Information Systems 121 (2024) 102342

Contents lists available at ScienceDirect

Information
Systems

et

Information Systems

journal homepage: www.elsevier.com/locate/is

Check for

Is text preprocessing still worth the time? A comparative survey on the o
influence of popular preprocessing methods on Transformers and traditional

classifiers

Marco Siino *, Ilenia Tinnirello, Marco La Cascia
University of Palermo, Department of Engineering, Palermo, 90128 PA, Italy

ARTICLE INFO

Keywords:

Text preprocessing

Natural Language Processing
Fake news

SVM

Bayes

Transformers

Deep learning

LSTM

Convolutional neural networks

ABSTRACT

With the advent of the modern pre-trained Transformers, the text preprocessing has started to be neglected and
not specifically addressed in recent NLP literature. However, both from a linguistic and from a computer science
point of view, we believe that even when using modern Transformers, text preprocessing can significantly
impact on the performance of a classification model. We want to investigate and compare, through this study,
how preprocessing impacts on the Text Classification (TC) performance of modern and traditional classification
models. We report and discuss the preprocessing techniques found in the literature and their most recent
variants or applications to address TC tasks in different domains. In order to assess how much the preprocessing
affects classification performance, we apply the three top referenced preprocessing techniques (alone or in
combination) to four publicly available datasets from different domains. Then, nine machine learning models
- including modern Transformers — get the preprocessed text as input. The results presented show that an
educated choice on the text preprocessing strategy to employ should be based on the task as well as on the
model considered. Outcomes in this survey show that choosing the best preprocessing technique - in place of
the worst — can significantly improve accuracy on the classification (up to 25%, as in the case of an XLNet
on the IMDB dataset). In some cases, by means of a suitable preprocessing strategy, even a simple Naive
Bayes classifier proved to outperform (i.e., by 2% in accuracy) the best performing Transformer. We found
that Transformers and traditional models exhibit a higher impact of the preprocessing on the TC performance.
Our main findings are: (1) also on modern pre-trained language models, preprocessing can affect performance,
depending on the datasets and on the preprocessing technique or combination of techniques used, (2) in some
cases, using a proper preprocessing strategy, simple models can outperform Transformers on TC tasks, (3)
similar classes of models exhibit similar level of sensitivity to text preprocessing.

1. Introduction

manage negation words) [3]. This implies that preprocessing can po-
tentially delete important data [4] (such as deleting stop words when
they are pertinent to a particular study issue). Furthermore, several

Tasks related to Natural Language Processing (NLP) usually consist
of preprocessing, tokenization, and several possible stages like clas-
sification, machine translation or, from a more generic perspective,
understanding human languages [1]. The preprocessing step involves
operations like lowercasing, stemming, stop words removal and many
other [2] collected and presented in this work. Specifically, prepro-
cessing can involve deleting content that is unnecessary for some tasks
(such as removing stop words and non-alphabetic characters), merging
semantically similar words to increase prediction power and decrease
data sparsity (using stemming, lemmatizing, conversion to lowercase,
expanding abbreviations, correcting misspellings), and enhancing the
quantity of semantic information available (e.g., using strategies to

* Corresponding author.
E-mail address: marco.siino@unipa.it (M. Siino).

https://doi.org/10.1016/j.is.2023.102342

errors can be introduced into the specific NLP task’s pipeline. For
instance, when semantically distinct words conflate using stemming,
the outcomes of a classification model can significantly change [5].
Another common issues when dealing with online text is the presence
of noise due to spelling and grammar errors. This type of noise can
be useful when profiling authors. In fact, an author’s style can include
similar misspelling and grammar errors useful for a profiling task based
on Text Classification (TC). However, it could also lead to classification
errors when the content to be classified is a single news article or a
single tweet. In these cases — especially when employing pre-trained
Transformers — misspelling and grammar errors could just alter the
semantic of a word, misleading a classification model.

Received 3 March 2023; Received in revised form 21 July 2023; Accepted 21 December 2023

Available online 23 December 2023

0306-4379/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/is
https://www.elsevier.com/locate/is
mailto:marco.siino@unipa.it
https://doi.org/10.1016/j.is.2023.102342
https://doi.org/10.1016/j.is.2023.102342
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2023.102342&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Siino et al.

Despite its importance, the text preprocessing stage is often under-
estimated in several text mining studies found in the literature [6].
However, there is a substantial quantity of noise in unstructured texts
available on the internet [7]. In some cases, the amount of noise in a
dataset can be so high that it could easily mislead a classifier [8]. The
presence of noise could be caused by users who frequently utilize slangs
and/or acronyms, as well as making spelling and grammar mistakes. To
emphasize their emotions, users may also abuse punctuation marks [9].
For example, typing multiple exclamation marks instead of a single one.
In this context, our definition of noise is related to any useless infor-
mation for any text-based task to be performed after preprocessing a
dataset. As demonstrated in this work, an incorrect choice to preprocess
a text can lead to a difference of over the 25% in terms of accuracy in
the classification performance, with the same model and dataset being
used.

Preprocessing, in this sense, can be summed up as the process of
cleaning and preparing texts that will be tokenized for subsequent op-
erations. Thus, the necessity for data cleaning and normalization arises
because the effectiveness of a model employed after the preprocessing
stage depends critically on the quality of such data [10]. The crucial
role that preprocessing has before and throughout the feature selection
process, from our point of view, is of prominent importance and to be
widely noted. Eventually, a preprocessing stage does not just remove
noise and/or highlights important features, but also reduce the time
required for training and testing a model. Unfortunately, past research
has provided conflicting recommendations, mainly due to the datasets
used, the techniques applied and/or the models evaluated.

In the literature there is no convention adopted, and each work tests
some preprocessing techniques rather than others. In this work we want
to report and discuss these techniques and subsequently, for the most
commonly used, we evaluate the results obtained by their combination
for TC tasks with respect to the model and the dataset considered.
Our work aims at improving the text preparation stage and resolving
inconsistencies in preprocessing advices, to offer guidelines and ideas
for future text mining studies. We want to improve our comprehension
of the theoretical and empirical factors that should influence prepro-
cessing choices. Here we want to investigate how TC performance is
affected by preprocessing choices using traditional Non-Deep Learning
models (NDL), Deep Learning models (DL) and Transformers [11]. For a
more consistent investigation, we conduct all of our experiments using
four datasets from different domains. We can finally state that it is
important to make an educated and context-dependent choice about
which preprocessing method (or combination of methods) to employ
and in what order.

All the results and the code used for our experimental evaluation
are available on GitHub.!

1.1. Gaps in the literature

In this subsection, we briefly introduce some of the most referenced
and comprehensive surveys reported in the literature about text prepro-
cessing. A more in-depth discussion that also includes the most recent
and relevant studies is provided in Section 2 concerning the related
work. We conclude this subsection highlighting the gaps found in the
literature.

In [12], the authors analyze the preprocessing impact on Twitter
data, emphasizing how much the classifier performance is improved.
They deleted URLs, user mentions, stop words, hashtags, punctuation
and then they used n-grams to replace slang words with the corre-
sponding regular words. The suggested preprocessing method binds
slangs on already existing words to assess the meaning and sentiment
interpretation of the slangs. The authors employ an SVM classifier
and conclude their study wondering how effectively the suggested

1 https://github.com/marco-siino/text_preprocessing_impact

Information Systems 121 (2024) 102342

system would work with different classifiers on other text streams.
Involving four conventional classifiers and a neural network in their
experiments, the authors in [13] investigate how each preprocessing
technique affects the performance of the models, using solely TF-IDF
(unigram) to represent words. The authors demonstrate that while
deleting punctuation does not improve the classification performance,
preprocessing procedures like removing digits, expanding contractions
to base words and lemmatization do. Additionally, their study shows
how a small number of various preprocessing strategies interact recip-
rocally and highlights those that work best when combined. However,
the authors conclude their article with an open question for future
studies that could eventually test the preprocessing techniques em-
ployed also on datasets from different domains, such as news articles
and product or movie reviews. In [14], the authors analyze twelve
different preprocessing techniques on three datasets. The datasets are
built from Twitter and focus on hate speech detection. The authors
observe the impact of the preprocessing techniques on the classification
tasks they support. However, they do not fully explore all the possible
combination of the preprocessing techniques proposed but, after an
inference process, a subset of all the combinations is considered. In fact,
the authors suggest that future research should examine the impact of
these and other preprocessing strategies in various domains, as well as
other preprocessing technique combinations and their interactions.

Taking into account the above-mentioned studies and those dis-
cussed in Section 2, some areas regarding text preprocessing are out-
dated, still unexplored or under-explored. To summarize, the works de-
scribed above or referenced in the following sections are characterized
by at least one or more of the following aspects:

Do not contain a detailed catalog of all the most common pre-
processing techniques. Usually only a subset of all the available
techniques is reported.

More in-depth experimental evaluations on Transformers and on
DL models are missing.

There is a lack of experimental evaluations on models that can
truly achieve valuable state-of-the-art results.

One single task is addressed and/or a single preprocessing tech-
nique is evaluated.

Similar datasets (e.g., similar text format for any sample) or
datasets from the same domain are employed.

There is not a clear explanation on why a subset of certain
combination of preprocessing techniques is evaluated.

With our work we hope to better investigate the matter without
neglecting any aspects or point of view reported above.

1.2. Research questions

In this subsection we list the research questions (RQs) addressed
in our evaluative survey to fill the gaps brought to attention in the
previous subsection. This is the first study, to the best of our knowledge,
that addresses all of the following RQs as a whole and at the same time.

» RQ1: After collecting and discussing the text preprocessing tech-
niques found in the literature and their possible and most recent
variants, what are the outcomes of an evaluation of the impact of
each of these techniques (alone or in combination) on the clas-
sification performance of state-of-the-art and traditional models
using real world datasets from different domains?

