
RESEARCH ARTICLE

Devising novel performance measures for

assessing the behavior of multilayer

perceptrons trained on regression tasks

Giuliano ArmanoID
1*, Andrea Manconi2

1 Dept of Mathematics and Computer Science, University of Cagliari, Cagliari, Italy, 2 Institute of Biomedical

Technologies - National Research Council, Segrate, MI, Italy

* armano@unica.it

Abstract

This methodological article is mainly aimed at establishing a bridge between classification

and regression tasks, in a frame shaped by performance evaluation. More specifically, a

general procedure for calculating performance measures is proposed, which can be applied

to both classification and regression models. To this end, a notable change in the policy

used to evaluate the confusion matrix is made, with the goal of reporting information about

regression performance therein. This policy, called generalized token sharing, allows to a)

assess models trained on both classification and regression tasks, b) evaluate the impor-

tance of input features, and c) inspect the behavior of multilayer perceptrons by looking at

their hidden layers. The occurrence of success and failure patterns at the hidden layers of

multilayer perceptrons trained and tested on selected regression problems, together with

the effectiveness of layer-wise training, is also discussed.

1 Introduction

Multilayer perceptrons (MLPs) are a technique of paramount importance for machine learn-

ing, also considering the renewed interest for artificial neural networks (ANNs) advocated by

deep learning (on this matter see in particular the foundational article of Bengio [1]). Follow-

ing the recommendations of explainable AI [2], highlighting the semantics that operates

behind the scenes in various AI systems and techniques, including ANNs and deep networks,

is also a goal of prominent interest. Several works framed along this perspective have been

made in recent years. Without the claim of being exhaustive, let us recall some relevant pro-

posals. In 2000 Tishby et al. [3] introduce the concept of Information Bottleneck (IB) –strictly

related to a corresponding constrained optimization problem that generalizes the rate distor-

tion theory. Among the publications issued on this matter, let us cite in particular [4], in which

deep neural networks are analyzed via the IB theoretical framework, pointing to the mutual

information that can be measured between the layers and the input and output variables. Sub-

sequently, Shwartz and Tishby [5] revisit the concept of IB and demonstrate the effectiveness

of the Information-Plane visualization for deep neural networks. The authors also point out
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that at any hidden layer an ANN can be divided in two parts, i.e., an encoder and a decoder. In

particular, the encoder can be seen as a tool able to project the given input data onto an alter-

native feature space, according to the weights and to the activation functions that occur

therein. Not disconnected from this conceptualization, some studies have been carried out on

layer-wise training –which consists of training one layer at a time. Besides, this training strat-

egy allows to overcome the vanishing gradient problem [6], as here error signal backpropaga-

tion affects only a single hidden layer at a time. After the advent of deep learning, several

training strategies have been proposed that embed layer-wise training as preliminary step. For

example, Bengio et al. [7] adopt a pre-training greedy layer-wise training strategy, Kulkarni

and Karande [8] use kernel similarity, and Wulff et al. [9] use simultaneous perturbation sto-

chastic approximation. In 2020 Armano [10] has shown that layer-wise training can be used in

fact as stand-alone training strategy, pointing that its performance is typically at least as good

as the one obtained with the classical backpropagation algorithm.

Going back to the central topic of explainable AI, in 2018 Armano [11] tries to disclose the

inner semantics that regulates the training of an MLP by investigating the occurrence of rele-

vant patterns, in particular success and failure, on hidden layers. To this end, hφ, δimeasures

and diagrams [12] are used, for their ability to illustrate the characteristics of each hidden layer

as it were in fact an alternative input source for the subsequent layers. According to this view,

the rules for evaluating the importance of input features, defined for binary classification prob-

lems with binary or real-valued features could also be used for evaluating the importance of

neurons that occur at the hidden layers of an MLP [11, 12]. In its standard formulation, the hφ,

δimeasure of feature importance, advocated by a policy called token sharing (say TS hereinaf-

ter), could not be applied to regression problems –due to the apparent unfeasibility of calculat-

ing a confusion matrix (CM hereinafter) for this kind of tasks.

