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ABSTRACT Nestled at the confluence of nature grandeur and human civilization, beaches command an
influential presence that resonates throughout the environment, society, and culture. However, climate
change and pollution overhang the beach health and need to be properly dealt with. Proactive measures
involve education, responsible waste management, sustainable infrastructure, and environmental regulations,
while reactive ones focus on immediate response and cleanup efforts. Nevertheless, continuous monitoring
and cleaning are challenging due to various factors such as beach characteristics, hidden waste, weather
conditions and, consequently, high costs. To overcome such challenges, this paper proposes an autonomous
system for beach cleaning adopting an Intelligent Hierarchical Cyber-Physical System (IHCPS) approach
and Information and Communication Technologies. The proposed beach waste management (BeWastMan)
solution integrates an Unmanned Aerial Vehicle for the beach aerial surveillance and monitoring, a ground
station for data processing, and an Unmanned Ground Vehicle to collect and sort waste autonomously. The
research findings contribute to the development of innovative and fully automated approaches in beach waste
management, and demonstrate the feasibility and effectiveness of the BeWastMan IHCPS by a real case
study, developed in the frame of the BIOBLU project.

INDEX TERMS Intelligent cyber-physical systems, multi-robot systems, unmanned aerial vehicles,
computer vision, unmanned ground vehicles, beach waste management.

I. INTRODUCTION
Coastal regions and their associated beaches hold immense
significance for our life, due to their ecological, social,
economic, and cultural impact. They provide habitats for
diverse species, contribute to biodiversity, and act as natural
buffers against coastal erosion. Beaches are popular tourist
destinations, offering recreational opportunities and cultural
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value. They support the tourism and hospitality industry,
creating jobs and stimulating the economy. Beaches also play
a role in fishing, aquaculture, and carbon sequestration, while
filtering water and maintaining water quality. Understanding
and preserving the importance of beaches is essential for
the sustainable coastal management and the community and
environment well-being.

Beaches can become polluted due to marine debris,
coastal runoff carrying pollutants from urban and agricultural
areas, sewage and wastewater discharge, oil spills, improper
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waste disposal, recreational activities, and shipping/boating
activities. These sources contribute to the contamination
of beaches and can harm marine ecosystems. Recently,
the Legambiente Beach Litter 2023 survey,1 monitored
38 beaches in 15 Italian regions, reporting on average
961 litter items (72.5% plastic) per 100 mt of coastline.

It is crucial to address these sources of pollution through
improved waste management, proper sewage treatment, and
public awareness to preserve the cleanliness and ecological
integrity of beaches. Given the current levels of pollution of
our seas and beaches, the mitigation of the effects caused by
human-generated debris (mainly plastic) has now become a
critical and urgent issue to be addressed.

To keep beaches clean is often among the hardest to
achieve goals for local governments, municipalities, and
volunteers [1], [2]. Proactive and reactive solutions are
vital to such a purpose. Proactive measures include raising
awareness through education, promoting responsible waste
management, implementing sustainable infrastructure, and
enforcing environmental regulations, to reduce pollution
sources, prevent beach pollution and preserve the pristine
condition of coastal environments. In addition to proactive
measures, reactive solutions focus on immediate response
and cleanup efforts. This involves organizing beach cleaning
initiatives, establishing waste collection and sorting systems,
developing contingency plans for accidental spills, and
implementing regular monitoring and surveillance programs.
By swiftly removing litter, debris, and other pollutants from
beaches and effectively managing cleanup operations, the
impact of pollution can be minimized, ensuring cleaner
and healthier beach ecosystems. Combining proactive and
reactive strategies provides a comprehensive approach to
combat beach pollution, promoting the well-being of coastal
environments and preserving their beauty and ecological
integrity.

Focusing on reactive solutions, continuously monitoring
and cleaning beaches is very challenging due to several issues
such as i) the landform, with sandy, rocky, or even mixed
beaches; ii) the flatness or steepness of the ground (which
makes them hard to reach); iii) the type of waste, e.g. liquid,
toxic or dangerous; iv) the presence of people, animals or
obstacles (e.g., boats, large rocks, etc.); v) (partly or fully)
hidden or buried waste; vi) weather conditions (e.g. tides,
rain, snow, wind), to name a few.

Information and communication technologies (ICT) can
support beach waste management. More specifically, Cyber-
Physical Systems (CPS), leveraging on technologies such
as IoT, Edge-Fog-Cloud computing, Big Data management
and artificial intelligence (AI), may play a key role in
making beaches more interconnected and intelligent by
their cyber counterpart able to live monitor and manage
the beach. CPS such as Unmanned Aerial Vehicles (UAV)
and Unmanned Ground Vehicles (UGV) equipped with

1https://www.legambiente.it/rapporti-e-osservatori/rapporti-in-
evidenza/indagine-beach-litter/

high-resolution cameras and GPU, ensure real-time video
streaming and processing, allowing small areas (e.g. beaches)
to be monitored, quickly detecting waste items and geolocal-
izing them into waste maps.

On such premises, this paper proposes an autonomous
system for beach waste management (BeWastMan), adopting
an Intelligent Hierarchical Cyber-Physical System (IHCPS)
approach. The BeWastMan IHCPS is therefore a CPS
composed of three CPS: a UAV for beach monitoring,
a Ground Station (GS) for data management and processing,
and a UGV for waste collection and sorting, able to
autonomously manage themselves and interact with each
other through AI-based/intelligent algorithms. The UAV
captures high-resolution videos and sensor data, probing the
physical system (i.e. the beach). Such a data stream is thus
processed by the GS to detect and locate beach waste items,
implementing the IHCPS cyber system. The UGV is then
deployed to collect and sort the waste items detected by
the GS in a geolocalized map, closing the IHCPS loop by
ensuring a minimally invasive and environmentally friendly
approach.

Thereby, the main contributions of this work are:
1) Fully autonomous system - BeWastMan introduces a

completely autonomous system, founded on cutting-edge
autonomous technologies - namely, the UAV, GS, and
UGV - designed for the automated management of
beach waste. This system functions as an Intelligent
Hierarchical Cyber-Physical System (IHCPS). Within
this framework, the UAV is responsible for conducting
aerial surveillance and monitoring, the GS operates
as a central hub for data processing and decision-
making, and the UGV independently traverses the beach
environment to collect waste materials.

2) Hierarchical CPS methodology - Embracing the IHCPS
methodology offers a methodical framework for the
management of beach waste, guaranteeing the repli-
cability of the BeWastMan solution across various
contexts and domains.

3) Edge-to-Cloud computing continuum - The proposed
approach harnesses the potential of an edge-to-Cloud
computing continuum. This methodology empowers
both real-time and time-sensitive applications by pro-
cessing data at the edge, such as on the UAV for
enhancing inspections through speed adjustments or
on the UGV for addressing obstacles or emergencies.
Concurrently, it enables the storage and processing
of historical data in the Cloud, a feature beneficial
for activities like ongoing training of diverse beach
sediment models. This dual-pronged approach not only
fine-tunes system performance but also enhances its
scalability.

4) Resilience and adaptability - To ensure comprehensive
and efficient waste collection across a diverse range
of scenarios and beach environments, all components
within the BeWastMan solution prioritize resilience
and adaptability. The UAV employs an adaptive video
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capture process, dynamically adjusting its speed in
response to prevailing environmental conditions and
detected items.Meanwhile, the GS leverages continuous
video streaming instead of video frame samples to sig-
nificantly improve the precision of waste detection and
geolocalization. Similarly, the UGV conducts thorough
searches for detected items within target areas rather
than fixed points, and it seamlessly collaborates with the
GS when recognized items cannot be collected.

5) Suitability to different beaches - The BeWastMan design
takes into account diverse beach typologies, encom-
passing sandy, rocky, and mixed beaches. The pro-
posed architecture and technologies exhibit adaptability,
enabling deployment across a wide spectrum of beach
environments, ensuring effective waste management
across various coastal regions.

6) Minimally invasive nature - The proposed BeWastMan
solution emphasizes a minimally invasive approach
through the aerial survey mission performed by the
UAV and the precise pick-and-place operations executed
by the UGV. This approach is intentionally designed
to minimize the environmental footprint of the waste
management process on the beach. Through robotic
mechanisms and other non-disruptive techniques, the
system endeavors to ensure a gentle cleaning process
and to preserve the natural integrity of the beach.

7) Real-world case study validation - This paper encom-
passes the implementation and validation of the
BeWastMan architecture in a case study derived from
the BIOBLU project. This comprehensive assessment
serves to validate the feasibility, functionality, and
performance of the BeWastMan IHCPS in a real-world
scenario, offering tangible evidence of its practical
applicability and effectiveness.

These contributions collectively enhance the understand-
ing and advancement of autonomous beach waste manage-
ment, providing valuable insights and effective solutions for
maintaining cleaner and healthier coastal environments.

Details are provided in the remainder, structured as
follows. Section II describes the problem and provides
an overview on the related works. Section III introduces
the proposed solution and the BeWastMan IHCPS. Then,
the UAV, the GS, and the UGV design are detailed in
Sections IV, V, and VI, respectively. The BIOBLU project
case study, implementing the BeWastMan IHCPS, is detailed
in Section VII, while the results obtained by the experiments
on the BIOBLU case study are reported and discussed in
Section VIII. Section IX closes this paper with some remarks
and discussion.

II. PRELIMINARY CONCEPTS
A. PROBLEM DESCRIPTION
In operational terms, beach cleaning is a multifaceted
undertaking, involving a series of tasks, as illustrated in
FIGURE 1 and described below:

FIGURE 1. Beach waste management process.

T.1 inspection - the beach is monitored to discover waste
items;

T.2 detection - waste items are detected and investigated to
identify their geometric properties and features (size,
height, length, volume, weight) useful for collection;

T.3 geolocalization - once detected, the waste items are
geolocalized, whether or not it is possible or easy to
collect them (e.g., too big/heavy or in not easy to access
areas);

T.4 material recognition - detected waste material is recog-
nized and classified for sorting;

T.5 collection - waste items are collected if the system is
able to perform the collection, otherwise, a further waste
collection process has to be enforced;

T.6 sorting - once detected, collected, and properly classi-
fied, waste sorting is performed by placing the items in
the proper bins based on their materials;

T.7 transfer - collected and sorted waste is transferred to the
recycling station;

T.8 recycling and disposal - once reached the recycling and
disposal station, waste containers are emptied.