RQ2: How text preprocessing can affect the performance of mod-
ern pre-trained architectures based on attention (i.e., Transform-
ers)?

RQ3: Is the performance of simple classifiers comparable to the
performance of Transformer-based models when text preprocess-
ing is performed in accordance with the specific model and/or
dataset used?

https://github.com/marco-siino/text_preprocessing_impact

M. Siino et al.

Information Systems 121 (2024) 102342

Frequency

RNS RSA RCT RRP RPT RNB LOW RSW SCO POS LEM STM ECR EMO NEG WSG
Preprocessing technique

Fig. 1. Number of times that the techniques discussed in this article are found in related work. In Table 1 are reported the expanded versions of the acronyms under the bars.

1.3. Article organization

Our article is structured as follows. The recent literature on the
impact of preprocessing techniques is discussed in Section 2, in Sec-
tion 3 a complete discussion of the preprocessing techniques collected
is presented, in Section 4 a presentation of the models employed in this
study is provided, then we discuss the datasets and the procedure for
the experimental evaluation, in Section 5 the results of our experiments
are reported for each dataset and in Section 6 they are discussed to
report common findings across the three datasets and to answer to
our research questions. Finally, in Section 7 our conclusions and future
work ideas are provided.

2. Related work

We report in this section the results of some of the most relevant
and recent studies employing text preprocessing techniques. The fol-
lowing are those that, in addition to employ preprocessing techniques,
have also carried out a comparative evaluation using one or more
models and/or datasets. For a detailed discussion on the preprocess-
ing techniques and the corresponding related work, please refer to
Section 3.

Recently, the authors in [15] use a variety of deep neural architec-
tures — except Transformers — to examine the impact of preprocessing
on a pre-trained BERT model when fine-tuning it as the first embed-
ding layer. The authors find that text preprocessing had negligible
influence on the majority of models tested. It is worth mention that
authors conduct the study on a single Indonesian dataset contain-
ing 3,217 instances from the Water Resources Agency of Jakarta, to
classify the textual reports into five categories (i.e., drain closure,
waterways, flood mitigation, infiltration well and others). The authors
use an Indonesian pre-trained version of BERT for the embedding. Since
there were substantial changes in performance outcomes between the
model with and without text preprocessing, the authors suggest that
future studies should examine the impact of each text preprocessing
step. In this sense, to investigate the effects of different preprocessing
techniques, authors in [16] make use of fourteen text preprocessing
approaches that have been applied to datasets from Twitter, Face-
book, and YouTube. The authors use text preprocessing algorithms in
a particular order. In the study, the authors use SVM to assess the
variation in terms of accuracy on sentiment classification employing
the preprocessing strategies proposed. Results show that by consistently
utilizing all the preprocessing approaches, it is possible to reach the
82.57% accuracy using unigram representations. Even if the proposed
preprocessing strategy proved to be effective on the selected dataset,
an in-depth investigation employing deep learning models misses. The
performance of an SVM classifier is also evaluated in [17] on a Twitter

dataset for sentiment classification (i.e. the Stanford Twitter Sentiment
Dataset). The authors explore some of the combinations of the pre-
processing techniques proposed. The researchers discovered that the
use of URL features reservation, repeated letters normalization and
negation transformation increases the accuracy of sentiment classifi-
cation. Instead, the accuracy descends if stemming and lemmatization
are used. Furthermore, by adding bigrams and emotion features to
the initial feature space, a superior outcome is obtained. Also in [18],
the authors employ NDL models like Naive Bayes, SVM, K-means and
Fuzzy logic algorithms. Specifically, on a Twitter dataset, three basic
preprocessing methods (i.e., tokenization, removing of stop words and
stemming) are explored. The findings indicate that preprocessing has
a relevant impact on reducing the dimensionality of data, which leads
to higher performance in sentiment analysis classification tasks. Also
for unstructured product review data, the authors in [19] demonstrate
that the correctness of a classifier prediction depends on a suitable text
preprocessing sequence. The records in the dataset used for training
were made up of product reviews from Amazon. To assign a binary
output label (positive or negative) to each sample, ratings of one or two
stars are collapsed into the class of negative reviews. Ratings of four or
five have been classified as positive. Also in this study, authors employ
NDL models (namely, Naive Bayes, Decision Tree and SVM). Four NDL
classifiers (i.e., Naive Bayes, Logistic Regression, SVM and Random
Forest) are also employed in [20], where authors explore the impact of
six preprocessing techniques using five different Twitter datasets. They
discovered that by utilizing the preprocessing techniques of extending
acronyms and substituting negation, as opposed to eliminating URLs,
removing numerals, or removing stop words, the classification results,
in terms of F1-measure and accuracy, are enhanced. The Transformers
are used in [21] where, before applying TFIDF, authors remove stop
words and keep only features appearing in, at least, two documents.
The experimental findings show that in the smaller datasets, the shal-
low and most straightforward non-neural methods achieve some of the
best results. On the other hand, Transformers perform better in terms
of classification performance in the larger datasets. However, the study
marginally focuses on the impact of text preprocessing.

Regarding a Twitter related task about irony detection, authors
in [22] perform a case-folding preprocess of tweets before tokenizing
with the TokTokTokenizer from NLTK. Then, generic labels replace
hashtags, user mentions and URLs (i.e., hashtag, user and url, respec-
tively). Then, elongated words are shortened, to limit a vowel to only
appear twice in a token after each other (e.g., yeeee mapped into yee).
While the authors employed BERT as the classification model, they only
use the preprocessing strategy discussed above. Also authors in [23]
introduce and apply a new preprocessing strategy based on three new
steps (i.e., lowering dimensionality, rising sparseness and reducing the

M. Siino et al.

Information Systems 121 (2024) 102342

Table 1

Acronyms for the preprocessing techniques and real case examples, raw and preprocessed.
Acronym Technique Raw Preprocessed
DON Do Nothing “Like a Rolling Stone” “Like a Rolling Stone”
RNS Replace Noise “@Obama tells #metoo! bit.ly/-" “USER tells HASHTAG! URL”
RSA Replace Slang/Abbreviations “omg you are so nice!” “Oh my God you are so nice!”
RCT Replace Contraction “I don’t like butterflies.” “I do not like butterflies.”
RRP Remove Repeated Punctuation “I like her!!!” “I like her multiExclamation”
RPT Removing Punctuation “You. are. cool.” “You are cool”
RNB Remove Numbers “You are gr8.” “You are gr.”
LOW Lowercasing “You Rock! YEAH!” “you rock! yeah!”
RSW Remove Stop Words “This is nice” “is nice”
SCO Spelling Correction “Ilenia is so kind!” “Ilenia is so kind!”
POS Part-of-Speech Tagging “Kim likes you” “Kim (PN) likes (VB) you (N)”
LEM Lemmatization “I am going to shopping” “I be go to shop”
STM Stemming “Girl’s shirt with different colors” “Girl shirt with differ color”
ECR Remove Elongation “You are cooool!” “You are cool!”
EMO Emoticon Handling “)” “happy”
NEG Negation Handling “I am not happy today!” “I am sad today!”
WSG Word Segmentation “#sometrendingtopic” “some-+trending+topic”

number of training samples). These steps proved to improve perfor-
mance and/or reduce time of execution. A significant finding reported
in the study is that a proper data preprocessing is more crucial than
the classification algorithm itself to obtain the best performance at the
lowest possible cost (trade-off among effectiveness-efficiency).

3. Preprocessing techniques

In this section are presented the preprocessing techniques found
in the literature using the following methodology. In one of the last
comparative surveys [13], the authors present an evaluation of several
text preprocessing techniques on two datasets built to perform senti-
ment analysis classification on Twitter. The article was used as the
foundation for our work because — as shown in Table 7 — it proved
a posteriori to contain the largest number of techniques presented. In
order to obtain the list of related works on preprocessing techniques,
all the works cited or citing the aforementioned work that discussed
at least three different preprocessing techniques were included in our
study. Techniques not discussed in [13] were added as columns to
Table 7 and also included and discussed in our survey. Studies with
less than three techniques are not shown in Table 7 but, if targeting
some specific technique with a novel or deeper point of view, they have
been briefly discussed in Section 3. At this point, for each of the study
added from time to time to our reference list, the papers cited or citing
each work in the Table 7 were included, as long as they discussed at
least three different preprocessing techniques. Thanks to this approach,
we can state that, to the best of our knowledge, the preprocessing
techniques most frequently found in the literature have been included
in this survey.

All the preprocessing techniques presented here represent the very
first stage for any task related to TC. The next step, after text pre-
processing, consists in splitting text into n-grams. Before providing
the preprocessed text to a model, it is necessary to tokenize it. In
some studies, tokenization is presented as a preprocessing technique.
However, more than altering the syntactic and semantic content of a
text, tokenization is the necessary procedure to fragment a dataset and
to be able to supply it to subsequent stages. From this point of view, we
do not include the tokenization among the techniques presented here.
Nevertheless, we introduce it in the rest of this section.

Tokenization is discussed in [24-27] and splits texts into characters,
words, group of words or other pieces called tokens. Although common
forms of tokenization are performed at word-level, several sub-word
tokenization strategies are discussed in the literature [28-30]. Regard-
less the size of the tokenization window used, tokenization consists in
segmenting text. Usually, only alphanumeric or alphabetic characters
separated by non-alphanumeric characters are taken into account when
segmenting data (e.g. white spaces, tab, punctuation). The purpose of

tokenization is to output single units of information - i.e. the tokens - to
be mapped into numerical representations. The token list serves as the
starting point for additional processing, such as text mining, parsing, or
classification. Either linguistics (in which tokenization is a method to
segment text) or computer science (where it is a component of lexical
analysis) can benefit from tokenization. Depending on the language
syntax, the tokenization process can be challenging. For example, the
majority of words in languages like Italian and English are delimited
and separated from one another by white spaces. Otherwise, languages
like Chinese are not segmented since the borders between the words are
not obvious. Also, the writing system and typographic form of words
both affect tokenization.