Fortunately, classification and regression tasks share some common characteristics, which

enables to frame them in a common scheme. The main focus of this article is on how to calcu-

late the CM for regression problems. To this end, the TS policy is generalized, thus allowing on

these models a) to assess the overall performance, b) to evaluate the importance of input fea-

tures, and c) to inspect the behavior of MLPs by looking at their hidden layers. The occurrence

of success or failure patterns found at the hidden layers of MLPs trained on regression prob-

lems is also investigated. The remainder of this article is organized as follows: after preliminary

definitions, Section 2 is focused on the adopted materials and methods. In particular, it reports

some basic concepts regarding the analysis of input and hidden layers of an MLP, performed

by means of hφ, δimeasures and diagrams. Special care is also devoted to show how TS can be

generalized to allow its application to regression problems. After pointing to the characteristics

of the experimental benchmark, which include some details on the layer-wise training strategy

(i.e., progressive training) adopted to foster the analysis of MLP hidden layers, Section 3 ana-

lyzes some experimental results. Section 4 discusses relevant aspects and issues regarding the

proposal. Finally, Section 5 draws conclusions and sketches future work.

2 Materials and methods

First, this session discusses the main contribution and motivations of the proposed approach.

Subsequently, after having provided some preliminary definitions aimed at facilitating the

understanding of the underlying concepts and solutions, the attention moves to more techni-

cal details, concerning in particular the ability to evaluate the internal behavior of MLPs

trained on regression problems.
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2.1 Main contribution and motivations of the proposed approach

As pointed out, the main focus of this article is on how to calculate the CM for regression prob-

lems. On the one hand, this aim appears more as a contradiction in terms than as an achievable

goal, to the point that at a first glance it may look like a misplaced question. In fact, this per-

spective is definitely far from a typical binary classification setting to which the calculus of CM
applies. On the other hand, TS could be considered a first step towards solving the problem,

due to its ability to handle real-valued features. To better explain this concept, let us focus on

the inherent characteristics of the involved quantities, with varying the perspective.

In binary classification problems, both features and target are binary (with values typically

encoded as false/true, 0/1 or −1/+1). This is the perfect setting for calculating the CM, as the

policy for increasing true/false positives/negatives in this case is straightforward. A problem

characterized by real-valued features and binary target stands half-way between a binary classi-

fication and a regression setting, as here the target is still binary whereas features are real-val-

ued. An effective policy (i.e., TS) aimed at updating the CM has been devised and

implemented to take action also on this kind of problems. Hence, there is apparent room for

adapting TS to the more general setting even when the target is real-valued.

This methodological article is mainly dedicated to illustrate that this generalization attempt

is viable. Thanks to the proposed generalization of the TS policy, called generalized token shar-
ing (GTS hereinafter), the most important performance evaluation steps can be easily carried

out also on regression tasks. Indeed, the result of this effort has gone beyond any wildest expec-

tation, as the proposed measure, devised to deal with regression problems, includes as special

cases both TS and the classical method for calculating CM on binary classification problems.

2.2 Common groundwork on hφ, δimeasures and diagrams

Table 1 establishes a common groundwork for the symbols used throughout this article. Rele-

vant definitions, all derived from the CM, are briefly reported therein. As for hφ, δimeasures,

Table 1. Summary of useful symbols used throughout the article.

Symbol Definition

N = number of negatives

P = number of positives

TN = number of true negatives

FP = number of false positives

FN = number of false negatives

TP = number of true positives

n = percent of negatives = N/(N + P)

p = percent of positives = P/(N + P)

tn = percent of true negatives = TN/N
fp = percent of false positives = FP/N
fn = percent of false negatives = FN/P
tp = percent of true positives = TP/P
�r = specificity � tn
ρ = sensitivity � tp
a = accuracy = n � tn + p � tp
au = unbiased accuracy = a|n=p=1/2 = (tn + tp)/2

https://doi.org/10.1371/journal.pone.0285471.t001
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they are defined on top of specificity and sensitivity as follows:

