streptozotocin-diabetic mice [102].
Three-week treatment with pemafibrate reduced serum TG and non-HDL-C, while it also
decreased the levels of arachidonic acid, thromboxane B2, prostaglandin E2, leukotriene B4,
and 5-hydroxyeicosatetraenoic acid, which were increased by diabetic state. Pemafibrate
also decreased palmitic acid and stearic acid levels. Condition of diabetes-induced endothe-
lial dysfunction, which was ameliorated by pemafibrate, via a reduction in vasoconstrictive
eicosanoids and free fatty acids levels.

6.2. Neointimal Formation

Konishi et al. [103] reported the effects of pemafibrate on vascular response to balloon
injury in LDL receptor-null pigs. The animals were fed a cholesterol-rich diet, allocated
randomly to pemafibrate and control groups, and the balloon injury was created 2 weeks
after drug administration. The average ratio of macrophages to plaque area, yet not
intimal area, was significantly reduced in pemafibrate group compared to the control
group. The mRNA expressions of C-Jun, NFκB, and MMP9 were significantly reduced by
pemafibrate, suggesting that it may inhibit inflammatory responses after balloon injury.
Similarly, pemafibrate inhibited neointima formation after vascular injury in mice fed
normal chow and high-fat diet [104]. Pemafibrate increased serum concentrations of FGF21
and decreased those of insulin in high-fat diet mice. Pemafibrate, yet not bezafibrate,
attenuated the proliferation and DNA synthesis of VSMCs. This effect of pemafibrate was
abolished by PPARα knockdown, suggesting that it attenuates neointima formation after
vascular injury by inhibiting VSMC proliferation via PPARα.

Iwata et al. [105] examined the effect of pemafibrate on coronary stent-induced arterial
inflammation and neointimal hyperplasia in Yorkshire pigs. Intracoronary molecular-
structural near-infrared fluorescence and optical coherence tomography imaging demon-
strated that pemafibrate reduced coronary stent-induced cellular inflammation and neointi-
mal hyperplasia. It also suppressed the expression of TNF-α and MMP-9 in the neointima
and increased smooth muscle cell differentiation markers, calponin, and smoothelin, via
STAT3-myocardin axes. Taken together, pemafibrate can be a novel strategy to prevent
stent restenosis.

6.3. Inflammation and Atherosclerosis

Several animal studies have shown preventive effects of pemafibrate on inflammation
and atherosclerosis. It decreased mRNA expressions of small intestine apo B and liver
apo C-III in humans and apo E2 knock-in mice fed a high-fat/high-cholesterol diet [37].
Pemafibrate (1.0 mg/kg) reduced atherosclerotic lesions better than fenofibrate (250 mg/kg).
Anti-inflammatory effects of pemafibrate were demonstrated by significantly reduced
mRNA expressions of F4/80, VCAM1, and IL-6 in atherosclerotic lesions.

The effects of pemafibrate on proteomics and high-dimensional clustering on vein
graft tissues were evaluated to explore the seeds for preventing vein graft failure [106].
In vivo mice experiments using small interfering RNA of macrophage-targeted PPARα
and pemafibrate showed that the inhibition of PPARα accelerates the development and
inflammation of vein graft lesions. Proteomic analysis of vein grafts showed changes in
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proteome related to lipid and fatty acid metabolism regulated by the PPARs, immune
responses, matrix remodeling, and hematopoietic cell mobilization. Pemafibrate-mediated
PPARα activation inhibited the development and inflammation of vein graft lesions, while
gene silencing of PPARα worsened plaque formation.

Pemafibrate reversed the enhanced neutrophil adhesion on the atheroprone femoral
artery of high-fat diet-fed LDL receptor knockout mice caused by histone H3 citrullina-
tion [107]. It also prevented AAA rupture in apo E-null mice induced by subcutaneous
infusion of angiotensin II [108]. This pemafibrate effect was associated with a reduction in
reactive oxygen species, extracellular matrix degradation, and inflammation in the aortic
wall. The protective effect of pemafibrate against AAA rupture was partly due to the
anti-oxidative effect of the activated catalase in smooth muscle cells.

