

ELECTROCHEMICAL SENSOR FOR WORKER SAFETY IN MANUFACTURING INDUSTRIES

<u>Maria G. Bruno¹, Bernardo Patella¹, Claudia Torino², Antonio Vilasi², Chiara Cipollina^{3,4}, Serena Di Vincenzo⁵, Elisabetta Pace⁵,</u> Alan O'Riordan⁶, Rosalinda Inguanta¹, Giuseppe Aiello¹

¹Applied Physical Chemistry Laboratory, Department of Engineering, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy

²Institute of Clinical Physiology, National Research Council, 89124 Reggio Calabria, Italy

³ Institute of Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy

⁴*Ri.MED Foundation,* 90133 *Palermo, Italy*

⁵Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy

⁶Nanotechnology Group, Tyndall National Institute, University College Cork, Cork, T12 R5CP, Ireland

mariagiuseppina.bruno@unipa.it

Most occupational lung diseases of industrial workers are attributed to excessive exposure to dangerous substances, such as dust particles and gases [1]. This work involves the development of a smart mask implemented with an electrochemical sensor for real-time detection of hydrogen peroxide in exhaled **breath (EB).** The presence of a high concentration of this biomarker in EB, known as oxidative stress, can associated with serious diseases.

The sensors, with a three-electrode configuration, were fabricated from the **silver** layer of wasted compact discs (CDs) [2].