On a regular basis, beach cleaning prevents waste accumu-
lation as discussed in [3] and [4], proposing beach clean-up
programs and waste management strategies. However, cur-
rently this process is mainly implemented manually [5],
with high costs impacting on regularity. Its automation may
be a significant improvement to such a purpose, although
challenging. Main issues and challenges to be dealt with in
beach waste management automation are:

C.1 inaccessibility - namely the limited access to some areas;
C.2 dynamic environment - the beach environment may

change suddenly (due to e.g. the weather, tides, wind,
light);

C.3 beach sediments - which can differ, such as sand, gravel,
shingle, pebbles, rocks, and cliffs;

C.4 eco-friendliness - minimizing the impact of waste
management on the beach environment and ecosystem;

C.5 completeness and accuracy - most of (hopefully all) the
beach waste objects should be detected, geolocalized
and then (if possible) collected, sorted and further
managed.
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B. RELATED WORK
To automate the beach waste management process is an open
problem, partially addressed in some recent works discussed
in the following, but never, to the best of our knowledge,
considered and tackled as a whole. Some of the reviewed
works implement multiple beach waste management tasks,
which makes it difficult to sharply categorizing them in only
one task.

1) INSPECTION
Several works in the literature aim at automating beach
inspection, usually by exploiting UAV. Drones have been
adopted for different maritime application domains, mainly
in the context of people safety to search and rescue
castaways. Some works involving UAV in municipal solid
waste management are reviewed in [6], mainly dealing with
landfill-related issues, such as gas emission monitoring and
waste volume estimation.

Authors in [7] discuss on the potential of using UAV
for beach waste inspection. The findings support the
incorporation of UAV into routine beach waste monitoring
programs, offering a cost-effective and accessible sampling
method by overcoming, at the same time, the limitations of
labor-intensive visual surveys to quantify and characterize
beached waste. The comparison with visual census demon-
strates that the UAV-based quantification is three times faster.

In [8], a DJI Phantom 4 PRO quadcopter equipped with
a 20 MP camera is used for marine waste detection and
recognition. Binary image segmentation is proposed to detect
the waste on the beach from RGB channels spectral profiles,
providing high geolocalization accuracy. Similarly, a DJI
Phantom 3 quadcopter equipped with a 12 MP camera
is exploited in [9] for waste detection and multi-class
recognition based on machine learning. A DJI Phantom 4
quadcopter equipped with a 12.4 MP camera is used in [10]
for environment mapping and waste detection through CNN.
In [11], two quadcopters, namely a DJI Inspire 2 and a
Phantom 4 PRO, equipped with 20.8MP and 20MP cameras,
respectively, have been used in different scenarios for aerial
image acquisition. A commercial software has been used
for mission planning at different flight altitudes and for the
environment mapping, enhanced with RTK GPS and ground
control points. Beach litter detection is obtained through
object segmentation.

Related work mainly identify UAV as the most effective
solution for beach inspection, nowadays a de-facto standard
in such applications. Existing UAV technologies and devices
are usually well-equipped and customizable providing ready
made solution for beach inspection.

2) WASTE DETECTION, GEOLOCALIZATION, AND
RECOGNITION
The problem ofwaste detection and recognition-classification
represents a major challenge [12] in beach waste manage-
ment. As a consequence to the adoption of drones to beach

inspection, the mainstream approach for waste detection,
geolocalization and classification is based on images, videos
and their processing. Computer vision and machine learning
have been thus applied, as in [13] where a vision-based
robotic prototype for the classification and collection of
construction waste is addressed by using R-CNN (Region-
Based Convolutional Neural Network) and Mask R-CNN
models.

The solution implemented in [14] proposes litter detection
from low-altitude UAV imagery acquired by a calibrated
onboard camera, adopting a YOLO-based architecture. Simi-
larly, in [15] an end-to-end semantic segmentation algorithm
based on the U-Net architecture is implemented to detect and
recognize three types of plastic (OPS, Nylon and PET) in
rivers and lakes by using high-resolution orthophotos from
a UAV.

In [16] a beach waste detection and monitoring based on
aerial images and Convolutional Encoder-Decoder model is
proposed. The authors used orthophotos and a pre-trained
neural network algorithm for waste detection by removing the
fully connected layer for semantic segmentation. This model
demonstrates excellent performance in detecting irregularly
shaped waste, such as Styrofoam, and targets with diverse
colors.

These computer vision and ML-based approaches offer
promising solutions to address the problem of waste detection
and classification in an efficient way. It is still a challenge,
however, to integrate these solutions with physical waste
collection systems to achieve a completely automated and
reliable solution.

3) WASTE COLLECTION, SORTING, TRANSFER,
AND DISPOSAL
The most widely used approach for waste collection in
sandy beaches consists in sifting the sand through a sieving
system composed of a set of meshes connected to a vibrating
system. Such a system is usually mounted on human-
driven tractors [17], [18] where the operator usually follows
predetermined paths to cover the area of interest. All the
solutions proposed in [19], [20], [21], [22], and [23] share
the same sieving-based sand cleaning method with remotely
controlled vehicles. The use of unmanned vehicles allows
the design of small-sized solutions, which are suitable for
areas with numerous obstacles and limited maneuvering
space as is the case of crowded beaches, while the operator
remotely drives the vehicle by continuously maintaining a
visual feedback of it. This makes the beach cleaning process
safe but also strictly bound to human intervention.

Autonomous robotic solutions [24], [25] use GPS receivers
for localization and range sensors to avoid obstacles, mainly
implementing blind techniques, i.e. without preliminary
inspection. The autonomous beach cleaning process relies on
the coverage path planning of the area of interest [26], while
sieving the sand. At the end of the collection process, the
ground vehicle reaches a recycling station where the collected
waste is disposed. The main limitation of such an approach is
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its inefficiency, in terms of both duration and, hence, power
consumption of the cleaning operation.

Other important limitations of all sieving-based solutions
are: i) they cannot be employed on rocky, shingle or pebble
beaches, and ii) invasiveness, as they imply the alteration of
soil shape and composition (including natural elements such
as marine life, shells, seaweed, small plants, insects, etc.),
regardless of the presence of beachedwaste. To the best of our
knowledge, no autonomous solutions deal with other types
of beaches (apart sandy ones) and implement beach waste
sorting.

4) AUTOMATIC WASTE MANAGEMENT APPROACHES
An effective approach in waste management automation
is to combine computation, communication, and control
with physical processes by the integration of the cyber and
physical worlds into Cyber-Physical Systems (CPS) [27].
These are often referred to as intelligent CPS, thanks to the
adoption of AI-based algorithms [28].
Different works demonstrated the CPS effectiveness in

urban waste management applications [29]. In [30], an IoT
(Internet of Things) and Cloud-based CPS for efficient solid
waste management in a smart city scenario is implemented
by developing a route optimization technique using smart
dustbins and real-time road traffic information. In [31] a
CPS solution for wastewater collection and treatment within
buildings has been implemented. In the beach context, [32]
proposes an autonomous maritime eco-CPS equipped with a
computer vision system for pollution detection in the coastal
and marine environment.

Although these CPS-based technologies are widely used
in many areas, the automation of beach waste management is
still a big challenge. The CPS approach may be promising
in such context, framing the solution into the interaction
between two or more CPS. Adopting UAV for inspection
and robots for detection, collection and sorting is poorly
investigated and poses a challenge in this research area [33].

III. THE PROPOSED SOLUTION
The main goal of this work is to develop an automatic system
to monitor and keep clean beaches, automating the workflow
shown in FIGURE 1 while addressing the challenges listed in
Section II-A.
To address challenge C.1 concerning obstacles that

may limit access to parts of the beach, the aerial view,
as demonstrated by the related work, is the best way to
detect and locate waste. This implies to i) split detection
and collection/sorting activities into two separate sequential
steps; ii) introduce further inspection and geolocalization
steps to enable (offline) collection and sorting; and iii) adopt
drones for the aerial image-video capture. Computer vision
algorithms then process images and videos collected by
the drones to detect, locate and classify the waste, gen-
erating a geolocalized waste map. Based on such a map,
an autonomous UGV collects and sorts the waste from the
beach.

FIGURE 2. Beach waste management IHCPS reference architecture: the
BeWastMan framework.

To cope with challenge C.2, i.e. the continually changing
nature of the considered environment, a dynamic and
self-adapting solution is required. From a methodological
perspective, this solution can be framed into a cyber-physical
system (CPS) probing the physical system, namely the beach,
with the drone, feeding a cyber system to detect and localize
waste into a map then provided to the ground robot to enforce
on the physical system-beach waste collection, sorting, and
transfer actions, thus closing the CPS feedback loop in a
timely manner, while allowing prompt adaptation to changes
of the environment conditions.

Adopting the CPS approach, the BeWastMan solution
framework is identified, grouping the waste management
tasks into 3 stages: i) inspection; ii) detection and geolocaliza-
tion; and iii) material recognition, collection, sorting, transfer,
recycling and disposal. Thereby, as shown in FIGURE 2, the
physical system to be monitored and controlled is the beach,
the cyber system is essentially deployed in the GS, processing
the information coming from the UAV, i.e. the geotagged
video stream, which acts as a physical-to-cyber (P2C) or
sensing system. The obtained results are forwarded to the
UGV to enforce on the physical system the beach cleaning
policy, acting as a cyber-to-physical (C2P) or actuation
system. The main benefit of a hierarchical CPS, as also
argued in [34], lies in its capacity to offer a greater degree of
flexibility compared to a flat solution.Within the BeWastMan
IHCPS framework, the UAV, GS, and UGV operate as
autonomous entities, capable of independently, dynami-
cally, and swiftly addressing challenges and issues. The
higher-level CPS serves to coordinate and orchestrate their
activities.

More specifically, the UAV system flies over the beach to
perform inspection, autonomously managing the mission by
tuning the speed when waste items are detected through a
waste detection model deployed onboard. To such a purpose,
multiple frames and videos, instead of single images, are
exploited, thus improving the detection accuracy of challenge
C.5. Furthermore, different models have to be trained to deal
with different beach sediments and conditions (e.g. light,
weather) to tackle challenge C.3.

The UAV system interacts with the GS which plans and
coordinates the mission and supports all the other compo-
nents with computing (storage, networking and processing)
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and energy resources and facilities. The GS is also tasked at
processing the UAV data streams, detecting and geolocalizing
beach waste items from redundant videos to improve the
overall precision (C.5).

It thus triggers the UGV that autonomously reaches the
geolocalized points to collect the detected waste items by
means of a robotic arm equipped with a gripper (working
on any beach sediment for challenge C.3, while reducing the
impact on the environment for C.4) and sort it in its onboard
bins. Once waste collection and sorting is completed, the
UGV first reaches the recycling station to dump the onboard
bins and eventually parks in the GS charging station.

