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Abstract. It is well known that Water Distribution Networks (WDNs) are very inefficient and, in 
Italy, 40% of water is lost during distribution. In this paper, we present a solution for detecting 
leakages in WDNs, based on three main components: i) an innovative sensing element to be 
deployed at the sensor nodes, which analyses vibrations in the acoustic range for classifying 
external noise sources, induced by water leakages, by means of suitable machine learning 
techniques; ii) an Internet of Things (IoT) system of sensors, deployed at the junctions of the 
WDNs, for comparing the measurements collected at different critical points of the network; iii) a 
machine learning algorithm for processing the data. After the definition of the WDN structure, we 
introduce some numerical simulation tools suitable for studying our system and modeling the 
proposed sensing solution. Given the geometry, physical properties (pipe lengths, diameters, 
roughness, reservoir shapes and levels, pump and valve characteristic curves) and nodal demands, 
the simulation tool is able to compute leakages in pipes or nodes over time. In parallel, we simulate 
our IoT system coupled to the WDN, by logging partial information about the WDN status, which 
corresponds to the demand readings at the edge nodes or at some junction nodes, together with the 
(optional) measurements of the deployed sensing elements. On the basis of this data, we analyze 
the possibility of identifying the leakages in the network, even without knowing the exact or 
complete topology of the WDN. Our solution exploits different machine learning techniques 
devised to indirectly retrieve topological information, by correlating the balance of the flows as 
the water demand varies over time. 
Introduction 
A Water Supply System (WSS) is the infrastructure that connects water suppliers and customers 
to provide water to households and businesses. A conventional WSS comprises a water source, a 
water treatment, a pumping station, a Water Distribution Network (WDN), and finally, the end 
users. Over the past 100 years, the global water consumption has increased sixfold and this trend 
has continued at a rate of about 1% per year due to population growth and to the economic 
development [1]. According to the current literature, the world may face a global water deficit of 
40% by 2030. At the same time, massive amounts of water are wasted because of leakages in 
(aging) water distribution infrastructures. According to the more recent statistics of the European 
associations of water services (EurEau), the mean value for water wasted is about 26% in Europe 
[2], but such a value can be even higher than 50% in some networks. In this context, it is of 
paramount interest to exploit ICT solutions for improving the monitoring and management of 
WSSs. Indeed, most water utilities address the leakage control in a passive way; leaks are repaired 
only when they are visible. A standard way to facilitate the leakage control is to partition the 
network into District Metered Areas (DMAs), where the flow and the pressure at the inlet are 
monitored [3]. Recently, classifiers have been proposed to analyze the residuals in [4]. In this 
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paper, we focus on the distribution network of the WSS and, in particular, on the problem of 
leakage detection and localization. We consider three main technical solutions for addressing this 
problem: (i) the utilization of embedded devices to be deployed at the nodes and along the 
transportation pipes, for collecting demand measurements and acquiring vibration signals due to 
the water flows; (ii) a local form of intelligence, running at the gateway nodes collecting 
information about the vibration signals, for removing noise sources (such as the vibration signals 
caused by a vehicle on the road) not related to water leakages; (iii) an high-level aggregation 
scheme, responsible of mapping the data collected from the whole network or DMA (demand, 
pressure, presence of leakage) into a per-node estimate of presence/absence of leakages. For 
designing our scheme, we used a small-scale testbed, devised to optimize the local intelligence for 
filtering the vibration measurements, and a well known WSS simulation tool, called EPANET, for 
large-scale analysis. The simulator has been extended for emulating the innovative sensing system 
based on acoustic signals. Our solution has some interesting practical implications. First, it does 
not require a complete knowledge of the WSS topology and any calibration of an hydraulic model. 
Second, it only needs data from normal operation behavior. The remainder of the paper is 
organized as follows. An analysis of the state of the art can be found in Section 2. The design of 