φ ¼ r � �r

d ¼ rþ �r � 1

(

ð1Þ

Notably, φ typically denotes an estimate of the bias of a classifier with respect to the negative or

positive category, whereas δ represents the accuracy stretched in the interval [−1, +1]. Both the

cited measures are in fact “unbiased”, meaning that the corresponding dataset is assumed to be

perfectly balanced. Besides, showing that δ represents the unbiased accuracy stretched in the

interval [−1, +1] is straightforward. In symbols (with au denoting the unbiased accuracy):

d ¼ �r þ r � 1 ¼ 2 �
�r þ r

2
� 1 ¼ 2 �

tnþ tp
2
� 1 ¼ 2 � au � 1 ð2Þ

A hφ, δi diagram is based on the above definitions, with φ as x-axis and δ as y-axis. Relevant

properties of these diagrams are:

• the φ-axis is the locus of points for which entropy reaches its maximum (or, equivalently,

mutual information reaches its minimum);

• the δ-axis is the locus of points for which specificity equals sensitivity (i.e., it is the locus of

breakeven points);

• Due to the limits imposed on specificity and sensitivity, the hφ, δi space is characterized by

the equation |φ| + |δ|� 1, which gives rise to a characteristic diamond shape.

hφ, δi diagrams have been initially devised for assessing classifier performance and for com-

puting the so-called class signature over the input features. In the former case, the CM for the

classifier under testing is evaluated starting from the results obtained in one or more tests, and

then the performance in terms of φ and δ is shown in a hφ, δi diagram. In the latter case, the

CM obtained by treating each feature as it were in fact an elementary (i.e., single-feature) clas-

sifier is evaluated, and then all the corresponding results are scattered in a hφ, δi diagram.

As an example, Fig 1 reports the class signature evaluated on the toy dataset mushroom,

from the machine learning repository of the University of California at Irvine, (say UCI, here-

inafter). This signature clearly highlights that the problem is expected to be easy, as several fea-

tures are in medium or high agreement with the positive (i.e., edible) or negative (i.e.,

poisonous) category. Covariant features (i.e., those in agreement with the positive category) lie

close to the upper corner, whereas contravariant ones (i.e., those in agreement with the nega-

tive category) lie close to the lower corner. In either case, the closer the better. Notably, both

highly covariant and highly contravariant features are important, due to their highly discrimi-

nant capability (see also [11] for more information on this matter).

2.3 Introducing the GTS policy

In order to apply the hφ, δi analysis to regression problems, a critical issue must be dealt with

in advance –i.e., finding rules capable of allowing the construction of a CM also in presence of

real-valued targets. To better understand the issue, let us summarize the relevant information

that constrains and defines the problem. The starting point is that a hφ, δi diagram is built

upon hφ, δimeasures, which in turn are linear combinations of specificity and sensitivity. As a

consequence, φ and δ can be calculated only if the CM is available. Fortunately, the classical

concept of CM can be rethought and generalized to the point of making its evaluation possible

even for regression problems. This subsection is devoted to illustrate this generalization
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process, first recalling the classical definition of CM (in which a unitary token is assigned to

either TN, FP, FN or TP), then looking back at the concept of TS, and finally concentrating on

how to deal with real-valued targets.

As pointed out, there are three core settings over which the concept of CM can be declined:

a) binary target with binary features, b) binary target with real-valued features, c) real-valued

target with real-valued features. Despite their apparent diversity, in fact all cases can be ana-

lyzed according to a unifying perspective. In particular, a proper policy must be devised to

share a unitary token, for each example, among TN, FP, FN and TP. Due to the constraints

that apply to each specific setting, it is widely acknowledged that in case (a) the token is used to

update only one member of the CM. In case (b) the token is shared between either TN and FP
or between FN and TP, depending on the target value. As for case (c), it will be shown that –in

principle– the token may be shared among all TN, FP, FN, and TP. It is worth pointing out in

advance that case (a) is generalized by case (b), which in turn is generalized by case (c). For the

sake of clarity, all settings are analyzed separately, from the less to the most general one, but

only after reporting some preliminary definitions that apply to all cases. These definitions are:

• y Variable denoting the target (with t generic value)

• f Variable denoting a feature (with v generic value)

• Δt,v Linear distance between t and v, namely |t − v|

• mt,v Measure of similarity between t and v, namely 1 − Δt,v

Case (a): Token assignment for binary problems with binary features. The simplest case

occurs when target and feature values are binary. This setting describes the classical scenario,

in which the CM is updated –ideally step by step– by identifying which one among TN, FP, FN,

Fig 1. Class signature of the toy dataset mushroom, from UCI. The problem is expected to be easy, as several features

are in medium or high agreement with the positive or negative category.

https://doi.org/10.1371/journal.pone.0285471.g001
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and TP should be increased. Without loss of generality, let us assume that features are scaled in

the range [−1, +1], whereas the value −1 or +1 can be given to the target, with the canonical

association of −1) False and +1) True.