Thereby, all such components are CPS, since they con-
tinuously probe their own physical system, elaborate the
obtained input, and consequently actuate on the former to
manage the overall system, thus enabling a further layer
of self-adaptation to address changes and fluctuations of
C.2. As a consequence, overall the BeWastMan system is
a hierarchical CPS (HCPS), i.e., a CPS composed of CPS
interacting with each other autonomously for the beach
waste management mission. Furthermore, adopting artificial
intelligence techniques for processing the sensed input (e.g.
video stream, telemetry, energy, weather and environment
parameters), it is an intelligent HCPS (IHCPS).

Enforcing the principles of separation of concerns and
modularity, each individual low-level CPS component of the
BeWastMan IHCPS (i.e. UAV, GS, and UGV) is responsible
for carrying out its own specific sub-mission within the
overall BeWastMan mission. These sub-missions should be
implemented mostly independently, with minimal or no
interaction with the other CPS, to avoid jeopardizing the
overall mission in the event of any failures. To such a purpose,
it is possible to abstract and generalizes the main goals
and (sub-)tasks of the UAV, GS and UGV CPS within the
BeWastMan IHCPS into the management of:

ST.1 mission - planning, coordinating, and implementing the
specific CPS sub-mission;

ST.2 safety and security - planning and enforcing policies to
ensure the specific CPS safety and security;

ST.3 energy - planning and enforcing policies to optimize the
specific CPS energy management.

IV. THE UAV P2C SYSTEM
A. MISSION: INSPECTION
The UAV is tasked to fly over a specific area of a target
beach of the BeWastMan mission, capturing georeferenced
images and/or videos through its camera, acting as a CPS [35]
to improve the inspection/video capturing quality. Captured
images are indeed pre-processed onboard (edge computing)
the UAV to detect waste online, in a timely manner, through
machine learning-based computer vision algorithms. If a
potential waste object is detected, the UAV autonomously
modulates its speed to capture more detailed images/videos
to improve the detection and geolocalization steps performed
by the GS.

The waste detection performed onboard the UAV, which
is a resource constrained device, has to provide results in a
timely manner to allow slowing down the drone while the
object is still in the field of view, speeding up otherwise.
To such a purpose, a fast waste detection has to be performed
on the UAV based on low-res videos and lightweight models,
while the actual waste item detection and geolocalization is
then performed offline by the GS, as detailed in Section V.

Specifically, the workflow of the BeWastMan UAV
sub-mission starts with the i) drone initialization, checking
the charge of the batteries and all useful components for
the flight; then performs the ii) mission planning, using the
drone route planning and scheduling software; and finally
implements the iii) beach inspection mission, where the drone
takes off, reaches the area of interest of the beach and captures
aerial images/videos on the planned route, live processed by
the drone to improve the overall inspection mission by speed
tuning as discussed above.

B. PHYSICAL
Both fixed-wing and multi-rotor UAV are suitable for the
beach waste management. However, the latter, thanks to their
easier speed control, better fit with the speed tuningmaneuver
required by the BeWastMan mission. Moreover, multi-rotors
are usually preferred with high-speed wind [9].
A BeWastMan UAV has to be equipped with processing

facilities (a companion computer), for both video capturing,
local processing and transmission to the GS and its high-
level sub-mission management. Another crucial hardware
component is the flight control unit (FCU), which is
a microcontroller-based low-level autopilot in charge of
drone initialization, stabilizing the drone during the flight
and translating the high-level commands provided by the
companion computer into either propeller speeds for multi-
rotors, or surface control actuators and motor speed for fixed-
wing vehicles.

For interacting with the GS a proper communication device
is needed. Based on the distance to be covered and the
required bandwidth, Wi-Fi and/or radio communications can
be adopted. The minimal hardware equipment for a UAV
also includes power supply management, namely batteries
and DC-DC converters. Solar panels could be used as an
autonomous power source for fixed-wing vehicles, useful in
long-endurance missions. The type, size and placement of
solar panels may depend on the power requirements of the
fixed-wing drone and on its structure. Finally, an RC receiver
for the remote control of the UAV must be included, as a
backup for safety reasons.

C. P2C
Besides the main hardware components described in the
previous Section, the BeWastMan UAV must be able to
capture high-resolution geotagged images, operating under
harsh conditions (e.g., humidity, sand, and wind). Specif-
ically, the BeWastMan UAV should be equipped with:
i) inertial sensors, i.e., a combination of accelerometers,
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gyroscopes, and magnetometers that acquire information
about the UAV orientation, speed, and acceleration, crucial
for low-level stabilization (particularly critical in windy
conditions), navigation and control; ii) a GPS receiver
required for navigation and control, particularly crucial for
the BeWastMan inspection mission to reach specific areas of
the beach and to geotag the acquired images; iii) barometers,
to probe the atmospheric pressure, a parameter used in the
UAV altitude assessment; iv) ultrasonic sensors, estimating
the distance to the ground or other obstacles to maintain a
stable hover and avoid collisions.

Other specific sensing devices suitable for a BeWastMan
UAV are the multispectral/hyperspectral imaging sensor as
well as a high-resolution RGB camera to capture and save
multiple spectral/detailed images of the beach or a specific
waste item and to identify and monitor changes in the
landscape, the beach ecosystem composition and health.
Gimbal stabilizer can be adopted to stabilize the cameras for
high-quality stable images.

D. CYBER
The UAV cyber system plays a key role in BeWastMan,
supporting the inspection (sub-)mission (through waste
detection) while enforcing stabilization, to ensure proper
UAV operation, and communicating with the GS for further
data processing. Furthermore, mechanisms for enhancing
drone energy resource management, security, and safety are
provided. More specifically, the BeWastMan UAV cyber
system can be implemented as a dashboard including
different software modules, i.e. the tools to manage and
visualize the drone functionalities (cameras, telemetry data,
energy, processing and storage facilities).

The main module is the mission and flyover management,
which must be programmed in advance with the flight route
and related parameters to let the drone performs all the
planned activities. It also ensures the safety and reliability
of the UAV by taking care of in-flight stabilization and
emergency systems.

The energy module provides facilities for the management
and optimization of energy resources to maximize the flight
autonomy. This involves the design of energy-efficient flight
paths to reduce power consumption.

These modules are usually provided by the UAV manufac-
turer, allowing some customization to meet the BeWastMan
mission requirements. Customization could include modify-
ing the software features to meet specific mission needs, such
as adding or removing sensors or cameras to/from the UAV
to capture images or video of specific areas of the beach or to
focus on specific details. For example, if the mission requires
capturing a portion of the beach in details, the software could
be customized to integrate a camera with wider field of view
and/or zoom and image processing pipeline.

To such a purpose, indeed, an onboard waste detection
module is specifically conceived by the BeWastMan frame-
work for improving captured data (video and telemetry)
quality to be delivered to the GS. As discussed above, such a

module performs live waste detection, in an edge computing
fashion, to control the drone flight by adapting its speed when
a waste object is detected and the quality of the image is
low, eventually allowing zooming into the image. An adaptive
speed-tuning algorithm can also allow to reduce the UAV
inspection mission time, slowing down when waste items are
detected, speeding up otherwise.

Thereby, the detection module is interacting with the
mission and energy modules, sending them commands for
controlling the flight, enforced if the battery level is enough
to perform the mission. More specifically, at this stage,
considering the (energy, processing) resource-constrained
UAV and the need to accomplish the mission within strict
time/energy bounds, a low-resolution video stream with a
reduced number of frames per second (fps) is processed
by the UAV detection algorithm. This approach allows for
faster processing and reduces the computational burden on
the limited resources of the UAV allowing to meet the time
constraints and successfully perform waste detection tasks.

To optimize energy management, flight data could be
directly saved into the internal memory of the UAV, properly
equipped with a built-in data storage system, such as an
on-board memory card or hard drive, which automatically
records flight data during, e.g., the return-to-home (RTH)
process. This can save the energy to transmit flight data to the
GS in real-time, sending only required data in batches when
convenient (e.g. using wireless connectivity such as Wi-Fi in
proximity to the GS).

E. C2P
As discussed above, in BeWastMan, the UAV could
autonomously act on the mission by enforcing a speed-tuning
maneuver in the case of waste detection. Thereby, a more
detailed video and image acquisition can be obtained by
simultaneously acting on the UAV motors, slowing down
when detecting waste while speeding up otherwise, and
camera, zooming-in/out accordingly.

The UAV actuation can also be exploited to improve
the energy management of the UAV itself. A return-to-
home policy allows the drone to automatically return to the
take-off point in the event of low battery levels and low
RC transmitter signal strength. Besides energy management,
RTH procedures ensure both safety and security of the UAV.
This capability can be especially valuable for missions that
require prolonged flights, such as environmental monitoring
applications.

V. THE GROUND STATION CYBER SYSTEM
A. MISSION: PLANNING, COORDINATION, DETECTION
AND GEOLOCALIZATION
The GS is the brain of the BeWastMan system, planning and
coordinating the beach cleaning mission. It hosts the main
(computing and energy) resources and facilities to gather
information from the UAV system, process it to detect and
identify the properties of beach waste (e.g. size, location), and
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FIGURE 3. The BeWastMan ground station architecture.

provide a geolocalized waste map to the UGV robot for waste
collection. It implements the cyber part of the BeWastMan
IHCPS, mainly focusing on processing activities. To properly
support and interact with the UAV and the UGV systems,
the GS has to operate in proximity to the beach. As a
consequence, a vehicle able to move the GS facilities, as well
as all other BeWastMan system equipment, i.e. the aerial and
the ground vehicles, is required.

Once the GS reaches a place nearby the beach, its focus
is mainly on planning, coordinating and supporting the
BeWastMan cleaning mission, including UAV and UGV
tasks, with a system providing all required facilities, as shown
in FIGURE 3. To reduce the risk of failures and optimize the
overall resource management, the GS probes and monitors
the beach area (e.g. light, weather conditions, waves, tides)
and its unmanned vehicles (e.g. position, charge) to avoid,
prevent and mitigate potential issues. In the case of issues,
it could enforce specific policies adapting the BeWastMan
system configuration. Therefore, all the GS components
and modules can be framed into the CPS framework,
implementing the tasks: i) supporting BeWastMan mission
planning and coordination, ii) implementing beach waste
item detection and geolocalization, ii) ensuring safety and
security, and iv) managing energy of the GS vehicle and the
BeWastMan equipment (including the drone and the UGV
when stored in, at rest).

B. PHYSICAL
From the physical viewpoint, the main facilities provided by
the GS to properly implement the aforementioned tasks can
be grouped into the categories detailed below.