7. Effects of Pemafibrate on Events of ASCVD

A multinational, double-blind, randomized, controlled trial, PROMINENT study [109]
was performed worldwide to investigate the effect of pemafibrate on CV events and the re-
sults have recently been reported [110]. Type 2 diabetic patients with hypertriglyceridemia
(TG: 200–499 mg/dL) and low HDL-C (≤40 mg/dL) were assigned to receive pemafibrate
(0.2 mg tablets twice daily) or a placebo. This study enrolled nearly 10,000 patients (66.9%
with CV disease) receiving guideline-directed lipid-lowering therapy, or those who could
not receive statin without adverse effects alongside LDL-C levels less than 100 mg/dL. A
composite of nonfatal myocardial infarction, ischemic stroke, coronary revascularization,
or CV deaths was set as the primary endpoint. Changes in lipid levels at 4 months by
pemafibrate compared to the placebo were −26.2% for TG, −25.8% for VLDL-cholesterol,
−25.6% for remnant cholesterol, −27.6% for apo C-III, and 4.8% for apo B. No significant
difference was noted in the primary endpoint between the pemafibrate and placebo groups.
The incidence of serious adverse events was not significantly different between the groups,
although the use of pemafibrate was associated with a higher incidence of adverse renal
events and venous thromboembolism and a lower incidence of NAFLD. Regarding adverse
renal events, the very mild increase in serum creatinine and a little decrease in eGFR during
the pemafibrate treatment were completely recovered after stopping treatment, suggesting
that creatinine synthesis may be increased by PPARα activation. Therefore, the observed
changes in renal function parameters do not mean renal dysfunction. In this trial, a mild
increase in apo B and apo B-containing lipoproteins concentrations as well as LDL-C may
be attributed to the outcomes [111]. However, in contrast to the previously reported data in
Japan [54,112], levels of TG, VLDL-cholesterol, and remnant cholesterol were also decreased
in the placebo group, resulting in milder treatment effects of pemafibrate. An increase
in HDL-C level was also mild in the pemafibrate group. It slightly increased apo B and
LDL-C levels, suggesting a small increase in the number of apo B-containing lipoproteins.
Since the dose of statins is usually much higher in Western countries than in Japan, the
presence of moderate to high-intensity statins may have negated the apo B-lowering effects
of pemafibrate [111].

Recently, the STRENGTH trial, which analyzed a combined formula of eicosapen-
taenoic acid and docosahexaenoic acid, did not demonstrate a significant decrease in apo
B levels as well as the incidence of CV events [113]. All of the patients had already been
treated with statins (about half were high-intensity statins). Recently, it has become very
difficult to show the benefits of a test drug in patients treated with high-intensity statins.
Furthermore, the mean body mass indexes of the pemafibrate and placebo groups were
nearly 32, which was much larger than in Japanese patients. It may be possible that the dose
of pemafibrate 0.4 mg/day was not enough to achieve a larger TG reduction, as reported
in Japanese patients. In the meta-regression analysis of randomized controlled trials, a
reduction in the serum TG level was accompanied by a lower major vascular event risk after
adjusting the LDL-C level [114]. Taken together, the negative results of the PROMINENT
study [110] may not negate the importance of TG-lowering therapy for the prevention of
ASCVD events and pancreatitis.
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8. Conclusions

Pemafibrate is the first SPPARMα based upon a novel concept, which has potent and
high selectivity for PPARα and is distinctly different from fibrates. It is not metabolized
by the kidney, yet is mainly by the liver and is secreted into the bile. Thus, it can be
used in patients with CKD. It does not have significant interactions with statins and its
coadministration with any statin is safe. Pemafibrate may be administered in patients
with a variety of metabolic diseases. The possible applications for metabolic diseases and
conditions are illustrated in Figure 3.
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Pemafibrate may have a better risk-benefit balance than conventional fibrates and is a
safe drug to use for patients taking statins and those with CKD or NAFLD. Pemafibrate, the
first SPPARMα, is already marketed in Japan, ahead of the rest of the world, and is expected
to demonstrate better efficiency than fibrates, thereby providing a novel therapeutic option
for dyslipidemia as well as NAFLD and NASH.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo13050626/s1, Table S1: Effects of Pemafibrate on Dyslipidemia;
Table S2: Effects of Pemafibrate on NAFLD/NASH; Table S3: Effects of Pemafibrate on Atherosclerosis
and ASCVD.
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ACCORD-Lipid study Action to Control Cardiovascular Risk in Diabetes (ACCORD)-Lipid study
ACS Acyl-CoA synthase
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ALT Alanine aminotransferase
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ASCVD Atherosclerotic cardiovascular diseases
AUC Area under the curve
BIP study Bezafibrate Infarction Prevention study
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HOMA-IR Homeostasis model assessment for insulin resistance
IAS International Atherosclerosis Society
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LDL-C Low-density lipoprotein-cholesterol
LPL Lipoprotein lipase
MRE Magnetic resonance elastography
MRI-PDFF MRI-estimated proton density fat fraction
NAFLD Nonalcoholic fatty liver disease
NASH Nonalcoholic steatohepatitis
PBC Primary biliary cholangitis
PCSK9 Proprotein convertase subtilisin/kexin type 9
PPAR α Peroxisome proliferator-activated receptor α
PROMINENT Pemafibrate to Reduce Cardiovascular Outcomes by Reducing

Triglycerides in Patients with Diabetes
RemL-C Remnant lipoprotein-cholesterol
R3i Foundation Residual Risk Reduction Initiative (R3i) Foundation
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