Table 2 highlights all cases that may occur under this setting, reporting also the distance Δt,v

and the measure of similarity mt,v. Note that, by definition, mt,v can be +1 or −1, depending on

whether the target and the feature at hand coincide or not. The table clearly highlights that the

token is delivered to only one among TN, FP, FN, and TP. The selection of the side to which

the token is assigned (i.e., negative or positive category) depends on the sign of the target. By

definition, at the end of the computation, TN + FP = N, FN + TP = P, and tn + fp = fn + tp = 1.

Case (b): Token sharing for binary problems with real-valued features. In this setting the

binary problem is relaxed by allowing real-valued features, meaning that the target can be −1

or +1, whereas feature values are now in [−1, +1]. The equations reported in Table 3 illustrate

how Table 2 can be generalized for dealing with real-valued features.

Note that, although with the same semantics seen for the binary case, Δt,v and mt,v are now

continuously varying between −1 and +1. Table 3 clearly highlights that the token is shared
among either TN and FP or FN and TP. The selection of the side to which the token is deliv-

ered still depends on the sign of the target. It is easy to verify that the rules for CM update

reported in Table 3 imply the ones reported in Table 2. In this case any single update of TN
and FP sums up to 1, and the same holds for FN and TP, otherwise the frequentist interpreta-

tion of CM would fail. Hence, TS still guarantees that at the end of the computation TN + FP =

N and FN + TP = P, which in turn implies that tn + fp = fn + tp = 1.

Case (c): Token sharing for problems characterized by real-valued target and features. In this

setting the problem is further relaxed by allowing also a real-valued target, so that both target

and feature values now lie in the interval [−1, +1]. Fig 2 highlights that, in the most general

case, token sharing is performed in two steps.

The first step consists of splitting the unitary token into a negative and positive part (say R�
and R�) according to the current target value. In symbols:

R� ¼ ð1 � tÞ=2

R� ¼ ð1þ tÞ=2

(

ð3Þ

Table 2. Policy adopted for updating the CM under the basic setting in which both target and features are binary.

The side for CM update is given by the sign of the target.

y f Δt,v mt,v Policy for CM update Side

−1 −1 0 +1 TN += 1 FP += 0 negative

−1 +1 2 −1 TN += 0 FP += 1

+1 −1 2 −1 FN += 1 TP += 0 positive

+1 +1 0 +1 FN += 0 TP += 1

https://doi.org/10.1371/journal.pone.0285471.t002

Table 3. Policy adopted for updating the CM under the setting in which the target is binary and features are real-

valued. The side for CM update is given by the sign of the target.

y f Δt,v mt,v Policy for CM update Side

−1 v 1 + v −v TN += (1 − v)/2 negative

FP += (1 + v)/2

+1 v 1 − v +v FN += (1 − v)/2 positive

TP += (1 + v)/2

https://doi.org/10.1371/journal.pone.0285471.t003
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Note that, as expected, t = +1 implies R� = 0 and R� = 1, whereas t = −1 implies R� = 1 and R�
= 0. The second step is entrusted with delivering R� and R� according to the distance between

t and v. The corresponding formulas are reported in Table 4, which highlights that in principle

the update may affect all components of the CM.

It is easy to verify that the rules for CM update reported in Table 4 imply the ones reported

in Table 3 and hence those reported in Table 2. Moreover, also GTS guarantees, by construc-

tion, that at the end of the computation TN + FP = N and FN + TP = P and that tn + fp = fn +

tp = 1.

Fig 2. Graphical summary of the GTS process that occurs (in two steps) when target and features are real-valued.