One final note is about the order of application of several pre-
processing techniques in combination. While some preprocessing ap-
proaches (such as removing stop words and punctuation) can be used
independently of one another, others necessitate more careful thought
about the order in which they are used to providing consistent results.
For the tagger to function properly, POS tagging, for instance, should
be applied before stemming, and negation should be done before elim-
inating stop words. Eventually, as reported in [31], it is worth notice
that it is not necessary to perform preprocessing on both the training
and test sets.

Finally, given the methodology reported in the previous section as
well as in the rest of this article, the histogram in Fig. 1 displays a
list of the preprocessing techniques that have been documented in the
literature. The histogram also shows the number of times the reported
techniques have been used in the related work.

3.1. Replace noise

The definition of noise varies significantly according to the liter-
ature, with regard to removing and/or replacing noise. The authors
in [31] do not explicitly mention noise removal. However, they apply a
few text preprocessing techniques at the beginning of their evaluation.
These techniques involve removing HTML tags and special characters
from text, such as “%*=()/”. Furthermore, not all datasets are provided
as plain text. Unwanted strings and Unicode, which are regarded as
crawling byproducts, can add further noise to the data. For this reason,
some authors employ regular expressions to eliminate Unicode strings
and non-English words. Additionally, user-posted tweets may include
URLs, user mentions or hashtags (such as “@username” or “#music”),
or both. In this way, users can link their tweet to a certain subject
or user, and these strings of characters can also convey emotion. In
the literature are described a number of methods to deal with this
additional data supplied by users. In [32], the authors replace all URLs
with a tag U, and replace user mentions (e.g. “@brucespringsteen”)
with a tag T. The majority of academics believe that URLs do not

M. Siino et al.

reveal anything about the sentiment of a tweet [33-36]. Other scholars
expand short URLs into full URLs before tokenization [37,38]. The
tweet text is then refined by removing any URLs that match the tokens.
In short, no general rules apply in the definition and in managing
the noise. Definition and operations performed vary from a study to
another.

3.2. Replace slang and abbreviation

Considering the character count restrictions in social networks
(e.g. Twitter), abbreviations, informal writing styles, short words and
slangs are frequently used [39]. These words can also be managed
(e.g. replacing “OMG” with “Oh My God”). By handling these informal
words in the text and changing them to reflect their actual meaning, an
automated classifier may perform better while preserving information.
These words and sentences can be managed in order to impute their
meaning accurately. In [40] slangs and abbreviations are converted into
word meanings that can be comprehended by utilizing conventional
text analysis methods. In [13] authors manually compile a lookup
database with these words, phrases, and their replacements. However,
it is worth noting that word embedding-based models could eventually
manage slang and abbreviation as-is, understanding from the context,
during the training phase, their original meaning.

3.3. Replace contraction

Contractions are short-form words that are used to reduce the
number of characters in a tweet/post [41]. An apostrophe is used in
contractions to replace one or more missing letters. One preprocessing
method consists in performing contraction replacement (e.g., can’t
replaced by cannot).

Expanding contractions could or could not be a beneficial prepro-
cessing technique before performing tokenization. In a word embedding
layer which splits words at a space character, further meaning could
be provided, keeping the word can’t instead of cannot. This way,
a single word can incorporate what is expressed by the two single
consecutive words can and not. However, words like not could be of
prominent importance for subsequent stages coming later, like the ones
that replace negations with antonyms. Otherwise, if the splitting of
the words is performed at punctuation, tokenization would create the
tokens can and ’t. In this last example, as it matches other negative
forms in the text, this tokenization could deteriorate performance.

3.4. Remove repeated punctuation

In [13], the authors distinguish three punctuation signs: stop marks,
question and exclamation. These punctuation marks, according to au-
thors, indicate the presence of emotion in the text considered. Because
of this, the authors substitute a representative tag in its place. For
instance, “multiQuestionMark” is used in place of the token “???”. This
procedure is performed before deleting punctuation. However, in the
not pre-trained models evaluated in this work, if there is not any space
between repeated punctuation marks, a separated word is created in the
dictionary. As an example, given the sentence: “Are you sure???”, three
different words will be considered as separated tokens (i.e. Are, you and
sure???). In the case of a single and/or multiple spaces (i.e. “Are you
sure ???”), four words/tokens will be added to the dictionary (i.e. Are,
you, sure and ???). These different splitting strategies would lead to
different behaviors of a subsequent classifier.

3.5. Remove punctuation
In written texts, punctuation can be used to express sentiment and

emotion [42] (e.g. “We are late! Hurry up!!!”). Even if this punctuation
use can be easily understood by humans, it could not be so for an

Information Systems 121 (2024) 102342

automatic classification tool. Furthermore, punctuation can be useless
when dealing with certain TC task. For this reason, punctuation re-
moval is often applied in many preprocessing tasks for automated TC.
However, punctuation symbols can also denote sentiment. In [43], the
authors detect punctuation signs like “!/!!” and replace them with the
label “multiexclamation”. An application where punctuation is removed
can be found in [44]. A model that includes a word embedding layer,
in the case of the token up!!! as in our previous example, could be
able to catch the meaning related to invoke someone to move faster.
Removing punctuation from the sentence and replacing it with a single
space (i.e. “We are late Hurry up”), would result in the change of some
latent information maybe of interest for certain TC tasks (e.g. author
profiling) [45].

3.6. Remove numbers

Despite the fact that numbers can offer helpful data to obtain a
performance gain of a classifier, it is usual to delete them during the
preprocessing stage [44,46]. Such a practice could be due to historical
reasons, where computational power and traditional machine learning
classifiers required a stricter preprocessing phase to lighten datasets.
However, other scholars [4,45] argue that numbers are useful, indeed
they do not remove them from the original source text.

In fact, the sentence: “I won 2 dollars on bets.” compared to: “I
won 2,000,000 dollars on bets.” will become: “I won dollars on bets.”.
However, the resulting sentence has lost the intended meaning of the
user who has written it. This meaning could be considered differently
by an attention based model or even by a shallow neural network to
provide the correct prediction. Even in the case of author profiling
tasks, the use of numbers could characterize a user based on the
quantity expressed by the numbers in text. Removing numbers could
lead to another type of information loss. For instance, the removal of
4 from the sentence: “I did it 4 you” (i.e., “I did it you”) would alter
the original true meaning of the sentence even for a human classifier.
Finally, removing the number 8 from the word w8, again, could lead
to a loss of information and to a deterioration in performance as well
as in the previous example.

3.7. Lowercasing

Among others, lowercasing (i.e. converting uppercase letters to low-
ercase) is one of the most common techniques to perform preprocessing
on a source text before further steps.

Lowercasing is discussed in [47] and consists in converting to lower-
case each character of a text (e.g. “Your band sounds like Rolling Stones*

”your band sounds like rolling stones”). Before the classification step,
the authors in [48] change capital letters from uppercase to lowercase.
According to authors, the classification’s performance has improved.
Lowercasing has been a common method employed in many deep and
non-deep architectures presented in the literature due to its simplicity.
Lowercasing may have undesirable effects on system performance since
it increases ambiguity despite the fact that it reduces vocabulary size
and sparsity [49]. In our example reported above — regarding the rock
band The Rolling Stones — lowercasing could produce for a non-human
classifier an ambiguity, comparing the sound of a band to a set of stones
rolling® instead of comparing the same sound to the one of the popular
rock band.

Lowercasing, on the other hand, conflates multiple spellings of
words that are based on case. The diversity of capitalization in the
dataset may interfere with classification and degrade performance. This
could be the case of a single misspelled word in a dataset (e.g. “houSe”).
In this case, a word embedding layer trained from scratch could assign

2 ..and in this case you should look for a new drummer.

M. Siino et al.

a new embedding vector instead of using the most properly semantic-
related word “house”.

Differences in experimental results across various works in the
literature can be simply explained based on the domains considered. In
our work, several datasets and models are tested, so we are confident
on the general impact of this technique using modern classifiers and
different datasets.

3.8. Remove stop words

The removal of stop words, according to our study, is the most
employed preprocessing method found in the literature. Stop words
are typically frequent terms in a language and are assumed to be the
least informative [50] (i.e., stop words alone do not provide meaning to
document). Stop words are language-specific and cannot be considered
as keywords in text mining applications, so they could be useless in in-
formation retrieval. Stop words often appear in writings without being
related to a specific subject (e.g. prepositions, articles, conjunctions,
pronouns etc.). Before performing the TC task, stop words are typically
removed. The size of a dataset is actually decreased after removing
stop words from it. Example of stop words are: “of”, “a”, “the”, “in”,
“an”, “with”, “and”, “to”. Depending on the list used, usually there are
between 400 and 500 stop words in the English language.