the vibration sensor is presented in Section 3, together with the experimental results in the local 
testbed. In Section 4 we provide performance results on the considered large scale scenarios, and 
discuss the results of our simulations. Finally, some conclusions are drawn in Section 5. 
Related work 
A leakage detection technique using acoustic emissions is based on the principle that water flows 
due to losses passing through a perforation in the pipe create an acoustic signal [5]. When a leak 
occurs, acoustic sensors installed outside the pipe, track and detect the acoustic signal as it 
propagates along the pipeline. Acoustic signals are greatly influenced by the distance between the 
perforation and the sensor, as well as by the background noise from the environment and those 
produced by a pipe burst. Therefore, their utilization requires some signal processing techniques, 
which can be expensive in large-scale networks. An alternative approach for monitoring WDNs is 
the usage of Micro Electro-Mechanical System (MEMS). Indeed, MEMS are low-cost solutions, 
with a relatively small dimension and low weight, which make them suitable for identifying 
leakages by means of vibration signals. MEMS accelerometers can have a range of acceleration 
from 0.5g to 200g (being “g” the gravity acceleration) and a bandwidth spacing from 10 Hz to 
order of tens kHz, which make possible the analysis of most type of vibration signals in the WDN 
field. In some cases, sensing can exploit both acoustic and vibration signals [6]. In [7], a method 
to identify leaks is proposed for identifying leakages even when they are far from the sensing 
points (blind spots), while [8] proposes models of buried pipelines to estimate wave velocities. In 
our work, we propose a small footprint of the sensing devices, assuming that they can be installed 
inside a pipe during repairs with a no-dig technology; in perspective, we can envision a scenario 
where pipes are continuously monitored against water leaks. Apart from the sensing and noise 
filtering problem, several works focus on data aggregation for leak localization. For this problem, 
black-box models based on Machine Learning (ML) are becoming a dominant solution. Different 
approaches, such as Support Vector Machines (SVMs), k-NN classifiers or multi-layer neural 
networks have been investigated in [9] [10] [11], respectively. We also exploit ML for aggregating 
the data collected by the sensors deployed within the network. 
Leakage detection using vibration signals and AI on board 
In this section, we describe the design and implementation of our sensing element for water 
leakages, based on accelerometer measurements and on embedded processing. We chose a 
commercial device by STMicroelectronics, with a low noise MEMS-based accelerometer 
IIS3DWB, featuring a programmable full-scale measurement and set up to measure in a range of 
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±2g in each of the three axes. The system works with a sampling rate of 26.71 kHz, thus providing 
a new measurement every 37µs. Acquired data are digitally converted with a 16-bit Analog to 
Digital Converter (ADC) integrated into the accelerometer, reaching a nominal resolution of about 
61µg. Since terrestrial gravity, affecting vertical direction, contains no information related to pipe 
vibrations, it’s possible to remove the terrestrial acceleration component to maximize precision. 
The sensor is interfaced with a low power 32-bit microcontroller, namely STM32L4R9ZI by 
STMicroelectronics as well. The microcontroller is responsible of running the processing tasks for 
extracting some relevant features from a temporal sequence of measurements and classifying the 
sequence as a leakage/non-leakage event. Indeed, as discussed in [12] by Youngseok et al., the 
spectrum of the vibration signal in case of regular functioning of the pipe is quite different from 
the one acquired during the leakage: in presence of leakages, there are some frequential 
components in the range from 400 Hz to 5 kHz, according to the entity of the leakage and the 
dimension and material of the pipe. The amplitude of the sensed vibration varies based on the 
distance between the leakage and the sensor and it can change depending on the amount of wasted 
water. Since the vibrations are in the acoustic range, we designed a spectrum analysis scheme 
based on typical solutions for speech recognition: More into details, we extracted the Mel 
Frequency Cepstral Coefficients (MFCCs) [13] of different groups of measurements. We 
organized consecutive samples of the accelerometer measurements into temporal windows of 0.46 
s (corresponding to 6 groups of 2048 measurement samples). The sequence is divided into 9 sub-
windows of 2048 measurements, partially overlapping, and each window is converted in 40 
MFCCs with a float precision. 