It is easy to verify that, by construction, the reported schema implies the previous TS schemas. In particular, a) t = ±1

and v = ±1 correspond to binary target with binary features; b) t = ±1 and v 2 [−1, +1] correspond to binary target with

real-valued features; whereas c) t, v 2 [−1, +1] is for real-valued target and features.

https://doi.org/10.1371/journal.pone.0285471.g002

Table 4. Policy adopted for updating the CM under the relaxed setting in which target and features are real-val-

ued. The policy for CM update makes clear that both sides of the matrix can be affected by a change. Note also that the

general definitions of Δt,v and mt,v are reported here, due to the absence of constraints on t and v.

y f Δt,v mt,v Policy for CM update Side

t v |t − v| 1—Δt,v TNþ ¼ R� � 1 �
Dt;v

2

� �
negative

FPþ ¼ R� �
Dt;v

2

t v |t − v| 1—Δt,v FNþ ¼ R� �
Dt;v

2

positive

TPþ ¼ R� � 1 �
Dt;v

2

� �

https://doi.org/10.1371/journal.pone.0285471.t004
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3 Results

This section reports some experimental results focused on how to use hφ, δi diagrams to assess

MLP models trained on regression tasks. The rise of success and failure patterns inside MLPs

is also briefly discussed. Experiments have been run using MLPs equipped with more than one

hidden layer and trained on relevant datasets downloaded from UCI. The adopted training

algorithm is progressive training [10], which implements a layer-wise strategy that is immune,

by definition, from the vanishing (or exploding) gradient problem. To facilitate the reader,

first a few comments on progressive training are given, followed by some recommendations

on how to use hφ, δi diagrams to assess MLP models trained on regression tasks. Experimental

results on the selected datasets are discussed afterwards.

3.1 Brief summary on progressive training

As pointed out, nothing prevents from thinking of an MLP as a device that at each hidden

layer projects the input onto an alternative space, whose dimensions coincide with the number

of neurons that occur therein. Hence, any training algorithm is expected to perform an overall

transformation aimed at “adapting” the input features to the desired output. In principle, this

process is different for classification and regression. However, neural architectures often treat

both kinds of problems in the same way, meaning that the information used to update weights

is typically the difference between the expected output and the actual one, regardless of the

kind of problem at hand.

Progressive training has been devised according to this view, and following the insight that

an MLP can always be seen as made up of two parts: an encoder and a decoder. For example,

let us assume that an MLP equipped with three hidden layers –say H1, H2, and H3– must be

trained on a given dataset. With Lin and Lout input and output layer, respectively, one can assert

that the pipeline hLin, H1, H2, H3i provides an alternative representation of the input for the

last layer of the MLP. Hence, in this case everything goes as if there is a “line” drawn between

H3 and Lout such that all layers on the left act as encoder, whereas the output layer as decoder.

Most of the algorithms based on backpropagation consider an MLP as a whole, meaning

that all layers are trained concurrently. On the contrary progressive training provides a layer-

wise training strategy, driven by the desired output. Following this insight, the training starts

off with a gregarious MLP consisting of hLin, H1, Louti. Then H1 is “frozen”, meaning that it

cannot be further modified, and another gregarious MLP consisting of hLin, H1, H2, Louti is

trained. The same procedure is put into practice on H3, thus ending the training process in

this case. More generally, the training process ends when all hidden layers of the MLP have

been trained.

3.2 Assessing MLP models by means of hφ, δi diagrams

The GTS policy has made feasible to investigate the inner behavior of MLPs trained on regres-

sion problems. Depending on the change of perspective enforced by GTS, the term model sig-
nature will be used hereinafter instead of class signature (let us recall that the class signature

consists of calculating a hφ, δi pair for each feature of the problem at hand and then scattering

the result on a corresponding diagram). As done for classification problems, the model signa-

ture can be evaluated also on the hidden layers of an MLP, thus getting information about the

effectiveness of the training process. As for the output layer, the hφ, δi placement of the corre-

sponding neuron highlights the overall performance of the MLP at hand; in particular, its δ
component shows the performance of the prediction, the closer to the upper corner the better.