1) COMPUTING
The GS computing facilities include storage, processing and
networking facilities and solutions to support the UAV data
elaboration and the UGV mission acting as the BeWastMan
cyber system. To such a purpose, it combines local (edge,
fog) computing resources, able to provide a feedback in a
timely manner, with global, ubiquitous resources, allowing to

persistently store related data, to further process them, and to
remotely access the obtained result, mainly exploiting Cloud
facilities. In this light, the BeWastMan system implements an
edge-fog-cloud computing continuum approach, as shown in
FIGURE 3 and detailed in the following.

a: STORAGE
The GS storage components should mainly store and
provide data from the UAV. Both local, temporary, and
long-term storage should be provided to enable different
processing patterns (e.g. real-time, stream, complex event,
batch, historical). This requires a local storage system on
the GS able to manage from GB to TB of data (video)
streams in a timely manner, for example a network attached
storage (NAS) system. Data archival and support for historical
data processing can then be provided by specific Cloud data
services, ensuring data persistence and availability, while
allowing remote ubiquitous access and data sharing.

b: PROCESSING
The GS storage components mainly support the collected
data processing, i.e. the beach waste detection and feature
identification (e.g. localization, size), basically applying
computer vision to the geotagged video streams from
the UAV. It also supports further computational activities
on historical data (e.g. machine learning model training,
prediction, decision making, analytics) for planning and
coordination. As a consequence, similar requirements to
the storage ones can be identified, differentiating between
local processing, to provide a feedback to the UGV in
a timely manner, and remote processing, to optimize the
mission planning and coordination. The former requirements
can be addressed by a local processing system equipped
with a multi-core CPU and a (many-core) GPU able to
support machine learning-based computer vision algorithms
and their processing locally, interacting with the NAS, in a fog
computing fashion. On the other hand, more complex/batch
computations on historical data, such as machine learning
model training, can be performed remotely on Cloud virtual
servers interactingwith data services. Coupledwith the onsite
computation performed onboard the UAV and the UGV, in an
edge computing fashion, the BeWastMan solution overall
identifies an effective edge-fog-cloud computing continuum
pattern for the beach waste data storage and processing
activities.

c: NETWORKING
TheGS also provides networking facilities to the BeWastMan
system. On the one hand, the GS should be able to interact
with the UAV and the UGV, through a dedicated (wireless)
local network (e.g. a WiFi router, or even by 4G/5G
networks). To support the UAV video streaming a bandwidth
of at least 8 Mbps for full HD images at 30 Hz is required,
but the higher the better to improve the image quality and
the detection accuracy. Another relevant parameter is the
coverage range, which can span few hundreds to one thousand
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meters, exploiting new technologies (WIFI 6) and specific
devices (e.g. outdoor access points or extenders).

To meet all storage and processing requirements, an Inter-
net connection is also required, enabling data and task
offloading to the Cloud. To such a purpose, the GS is
equipped with a 4G/5G router giving Internet access to all
processing and storage devices.

2) ENERGY
TheGS is also tasked at energymanagement and provisioning
to all the BeWastMan system devices, starting from internal
networking, storage and processing devices, till the UAV and
the UGV. Specifically, any solution for energy generation,
harvesting, storing, provisioning and optimized management
can be integrated into the GS. Indeed, it could be equipped
with solar panels or electrical generators for production,
to allow the GS some energy autonomy or independence.
As a consequence batteries, inverter, transformers, UPS and
similar devices for storing the produced energy have to
be included in the design of the GS, properly planning its
capacity and other related metrics based on the absorption of
the BeWastMan devices. This also requires advanced policies
to manage the energy resources thus generated and collected,
considering the BeWastMan system devices to be powered
(GS, UAV and UGV), the source availability (sunlight, fuel,
mechanical, etc.), the environment (e.g. weather), and the
mission parameters (e.g. beach area, duration).

C. P2C
The GS is based on a sensing system able to probe the
external environment to provide relevant information for its
management, promptly adapting itself and the overall system
to changes and fluctuations, thus addressing challenge C.2
described in Section II-A. This is done by equipping the GS
with a set of sensors specifically conceived for probing its
status, i.e. the GS P2C system.

Specifically, starting from the mission planning and
coordination, the GS has to monitor the physical (computing
and energy) resources as well as the external environment
to properly manage the overall system mission. To such a
purpose, computing resource utilization (e.g. CPU, RAM,
storage, bandwidth) as well as energy ones (e.g. battery level)
are continuously monitored and their values collected and
then processed by theGS cyber system. Furthermore, external
environment conditions should also be probed by specific
device such as weather stations, light sensors, microphones
and cameras.

Cameras are mainly used for mission planning and
coordination, but also for safety and security purposes, as part
of a surveillance system including internal and external
cameras, presence and intrusion detectors, burglar alarms and
door sensors and lockers.

To monitor the energy status (accumulator and device bat-
tery levels), it must also include energy-related sensors (and
actuators), also exploiting environmental andweather sensors

FIGURE 4. Ground station waste detection and geolocalization workflow.

to optimize the energy management by, e.g., triggering and
switching between solar panels and generator sets.

D. CYBER
The cyber part of the GS provides and implements the
software facilities and tools to support the BeWastMan mis-
sion, mainly concerning waste detection and geolocalization
from the UAV videos, as well as other tools to support
and plan the overall BeWastMan mission. Other GS tasks
are related to the energy management, providing tools to
optimally manage the energy based on the (UAV, GS and
UGV) demand and the offer (e.g. batteries, solar panels,
generators), as well as the GS security and safety man-
agement, mostly implementing proximity and environment
surveillance, by elaborating the GS onboard camera videos.

The waste detection and geolocalization workflow is
shown in FIGURE 4 and is mainly composed of four stages:
the initialization step identifies the beach pattern and selects
the corresponding ML model, triggering the frame by frame
detection loop, which first detects waste objects in each
frame, and then enters the geolocalization nested loop on such
objects to geolocate them.

Thus, a temporary list of detected waste objects is identi-
fied, with multiple instances of the same objects (detected in
different frames) or even other objects (e.g. stones, driftwood,
shells) wrongly classified as waste. The last step is therefore
focused on filtering & mapping activities, identifying and
removing outliers from such a list while improving the
accuracy of geolocalization, as detailed in the following.

1) INITIALIZATION
The initialization step performs preliminary activities to
the waste detection and geolocalization, mainly concerning
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the beach pattern identification, considering sediment type,
morphology, light, weather, and other relevant parameters
that may affect image processing. To this purpose, image
samples from the UAV video to be processed are extracted
and then elaborated for the identification of the specific beach
pattern, through an ad-hoc ML model such as those proposed
in [36] and [37].

Once the beach pattern is identified, the GS queries the
Cloud to obtain the most suitable ML detection model
available on its repository for analyzing the beach video.
On the Cloud, indeed, detection and recognition models
for different beach patterns are provided and updated
by a specific training process in a continuous learning
fashion. Videos, as well as ML models, are therefore
collected, catalogued and stored into specific sections or
folders of the Cloud BeWastMan repository and continuously
improved.

The detection model thus identified is then loaded from the
Cloud by the GS (fog) server, setting up the input parameters
and the environment to run the inference process on the video
to be processed.

2) DETECTION
In BeWastMan waste detection is implemented by applying
computer vision techniques to beach videos sampled by the
UAV. The proposed approach identifies three complementary
stages for detection: i) onboard the UAV (on the edge) for
improving the capturing process meanwhile, in real-time (see
Section IV-D); ii) in the GS (on a fog server) to carefully
detect and geolocalize the waste on a beach map to be
delivered to the UGV; and iii) remotely (on the Cloud,
as discussed above), exploiting the video dataset to train and
improve the beach pattern detection ML models adopted for
inference on the GS (continuous learning).

In general, image processing techniques such as those
reviewed in Section II-B2 can be used in beach waste
detection. Specifically, ML models like CNN, R-CNN or
Mask R-CNN are usually adopted, often exploiting one of the
different public implementations and tools (such as YOLO,
Mediapipe, OpenCV), providing facilities for customizing
such models to the problem at hand. It is however necessary
to train such models, starting from specific datasets of beach
waste images and videos, taking into account the selected
beach patterns. Data filtering, pre-processing, augmentation,
object annotation and labeling, integration and formatting
may be required for further processing on ML model training
and testing. This is performed offline on specific Cloud
remote servers able to gather and store waste images and
videos, also coming from drone beach inspection and UGV
collection missions, continuously processing incoming data
streams to improve the corresponding ML models. Detection
models are then deployed into the UAV and the the GS, while
recognition ones on the UGV for inference.

As discussed above and in Section IV-D, the BeWastMan
UAV implements live object detection on the video stream,
to improve the inspection phase and the whole mission.

On the other hand, the BeWastMan GS fog server performs
more advanced and accurate waste detection by processing
the high resolution video frame by frame offline. This allows
for a more detailed detection process, exploiting the GS
processing capabilities to infer advanced features of detected
object such as size, shape, color, texture, and contextual
information. These additional data help in achieving more
accurate and detailed detection results. Each detected object
is located in a bounding box and inserted into a list
including all the detected objects of the considered frame,
then sequentially processed by the geolocalization loop.

3) GEOLOCALIZATION
The geolocalization step aims at identifying the georefer-
enced locations of the detected waste items to enable the
UGV robot collect them. The bounding box pixel coordinates
provided by the detection object list are thus transformed
into geographic information coordinates (GPS latitude and
longitude) exploiting the equations of coordinate systems
and map projections [38], [39] also considering the image
metadata and UAV telemetry.

To determine the latitude and longitude of a detected waste
object, the parameters included in the tuple of Definition 1 are
exploited.
Definition 1: Given an image i (i.e. a beach video frame)

with a detected waste itemw to geolocalize, a geolocalization
problem glp, aiming to obtain the GPS projection coordinates
of the waste object gpsw = {lonw, latw}, is defined by the
7-tuple

glp = {pxc,fl, gpsc, hagl, g, pxw, φ}

where:

• pxc = {xc, yc} is the image i center pixel coordinates;
• fl is the camera focal length (in mm);
• gpsc = {lonc, latc} is the GPS coordinates of the frame
i center;

• hagl is the UAV height above the ground level;
• g is the yaw gimbal orientationwith respect to true north;
• pxw = {xw, yw} is the waste item w center pixel
coordinates in the frame;

• φ is the reference latitude of the beach, e.g. the latitude
of a specific hotspot located within the beach.

The goal is to solve the geolocalization problem, finding
f (glp) such that gpsw = {lonw, latw} = f (glp). To such
a purpose, the pixel coordinates pxw = {xw, yw} are first
aligned to north by applying a rotation R equal to the yaw
value g, given by the matrix of Eq. (1), then translated to the
center of the frame according to Eq. (2), where x ′

w and y′w are
the coordinates of the waste object rotated with respect to the
center of the frame.

