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Abstract: Thyroid function and glucose status are linked; experimental, clinical, and epidemiologi-

cal studies have shown this. Iodine is a vital trace element that is inextricably linked to thyroid 

hormone synthesis. The latter is also associated with glucose metabolism and diabetes. Recently, 

some—but not all—studies have shown that iodine is linked to glucose metabolism, glucose intol-

erance, impaired fasting glucose, prediabetes, diabetes mellitus, or gestational diabetes. In this con-

cise review, we review these studies, focusing on iodine and glucose metabolism and prediabetic 

conditions or type 2 diabetes mellitus. The potential beneficial effect of iodine on glucose metabo-

lism may be attributed to its antioxidant properties. 
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1. Introduction 

Thyroid function and glucose metabolism are linked; this has been shown by exper-

imental, clinical, and epidemiological studies [1]. Iodine (I2) is a vital trace element that is 

inextricably linked to thyroid hormone (THs) synthesis. The latter is also associated with 

glucose metabolism and diabetes [1]. Recently, studies have shown that I2 is linked to glu-

cose metabolism, glucose intolerance, impaired fasting glucose (IFG), prediabetes, and di-

abetes mellitus (DM) [2–5]. In this concise review, we focus on I2 and glucose metabolism 

and prediabetic conditions or type 2 diabetes mellitus (DM2). 

2. Iodine and Thyroid Function/Disease 

The incorporation of iodine is a critical step in the biosynthesis of THs. The latter is 

derived from thyroglobulin (Tg), which is a large dimeric glycoprotein. The thyroid gland 

extracts up to 10% of iodine from the bloodstream in normal conditions. This process is 

mediated by the sodium/iodide symporter (NIS) at the basolateral membrane of thyroid 

follicular cells. NIS is selectively expressed in the thyroid gland, but low levels are also 

present in the salivary glands, gastric mucosa, kidney, prostate, placenta, lactating breast, 

and other tissues [6,7]. The uptake of circulating iodine by the thyroid gland is highly 

adapted to variations in dietary iodine intake. A low supply of iodine stimulates uptake 

through increased expression of NIS, while high iodine levels have the opposite effect. 

Within the cytoplasm of thyrocytes, iodine is transported to the apical membrane, where 

pendrin and other local transporters mediate iodine efflux into the lumen [6,7]. At the 

extracellular surface of the apical membrane, iodine is oxidized in a reaction that involves 

thyroid peroxidase (TPO) and hydrogen peroxide (H2O2). Iodine radicals are added to 

specific tyrosyl residues within Tg (organification of iodine), thereby generating monoio-

dotyrosine (MIT) and diiodotyrosine (DIT). The iodotyrosines in Tg are then coupled via 

an ether linkage with the mediation of TPO. The coupling of two residues of diiodotyro-

sine (DIT) forms thyroxine (T4), and the coupling of one MIT to one DIT produces 
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triiodothyronine (T3). Then, Tg is transported back into the thyroid cell, where it is pro-

cessed in lysosomes to release T4 and T3, which are, in turn, secreted into the bloodstream. 

Uncoupled MIT and DIT can be deiodinated by dehalogenase, a transmembrane enzyme 

localized mainly at the apical pole of thyrocytes and involved in the intrathyroidal recy-

cling of iodine [6,7]. 

The World Health Organization (WHO) estimates that about 2 billion people suffer 

from iodine deficiency. In areas with low levels of iodine, there is an increased prevalence 

of goiter and hypothyroidism [8]. Iodine deficiency during pregnancy and infancy is still 

an important cause of worldwide neurological and psychological deficits in children. In 

adults, mild-to-moderate iodine deficiency may lead to compensatory thyroid enlarge-

ment, and hypothyroidism may occur in severe cases. However, excesses in nutritional 

iodine also have the potential to impact thyroid function. Although most euthyroid indi-

viduals can tolerate high iodine intakes, excessive iodine may precipitate hyperthyroid-

ism, hypothyroidism, goiter, and/or thyroid autoimmunity in some people [9]. After ex-

posure to increased iodine levels, thyroid hormone synthesis is inhibited (Wolff-Chaikoff 