The results illustrated and discussed in this section confirm the validity of the hφ, δi analy-

sis, pointing out that relevant patterns can be found also on MLPs trained on regression
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problems. Let us consider, for instance, the dataset Wave Energy Converters [13], taken from

UCI, which contains positions and absorbed power outputs of wave energy converters

(WECs) in four real-world scenarios from the southern coast of Australia (i.e., Sydney, Ade-

laide, Perth and Tasmania). Fig 3 reports the model signature regarding the input layer and

the hidden layers of an MLP trained on this dataset (for the sake of simplicity, only the part

regarding Adelaide has been used to perform experiments).

The shape of the trained MLP consists of h48, 20, 10, 5, 1i neurons, 48 being the number of

input features. The input signature (top left of the figure) highlights that the problem is in fact

Fig 3. Model signature regarding the input layer and the hidden layers of an MLP trained on the dataset Wave Energy Converters, from UCI.

Signatures are reported from left to right and from top to bottom (the input signature lies at the top left of the figure). The sequence of signatures clearly

highlights that MLP layers are able to approximate quite well the given signal. This ability is made clear from the first hidden layer on, meaning that the

problem is easy and that further layers are in fact redundant.

https://doi.org/10.1371/journal.pone.0285471.g003
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easy to solve, as several neurons lie close to the upper corner. Let us recall that a feature lying

exactly at the upper corner would mean that it is coincident with the target. As for the hidden

layers, it is clear that the MLP has been able to attain a good fitting with the target, since several

neurons occur close to the upper corner. This pattern of generalization success is already

occurring at the first hidden layer, so that the subsequent hidden layers could even be

removed, being not expected to improve the overall performance. The performance has also

been reported in an observed-vs-predicted diagram, in which targets lie on the x-axis and pre-

dicted output on the y-axis. The diagram shown in Fig 4 highlights that MLP output and target

are almost coincident, as pointed out by their occurrence very close to the straight line at 45

degrees that characterizes a perfect fitting.

3.3 Experimental results on relevant datasets

Beyond the identification of relevant patterns, some experimental results are reported in this

section. The list of datasets used for experiments (downloaded from UCI) follows hereinafter:

• Abalone (Tasmania abalone age prediction);

• Airfoil (NASA Airfoil self-noise);

• Boston housing (Boston housing data from StatLib library);

• CBM (Condition Based Maintenance of data propulsion plants);

• EGrid stability (Electrical grid stability simulated data);

• Traffic (Behavior of the urban traffic of the city of Sao Paulo in Brazil);

• Bike sharing (Daily bike sharing at Porto, Portugal);

Fig 4. Observed-vs-predicted diagram that illustrates the fitting obtained by the MLP on the dataset Wave Energy
Converters.

https://doi.org/10.1371/journal.pone.0285471.g004
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• WEC (Wave Energy Converters on southern coast of Australia).

The experimental benchmark has been set as follows: 10 train and test runs have been per-

formed on each dataset. At each run, 70% of available examples have been selected for training,

using random sampling without replacement; then performance has been assessed on the

remaining 30% focusing on R2 and δ. Table 5 reports average results for each dataset, includ-

ing some basic information, i.e., number of instances, number of features and the output signal

selected for regression (i.e., the target).

Depending on the performance in terms of fitting, each dataset has been labeled with one

or two white circles (standing for low and medium difficulty, respectively). It is worth noting

that R2 and δ show full agreement on easy problems, whereas they differ for problems of

medium difficulty. This should not be surprising, as R2 is quadratic and δ is linear. In fact, the

former is based on the residual sum of squares, normalized by the variance of data, whereas

the latter comes from a linear combination of specificity and sensitivity. However, despite

these differences, they are both able to highlight the difficulty or easiness of a problem.

As pointed out, hφ, δi diagrams can also be used to provide information about the ability of

an MLP to fit the training data. An analysis performed on the hidden layers of the MLPs used

for experiments has shown –on average– the occurrence of relevant patterns. In particular,

two clusters of datasets could be clearly identified. The first (consisting of Boston housing, Bike
sharing, WEC, and CBM) is characterized by high performance. As common characteristic, the

hidden layers of an MLP trained on any of these datasets show the occurrence of success pat-

terns similar to the ones reported for the WEC dataset. Conversely, the remaining datasets are

characterized by lower performance and absence of success patterns.