R =

(
cos g − sin g
sin g cos g

)
(1)
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(
1x ′

w
1y′w

)
=

(
x ′
w − xc
y′w − yc

)
= R

(
xw − xc
yw − yc

)
= R

(
1xw
1yw

)
(2)

To obtain the gpsw = {lonw, latw} coordinates, the
principal radius of the spheroid (a = 6, 378, 137 m), the
inverse flattening (if = 298.257223563), and the quadratic
eccentricity (e2 = (2 − 1/if)/if) are exploited to compute
the radius of curvature along the parallel n by Eq. (3), the
radius of the parallel r by Eq. (4), and the meridional radius
of curvature m by Eq. (5).

n =
a√

1 − e2sin(φ)2
(3)

r = n cos(φ) (4)

m =
a(1 − e2)

(1 − e2sin(φ)2)(3/2)
(5)

For each frame, the distance between the frame center and
the detected waste object is quantified using Eqs. (6) and (7)
from Eq. (2).

dx ′
w

=
hagl1x ′

w

fl
(6)

dy′w =
hagl1y′w

fl
(7)

Thereby, the gpsw = {lonw, latw} coordinates of a detected
waste object are obtained by Eqs. (8) and (9).

lonw = lonc +
180dx ′

w

πr
(8)

latw = latc +
180dy′w

πm
. (9)

4) FILTERING AND MAPPING
Once all video frames are processed by detection and
geolocalization algorithms, the results are gathered into a
list of all the geolocalized detected objects. As stated above,
since frames are spatially overlapped, the same object can
be detected in multiple frames and thus replicated in such a
list. On the other hand, detection errors may occur, wrongly
classifying other objects (e.g. stones, shells, woods) as waste.
A way to deal with such a ‘‘noise’’ can be based on
exploiting the number of occurrences (i.e. the frequency)
of each item. Low frequent items are likely outliers, while
dense item ‘‘clusters’’ can confirm the presence of a waste
object and can be profitably exploited to improve its
geolocalization.

On this premise, the filtering & mapping step aims at
improving the accuracy and effectiveness of waste object
detection and geolocalization in BeWastMan. To such a
purpose, the clustering approach is adopted in the analysis
of the detected waste object list, to identify clusters and
outliers as well. Among the clustering methods, K-means,
DBSCAN (Density Based Spatial Clustering of Applications

with Noise), and HDBSCAN (an updated version of
DBSCAN), are the most widely used in unsupervised ML
approaches [40]. Briefly, K-means enforces partitional clus-
tering, minimizing intra-group variance, while HDBSCAN
aims to enable the creation of variable density clusters
based on a hierarchical decision tree approach displaying
clusters as high-density areas separated by low-density
areas.

The (spatial) clustering is therefore an essential step in
the BewastMan process, analyzing the waste object list to
improve both the detection and the geolocalization accuracy
by filtering the outliers and thus extracting the filtered
item GPS coordinates through the cluster points (mapping),
respectively. Specifically, a cluster is identified as a waste
item and thus the cluster centroid is an estimate of the waste
object position, improving the geolocalization accuracy by
averaging on the cluster item coordinates. A proper clustering
method can also deal with issues due to multiple (close)
objects, considering the number of cluster items (larger
implies multiple items) and other item features (such as size,
shape, color).

To obtain efficient waste management the BeWastMan
generates two maps by the UGV mission: i) the full
map encompasses all the detected objects, providing a
comprehensive overview of waste items distribution within
the area of interest, thus including also oversize items that
cannot be collected by the UGV, to however alert the
authorities; ii) the UGV map is a subset of the full map, only
including items that are viable for collection by the UGV
based on the waste size and other spatial properties. However,
this does not ensure the UGV is really able to collect all the
items in the UGVmap, due to obstacles or other accessibility
issues on the beach, therefore a feedback to the GS about
collected items is provided by the UGV at the end of its
waste collection and sorting mission. Based on this feedback,
the full map is updated removing collected waste items, thus
obtaining a waste maps including the items that cannot be
collected by the BeWastMan system, alerting authorities for
further activities.

E. C2P
The GS is a self-adapting CPS, aiming to optimize its own
tasks. More specifically, to support mission planning and
coordination, the processing system is kept fully operating,
by offloading tasks to the Cloud when given thresholds on
resource utilization are overwhelmed (fog-Cloud computing
continuum). Furthermore, it monitors the light, weather and
visibility conditions of the beach, by mainly exploiting its
weather-pollution station and surveillance system. The GS
thus acts on its PTZ (pan, tilt, zoom) cameras to capture
the area of interest and the drone or the robots during their
(sub-)mission. To secure the GS equipment, the surveillance
system is exploited, by acting on the cameras triggered by
the audio/video anomalies and presence detectors. Alerts
or alarms can be triggered in the case of lock/door
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issues or even to the other indoor (e.g. smoke, presence)
detectors.

Energy management policies are enforced by the GS
acting on switches, which can control the (solar panels,
fuel) generators, inverters, and power plugs. The latter can
be thus selectively switched off based on their absorption,
continuously monitored by the system, according to the
specific energy management policy adopted, e.g. based on
device (UAV, UGV, computer, NAS, routers, etc.) priorities.

VI. THE UGV C2P SYSTEM
A. MISSION: COLLECTION AND SORTING
Once received the geolocalized waste map by the GS, the
main objective of the UGV is to enforce the waste collection
and sorting on the beach as the BeWastMan IHCPS actuator.
Based on such a map, the UGV plans a path to reach all the
detected waste objects, collect them through a robotic arm
equipped with a suitable gripper, sort the waste in its onboard
bins, and dump these into the recycling station. The collection
task performed by the UGV in BeWastMan differs from and
outperforms state-of-art solutions as it is:

• Fully autonomous: a fully automated workflow is
implemented to such a purpose. It starts with a path
planning algorithm to optimize the collection of waste
on the beach, thus minimizing the mission time and
reducing the robot’s energy consumption. Full auton-
omy includes the local recognition of the waste through
the onboard camera and the automatic pick and place of
the waste with the robotic arm and its gripper. Once the
mission is completed, onboard bins are autonomously
dumped by the UGV at the recycling and disposal
station.

• Cross-terrain: by means of the robotic arm equipped
with a gripper, the UGV can collect objects of different
sizes and shapes, such as plastic bottles, cans and
other waste. The all-wheel drive platform offers a
good navigation performance compared to tracked
vehicles, as demonstrated by the preliminary tests
reported in Section VII-A3. These solutions, including
the custom recognition models trained on different
beaches sediments and characteristics by the specific GS
Cloud service, make the robot versatile and suitable for
cleaning multiple types of beaches, thus addressing the
C.3 challenge of Section II-A.

• Eco-friendly: the waste item pick and place through
the manipulator and the wheel-based traction ensure
a low impact cleaning process on the beach sur-
face and composition (challenge C.4), only collecting
the identified waste, as opposed to the mainstream
sieving-based approaches with tracks. This is also
achieved by performing an efficient waypoint-based
mission rather than the full-coverage missions adopted
by sieving systems, thus reducing the energy required
to carry out the mission and thus the environmental
footprint.

B. PHYSICAL
From the physical viewpoint, the BeWastMan UGV must
include hardware designed to operate in maritime envi-
ronments, posing greater challenges compared to generic
outdoor environments. The presence of sand, tiny rocks and
sediments, combined with the exposure to strong wind, water
splashing, salt, and high humidity, represents a challenging
operating condition for a robotic system. Thus, the robot
chassis and all the electro-mechanical components must have
a proper ingress protection against solid particles, saltiness
and water.

A beach cleaning robot must be able to cope with the
challenges of moving on a deformable, uneven surface like
a beach. In BeWastMan, an all-wheel drive robot combined
with wide tires is selected, as it is suitable to overcome dunes
on beaches without sinking, while ensuring partial damping
on more compact and harder beaches, such as those made up
of stones or large pebbles. Furthermore, wheeled platforms
represent a good trade off between invasiveness on the beach
surface, compared to tracked vehicles, and the robustness and
the payload needed to carry the robotic arm and the waste
containers, compared to legged vehicles.

Beach cleaning robots are mainly battery powered. Internal
combustion engines have also been adopted, especially in
manually operated platforms, as they ensure long operating
time. However, the latter are not eco-friendly solutions as
they introduce exhaust emissions and noise pollution. Thus,
in BeWastMan the electric traction is selected for the low
environmental and acoustic (silent) impact, since batter-
ies can be recharged from renewable sources, addressing
challenge C.4.

Finally, a reliable and robust connection of the UGV with
the GS is required for audio/video streams and telemetry data
transmission. Such a connection can be on wireless WIFI
and/or through 4G/5G networks to ensure redundancy on the
communication link.

C. P2C
The BeWastMan UGV must include exteroceptive sensors
that provide useful information of its surroundings, thus
ensuring the safety of the vehicle itself. The data acquired
from such sensors can be used to avoid obstacles and to
identify optimal trajectories over the beach, in terms of
traversability and reduced power consumption [41]. The
most common exteroceptive sensors are range sensors,
especially LIDAR (Light detection and ranging sensors),
also called laser scanners, which can acquire large distance
measurements thanks to their laser emitting source. They
can be 1D, 2D, and 3D, depending on how the laser
beam is deflected to acquire a single point distance, a 2D
array of distances or a point cloud, respectively. The latter
can be used for building a 3D model of the surrounding
area, thus enabling local trajectory optimization through
traversability assessment (e.g. in the case of sand dunes,
terrain depressions, etc.).

134432 VOLUME 11, 2023



G. Cicceri et al.: IHCPS for BeWastMan: The BIOBLU Case Study

The BeWastMan robot has to be equipped also with a
GPS receiver to locate itself, track its path during the beach
cleaning mission from the GS to the recycling station and
back following the geolocalized waste detected by the UAV.
The GPS can also be used for geofencing, namely to define
those areas excluded from the cleaning procedure. This can
be helpful to ensure the safety of the vehicle by excluding the
areas too close to the water or dangerous.

Another exteroceptive sensor required for the BeWastMan
approach is a vision sensor to locally recognize the waste
on the beach and to collect it. Both Red-Green-Blue (RGB)
and Red-Green-Blue and Depth (RGB-D) cameras can be
used, where RGB-D ones allow depth measurements through
structured light or stereo vision thus providing a local point
cloud of the area framed by the camera. Other types of
vision sensors can be used, such as thermal or hyperspectral
cameras. However, for each type of camera a suitable
processing algorithm, on the cyber side, has to be designed
and developed.