The first study considering stop words is conducted in [51]. There,
the author makes the suggestion that words in written texts can be split
into terms considered as keyword or non-keyword using a stop list.
In [52], the authors employ data from six different Twitter datasets
to use different stop word detection algorithms and examine how
eliminating stop words impacts the effectiveness of two popular super-
vised sentiment classification techniques. By tracking changes in the
classification performance, in the amount of data sparsity and in the
size of the feature space of the classifier, the authors evaluate the effects
of eliminating stop words. The authors compare results between static
stop word removal techniques (e.g. based on pre-compiled lists) versus
dynamic stop word removal techniques [53] (e.g. based on dynamic
detection of stop words in a document). The results demonstrate that
the performance is adversely affected by the usage of pre-compiled
stop words list. Otherwise, the best strategy to retain significant per-
formance while lowering data sparsity and significantly condensing
the space of the features appears to be the dynamic creation of stop
word lists by deleting the uncommon words appearing rarely in the
dataset. The researchers have found that a word’s relevance can be
inferred from its frequency in a data collection. This finding led to the
exploration of various well-liked stop word removal techniques in the
literature. While some approaches consider both the top and bottom-
ranked words to be stop words, others make the assumption that stop
words correspond to the most frequently occurring words. Another
well-liked alternative to using the raw frequency of terms has also been
discussed in the literature: Inverse Document Frequency (IDF).

Eventually, four different stop word removal techniques are re-
ported here.

+ The traditional approach. The traditional approach [54] relies on
removing stop words gleaned from pre-compiled lists.
Approaches based on Zipf’s law. Three approaches for creating stop
words that are moved by Zipf’s law exist, besides the conventional
stop words list [53,55]. Among these are the words that are most
frequently used and words that only appear once, or singletons.
Additionally, terms having a low inverse document frequency are
thought to be removed (IDF).

The mutual information method. A notion of how informative a
term can be about a certain class is supplied by a supervised
technique that determines the amount of information that each
word and document class share [56]. A lower mutual information
score indicates that the word has a weak ability in improving
discrimination performance, hence it needs to be dropped.

Information Systems 121 (2024) 102342

* Random sampling of data chunks. It was initially suggested in [57]
to use this technique to manually identify stop words in web
publications. This approach operates by repeatedly processing dif-
ferent, randomly chosen data chunks. It then uses the Kullback—
Leibler divergence [58] metric to order the terms in each chunk
according to how informative they are.

3.9. Spelling correction

It is common that texts shared online by users contain spelling
errors. For instance, tweets frequently contain typos as well as gram-
matical errors. The unintended consequence of having the same term
transcribed differently is lessened by correcting spelling and grammar
errors. Examples of misspelled words are: absense, decieve, noticable.
After a spelling correction step, the mentioned words would be sub-
stituted respectively by: absence, deceive, noticeable. In [59] it is proven
that correcting spelling errors can improve classification effectiveness.
Although other type of errors could be introduced after performing a
spelling correction, this technique generally improves performance.

Eventually, an interesting way to perform spell-checking is pre-
sented in [60] where a spell checker is employed to improve stemming,
and synonyms of related tokens are combined.

3.10. Part-of-speech tagging

The word class is identified via Part-of-Speech (POS) tagging, which
takes into account the word’s placement in the sentence [61]. A POS
tag is then given to any word in a sentence. Noun (NN), proper plural
noun (NNPS), verb (VB), adverb (RB), superlative adverb (RBS), third-
person verb (VBZ), and other tags are examples of tags.® It has been
demonstrated that four POS classes — namely, nouns, adjectives, verbs,
and adverbs — are more informative than other classes. Several purposes
of POS tagging in preprocessing are discussed in related work. In [13]
the use of POS tagging allows some parts of speech to be excluded since
they do not express the suitable sentiment for the purpose at hand. Only
verbs, adverbs, and nouns were kept in the study. In [62], in order to
tag opinion statements with sentiments, the authors employ POS tags
as pointers.

Specially in deep learning-based models, the process of assigning
POS tags to each term is helpful to increase semantic informativeness in
text. However, due to its impact on diminishing accuracy, some authors
choose to omit POS tagging for certain tasks [63], while others found
POS tagging beneficial [46].

3.11. Lemmatization

Lemmatization is used to replace a word with its corresponding
lemma, or dictionary form. By analyzing a word’s location in a sentence
and removing its inflectional ending, this technique creates the lemma
as it appears in a dictionary (e.g. Performance is greatly improved,
replaced by Performance be greatly improve). In [64], lemmatization re-
duces various word forms to the same lemma to enhance user sentiment
extraction effectiveness. Lemmatization is discussed in [47] and, in the
context of an SVM model, in [65]. In [66] authors address the issue
of ambiguation after lemmatization. The authors use lemmatization in
combination with POS disambiguation to alleviate the problem.

Lemmatization has long been a common preprocessing step for NDL
models. Since DL models have started to be employed, lemmatization
has rarely been used as a preprocessing stage. Lemmatization’s ma-
jor goal is to reduce sparsity because a dataset may contain various
inflected versions of the same lemma. Furthermore, in the context
of author profiling tasks, lemmatization can lead to ignore relevant
writing style details [67]. Eventually, it is worth reporting that in
inflexionless language (e.g. Chinese), words are only in one form. For
inflexionless languages, techniques like lemmatization or stemming,
does not provide any change to the text.

3 An example from Twitter is the case of a retweet replaced by the tag RT.

M. Siino et al.
3.12. Stemming

To obtain stem versions of derived words, a process known as
stemming is used. For instance, stemming techniques can reduce word
variations like easy, easily, easier, easiest to the word easy. The dimen-
sionality of dictionaries is decreased, since many words are collapsed
to the same one. This procedure reduces entropy and raises the signif-
icance of the concept behind a word like the one from the previous
example (i.e. easy). In the end, stemming enables the same consider-
ation of nouns, verbs, and adverbs that share the same stem. Word
frequencies are commonly calculated after stemming, since derived
words share semantic similarities with their root forms.

The first known stemming algorithm was presented in 1968 and dis-
cussed in [68]. Going forward, the algorithm for stemming introduced
in [69] is often employed by a multitude of scholars. It is likely the most
popular and effective stemming technique for the English language.

Stemming is applied in [70] and also discussed in [71]. The goal
of stemming in both studies is to find, for any derived word, its
corresponding stem. As discussed in [72], the stemming algorithm
depends on the language considered (i.e., Turkish in this case). The
library commonly used for Turkish language is discussed in [73].
Considering that Turkish is an agglutinative language, stemming helps
in reducing data sparsity. Otherwise, for the same language, the fixed-
prefix approach described in [74] is a computationally straightforward
yet highly efficient stemming tool. The performance and efficacy of
stemming in applications like spelling checkers across languages are
examined by the authors in [75]. Although advanced algorithms em-
ploy morphological understanding in creating a stem from the words,
a typical simple stemming technique would involve deleting suffixes
using a list of frequently occurring suffixes. The study provides a
comprehensive overview of known stemmers for Indian languages, as
well as popular stemming strategies.

Truncating approaches, statistical methods, and mixed methods are
typically used to categorize stemmed algorithms. The mechanism used
by each of these divisions to determine the word variations’ stems is
different. Below is a discussion of a few of these techniques. For fur-
ther discussion on stemming techniques, a deep overview is presented
in [76].

» Truncating techniques involve removing a word’s prefixes or suf-
fixes, referred to as affixes. Truncating a word at the nth char-
acter, is the simplest basic stemmer (i.e. it consists in keeping n
letters and removing the remaining). Words that are shorter than
n are left untouched using this strategy. When the word length is
short, there is a greater chance of over stemming.

Porters stemmer is one of the most well-known stemming algo-

rithms and developed in 1980 [69]. On the fundamental algo-

rithm, numerous alterations, improvements, and suggestions have
been proposed. It is predicated considering that in the English
language the suffixes are usually composed of groupings of simple
and small suffixes. The algorithm is performed along five steps.

Each step applies the rules until one of them satisfies the criteria.

If a match is found, the suffix is then removed and the subsequent

action is evaluated. At the end of the last stage, the resultant stem

is returned.

« Lovins stemmer was proposed in 1968 [68], when Lovins made the
first practical stemmer suggestion with his stemmer. The Lovins
stemmer eliminates a word’s longest suffix. Each word is altered,
checking a different table that performs numerous alterations to
turn the stems into acceptable words after the ending has been
deleted. Due to the fact that it is a one pass method, it can
never remove more than one suffix from a word. This algorithm
has the following benefits: (1) it is extremely quick; (2) it can
handle changing letters doubled for words as getting into get and
(3) it can handle plurals that are irregular (e.g. “mouse” and
“mouses”, “die” and “dice” etc.). It is worth reporting that the

Information Systems 121 (2024) 102342

Lovins stemmer, although being a heavier stemmer, results in
superior data reduction. With its extensive suffix collection, the
Lovins method only requires two significant stages to delete a
suffix. The algorithm by Lovins is quicker than the Porter one,
based on five iterations. Due to its extremely long endings list, it
is larger than the Porter method.

Paice/Husk Stemmer is introduced in [77] and is an ongoing
method using one database that has more than one hundred
rules and use the final character of a suffix as index. It tries to
determine the relevant rule based on the final character of a word.
Rules detail the substitution or deletion of a word ending. If any
rule does not match, the algorithm ends. The algorithm ends also
if the first character of a word is a vowel and no more than two
or three letters remain in the word. If not, the rule is followed
and the procedure is repeated. The benefit is that both deletion
and replacement as per the rule are applied at every iteration.
However, because of the weight of this stemmer, over stemming
can happen.

The two primary categories of stemming cons are over- and under-
stemming. If two words having different stems are replaced by the same
root, then a case of over-stemming occurs. Another term for this is a
false positive. On the other hand, the act of giving two words that ought
to share the same root a different root is called under-stemming. This
is also known as a false negative.

3.13. Removing elongation

A character that is repeated once or more times can be found
in elongated words (e.g. cooooool, greeeeeeat, goooood etc.). Tweets
and other social media posts frequently contain words with repeated
letters [78]. Character repetitions are employed by users to emphasize
and express their sentiments. The preprocess step of removing elon-
gation consists in replacing elongated words with their source words,
so they can be considered as the same entity. Repeated characters
are reduced to a single one to prevent the learner from considering
lengthened words differently from their basic form. If not, a classifier
could interpret them as distinct words, and the longer words are likely
to be underestimated because of their lower frequency in the text.