effect). Subjects with mild autoimmune thyroid disease (such as Hashimoto’s thyroiditis) 

are vulnerable after excessive exposure to iodine, and thyroid dysfunction may fail to re-

solve after the iodine levels drop in these individuals [9]. Also, in a few people with goiter 

caused by iodine deficiency, even moderate supplementation with the specific element 

can lead to autonomous overproduction of THs (Jod-Basedow effect) [9]. Finally, an ab-

rupt elevation in iodine intake may induce thyroid autoimmunity in inhabitants of iodine-

deficient areas. Reciprocally, an acute elevation of the iodine intake in subjects with labor-

atory findings of thyroid autoimmunity (positive antithyroid antibodies) increases their 

risk of developing thyroid dysfunction [10]. 

3. The Thyroid and Diabetes 

Thyroid disease and DM2 are the two most common endocrine disorders treated in 

clinical practice; associations between them have been reported [11–15]. In the NHANES 

III study, approximately 14% of all adults had either some form of DM or IFG. In the same 

study, hypothyroidism was found in 4.6% and hyperthyroidism in 1.3% of the population 

[16]. 

Clinical hyperthyroidism has been associated with glucose intolerance [13], whereas 

hypoglycemia has been reported in patients with hypothyroidism. The pathways involv-

ing the participation of THs in the regulation of glucose homeostasis include the induction 

of hepatic glucose production [17], transcription of mitochondrial genes [18], and expres-

sion of genes such as GLUT-4 [19] or phosphoglycerate kinase (PGK) [20]. 

Several studies have documented a higher rate of thyroid disease in patients with 

DM compared to individuals without DM: this is highest in up to one-third of women 

with type 1 diabetes mellitus (DM1) [21]. A threefold to fivefold increase in the risk of 

autoimmune thyroiditis was observed in patients with positive antibodies to glutamic 

acid decarboxylase (anti-GAD) [22]. This was confirmed by a study involving 1419 chil-

dren with DM1, in which 3.5% had Hashimoto’s thyroiditis (HT) [23]; it has to be noted, 

however, that HT and DM1 may share a common viral causative agent. In addition, pos-

itive antibodies against thyroid peroxidase (anti-TPO) have been reported in approxi-

mately one-third of patients with DM1 and appear to have prognostic value for the devel-

opment of clinical and subclinical hypothyroidism [24]. The association between autoim-

mune thyroiditis and DM1 has been identified as a variant of autoimmune polyglandular 

syndrome type 3 (APS3) [25,26]. The genetic link between autoimmune thyroiditis and 

DM1 keeps expanding [27,28]. Given that the prevalence of DM2 is almost 40-fold higher 

than that of DM1 [29], as indicated in the introduction, in the remainder of this review, we 

will deal with I2 and DM2. 
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4. I2 and Glycemia/Diabetes 

The prevailing paradigm is that I2 exerts its actions via THs (to which it is attached) 

and, more particularly, via triiodothyronine (T3), which is the biologically active thyroid 

hormone that binds to thyroid hormone receptors. Indeed, alterations in THs have been 

associated with glucose metabolism and DM of various degrees of severity (as presented 

above) [30]. Recently, research works have studied the effect of I2 per se on the appearance 

of Metabolic Syndrome (MetS), including/and/or IFG, impaired glucose tolerance (IGT), 

prediabetes, or overt DM2 [30]. In most of these studies, I2 nutritional adequacy was as-

sessed with the use of urine iodine concentration (UIC), which is considered to be an ad-

equate measure of I2 content in the human body [31]. 

The bulk of the studies on I2 and glycemic parameters come from China; this is not 

surprising, given the scale and the important progress in this country’s program for erad-

icating I2 deficiency [32,33]. In studies conducted in China and the USA, among others, a 

negative association was shown between UIC and the risk of IFG (Table 1). In a study 

from China, the relationship between median urine I2 (MUI) and the appearance of gesta-

tional diabetes mellitus (GDM) was negative. 

Table 1. Selected studies showing a beneficial effect of I2 on glycemic parameters. 