The UGV must be also equipped with proprioceptive
sensors to acquire information on the internal state of the
robot, to ensure the safety of the robot during the mission
and to properly navigate within the environment. Among
them, the Inertial Measurement Unit (IMU) acquires the
orientation and the attitude of the robot, allowing to know
the robot heading to properly navigate and plan the pick
and place maneuver with the arm. In turn, the robotic arm,
besides mandatory joint encoders for kinematic control, must
be equipped with force/torque sensors, i.e., a collaborative
robotic arm, to let the BeWastMan UGV be safely employed
also in presence of people in the surroundings.

Other sensors that can be included in the beach cleaning
UGV include environmental sensors, such as temperature,
humidity, and wind sensors that can be used to monitor the
weather conditions on the beach.

D. CYBER
The cyber part of the UGV includes the software needed
to ensure the communication, sensor data processing, and
control of the robot. Specifically, it must be able to implement
the workflow shown in FIGURE 5. This includes the
management of the different mission tasks, namely path
planning (according to the waypoint list received by the GS),
waypoint routing, waste object picking through the arm, and
bin dumping.

1) PATH PLANNING AND ROUTING
Concerning path planning, the robot must follow an opti-
mized route minimizing the mission time and the energy
consumption. Since the UGV has to sequentially visit all
the waypoints (WP) provided by the GS one by one, the
path planning problem falls into the well-known Traveling
Salesman Problem (TSP) [42], [43], [44]. Although TSP is
known to be an NP-hard problem, estimating a waypoint
list in the order of tens detected waste items, the global

FIGURE 5. UGV waste collection and sorting workflow.

path processing time on a single board computer has been
(experimentally) observed to be bounded in at worst few
minutes. However, in the case of a larger number of
waypoints, the mission can be split into sub-missions that
can be processed sequentially, overlapping the planning of
the next sub-mission with the enforcement of the current
one in a dataflow/pipeline model, thus ensuring each single
sub-mission can be safely carried out within the battery run
time. Furthermore, although TSP could be solved by the
GS, having high processing power, we opted for deploying
it in the UGV since to implement a self-contained and
independent solution that could be even run on a list of
geolocalized points provided by an operator, without the need
to set up the whole BeWastMan framework.

The outcome of the TSP algorithm is used for global
path planning, i.e. as a reference path to be tracked during
the whole cleaning mission. Such outcome is essentially the
shortest path between the set of waypoints, visiting each
waypoint only once and finally returning to the starting point.
The use of this algorithm in BeWastMan is viable since
there is no need to follow a specific order in reaching the
points of interest, thus significantly improving the efficiency
of the mission (compared to full-coverage approaches) by
reducing mission time, length and, consequently, the energy
consumption.

The only point which is enforced to be reached as a final
waypoint before moving back to the GS for storage and
recharging is the recycling station, to dump the onboard
containers. Since the recycling station is expected to be
placed in the close surrounding area of the GS, the TSP
algorithm is applied to the waypoints, including the GS,
but initially excluding the recycling station. After that, the
recycling station waypoint is added to the path planned by the
TSP algorithm as the last point to be reached before going

VOLUME 11, 2023 134433



G. Cicceri et al.: IHCPS for BeWastMan: The BIOBLU Case Study

back to the GS. This avoids that waste items close to both
the ground and the recycling station may result in a path
driving the UGV to the recycling station before visiting all the
remaining waypoints, i.e., the spots where the UAV detected
the waste.

2) APPROACHING AND PICKING
To properly approach the waste object, once visualized by the
UGVcamera, a proximitywaste recognition step is necessary.
Specifically, the UGV employs advanced computer vision
algorithms and machine learning models to perform more
detailed multiclass recognition. In contrast to the waste
detection carried out by the UAV and the GS, the UGV
recognition process identifies the waste material type and
orientation. To such a purpose, the UGV can use tools like
TensorFlow or PyTorch, paired with OpenCV library for
real-time image and video processing.

As for detection models, multiple recognition models are
trained by the GS Cloud services based on the beach pattern.
Therefore, the GS initially sends to the UGV the specific
model that should be adopted by the latter for waste item
recognition. Specifically, the recognition algorithm deployed
in the UGV heavily relies on high-resolution, detailed images
or video feeds to classify 4 waste materials: paper, glass,
plastic, and metal. It adopts ML models like CNN or
R-CNN, similar to detection ones described in Section V-D2,
but implementing multiclass classification. Furthermore, the
UGVmodels have to also estimate the waste item orientation,
which is critical for successful waste removal. The orientation
and position estimation of the waste through the camera can
be supported by depth estimation if an RGB-D camera is
used. Tools like TensorFlow, PyTorch, and OpenCV can be
adopted for recognition model training and image processing.

Once the waste has been recognized and localized by the
UGV, waste collection is performed by the robotic arm and
gripper control. Specifically, the relative pose of the itemwith
respect to the vehicle is considered, along with the current
robotic arm configuration and the vehicle heading, and a
classical inverse kinematic problem is solved to plan the arm
actuation, including gripper control.

To address the C.2 challenge, the UGV cyber system must
also manage the case the identified object is out of the camera
field of view once the waypoint has been reached, even if the
camera is pointed towards the ground. In this case, a visual
scan of the surrounding area is performed to look for the item
by slowly rotating the arm.

To ensure an accurate and complete waste collection
process, as per challenge C.5, the UGV during the collection
mission must establish a feedback loop with the GS,
communicating whether it was able to collect the item
or not, e.g. when the item is not detected even by the
preliminary surrounding check, if the item weight exceeds
the arm payload, or it is unreachable due to the presence
of obstacles. This feedback helps to identify areas where
manual intervention or alternative collection methods may be
required.

If the UGV reaches the waypoint and recognizes the object
as not waste, the waypoint is removed from the list and
the UGV proceeds with the following waypoint. Finally,
the dumping of the containers is performed controlled by a
microcontroller unit acting as an intermediate layer between
the onboard computer and the actuators.

E. C2P
The UGV within the BeWastMan solution represents the
C2P system, since it allows the interaction with the physical
system, i.e. the beach. To this end, the minimal hardware
required for the vehicle motion and the arm actuation, are
the wheels and joint motors, respectively. In BeWastMan, the
gripper plays a crucial role, since it allows picking up
the waste objects from the ground. Grippers are usually
equipped with one or more motors, for opening and closing
fingers. Grippers can be of different types, such as pneumatic,
hydraulic or electric, and their design depends on the type
of object to be grasped. It is important that the actuation of
the gripper is precise and controllable, to avoid damage to
or slipping of the gripped objects. Tactile sensors may be
integrated to detect the shape and consistency of the objects
to be grasped and to guarantee a firm and stable grip.

The waste containers on board are dumped using proper
mechanisms and actuation. Linear actuators could be
employed, which are usually composed of an electric or
hydraulic motor which provides a linear force to move the
piston within the cylindrical case. Once in proximity of
the recycling station, the linear actuator is activated to lift
one side of the container while the other side is hinged
on the robot chassis, thus tilting it down and allowing
the waste to fall into the compactor. Since the UGV may
carry separate containers for sorting different types of waste,
in proximity of the recycling station the UGV has to perform
pre-programmed maneuvers to empty all the containers.

VII. CASE STUDY
The BeWastMan IHCPS has been implemented in real-world
scenario case studies developed within the BIOBLU project
(‘‘robotic BIOremediation for coastal debris in BLUE Flag
beach and in a maritime protected area’’). As testbeds, the
beaches of two protected areas have been selected: Baia
del Tono in Milazzo, Italy, and Ramla Bay in Malta, where
the final validation and testing of the BeWastMan IHCPS
implementation has also been performed. Baia del Tono is a
medium-grained shingle beach shown in FIGURE 6a, while
Ramla Bay is a fine sand beach shown in FIGURE 6b.
The BeWastMan system implemented in the BIOBLU case
studies is described in the following, adopting and applying
the guidelines above detailed.

A. PHYSICAL SYSTEMS
1) UAV
Based on the design choices discussed in Section IV, in the
BIOBLU case studies, we opted for a commercial UAV
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FIGURE 6. The two types of beaches considered for the BIOBLU project.

FIGURE 7. The UAV - Mavic 2 enterprise advanced used in our case study.

implementing most of the features above specified by the
BeWastMan framework. As most of the works reported
in Section II-B1, a DJI aerial platform has been chosen,
specifically the Mavic 2 Enterprise Advanced drone (in
FIGURE 7), providing features meeting the BeWastMan
UAV requirements. It is equipped with a stabilized 3-axis
gimbal, hosting a 48 MP 1/2-inch CMOS sensor camera able
to capture 4K video at 30 frames per second. In addition, the
Mavic 2 is provided with 360◦ obstacle avoidance and an
RTK navigation system.

Its battery ensures a maximum flight duration of approx-
imately 30 minutes, depending on weather conditions and
payload. The excellent flight duration allows us to cover
a wide beach area and complete the automatic takeoff and
landing maneuvers on the GS. Furthermore, an intelligent
battery management system, together with the automatic
recharge device, allows the drone to return to its base
and recharge autonomously through the specific (optional)
module. This is a drone-in-a-box configuration that includes
a specially designed housing that keeps the UAV protected
from external agents, such as dust and humidity during
recharge or transport. Furthermore, the box is equipped
with weather sensors, presence detectors, and alarm systems
to ensure the safety of the equipment and people in

TABLE 1. UAV features.

the surroundings. Table 1 describes the Mavic 2 main
characteristics.

2) GROUND STATION
As discussed in Section V, the GS is the brain of the
BeWastMan system, offering processing and information
management capabilities, as well as hosting-parking and
energy facilities to both the UAV and the UGV, as shown
in FIGURE 8 and FIGURE 9. Following the design choices
of Section V, the BeWastMan GS implementation is based
on the chassis of a car trailer, equipped with 4 off-road
tires with independent suspension, allowing it to drive on
uneven terrains. The GS has an external size of 4 × 2 ×

2.2 m (L×W×H), which guarantees the space needed to
accommodate a desk with two laptop units, even when the
UGV is recharging inside the GS. The design features a
rear-assisted tailgate that can be opened and closed for robot
loading and unloading and a side access door for operators.
On the right-hand side, there is a retractable awning covering
a 72’’ LED monitor that allows the operators to check the
mission status. A stainless steel automated hangar is placed
on the GS roof to store drone. It also includes a charging
station.