3.14. Emoticon handling

On the internet and in social networks, emotional icons are fre-
quently used to denote users’ sentiment [79]. Users use emoticons
(e.g. 2), :(etc.), to express opinion too. Not to be confused with emoti-
con, emoji are pictographs of objects, faces, and symbols. However, in a
generic preprocessing step, the same operations used for emoticons can
be applied to emoji too. Depending on the considered task, it could also
be important to capture information provided by emoticons or emoji to
perform TC.

In [80], the authors study and evaluate the impact of emoticons on
sentiments of tweets. The authors demonstrate the value of emotional
icons in conveying messages on social media. In [81], the usefulness
of processing emoticons on user-generated content is highlighted by
authors.

Emoticons could also be replaced with scores that express a score
against a polarity, but they can also be translated into text in the
corresponding word. For example, for a specific sentiment classification
task, the words pos and neg can be used in place of the positive and
negative icons, respectively. In other studies, emoticons are substituted
with the words that best describe them, such as :-(with the word
sad. However, for instance, the irony in the usage of a sad emoticon
while texting something positive, can revert the original meaning of a
sentence.

In [32], the authors employ emoticons as features and associate
words to a value of pleasantness from one to three. Emoticons are

M. Siino et al.

scored similarly to other words and are broken down into the following
classes: extremely negative, negative, neutral, positive and extremely
positive.

Keeping as-is emoticons in any text, for word-embedding based
models, lead to the generation of a word vector with an associated
semantic as for any other word in the dataset.

3.15. Negation handling

As stated in [31], one of the best preprocessing methods for tackling
tasks involving sentiment analysis is negation handling. A crucial stage
in sentiment analysis is dealing with negations, such as “not nice”.
One of the most relevant causes of misclassification is the omission of
negation words, which can affect the tone of all the surrounding words.
One way to perform negation handling is removing negative forms in
text to reduce ambiguities of the classified sentences. Specifically, when
facing with sentiment analysis tasks, negation is significant because, in
many circumstances, the polarity of words or sentences can be affected
by negation words, which can cause the polarity to invert. The most
typical method of handling negation is to look for terms that are similar
to “not” in each sentence, then see if the next word has an antonym.
The word “sad” will be used in place of phrases like “not happy” for
instance. To perform the replacement of words with the corresponding
antonyms, it is generally used WordNet, presented in [82].

In [31] authors handle negation performing the following steps. At
first, they compile an antonym dictionary using the WordNet dataset. In
their work, the authors explain how to manage the three possible cases
when looking for antonyms (i.e. a single antonym, multiple antonyms
or no antonyms). The word’s antonym is then randomly selected from
the antonym dictionary. Eventually, the negation terms in tokenized
text are identified by the authors. In the event that is discovered a
negation word, the token that follows it (i.e., the word to be negated) is
selected, and the antonym of that word is searched in the dictionary of
the antonyms. The negated word and the negation word are swapped
out if an antonym is found. In their work, the authors provide a running
example where the sentence “I am not happy today” is replaced by the
sentence “I am sad today”.

Handling negations can generally improve performance for senti-
ment analysis-related tasks based on sentence classification. However,
a comprehensive study on the effect of handling negations for author
profiling tasks (i.e. classifying a whole dataset related to an author
instead of performing classification of single sentences) is still missing.

3.16. Word segmentation

It is quite common to find different words merged together in
online texts. Such a case can be due both to a typing error or to
a deliberate choice. In the first case, a user could wrongly type the
word “Beyoncelemonade” instead of the two different words “Beyoncé
Lemonade”. The merged word represents noise and could likely be the
only token in the dataset. In a tweet like: “I like beyoncelemonade”
a model could not understand the topic (i.e. music) of the sentence.
Considering the same merged word, a user could deliberately write
#beyoncelemonade as hashtag within the shared post. In this case, seg-
mentation would change the desired usage of the author. Nevertheless,
segmenting merged words has proved to be helpful in understanding
and better classifying contents of tweets and posts [83,84].

In other cases, a model could benefit from processing words grouped
together. It is the case of words like “United States”, where splitting
single words as different tokens could make it harder for a model
to catch the underlying concept of the single word “UnitedStates”.
In the second case, word embedding-based architectures could get
the meaning of a whole sentence, understanding the reference to the
specific country (i.e. United States of America).

Information Systems 121 (2024) 102342
4. Material and methods

To assess the impact of the three most common techniques (i.e., low-
ercasing, removing stop words and stemming) we performed several
experiments. We evaluated the impact of every single technique but
also the impact of all the possible combinations of them. In Fig. 2 is
shown the process we applied for our experiments. As can be seen from
the figure, the application order of each technique is relevant. For this
reason, we evaluated all the preprocessing techniques in order. Even
if in Fig. 2 we only show a running example using one, two or three
techniques, in the result section we present and discuss the effect of
using all the possible combination of two and three techniques. The
libraries we used to apply the techniques were already presented and
referenced in Section 3.

4.1. Evaluated models

We introduce the models evaluated in our experiments in this
section. For the NDL models we provide the reference to the libraries
used and in Section 4.3 we further discuss parameters setup for the
tested configuration. For the DL models, we provide the reference to the
original study reporting changes if applied. Transformers models are
shortly discussed, and the specific pre-trained version used is reported.
The steps applied before feeding each model are:

1. Preprocessing each sample’s text

2. Word-by-word breakdown (at space characters) of the text in
each preprocessed sample

3. Mapping each word (ngram) to a token

4. Associating a unique integer value (index of the token) to each
token

5. Using these indices to translate each text into a sequence of
integers

Then, two different operations can be performed following the step
5) with respect to NDL and deep models. For the NDL models the vector
of ints is translated into a bag-of-words representation,* while for deep
models the vector of ints is used as-is by the following word embedding
layer. In the case of the DL models, the word embeddings are trained
from scratch during the training phase. For the Transformers, the pre-
trained embedding of each model is used. The fine-tuning is performed
accordingly to each reference paper. The models evaluated are briefly
discussed in the rest of this section.

+ Logistic Regression (LR). LR is commonly employed in TC for
several tasks [85]. Despite its name, LR is actually a linear classi-
fication model. Maximum-entropy classification, logit regression
and log-linear classifier are common terms to refer to LR. The LR
is based on a logistic function that is employed to approximate
the likelihoods of the possible results of an experiment. LR is
also used for ensemble of text classifiers, as reported in [86].
For our experiments, we used the sklearn Logistic Regression
implementation.” We used an L2 penalty, a C value equal to 1.0
and the Ibfgs solver as discussed in [87].

Naive Bayes (NB). As reported in [88] and experimentally demon-
strated over time by outcomes from various TC tasks [89], NB is
one of the most effective model to employ for classification. We
evaluated a multinomial NB classifier from the sklearn Multino-
mialNB implementation.® Data are commonly expressed as word
vector counts.

4 An array containing at the nth index, corresponding to the nth int value,
a counter of the occurrences of the corresponding n-gram.

5 https://scikit-learn.org/stable/modules/generated/sklearn.linear model.
LogisticRegression.html

6 https://scikit-learn.org/stable/modules/generated/sklearn.Na\"\ive_
bayes.MultinomialNB.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.Na\"\i ve_bayes.MultinomialNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.Na\"\i ve_bayes.MultinomialNB.html

M. Siino et al.

)

“This T-Shirt has a different color”|

ONISYOHIMOT

“this t-shirt has a different color”

N

“This T-Shirt has a different color”

HDNISYOHIMO1

“this t-shirt has a different color”

MS DNINOW3H

“t-shirt different color”

4

Information Systems 121 (2024) 102342

L ->R) ->(S)

“This T-Shirt has a different color”

ONISYOH3IMOT

“this t-shirt has a different color”

MS ONIAOW3H

“t-shirt different color”

ONINW3LS

Y

“t-shirt differ color”

Fig. 2. From the left to the right, it is shown the preprocessing applied using a single technique and a combination of two and three techniques, respectively. As can be seen
from the figure, the application order of each technique is relevant. In our experiments, we evaluated all the combination of the three most common techniques.

+ SVM. As reported in [90] and in [91], classifiers based on SVM
are well-established methods for TC tasks. SVM are also em-
ployed in ensemble-based text classifier, as reported in [92].
Thanks to SVM models, classification results compared to other
classification methods have been greatly improved.

Based on [93], we tested the sklearn SVC implementation.” As a
regularization parameter, we used a value of 1.0 with a linear
kernel type.

Artificial Neural Network (ANN). Starting from the research
investigation on how coupled brain cells in the human brain
could generate complex patterns, or neurons [94] along with the
development of the perceptron [95], nowadays, ANN are widely
implemented on a wide range of tasks. TC is no exception. The
architecture we implemented for our experiments consists of an
embedding layer, a dropout layer, three dense/dropout pairs of
layers, a global average pooling layer, a dropout layer and a final
single dense unit layer. The network architecture is shown in
Fig. 3.

Convolutional Neural Network (CNN). The CNN evaluated here
is the one presented in [45] and also used in [96-98]. In this
case we do not report further details or the image of the network
architecture which can be found in the above-mentioned papers.
This CNN includes a single convolutional layer. As demonstrated
by its results, this CNN outperforms Transformers and others
proposed models as stated in [99] on a classification task similar
to the ones proposed in this work.