As an example, Fig 5 shows the hidden layers and the output layer of the EGrid stability
dataset. The figure makes clear that a pattern of failure has occurred therein, as no neurons

have been generated able to reach a position close to the upper corner. Notably, the inability to

fit the target is also stressed by the fact that no improvements occur across hidden layers. The

corresponding observed-vs-predicted diagram confirms the validity of the analysis performed

by means of hφ, δi diagrams. In particular, Fig 6 highlights that an MLP trained on the cited

dataset is far from reaching a good performance. The figure also highlights that the result of

training has a visible bias with respect to the wanted optimal behavior arranged around the

45-degrees straight line.

Table 5. Performance on regression tasks as shown by MLPs trained on some exemplar UCI datasets. After reporting relevant information for each dataset (i.e., num-

ber of instances, number of features and the output signal selected for regression), the table shows the performance measured in terms of R2 and δ. The difference (in abso-

lute value) between R2 and δ has also been reported. Experiments have been performed by repeating 10 training and test runs (each with 70% and 30% of available

examples), followed by averaging. Each test has been performed with random sampling without replacement. Problems are also labeled with one or two white circles

(standing for low and medium difficulty, respectively).

Dataset Info Performance

Dataset Instances Feat. Target R2 δ |R2 − δ|

Abalone 4,177 8 shell rings 0.56 0.32 0.24 ��

Airfoil 1,503 6 sound level 0.68 0.71 0.03 ��

Boston hous. 506 13 house price 0.77 0.85 0.08 ��

CBM 11,934 17 ship speed 1.00 1.00 0.00 �

EGrid stabil. 10,000 12 stability 0.42 0.47 0.05 ��

Traffic 135 17 slowness 0.73 0.40 0.33 ��

Bike sharing 731 15 total count 0.99 0.98 0.01 �

WEC 71,999 48 total power 1.00 1.00 0.00 �

https://doi.org/10.1371/journal.pone.0285471.t005
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As a concluding remark, although not being the main focus of this article, experimental

results point out that progressive training performs well on most datasets, characterizing itself

as a good alternative to other classical regressors.

4 Discussion

Evaluating the CM for a regression problem requires a change of perspective. Beyond techni-

calities, in presence of binary classification problems, the whole unitary token is delivered to

only one among TN, FP, FN, and TP, depending on the target value and on whether the target

Fig 5. Model signature regarding the input layer and the hidden layers of an MLP trained on the dataset EGrid stability, from UCI. Signatures are

reported from left to right and from top to bottom (the input signature stands at the top left of the figure). The sequence of diagrams makes clear the

inability of the MLP to come up with a good approximation of the actual function, as negligible improvements occur across hidden layers.

https://doi.org/10.1371/journal.pone.0285471.g005
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and the feature value are coincident or not. A true token sharing strategy occurs when features

are allowed to be real-valued. In this case either TN and FP or FN and TP are affected by the

sharing, according to the sign of the target for the example at hand. The quantity assigned to

the positive or negative side depends on the actual distance between the value v of the feature

under analysis and the target value t (the closer, the better). For instance, with a target value t
= −1 and a feature value v = −0.5 most of the unitary token would be assigned to TN and the

remainder to FP. The generalization of token sharing to regression problems takes place by

scaling the target in [−1, +1]. Hence, depending on its distance from −1 and +1, the actual tar-

get can be thought of as being concurrently negative and positive at the same time. In this case

the token is first broken down in two parts, say R� and R�, one to be delivered to the negative

side (i.e., TN and FP) and the other to the positive side (i.e., FN and TP). Then R� and R�
undergo a further break down, depending on the distance between the target and the feature

value. Note that, according to this view, a target value t = 0 is in fact half negative and half posi-

tive, being equidistant from −1 and from +1. It is also worth pointing out that the given formu-

las are valid even when t = v = 0. In fact, in this case the equations reported in Table 4 would

assign, as expected, half token to TN and half token to TP.