The GS is composed of hardware and software designed to
receive, store, analyze, and display the information collected
by the drone. The managed data is related to flight informa-
tion, such as the position and altitude of the drone, as well
as data related to the environment, such as temperature,
pressure, and humidity. The computing equipment of the
GS includes a 19’’ rack cabinet which contains an ethernet
gigabit switch and a 16 TB NAS for temporary storage of
the BeWastMan mission data. The external WiFi network
is generated by a dual frequency antenna (2.4 - 5 GHz)
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FIGURE 8. Design of the BIOBLU ground station.

fixed on a pneumatic telescopic pole. The GS is equipped
with two laptop units, one High-performance Computing
(HPC) computer for real-time waste detection, processing,
and management and the other for the automatic flight route
management. All the laptops and the other components on
board are linked to the local network and powered by the GS
grid connected to the power grid.

3) UGV
The UGV employed for the BeWastMan implementation
is shown in FIGURE 11. The platform has four steerable
wheels, an all-wheel drive system, and a six Degrees Of
Freedom (DOF) robotic arm. The mobile base is capable
of smooth movement on the ground with slight steering of
the wheels, allowing for easy alignment with the compactor
during bin dumping.

A scheme outlining the main hardware components of
the robotic system is shown in FIGURE 13. The software
integration is based on ROS [45], a popular open-source
framework for robotic systems development.

Based on the design guidelines of Section VI, an off-
road wheeled platform has been selected by the inspection
of the two test beaches. These are two scenarios with
sediments of different granularity requiring a solution to
address challenge C.3 successfully. Preliminary qualitative
tests have been performed with two platforms with different
types of traction, i.e. tracked and all-wheel drive traction in
Baia del Tono and Ramla Bay.

During this trial, the tracked UGV was able to move
smoothly over the beach, regardless of the sediment gran-
ularity. However, the use of tracks resulted in a large
amount of sand and shingle displaced in direction changes,
as shown in FIGURE 10, thus significantly altering the
natural morphology of the beach and failing in addressing
challenge C.4. On the other hand, the all-wheel drive robot
shown good performance in both types of sediments while
navigating in an agile and reliable way without considerably
defacing the terrain.

The UGV is equipped with a Real-Time Kinematics
(RTK) GPS receiver for geolocalization with centimeter-level
accuracy and an inertial measurement platform. The robot
is equipped with a Velodyne Ultra Puck, a 32-channel 3D
laser scanner with a 360◦ horizontal and a 40◦ field-of-view
(FoV). The Velodyne is installed in the upper-rear section of
the vehicle, which generates a point cloud of the surrounding

TABLE 2. ZED2i features.

TABLE 3. 2FG7 gripper features.

environment up to 200 m. This helps to detect any obstacle
during waypoint navigation.

The robotic arm mounted on the top of the robot, as shown
in FIGURE 12, is the UR10e manipulator, which can lift up
to 10 kg and has a workspace radius of about 1.3 m. It is
a collaborative manipulator, which makes it safe even when
accidentally working in proximity of people, as could occur
on beaches.

The ZED2i stereoscopic camera with IP67 protection
against water and solid particles is used to locally recognize
the waste. The technical specifications of the selected camera
are displayed in Table 3. Stereoscopic vision is exploited for
depth estimation, which is crucial to properly plan the pick
and place maneuver, as further detailed in Section VII-B3.

An OnRobot 2FG7 gripper featuring IP67 protection
is used in the BeWastMan BIOBLU implementation
(FIGURE 14a) since it has to operate close to the ground with
dirty and potentially damp objects. It also offers force sensing
that allows the robot to understand whether the item has been
grasped or not.

The 2FG7 gripper has a total stroke of 38 mm, with a grip
width ranging from 35 to 73 mm and the original fingers
mounted as shown in FIGURE 14a. Further technical details
of the chosen gripper are reported in Table 3.

To overcome the limited grip width range, a custom
tool, shown in FIGURE 14b, has been thus designed and
realized. Through a set of lever mechanisms, this tool exploits
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FIGURE 9. Overview of the BeWastMan implementation for the BIOBLU project, including the UGV, the GS, and the UAV.

the translational stroke of the 2FG7 and achieves a grip
width ranging from 0 to 160 mm. To achieve a firm grip,
the tool consists of five staggered aluminum claws divided
between the two fingers (three on one and two on the
other) for effective grasping. The elongated J-shape and
the adoptedmaterial of the claws allow the tool to sink into the
ground while preventing dust or grains of sand from causing
mechanical problems to the proposed structure. The tool body
is made using 3D printed ABS (Acrylonitrile-Butadiene-
Styrene), while the lathed mechanical joints were made up
of aluminum. The rotational joints have been designed with
minimal clearance to enhance their protection against solid
particle ingress.

An aluminum frame supports the two bins used for waste
collection. The waste containers on board the platform are
dumped using linear actuators. Once in proximity of the
recycling station, the linear actuator is activated to lift one
side of the container while the other side is hinged on the
aluminum frame, thus tilting it down and allowing the waste
to fall into the compactor.

The GPS-RTK antenna, 3D laser, and WiFi antenna are
mounted on a vertical aluminum profile at the rear of the
robot, as shown in FIGURE 12.

B. CYBER SYSTEMS
This section reports the details of the software developed for
the BeWastMan IHCPS adopted in the BIOBLU case studies.
According to the design criteria presented in Section III, the
BeWastMan software covers multiple aspects.

To manage the UAV mission a software called the
Unmanned Ground Control System (UGCS) is used for
planning and monitoring the UAV flight. Referring to
Section II-A, the UGCS software (shown in FIGURE 15) is a

key component in the GS for the inspection task (T.1), allow-
ing the coordination and control of the UAV through its flight
planning interface, as well as the definition of waypoints, and
other parameters (maximum speed, accelerations, etc.) for the
missions on the two beaches.

Concerning waste detection and recognition through video
processing two fundamental steps are required: i) the manual
creation and management of dedicated waste datasets, and
ii) the development of the waste detection model for task
T.2 (by the UAV and the GS), the geolocalization method
(task T.3 by the GS), and the material recognition model for
task T.4 (by the UGV). Finally, tasks T.5 to T.8 are managed
by the software onboard the UGV.

The following subsections detail the main software mod-
ules developed in the BIOBlU project for implementing the
BeWastMan IHCPS.

1) WASTE DATASET
To ensure a proper generalization capability of the models,
we used a dataset combining four public and continu-
ously updated datasets, namely UAVVaste [14], TACO [46],
TrashNet [47], and Drinking Waste Classification [48].
UAVVaste includes 772 images of waste in urban and natural
environments, such as roads, parks, and lawns, acquired
by a low-altitude aerial survey with a UAV. TACO (Trash
Annotations in Context) holds 1900 high-resolution trash
images taken in various environments, manually labeled and
segmented according to a hierarchical taxonomy to train
and evaluate object detection algorithms. TrashNet contains
2492 images of waste, mainly paper, glass, plastic, and metal,
taken at different exposure and lighting. From the Drinking
Waste Classification dataset, we considered 544 images of
waste taken with a 12 MP cell phone camera and manually
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FIGURE 10. Comparison of the impact of the rotation maneuver on a
sandy beach.

FIGURE 11. The UGV during testing in Gozo.

labeled, specifically, aluminum cans, glass bottles, plastic
bottles, and paperboard.

FIGURE 12. 3D visualization of the platform.

TABLE 4. ROBOFLOW data specifications.

TABLE 5. Images in the BIOBLU training, validation and testing dataset
overall.

The above datasets have been pre-processed integrated,
and merged through the ROBOFLOW platform [49] for
training and testing the detection and material recognition
models. Specifically, data pre-processing, filtering, labeling
(for both the waste detection and the multiclass material
recognition), and augmentation (random rotations, flipping,
and image resizing) have been applied to the datasets. Table 4
shows all the specifications applied to the four datasets.

Table 5 describes the list of images used for the BIOBLU
project, obtained after data augmentation, with 13568 images
for the training and testing phase of the detection and
recognition models.

For the training and testing phases of the detection and
recognition models, we split the final dataset into a training
set, validation set, and testing set, using the proportions of
85%, 10%, and 5%, respectively. The final dataset is available
at the following open access repository2.

2https://universe.roboflow.com/bioblu/merged_datasets
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FIGURE 13. Diagram of the UGV hardware connections. The arrow color represents the type of the link. Ethernet
connections are green, serial connections grey, and USB connections orange. The yellow block represents the
components of the robotic arm, while the cyan area depicts the complete robot system.

FIGURE 14. The gripper and the attached custom tool designed and
realized for waste picking.

FIGURE 15. UGCS software used for flight planning.

2) WASTE DETECTION, GEOLOCALIZATION, AND MATERIAL
RECOGNITION
According to Section V-D2, the model chosen for the waste
detection and recognition phases is YOLO (you only look

once) version 5 [50]. For the BIOBLU project case study,
we implemented the waste detection on the GS to obtain
information on object sizes and contextual details such as
geolocalization information (described below).

To evaluate the performance of YOLOv5 object detection
and recognition models, the following metrics have been
used [51]:

• Mean Average Precision (mAP), that evaluates the
overall precision of object detection models across
all classes in the dataset, considering both precision
and recall at different Intersection over Union(IoU)
thresholds;

• Precision, Recall, and F1 Score, the commonly used
metrics to evaluate the performance of classification
models, so, to correctly identify true positives and avoid
false positives or negatives.

In the GS, the HDBSCAN method has been used to
improve the detection and geolocalization accuracy. This
approach discussed in Section V-D4 allowed the effective
filtering of detected items in the video stream, as it
can handle clusters of various densities and shapes while
identifying noise and outliers in the data. The geolocalization
accuracy has been evaluated in terms of Root Mean Squared
Error (RMSE), which measures average errors in distance
predictions with respect to ground truth GPS positions
acquired with high-accuracy instrumentation.

For the local (UGV-side) waste recognition, the multi-class
classification model YOLOv5 OBB (Oriented Bounding
Boxes) [52] has been used. YOLOv5 OBB enables oriented
bounding box (OBB) annotation to also take into account
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the current rotation of the objects detected in the acquired
image frame. YOLOv5 OBB has been used in the testing
and evaluation phase of waste recognition by the UGV in
real-time.

3) WASTE APPROACHING AND PICKING
Once the rotated bounding box prediction is provided by
YOLOv5 OBB on the ZED2i video stream, it is crucial to
translate this output in pixel units within the image frame
into a full pose, i.e. position and orientation, in the 3D space,
to properly control the arm and the gripper to collect the item.
In the current implementation, as we have two bins on board,
we collect only plastic, metallic and glass items, dropping
paper as it is biodegradable. The collected waste items are
divided between glass and the other materials.