Bidirectional LSTM (BiLSTM). In place of feed-forward net-
works, recurrent neural networks are widely utilized to categorize
text data. In [100], the authors discuss how to perform TC using
LSTM network and their variants like Bi-LSTM and GRU. For
our work, we developed a simplified version of the bidirectional
LSTM discussed in [101]. Also in this case, we do not report
further details or the image of the network architecture which
is presented in [101]. The model consists of two bidirectional
LSTM layers. We did not employ any activation functions for any
of the dense layers. We used a binary cross-entropy loss and the
optimization algorithm by Adam [102] to train our model.
RoBERTa. The authors in [103] - by offering a replication study
on the pre-training of BERT — improve the performance of the
BERT model by changing the pre-training stage. These adjust-
ments consist of the following: (1) training the model for more

7 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

time using larger batch size; (2) ignoring the objective of pre-
dicting next sentence; (3) using longer sequences for training; (4)
altering the pattern for masking used on the training instances
in a dynamic way. The version of RoOBERTa we used is presented
in [103].

ELECTRA. According to what stated in [104], ELECTRA suggests
replacing certain tokens with possible replacements taken from
a small generator network, instead of masking the input like in
BERT. Then, a discriminative model is trained to predict whether
each token in the corrupted input was replaced by a generator
sample or not, as opposed to developing a model that predicts
the original identities of the corrupted tokens. Along with graph
neural network, ELECTRA can also be employed as an embedding
layer as in [105]. In our experiments, the original version of
ELECTRA, presented in [104], was used.

XLNet. A generalized autoregressive pretraining strategy is the
one suggested in [106]. By optimizing the predicted likelihood
across all combination of the factorization order, it enables learn-

ing bidirectional contexts. XLNet surpasses BERT, frequently by
a significant margin, on a number of tasks, including question
answering, sentiment analysis, document ranking and natural
language inference. For our study we used the pre-trained XLNet
using zero-shot cross lingual transfer discussed in [107].

A recent rise in the application of classification techniques based
on graphs is noteworthy. A recent study can be found in [105] for
TC but, recently, graph-based methods are also used for traffic pre-
diction [108], computer vision [109] and social networking [110].
However, most of these methods are not yet able to outperform models
evaluated in our study and discussed here.

4.2. The datasets

We present here the four datasets evaluated in our study and coming
from different domains. We describe their structure, content and their
respective size. All the four datasets used are publicly available and
used in recent literature for TC tasks. We used datasets with varying
sizes and distinct classification objectives to examine how each prepro-
cessing strategy affects different classification tasks. The details of each
dataset are shortly discussed and presented in the rest of this section.
In Table 2 are reported the statistics of the datasets.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

M. Siino et al.

input_2 input: | [(None, 1)]

[(None, 1)]

InputLayer | output:

text_vectorization_1 | input: (None, 1)

(None, 2470)

TextVectorization

output:

embedding
Embedding

input:

output:

(None, 2470)
(None, 2470, 100)

dropout | input: | (None, 2470, 100)

(None, 2470, 100)

Dropout | output:

y
(None, 2470, 100)

(None, 2470, 512)

dense | input:

Dense | output:

dropout_1 | input: | (None, 2470, 512)

(None, 2470, 512)

Dropout | output:

Y

dense_1 | input: | (None, 2470, 512)

(None, 2470, 256)

Dense | output:

dropout_2 | input: | (None, 2470, 256)

(None, 2470, 256)

Dropout | output:

y

dense_2 | input: | (None, 2470, 256)

(None, 2470, 128)

Dense | output:

dropout_3 | input: | (None, 2470, 128)

(None, 2470, 128)

Dropout | output:

global_average poolingld
GlobalAveragePooling1D

input: | (None, 2470, 128)

(None, 128)

output:

dropout 4 | input:

output:

(None, 128)
(None, 128)

Dropout

dense_3 | input: | (None, 128)

(None, 1)

Dense | output:

Fig. 3. The ANN architecture implemented for our experiments. Numbers in brackets
indicate the tensor sizes. Layers as depicted on our Google Colab Notebook.

4.2.1. Fake news spreaders

The Fake News Spreaders (FNS) dataset is presented and discussed
in [111] and available under request.® The dataset was used for the
international shared task at PAN.? The task’s organizers want to find
out if it is possible to distinguish between authors who have previously
disseminated fake news and those who have not. The task is in a series
of shared task that from 2013 to 2019 considered a number of issues
of author profiling on social media. Some of them included gender
and language variation, age and gender coupled with personality, bot
detection, and gender from a multimodality standpoint.

8 https://zenodo.org/record/4039435
9 https://pan.webis.de

10

Information Systems 121 (2024) 102342

The dataset consists of tweets in Spanish and English. However, to
test the original version of the Transformers evaluated in our study, we
considered only the English ones. In the dataset, there are one hundred
tweets representing each author and the corresponding class label for
the author (i.e., 1 if the author has shared one or more fake news in
the past and O otherwise). There are one hundred fifty authors per
class in the training set, and one hundred authors per class in the test
set. Resuming, the dataset samples (i.e., 500 authors) provide a total
number of tweets (i.e., 50,000) suitable for the experiments with the
models evaluated here.

4.2.2. Patronizing and condescending language

Described in detail in [112], the dataset for Patronizing and Con-
descending Language (PCL) is from the detection PCL task hosted at
SemEval-2022. This task is an emerging one about detecting PCL [113].
PCL occurs when language implies superiority toward others, talks
down to them, or kindly depicts them or their circumstances, elicits
feelings of sorrows and compassion. PCL is often involuntary and
unconscious and based on good intentions. The assignment is a classifi-
cation problem where a classifier has to predict whether PCL is present
in a given text. Below are reported two representative samples for the
two label classes that a text classifier has to predict.

* Non-PCL Sample Text: “In 2017, more than 150 people packed
1,100 hampers for Foodbank to provide to those in need during the
holiday season”.

» PCL Sample Text: “Housing Minister Grant Shapps added : The
plight of homeless people should be on our minds all year round -
not just at Christmas”.

The Task 4 participants at SemEval-2022 were given a dataset
comprising sentences in context (paragraphs) that had been taken
from news articles. Despite coming from various countries, the news
pieces were all delivered in English. The News on Web (NoW)'° orig-
inally supplied all the excerpts from news articles from media in 20
English-speaking nations. The 10,469 paragraphs make up the dataset,
which served as the SemEval task’s training set. Using the same proce-
dure, organizers annotated 3,898 more texts to build the test set. To
gather paragraphs, organizers employed a keyword-based technique,
concentrating on texts that make mention of vulnerable communities
(e.g. refugees or homeless). The dataset is available on GitHub.'!

4.2.3. Internet Movie Database

A dataset for binary sentiment classification was first described
in [114] as the Internet Movie Database (IMDB). It comprises 25,000
reviews of highly divisive movies for testing and 25,000 for training.
Additional unlabeled data is also available for use. The collection
includes binary sentiment polarity labels for the movie reviews that go
along with them. It is meant to act as a baseline for sentiment analysis.

The total of 50,000 reviews are divided in 25,000 reviews each
for training and testing, and make up the core dataset. The reviews
are balanced for the two classes (i.e. 25,000 are positive and 25,000
are negatives). For unsupervised learning, a further 50,000 documents
without labels are also included.

Often for the same movie, reviews have correlated ratings, so there
can never be more than 30 reviews for any film in the entire collection.
Additionally, because the train and test sets contain different movies,
learning movie-specific terms and having them correspond to observed
labels does not significantly improve performance. A poor review has
a score of less than four out of ten in the designated train and test sets,
while a score of more than seven out of ten is considered as a positive
review. The train/test sets therefore do not contain reviews with more
neutral ratings. Reviews of any rating are included in the unsupervised

10 https://www.english-corpora.org/now/
11 https://github.com/Perez- AlmendrosC/dontpatronizeme

https://zenodo.org/record/4039435
https://pan.webis.de
https://www.english-corpora.org/now/
https://github.com/Perez-AlmendrosC/dontpatronizeme

M. Siino et al.

Information Systems 121 (2024) 102342

Table 2
Characterization and statistics of the datasets.
Dataset Task #Total documents #Documents per sample #Train samples #Test samples
PCL Content classification 14,367 1 10,469 3898
FNS Author profiling 50,000 100 300 200
IMDB Polarity detection 100,000 1 25,000 25,000
20N Newsgroup post categorization 18,846 1 11,314 7532

set, and there are an even number of reviews with ratings between 5
and less than 5. Below are two examples of reviews, one each from a
negative and positive class.

» Negative review: “I and a friend rented this movie. We both found
the movie soundtrack and production techniques to be lagging. The
movie’s plot appeared to drag on throughout with little surprise in the
ending. We both agreed that the movie could have been compressed
into roughly an hour giving it more suspense and moving plot”.
Positive review: “Maybe it’s because I saw the movie before reading
the book, but I really love this movie. I've seen it many many times
and will be watching it many times more. It’s a compelling story, that’s
interesting from the beginning to the end. It has everything: action,
romance etc”.

The IMDB dataset is available online.'?

4.2.4. The 20 Newsgroup data

To the best of our knowledge, the 20 Newsgroup data (20N) is
discussed and used for the first time in [115] by Ken Lang. A total
of around 18,000 messages from 20 different newsgroups make up
this dataset. By newsgroup group, 1,000 messages were selected at
random from each of the twenty newsgroups.'®> For our experiments,
we used the splits between training and test set reported here.'* This
is the only non-binary dataset used for our experiments. One out of
twenty categories needs to be predicted by the classifiers. Considering
that this is a multi-classification problem, a model has to predict to
which category a sample belongs. Below we report a part of a sample
belonging to the category electronics.