Focusing on the formation of characteristic patterns inside MLPs upon training, it is worth

noting that contravariant neurons are barely found on regression problems. The motivation

lies in the inherent difference between classification and regression tasks. In fact, both covari-

ant and contravariant neurons may hold at the hidden layers of an MLP trained on a classifica-

tion problem, for their ability of affecting the generalization process. When shifting to

regression problems, contravariant patterns tend to be ruled out by the training algorithm,

whose goal is to approximate as much as possible the target signal. As a consequence, most of

Fig 6. Observed-vs-predicted diagram that illustrates the lack of generalization obtained by the MLP on the

dataset EGrid stability. The figure makes clear that the trained MLP performs a bad approximation of the given

function.

https://doi.org/10.1371/journal.pone.0285471.g006

PLOS ONE Assessing the behavior of multilayer perceptrons trained on regression tasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0285471 May 18, 2023 13 / 15

https://doi.org/10.1371/journal.pone.0285471.g006
https://doi.org/10.1371/journal.pone.0285471


the neurons that populate the hidden layers (typically all) are drifted towards the covariant

side.

Notably, the ability of inspecting the hidden layers of an MLP with hφ, δimeasures and dia-

grams can also be helpful in the task of adapting its architecture to the given problem. Despite

the growth of deep learning techniques, the research subfield of ANN architecture optimiza-

tion is still very important, due to its capability to increase the performance of an ANN on the

problem at hand. Without the claim of being exhaustive, some relevant proposals are briefly

recalled hereinafter, also pointing to the fact that the history of ANN architecture and weight

optimization is strongly interlaced with classical search heuristics. A historical approach based

on Fogel’s evolutionary programming has been devised by Yao and Liu, 1997 [14]. Another

exemplary case of this closeness can be found in the work of Zanchettin and Ludermir [15],

who experimented a mix of simulated annealing, tabu search and genetic algorithms. This

work is ideally related to the proposal of Ludermir and de Oliveira [16], in which particle

swarm optimization was experimented. More recently, Ramchoun et al. [17] describe an

approach based on genetic algorithms and mainly focused on connection deletion, as a way of

increasing the ANN performance. Not least of all, the work of Fekri-Ershad and Ramakrishnan

[18], still relating to genetic algorithms, use an innovative chromosome representation and

cross-over process, devised to optimize the number of hidden layers and hidden nodes.

Along with this perspective, the proposed performance measure can be used for both classi-

fication and regression problems. In fact, in either case, some hidden layer neurons may reveal

themselves as uneffective or even harmful to the intended purpose, depending on the values of

φ and δ. Let us recall that the φ-axis (with equation δ = 0) is the locus of points with minimum

mutual information between the neuron at hand and the target. This property holds despite

the fact that the value of φ may carry different semantics. In particular, φ� −1 and φ� +1

mean that the neuron is emitting a fixed value (i.e., close to −1 or +1, respectively), regardless

of the given inputs. Moreover, φ� 0 (still in proximity of the φ axis) means that the neuron is

emitting a random value. Summarizing, a hφ, δi analysis can easily highlight when a neuron is

not relevant (φ� −1 or +1) or even harmful (φ� 0 and |δ|� 0) for the problem at hand. In

these cases, the neuron can be removed in agreement with the selected optimization strategy.

5 Conclusions

This article has shown the feasibility of adopting hφ, δi diagrams in the task of assessing the

effectiveness of multilayer perceptrons trained on regression problems. To this end, a notable

change in the policy used to evaluate the confusion matrix is made, with the goal of reporting

information about regression performance therein. Moreover, it has been shown that the pro-

posed policy maintains backwards compatibility with the previous definitions. The occurrence

of success and failure patterns, together with the effectiveness of progressive training, has also

been experimentally confirmed. As for future work, failure patterns will be further investigated

–still on regression problems– with the aim of better illustrating the process that generates a

failure during MLP training. Moreover, the generalized token sharing policy will be experi-

mented on artificial datasets, to verify its effectiveness also under specific conditions devised to

highlight pros and cons of the proposed approach. An attempt to integrate hφ, δimeasures in

an optimization strategy devised to perform neural network pruning on regression problems

is also under study.
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