 
Figure 1 - Scheme of the used pipe system (left), and confusion matrix of the model performance 

(right). 
The MFFCs matrix of 40x9 coefficients is then used as an input of a multilayer perceptron 

network, with two 256-neurons fully connected layers by a flattening layer. In order to classify the 
input as affected by a leakage, the output of the algorithm produces a number between 0 and 1 
which represents the probability of a regular working condition of the sensed pipe. For the purpose 
of classification, outputs greater than or equal to 0.5 have been classified as "no leak" while outputs 
less than 0.5 are considered "leak". 
 
Smart pipe performance evaluation in real testbed scenario 
For training our model, we collected some experimental data by exploiting a small-scale testbed 
with real pipes and taps to be used as controlled leakages. The taps are different in diameter and 
distance from the sensor, as depicted in Figure 1(left). During data acquisition, the electronic 
system has been placed on the pipe and various scenarios, in terms of taps opened over time, have 
been recorded as a ground-truth, together with the relevant measurements’ traces. The collected 
data has been split in training, validation and test set, and then used to train the model and evaluate 
its performances. The tested topology produced a model that is able to correctly classify samples 
extracted from a leaking condition 90.4% of the time and 90.6% of the time in the case of a regular 
functioning pipe, as shown in the confusion matrix represented in the rightmost part of Figure 1. 
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After the evaluation, the model has been tested on the complete recorded scenarios, even with 
unseen scenarios, showing promising results. The performance of the algorithm can be improved 
by introducing some memory effects: indeed, in case of leakages, it is very likely that the leakage 
will last for long time intervals and therefore consecutive outputs can be averaged for filtering 
sporadic classification errors.  
Leakage detection in large scale scenario 
For analyzing the possibility of identifying leakage events in real WDNs, we worked on 
simulation, where it is relatively easily to build a complex topology of a water grid, comprised of 
a number of links connected together to form loops or branches. Each link may contain one or 
more pipes (with different diameters) connected in series. A pipe is a segment of a link that has a 
constant flow with a constant diameter, and no branches. Two or more pipes are joined by node 
elements. Water can leave the network at these nodes, where we also assume that smart readings 
of water demand are possible. For simulating a realistic scenario, we made some assumptions on 
the sensors and meters available in the system, as well as on the communication networks deployed 
for transporting the data to a central aggregation server (working at different scales, including a 
district-level scale). These assumptions are used for filtering the whole trace produced by the 
simulator (which characterizes the complete view of the system) into a set of measurements visible 
to the leakage detection system. The system works on the basis of two ML models: a low level 
one, which only runs on the sensors for processing acceleration measurements and identifying 
leakage events related to the node where the sensor is deployed; a high-level one, which uses all 
the readings produced by smart meters and sensors and flow balancing conditions for identifying 
the overall leakages in the network (even where sensors are not available).  
 
Communication Network 
We assume that the system works thanks to IoT technologies. According to the WDN architecture, 
we can expect to adopt cellular technologies, or technologies working in unlicensed bands. For our 
analysis, we focused on the usage of LoRaWAN [14], a wireless technology offering low-cost, 
low-power, and long-range communications (up to a few kilometers). The architecture is based on 
a start of star deployment, where End Devices (EDs) transmit data to multiple nearby Gateways 
(GWs) deployed in their covered area, which in turns forwards frames to the Network Server (NS) 
and eventually to the corresponding IoT applications server. We assume that smart readers and 
sensing elements act as EDs, equipped with a LoRaWAN interface, and that at least one GW is 
able to collect the measurements provided by the EDs.  
 
Water system simulator 
Our work is based on the Water Network Tool for Resilience (WNTR) [15]. The tool is a Python 
package designed to simulate and analyze the resilience of water distribution networks based on 
EPANET, an open source software for modeling hydraulic and quality dynamics of a WDN) [16]. 
WNTR was developed to extend the capabilities of EPANET and simulate the dynamics of water 
flows across pipelines, taking into account bulk flows and pipe wall reactions, as well as the 
availability of water sources and reservoirs. WNTR has an application programming interface 
(API) that is flexible and allows the configuration of the network topology and the scheduling of 
disruptive incidents and recovery actions. We use the WNRT simulator to generate a suitable 
dataset to feed and test the ML approach. On one side, the simulator generates a complete trace, 
with the status of each node over time, by recording a log file containing the following fields: 
timestamp, nodeID, demand, head (elevation + pressure head), pressure, has_leak, smart_pipe. 
On the other side, we filter a subset of data corresponding to smart meters and sensors, together 
with the real status of nodes, for training a ML model whose input is the total set of measurements 
in a given time window, and whose output is a vector with the status leakage/non-leakage of each 
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node. An interesting feature of our model is the lack of input data related to the network topology. 
Indeed, topological information are indirectly retrieved thanks to the balancing of water flows over 
time, in presence of time varying water demands. For testing our approach, we used some pre-
defined network models offered by the Open Water Analytics's community public repository. 
Specifically, we considered three different sub-networks [17], named A, B, and C, with an 
increasing level of complexity (in terms of the total amount of nodes). At edge nodes, we also 
defined a set of demand-patterns, which represent water consumption at different timesteps. We 
also considered an interval of one hour as minimum time interval for changing the demand 
patterns. In one half of the nodes, we added the possibility of adding leakage events. We then run 
simulations for each network topology and for different demand-patterns, lasting a total duration 
of one week or one month.  Pipes with leaks are chosen from a pseudo-random function in the 
simulation script (coded in Python) and feed into the entire simulation's time intervals. 