+ “Pink noise has constant power per geometric frequency increment
(octave, 1/3 octave, etc.). Thus the 10 kHz-20 kHz octave has the
same amount of noise power as the 10 Hz-20 Hz octave. White noise
has constant power per arithmetic frequency increment (Hz, kHz,
etc.). Thus the 10 kHz-10.1 kHz band has the same amount of noise
power as the 10 Hz—110 Hz band (both bands are 100 Hz wide).
Pink noise can be made by passing white noise thru a -3db/octave
filter (usually approximated by a network of several RC pairs). Note:
you can’t get -3db/octave by using half a -6db/octave network :- Pink
noise is commonly used in audio power response measurements. It
shows up on audio spectrum analyzers (with octave-related bands)
as a flat line across the bands”.

4.3. Experimental setup

Our experiments were performed using TensorFlow on an NVIDIA
GeForce RTX 2080 GPU on our local machine and on a Tesla T4
from Google Cloud. For the Transformers we used the Simple Trans-
formers'® library. All the Transformers used came from the library of
Transformers provided in [116]. The batch size for all models was
1. For 10 epochs, we fine-tuned the Transformers-based models, early
stopping in accordance with the test set accuracy. The best accuracies

12 https://ai.stanford.edu/~amaas/data/sentiment/

13 https://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/news20.
html

14 http://qwone.com/~jason/20Newsgroups/

15 https://simpleTransformers.ai/about/

11

of the Transformers models used, as suggested in reference work,
were generally obtained before the tenth epoch of fine-tuning. The DL
architectures (ANN, CNN and BiLSTM) were trained for 20 epochs. In
this case too, there were no benefits in training over 20 epochs; on
the test set, the best accuracies were always obtained before epoch 20.
We followed the protocol used in [103] to evaluate the performance
of each deep model tested. So, we initialize each model with random
weights and then we run the training and the evaluation phases for
five times (with early stopping for each run), then we report the median
accuracy along the five runs, as the representative result of each model.
Furthermore, in Section 5 we report the maximum gap from such a
median considering the five runs. The Jupyter notebooks hosted on
GitHub can be used to study the outcomes of our experiments. For the
three NDL models, we use the implementations discussed in Section 4.1
and because of their deterministic nature there is no need of performing
multiple runs. We have previously provided references to each model’s
original implementation, along with each architecture’s experimental
setup.

5. Results

We report our comments on the results in this section. The results
reported in this section show the effect of the three most common pre-
processing techniques. Our experiments investigated not only the effect
of single techniques but also in combination. On the three dataset, from
Table 3 to Table 6 the results of our experiments are reported. In each
table is shown the binary accuracy measured as the number of correct
predictions divided on the number of all the predictions provided. In
evaluating the preprocessing impact, the DON strategy represents the
case where no preprocessing is applied. It means that each sample in
the datasets is provided as-is to the learning model. Likewise, the results
associated to LOW show the impact of lowercasing each character in
the dataset samples. Also, the impact of the combination of the three
techniques is evaluated. In the second block of each table, we show the
results obtained using two techniques in combination. For example, the
case (L)-(R) shows the performance when each sample in the dataset
is lowercased and, after that, each stop word in the sample is removed.
For the third block of rows in the tables, we report the results obtained
using the combination of the three techniques.

Furthermore, even if already stated, it is worth repeating that for
deep models the median over five runs with random initialization is
reported. Next to the median is reported the gap between the median
and the lowest/highest accuracy obtained along the five runs. The
best result (i.e., the best median on the five runs) is reported in bold
black, while the worst result is shown in bold red. Eventually, for the
deep architectures tables, the acronyms of the preprocessing techniques
are abbreviated for readability purposes. In Fig. 4 and in Fig. 5 we
show the box-and-whisker plots for the three evaluated datasets and
for each model tested. The distributions used to build up each plot are
taken from the Tables from 3 to 6 and each box represents the result
distribution for the model indicated on the x-axis.

5.1. IMDB
For the IMDB dataset, the results of the deep models are shown

in the Table 3. The best performance is obtained by ELECTRA with
lowercasing as preprocessing technique. The use of the same model

https://ai.stanford.edu/~amaas/data/sentiment/
https://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/news20.html
https://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/news20.html
http://qwone.com/~jason/20Newsgroups/
https://simpleTransformers.ai/about/

M. Siino et al.

Information Systems 121 (2024) 102342

0.9 0.85
0.8
0.85
z % 0.75 =
==
é 0.8 é 0.7
0.65 E
0.75
0.6
S N S T & = NS N
FL FEE ST FLEFEE 2SS
QS 5T % 2 SO % [
g 5§ 5 S &
3 IS S - 5
< & <5 &

Fig. 4. Box plot for the nine models evaluated on the IMDB (left) and on the PCL (right) datasets. The DL models are the less sensitive to the preprocessing strategy employed,

while the Transformers are the most sensitive.

Table 3

Median accuracy and maximum gap from the median accuracy of the six deep models on the IMDB dataset. In bold black and bold red are shown the best and the worst results,

respectively, for each model.

IMDB

Preprocessing RoBERTa XLNet ELECTRA ANN CNN BiLSTM

DON (D) 0.884 + 0.00 0.885 + 0.00 0.888 + 0.00 0.835 + 0.01 0.856 + 0.00 0.847 + 0.00
LOW (L) 0.877 + 0.00 0.881 + 0.01 0.895 + 0.04 0.842 + 0.01 0.857 + 0.00 0.843 + 0.01
RSW (R) 0.885 + 0.00 0.886 + 0.00 0.890 + 0.07 0.840 + 0.01 0.855 + 0.00 0.843 + 0.01
STM (S) 0.853 + 0.00 0.852 + 0.03 0.857 + 0.05 0.834 + 0.01 0.856 + 0.00 0.837 + 0.02
@L)—-®) 0.875 + 0.04 0.878 + 0.01 0.888 + 0.01 0.840 + 0.01 0.854 + 0.00 0.844 + 0.01
@L)=(S) 0.849 + 0.00 0.847 + 0.01 0.860 + 0.03 0.845 + 0.00 0.855 + 0.00 0.845 + 0.02
R)—-(L) 0.876 + 0.04 0.874 + 0.00 0.890 + 0.01 0.844 + 0.01 0.855 + 0.00 0.847 + 0.01
R)—(S) 0.826 + 0.02 0.823 + 0.32 0.832 + 0.02 0.839 + 0.00 0.855 + 0.00 0.844 + 0.02
(S)=(L) 0.849 + 0.00 0.845 + 0.03 0.864 + 0.01 0.839 + 0.00 0.854 + 0.00 0.840 + 0.01
S)-MR) 0.798 + 0.07 0.817 + 0.01 0.832 + 0.01 0.843 + 0.01 0.854 + 0.00 0.843 + 0.01
@L)—-(S)—-R) 0.806 + 0.04 0.782 + 0.12 0.824 + 0.01 0.837 + 0.01 0.855 + 0.00 0.839 + 0.34
L)—-R)—(S) 0.838 + 0.34 0.820 + 0.02 0.837 + 0.04 0.842 + 0.01 0.854 + 0.00 0.845 + 0.00
S)—(L)-=(R) 0.812 + 0.01 0.645 + 0.18 0.818 + 0.02 0.840 + 0.01 0.856 + 0.00 0.845 + 0.01
S)—(R)—(L) 0.818 + 0.02 0.820 + 0.05 0.837 + 0.01 0.843 + 0.01 0.853 + 0.00 0.839 + 0.01
R)—-L)—(S) 0.829 + 0.03 0.837 + 0.17 0.825 + 0.05 0.838 + 0.01 0.855 + 0.00 0.848 + 0.01
R)—(S)—(L) 0.806 + 0.03 0.822 + 0.07 0.848 + 0.01 0.838 + 0.01 0.857 + 0.00 0.838 + 0.34

employing stemming, lowercasing and removing stop words as combi-
nation leads to a gap of over the 7% in the classification performance.
Also for XLNet the same preprocessing combination consistently de-
grades performance. In this case, the gap between the best and the
worst result in the table is above the 25%. The worst result for RoBERTa
involves stemming and removing stop words. This result seems to high-
light that pre-trained model do not benefit by reducing words to their
corresponding stem. Nevertheless, while the Transformers’ performance
improves using word variations, stop words appear to be not necessary
at all. In fact, the best results for RoOBERTa and XLNet are obtained re-
moving stop words. Even the second-best result of ELECTRA is obtained
removing stop words with a very low gap from the best result. So,
removing stop words has to be taken into account when dealing with
Transformers on datasets similar to the IMDB one evaluated here. Using
DL models there is not a substantial difference between the worst and
the best results while varying the combination of techniques applied.
This finding can also be noted in Fig. 4. In fact, the size of the boxes
related to the result distributions of the DL models are significantly
smaller. The CNN performs consistently better than ANN and BiLSTM.
Furthermore, lowercasing is always involved in any best result obtained
by the DL models. Finally, it is worth mentioning that while the
deviation from the median along the five runs changes for any model
and any preprocessing technique, the CNN obtains an impressive and
consistent null variation for any preprocessing technique considered
along the five runs. CNN is also the only model with a variation under
the 2% considering the best and the worst combination of preprocessing
techniques in terms of accuracy. In fact, the worst result is 0.853 using

12

combination of stemming, stop words removal and lowercasing while
the best one is 0.857 using lowercasing or combination of removing
stop words, stemming and lowercasing. It can be stated that, even
if stemming is one of the most studied and employed preprocessing
technique discussed in the literature, it does not appear to be involved
in any of the best combination of techniques considered here.

The results of the NDL models on the same dataset are reported in
Table 6. The best results are obtained by the SVM without using any
preprocessing technique or removing stop words and lowercasing com-
bination. Considering that for the SVM the gap between the best and
the worst result is below 5% it should be evaluated if the preprocessing
stage is worth the additional complexity. Similar gaps between the best
and the worst results happen for the other two models (i.e. NB and
LR). Finally, as already stated, the worst results for each model involve
stemming.