We assume to have the camera vertically pointing towards
the ground. Thereby, the rotation provided by YOLOv5
OBB is approximately similar to the rotation of the item
with respect to the gripper. Moreover, the Z Cartesian
coordinate in meters with respect to the camera optical
frame of the bounding box center is derived through the
ZED2i stereoscopic depth estimation. In details, we apply
the bounding box to the depth map provided by the camera,
which is an image whose pixels represent the estimated
distance in meters along the camera optical axis. By taking
the average value of the pixels included in the bounding
box we get an approximate distance estimation along the
axis of the item above the ground. Once the Z coordinate is
known, we can obtain the other bounding box coordinates X
and Y by applying the central projection camera model [53]
Eq. (10): XY

Z

 = K−1

xZyZ
Z

 (10)

where

K =

fx 0 cx
0 fy cy
0 0 1

 (11)

Namely matrix K of Eq. (11) is the matrix projecting
3D points in the camera coordinate frame (X ,Y ,Z ) to 2D
pixel coordinates (x, y) using the focal lengths (fx , fy) and
principal point (cx , cy), which are estimated by the camera
calibration.

At this point, (X ,Y ,Z ) coordinates of the item are
obtained, as well as its orientation with respect to the gripper.
Thus, the collection task is performed through classical
inverse kinematics. Specifically, we used the UR10e control
implementation available for the MoveIt framework [54].
To avoid accidental collisions with the object to be grasped,
the gripper is first aligned and rotated above the object, and
after that the gripper goes vertically down to collect it. Finally,
the item is released in either one of the two bins according to
the recognized material.

TABLE 6. Waste detection performance on the GS.

FIGURE 16. Example of image acquired by the UAV during beach
inspection and the related waste detection performed by the GS at Ramla
Bay in Gozo, Malta.

VIII. EXPERIMENTAL RESULTS
A. DETECTION
The BeWastMan detection phase, performed by the the GS,
adopts an ML model to detect waste items on the video
captured by the UAV. In the training step, yolov5l pre-trained
weights have been used as a starting point for fine-tuning the
detection model on our dataset, with the number of epochs
set to 600 and batch size set to 64. Default settings have been
used for all the other hyperparameters.

Table 6 reports the experimental results for the waste detec-
tion training, including precision (P), recall (R), mAP_0.5,
and mAP_0.5:0.95 metrics. The precision is 73.54% of
the waste detected by the YOLOv5, while the recall is
39.18%. This indicates that the model is able to detect a high
percentage of the total waste present in the beach. Also the the
metric mAP_0.5 of 40.53% denotes a good average precision
of the algorithm with 0.50 as IoU threshold.

The mAP_0.5:0.95 metric of 23.40% shows a fine average
precision of the algorithm at different IoU thresholds from
0.5 to 0.95. Overall, the obtained results indicate that the
model has an acceptable accuracy based on the higher
precision, recall, and F1-score values for waste detection and
bounding box assignment. The mAP values show that the
algorithm performance depends on the IoU threshold, which
can be useful in optimizing the algorithm for the specific use
case.

FIGURE 16 shows a sample frame acquired by the UAV
during beach inspection, and the related waste item properly
detected.

B. GEOLOCALIZATION AND CLUSTERING
The geolocalization and clustering steps are carried out by
the GS to estimate the position of the waste detected by the
specific process from the UAV data captured during the beach
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TABLE 7. Waste geolocalization performance with HDBSCAN in the two
areas.

inspection. As discussed in Section V-D3, a transformation
from pixels to GPS coordinates is required, following the
workflow of FIGURE 4 combining the data acquired by the
UAV and the detection performed by YOLOv5.

HDBSCAN is used for clustering items detected multiple
times in different frames, to remove outliers and improve
the position estimates. To such a purpose, different tests for
hyperparameters tuning have been performed in the BIOBLU
case study adopting a grid search tuning technique to find the
optimal values.

Specifically, the HDBSCAN hyperparameters include:
i) min_cluster_size, set to 10, represents the minimum
number of points required to form a cluster; the ii) metric
(haversine) is the distance metric used for clustering; and
the iii) algorithm (Prim - balltree) is the algorithm used
for clustering by constructing a minimum spanning tree
(MST) of the data. Moreover, the epsilon ϵ parameter is
used to convert the distance from kilometers to radians
in the haversine formula, generally adopted to calculate
the great-circle distance between two points on a sphere
(approximating the Earth surface). The value of ϵ is set to
1.571·10−7 radians, corresponding to approximately 1 meter.
This means that items distant less than 1 meter are considered
within the same cluster.

The clustering silhouette coefficient, i.e. a measure of
the quality of a clustering approach, is 0.7890 in Milazzo
and 0.8989 in Gozo (the lower the better). These results
reveal that the clusters are clearly defined and well separated,
indicating the effectiveness of the clustering approach in
creating distinct clusters, slightly better in the Gozo case.

To validate the waste geolocalization, i.e., to estimate the
geolocalization error, the ground truth positions of some
waste items in the two beaches has been collected as baseline
to measure the root-mean-square error (RMSE) between the
clustering results and the effective position.

Table 7 shows the clustering results on the two different
beaches in terms of number of detected objects, the total
root mean square error (RMSE_tot) and the average distance
between the position estimated by HDBSCAN and the
ground truth (GT).

Comparing the two beaches, the total RMSE is different,
with a slightly higher value for Milazzo than Gozo. Some
possible reasons may be the difference in the sediment color,
since the Milazzo beach is darker than Gozo one, implying
lower contrast of waste items. Another possible reason is the
lighting conditions and brightness of the images, captured
in different times (late morning in Gozo, late afternoon in
Milazzo). Such results are also validated by the most relevant
information for the clustering approach, which is the average

TABLE 8. Waste recognition performance.

FIGURE 17. UGV waste localization and recognition on the field (Ramla
Bay in Gozo, Malta).

distance between data points, shown in the last column.
In fact, even in this case, we can see that the average distance
is slightly lower in Gozo (0.72m on 6 waste objects) than in
Milazzo (0.81m on 7 waste objects).

Based on such results, however, it is important to highlight
that the optimal value of ϵ may vary and depend on other
factors like the density and distribution of thewaste items, and
the specific requirements of the application and case study.

C. RECOGNITION, COLLECTION, AND SORTING
For the material recognition model training, the started point
is the yolov5n.pt model, setting the maximum number of
epochs to 200 and the batch size to 48. As for the GS
detectionmodel training, default settings are used for all other
hyperparameters. Table 8 reports the evaluation metrics for
the recognition task performed on the UGV camera video
stream in real time. FIGURE 17 shows a sample frame
acquired by the ZED2i onboard UGV and the output of the
recognition model tested in Ramla Bay in Gozo, Malta.

Table 8 results show that the model has an acceptable
precision value (55.40%) and the relatively low recall
(34.10%) highlights missed positive instances. The F1
score indicates a balanced performance (42.21%), while the
mAP_0.5 and mAP_0.5:0.95 metrics provide insight on the
waste recognition model at different IoU thresholds (34.40%
and 18.50%, respectively). The results demonstrate accept-
able performance for a challenging 4-class classification
problem related to the waste material recognition.

Further tests have been performed on the robotic arm
and the gripper to assess the waste item pose estimation
for the collection and sorting task. Bottles and cans with
varying shapes have been used. A picking and sorting
sequence is shown in FIGURE 18. First, the UGV reaches
the point of interest (FIGURE 18a) and the arm points the
camera orthogonal to the terrain in front of the vehicle to
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FIGURE 18. A sequence of the picking up and sorting task for a plastic bottle.

FIGURE 19. The waste object frame obtained from YOLOv5 OBB with
respect to the camera frame. The cyan box represents the volume of the
gripping mechanism.

carry out waste recognition (FIGURE 18b). Once the waste
object is recognized, its pose is estimated as described in
Section VII-B3 and a reference frame is attached to the object
with respect to the camera frame as shown in FIGURE 19.
The arm trajectory for approaching the object is planned and
executed (FIGURE 18c), and the gripper tool is closed to
grasp the item (FIGURE 18d). Finally, the waste is lifted up
from the ground and placed into its corresponding container
(FIGURE 18e).
The video below3 provides a more detailed overview

of the UGV and the whole picking and sorting process.
videos showing an overview of the BeWastMan IHCPS
implementation adopted in the BIOBLU project can be found
at this link.4

The waste detection and recognition models are available
at the link.5

3https://www.youtube.com/watch?v=dNyUeop_Ihc
4https://youtu.be/1LuQTZDqqIc
5https://github.com/gcicceri/BIOBLU_project

IX. CONCLUSION
In this paper, an intelligent hierarchical cyber-physical sys-
tem (IHCPS) for fully autonomous eco-friendly beach waste
management (BeWastMan) has been proposed, designed,
and implemented. The BeWastMan IHCPS is grounded
on the integration and interaction of three CPS: a UAV
for aerial inspection of the beach, a GS for mission
coordination and waste detection, and a UGV for waste
recognition, collection, sorting, transfer, and recycling. The
presented results showcase the effectiveness of the proposed
approach, substantiated by a real case study implemented
as part of the BIOBLU project. Such a validation through
the implementation and testing of the BeWastMan IHCPS
provides concrete evidence of its feasibility and performance
in real-world scenarios.

The proposed approach differs from those available in
the literature by proposing an autonomous solution that
streamlines the waste collection and sorting processes,
reducing the reliance on manual-huma intervention and
improving the overall system efficiency, adaptable and robust
to diverse coastal environments and scenarios. Furthermore,
an efficient data processing is proposed, thanks to edge-
to-cloud computing continuum, which improves the perfor-
mance and scalability of the system. Versatility, adaptability
and high accuracy is enforced by multiple specific models
continuously trained on different beach patterns. Finally,
the sustainability of the solution is ensured by a minimally
invasive approach through the aerial survey and the pick-
and-place, which ensures that the cleanup process has
minimal impact on the beach environment during waste
collection.

As a future development the plan is to address more spe-
cific aspects of the BeWastMan implementation. Concerning
local waste recognition by investigating and benchmarking
different classification methods for the collection through
the gripper, based on either classical image processing or
deep-learning. Other case study including multiple beaches,
obstacles, and other alternative scenarios will be taken into
account and possibly further developed.
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From a methodological viewpoint, the next step in the
CPS direction will be to implement the beach digital twin
concepts, i.e. a way of continuously monitoring, surveillance
and geolocalizing beach waste in real time. This could impact
on the BeWastMan IHCPS design, for example by including
some fixed cameras probing in real-time the beach rather than
using a drone. To such a purpose, all the BeWastMan solution
(i.e. the GS, the UGV, detection and recognition models) here
implemented could be easily reused and adapted.
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