Country Subjects Main Finding(s) 

China [34] N: 1315 men 

FPG > 100 mg/dL was noted in 34% of subjects with UIC < 100 μg/L, in 

27.8% of those with UIC: 100–199 μg/L and in 2.6% of subjects with UIC > 

200 μg/L (p = 0.002) 

China [35] N: 51795 adults 

U-shaped curve of UIC vs. IGT 

Subjects with UIC of 500–799 μg/L showed an OR of 0.753 to 0.838 (95% CI: 

0.612–0.939) for IGT against those with lower or higher UIC 

United States of 

America [36] 
N: 620 women 

With UIC < 100 μg/L vs > 100 μg/L: 

OR for FPG > 100 mg/dL was 1.73 (95% CI: 1.09–2.72) & 

OR for HOMA-IR > 2.6 was 0.56 (95% CI: 0.32–0.99) 

Kingdom of Saudi 

Arabia [37] 
N: 260 adults 

UIC was inversely correlated to FPG and insulin levels (r= −0.40 & −0.16, p < 

001) 

Belgium [38] 
N: 471 pregnant 

women 

GDM decreased with increasing placental I2 (OR: 0.82, 95% CI: 0.72–0.93, p = 

0.003) 

China [3] N: 567 adults 
Inverse correlation between UIC and risk of DM2 (r: −0.26, p < 0.001 and 

OR: 1.01, 95% CI; 1.00–1.03, p = 0.009) 

China [4] 
N: 144 pregnant 

women 

In women with Ι2 excess (MUI > 500μg/L) vs. those with adequate I2 (MUI: 

150–250 μg/L), the OR for hyperglycemia (FPG > 110 mg/dL) was 0.411 

(95% CI: 0.172–0.983) 

China [4] 
N: 237 breastfeed-

ing women 

In women with Ι2 excess (MUI > 300μg/L) vs. those with adequate I2 (MUI: 

100–299 μg/L), the OR for hyperglycemia (FPG > 110 mg/dL) was 0.330 

(95% CI: 0.141–0.771) 

FPG: fasting plasma glucose; UIC: urine I2 concentration; IGT: impaired glucose tolerance—positive 

oral glucose tolerance test; OR: odds ratio; 95% CI: 95% confidence intervals; HOMA-IR: Homeo-

static Model Assessment for Insulin Resistance; DM2: type 2 diabetes mellitus; GDM: gestational 

diabetes mellitus; MUI: median urine I2. 

In sharp contrast to the above, a study from France (Table 2) found a positive rela-

tionship between UIC and the risk of having DM. In contrast, another study from Finland 

found no association between UIC and the appearance of GDM. 
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Table 2. Selected studies not showing a beneficial effect of I2 on glycemic parameters. 

Country Subjects Main Finding(s) 

France [39] 
N: 71264 

women 

The risk for DM* was increased from the third UIC quintile 

and upwards (HR: 1.20 to 1.28, 95% CI: 1.05–1.53) 

* defined as FPG > 126 mg/dL, random Glu > 200 mg/dL, 

A1c>7% or receiving antidiabetic Rx 

Finland [2] N: 448 women 
The authors found no association between UIC and the ap-

pearance of GDM 

DM: diabetes mellitus; UIC: urine I2 concentration; FPG: fasting plasma glucose; Glu: glucose, A1c: 

glycated hemoglobin A1c; Rx: medication; HR: hazard ratio; 95% CI: 95% confidence intervals; 

GDM: gestational diabetes mellitus. 

Thus, the paradigm that emerges, which is not still unanimous, is that I2 has a prob-

able beneficial effect vis-à-vis glucose handling. The relevant research works are limited, 

according to their authors, by the cross-sectional type of the studies, the possible variabil-

ity in UIC measurements, and their sample size (in some of them). Tentative explanations 

regarding I2 and glucose handling were not put forth; only inferences were drawn (see 

below). The effect of THs on the appearance of DM2 cannot be easily supported. The pro-

duction of THs is a quite resilient process and is usually sustained and stable even in con-

ditions of I2 insufficiency [40–42]. However, another property of I2 may be implicated in 