Table 1 - Parameters of three considered network. 

Table 1 shows the list of the parameters present in each WDN network used to generate the 
dataset. For each network, we report the total amount of the demand from the nodes and the 
percentage of nodes involved in water leakages. The table also summarizes the total number of 
network nodes, the total number of reservoirs, the number of nodes with leakages and the number 
of installed smart pipes (equipped with the sensing element working on acceleration data). We 
represent our use case as a Supervised Classification problem in which we try to predict if there is 
a leakage on the pipe. From the simulation trace, we extracted our training set with the following 
features: demand, head, pressure, smart_pipe; this latter feature can assume three different values: 
0, if the vibration sensor is present and a leakage is not detected; 1, if the vibration sensor is present 
and the leakage is detected; 2 when there is no sensor. Since this is a classification problem, our 
test set also contains the status of each node, in the boolean variable has_leak.  
 
Performance results  
In order to choose the most adequate classification model, we applied different techniques and 
confronted them. We tested the following classificators: KNeighborsClassifier, LinearSVM, 
RBFSVM, DecisionTree, RandomForest, AdaBoostClassifier, GaussianNaiveBayes. Models have 
been compared in terms of accuracy on the node classification. We analyzed accuracy results for 
the trained model, in the three different network topologies (A, B and C), when only one week of 
data is available and without the usage of vibration sensors. Accuracy values are calculated after 
the fitting and prediction phases and after the confusion matrices generation. Specifically, we 
extract the True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives 
(FN) values and calculate the accuracy as seen here: (TP + TN) / (TP + TN + FP + FN). Each 
classificator is evaluated through a series of k={7,4} cross-folds. The maximum accuracy (about 
70%) is reached for network A, which has a lower number of nodes and therefore a simpler 
topology to be inferred. The presence of the vibration sensor in all the considered networks, 
improve the accuracy of the system about the 10%. Finally, we analyze the impact of a longer data 
trace, corresponding to a whole month of data, for training the system equipped with the smart 
pipes. We note that longer traces are able to solve most of topological ambiguities and achieving 
very high accuracy (as high as 98% for a model based on Decision Trees) even for the more 
complex network topologies B and C.  
  

Network Total network 
demand [gal/min] 

Leak demand 
[%] 

# of nodes # of reservoirs # of nodes with 
leakage 

# of mart 
pipes 

A 0.00333947 43.45 83 1 41 20 
B 0.13837243 48.74 1038 1 518 259 
C 0.30645519 42.38 2099 2 1048 524 
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Conclusion 
This work presented a system architecture and a data-drivn approach to detect leakages in WDN. 
A LoRaWAN IoT network is considered to collect information at WDN nodes, where water 
demands are measured over time. Moreover, in a sub-set of nodes we also assume to deploy 
innovative sensors, equipped with embedded intelligence, for processing accelerometer 
measurements and identify leakage events. We demonstrate that demand measurements over time 
can be exploited for retrieving topological information of the network thanks to the balance 
conditions among flows. Starting from a realistic trace of water demand measurements and 
optional smart sensor readings, a model can be trained for identifying leakage events at each 
network node. Although our model has been trained and validated by exploiting numerical 
simulation, we expect that results can be easily generalized to real deployments.  
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