averting DM2 [43]. It is known that I2 can act as an antioxidant [44]. More in detail, I2 can 

be an antioxidant, depending on its concentration. At minute concentrations, I2 can induce 

a strong anti-oxidant effect [45], although there are reports that at I2 excess (ascertained 

by increased UIC), it can be a pro-oxidant factor [45]. Experimental and clinical studies 

have shown that supplementation with antioxidants lowers glycemia, insulin resistance, 

and the risk of DM [46–49]. Thus, it could be inferred that apart from its indirect effects 

regarding glucose handling via THs, I2 could also exert beneficial direct anti-oxidant ef-

fects, with repercussions in glucose metabolism and insulin’s action (Figure 1). 

 
Figure 1. Tentative “triangular” aspect of Iodine’s (I2) effects on glucose handling: indirect effects 

are via the synthesis and the action of thyroid hormones (TH), direct effects could be postulated via 

anti-oxidant action; IR: insulin resistance; IFG: impaired fasting glucose; IGT: impaired glucose tol-

erance; DM2: type 2 diabetes mellitus. 
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5. Discussion 

Oxidative stress and inflammation are considered to play a pivotal role in the patho-

physiology of DM2. Non-enzymatic glycation of enzymes and other proteins, glucose ox-

idation, increased lipid peroxidation, impaired glutathione metabolism, and decreased 

vitamin C levels are mechanisms that can lead to the formation of free radicals. The latter 

can cause damage to cellular processes and also increase insulin resistance which is a 

pathogenetic factor for DM2 [50]. Moreover, chronic hyperglycemia is associated with in-

flammatory processes which are predictive of insulin resistance and DM2 occurrence [51]. 

Iodine could lower the risk of DM2 via antioxidant and anti-inflammatory effects. 

Indeed, I2 or iodide (I−), in particular, can provide protection against free radical attack 

either via the direct participation of I− as an electron donor in scavenging free radicals or 

through an indirect action of iodine as a cofactor of peroxidases and as an activator of 

other antioxidant enzymes. Besides the non-hormonal antioxidant properties of iodine, an 

adequate intake of this element is certainly necessary for optimal thyroid function, which 

is also a prerequisite for a well-regulated antioxidant status [45]. Iodine also has an anti-

inflammatory action by neutralizing radical oxygen species and suppressing pro-inflam-

matory messengers, such as tumor necrosis factor-a and interleukin-6) [38], and hence, it 

could have an additional protective effect against DM2. 

Iodine supplementation, mainly through the iodization of salt, is an effective public 

health policy for the prevention of iodine deficiency in the general population. The rec-

ommended daily intake of iodine is 150 μg for adults and persons older than 14 years old, 

220 μg for pregnant women, and 290 μg for breastfeeding women [52]. Urinary iodine 

excretion is higher than 100 μg/L in iodine-sufficient populations. However, it is debatable 

whether these dosages could have a beneficial effect on the risk of DM2. It appears that 

iodine acts as an antioxidant in the body only if ingested at concentrations higher than 1 mg 

per day [53]. Nonetheless, safety concerns arise from these levels about the integrity of thy-

roid function and the occurrence of possible side effects, including liver damage, kidney 

dysfunction, headache, conjunctivitis, edema of the salivary glands, fever, and skin reac-

tions. It is also noted that Graves’ thyrotoxicosis is a contraindication for iodine therapy. The 

existence of Hashimoto’s disease is also a concern, especially for higher doses. 

Finally, we cannot ignore another overlooked fundamental trace element, Selenium 

(Se), which is linked with I2 and the production of THs and may have an impact on glucose 

metabolism [54–58]. 

6. Conclusions 

The existing evidence on the intra- and extra-thyroidal role of iodine with regard to 

the development of DM2 is not solid. Therefore, the aforementioned assumptions need to 

be verified with concrete studies aiming at investigating these aspects of iodine’s actions. 

We believe that since the interconnection between iodine, thyroid function, and glucose 

homeostasis seems plausible, and also given the epidemiological status of iodine defi-

ciency and DM2 prevalence worldwide [59,60], further research is warranted. 
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