5.2. PCL

The results of the deep models for the PCL dataset are reported in
Table 4. Only for this dataset it happens that the best performance
is obtained using a single technique or no preprocessing at all. The
best performance is obtained by ELECTRA with lowercasing as pre-
processing technique. This result is aligned with the one obtained in
the case of the IMDB dataset. With a very similar behavior, in this
case too, the use of stemming, lowercasing and removing stop word as
combination leads to the worst result. However, the gap with the best
result, in this case, is more than the 9%. The worst result is obtained

M. Siino et al.

Table 4

Information Systems 121 (2024) 102342

Median accuracy and maximum gap from the median accuracy of the six deep models on the PCL dataset. In bold black and bold red are shown the best and the worst results,

respectively, for each model.

PCL
Preprocessing RoBERTa XLNet ELECTRA ANN CNN BiLSTM
DON (D) 0.834 + 0.01 0.837 + 0.01 0.832 + 0.02 0.734 + 0.01 0.746 + 0.01 0.746 + 0.02
LOW (L) 0.816 + 0.01 0.829 + 0.01 0.839 + 0.01 0.731 + 0.00 0.741 + 0.01 0.749 + 0.01
RSW (R) 0.827 + 0.01 0.811 + 0.03 0.816 + 0.01 0.739 + 0.01 0.741 + 0.01 0.756 + 0.03
STM (S) 0.804 + 0.03 0.796 + 0.30 0.799 + 0.00 0.734 + 0.00 0.751 + 0.01 0.749 + 0.02
@L)=R) 0.824 + 0.01 0.806 + 0.31 0.822 + 0.02 0.731 + 0.01 0.741 + 0.01 0.751 + 0.01
L)—(S) 0.811 + 0.02 0.796 + 0.02 0.794 + 0.01 0.736 + 0.01 0.739 + 0.00 0.749 + 0.02
R)—-(L) 0.822 + 0.01 0.809 + 0.31 0.827 + 0.02 0.729 + 0.00 0.739 + 0.01 0.744 + 0.01
R)—=(S) 0.779 + 0.04 0.754 + 0.03 0.774 + 0.01 0.734 + 0.01 0.744 + 0.01 0.751 + 0.02
S)—(@L) 0.809 + 0.01 0.804 + 0.01 0.806 + 0.02 0.729 + 0.01 0.741 + 0.01 0.746 + 0.01
S)-=MR) 0.786 + 0.02 0.756 + 0.26 0.776 + 0.02 0.736 + 0.01 0.741 + 0.01 0.749 + 0.01
L)=(S)—=(R) 0.776 + 0.05 0.759 + 0.02 0.766 + 0.06 0.721 + 0.02 0.739 + 0.02 0.749 + 0.01
L)-R)—~(S) 0.774 + 0.01 0.754 + 0.02 0.774 + 0.04 0.731 + 0.01 0.749 + 0.01 0.751 + 0.01
(S)-L)—~®R) 0.766 + 0.01 0.746 + 0.13 0.766 + 0.01 0.724 + 0.01 0.744 + 0.01 0.751 + 0.00
(S)-»R)~(L) 0.789 + 0.01 0.759 + 0.01 0.786 + 0.06 0.734 + 0.01 0.736 + 0.00 0.746 + 0.00
R)=(L)—~(S) 0.771 + 0.03 0.756 + 0.06 0.781 + 0.01 0.736 + 0.01 0.741 + 0.01 0.744 + 0.01
R)-(S)—(L) 0.786 + 0.02 0.764 + 0.01 0.771 + 0.02 0.734 + 0.01 0.746 + 0.00 0.744 + 0.01
0.75
== =
0.7
0.65 E
>
Q
£
= 0.6
o
o
<
0.55
0.5
0.45
4 & 3 <2 < 2 <
s £ F 5 £ g £ £ 8
& s R X % %
o) A7 & N
N B9
< &

Fig. 5. Box plot for the nine models evaluated on the FNS dataset. On this dataset, eight out of nine models show minimal sensitiveness to the preprocessing strategies.

by the ANN using lowercasing, stemming and removing stop words
as a combination of techniques (i.e., 0.721). Considering the ANN,
there is not any substantial improvement selecting the best combination
(i.e. removing stop words, 0.739). Finally, for the first time, one of
the best results involves stemming as preprocessing technique (this is
the case of the CNN with stemming as combination). However, even
for the PCL dataset, DL models do not exhibit a significant difference
between the worst and the best results while varying the combination
of techniques applied. The CNN performs consistently better than ANN
and BiLSTM. Consistently with the results reported in the literature,
stop word removal is involved in the best results obtained by the
ANN and the BiLSTM. It is interesting that no combination of multiple
techniques are involved in the best results obtained on this dataset.
Finally, even for this dataset, the deviation from the median along the
five runs changes smoother for the shallow models with respect to the
Transformers-based ones.

The results obtained by the three NDL models are reported in
Table 6. The best result (i.e., 0.736) is reached by the NB employing
lowercasing as preprocessing technique. For this dataset, performance
is more responsive to the combination employed. As instance, for the
SVM the gap between the best and the worst result (i.e., last four rows
in the table) is above the 10%. This should lead to further attention
when selecting a proper preprocessing technique for an SVM if dealing
with similar tasks. Even for this dataset, the worst results for each
model involve stemming.

13

5.3. FNS

The results of the deep models are reported in Table 5 for the FNS
dataset. The best performance of 0.730 is obtained by a simple CNN
applying only stop word removal as preprocessing technique. The same
result is obtained by the ANN using removing stop words, stemming
and lowercasing as a combination. However, results along the five
runs are more consistent in the case of the ANN. The worst results
(i.e., 0.500) are obtained by the XLNET with several combinations
of techniques. However, also in this case XLNET is very sensitive to
the combination of techniques employed. This is proved by the gap
between the best and the worst results (i.e. 18%). This can also be noted
from the size of the box plot in Fig. 5. As shown in the table, stop word
removal is involved in four best results over six. In the remaining two
best results, stemming and lowercasing are involved.

It is worth repeating that this dataset is very different in the num-
bers and shape of the samples with respect to other datasets. In fact,
any sample consists of the last 100 tweets of a Twitter user. As widely
discussed in [117], NDL and DL perform consistently better than Trans-
formers. Also on this dataset, stop word removal could be generally
considered as a proper preprocessing method when dealing with deep
models. Even for this dataset, DL models do not exhibit a great dif-
ference between the worst and the best results, while varying the

M. Siino et al.

Table 5

Information Systems 121 (2024) 102342

Median accuracy and maximum gap from the median accuracy of the six deep models on the FNS dataset. In bold black and bold red are shown the best and the worst results,

respectively, for each model.

FNS

Preprocessing RoBERTa XLNet ELECTRA ANN CNN BiLSTM

DON (D) 0.695 + 0.02 0.620 + 0.12 0.605 + 0.09 0.720 + 0.00 0.725 + 0.02 0.585 + 0.11
LOW (L) 0.655 + 0.04 0.645 + 0.04 0.690 + 0.02 0.730 + 0.01 0.720 + 0.01 0.610 + 0.08
RSW (R) 0.705 + 0.01 0.680 + 0.18 0.560 + 0.02 0.725 + 0.01 0.730 + 0.01 0.595 + 0.07
STM (S) 0.660 + 0.03 0.500 + 0.13 0.665 + 0.01 0.715 + 0.02 0.720 + 0.03 0.610 + 0.05
@L)—-®) 0.665 + 0.02 0.645 + 0.14 0.680 + 0.14 0.720 + 0.02 0.715 + 0.01 0.565 + 0.02
L)—=(S) 0.625 + 0.04 0.510 + 0.15 0.670 + 0.05 0.720 + 0.01 0.715 + 0.01 0.595 + 0.07
R)—-(L) 0.670 + 0.02 0.650 + 0.05 0.665 + 0.03 0.725 + 0.01 0.720 + 0.01 0.560 + 0.05
R)—=(S) 0.650 + 0.15 0.500 + 0.00 0.645 + 0.00 0.715 + 0.01 0.720 + 0.01 0.595 + 0.07
S)—(@L) 0.660 + 0.13 0.500 + 0.17 0.665 + 0.02 0.725 + 0.00 0.725 + 0.01 0.645 + 0.04
S)-=MR) 0.660 + 0.15 0.515 + 0.13 0.630 + 0.03 0.715 + 0.00 0.725 + 0.01 0.605 + 0.07
L)=(S)—=(R) 0.640 + 0.10 0.575 + 0.07 0.630 + 0.12 0.715 + 0.01 0.715 + 0.01 0.585 + 0.08
L)-R)—~(S) 0.645 + 0.01 0.625 + 0.12 0.635 + 0.07 0.715 + 0.01 0.720 + 0.01 0.600 + 0.06
S)—(L)-=(R) 0.640 + 0.14 0.645 + 0.14 0.640 + 0.14 0.725 + 0.01 0.715 + 0.00 0.585 + 0.06
($)—([R)—(L) 0.640 + 0.14 0.500 + 0.15 0.610 + 0.11 0.720 + 0.00 0.720 + 0.01 0.610 + 0.08
R)=(L)—~(S) 0.645 + 0.12 0.660 + 0.16 0.635 + 0.05 0.720 + 0.02 0.720 + 0.02 0.570 + 0.11
R)—(S)—(L) 0.640 + 0.01 0.605 + 0.10 0.655 + 0.15 0.730 + 0.00 0.725 + 0.01 0.590 + 0.06

Table 6

Accuracies for the three non-deep models on the four test dataset used. In bold black and bold red are shown the best and the worst results, respectively, for each model. For NB

on 20N, we avoid black bold for most of the column because of the same results.

IMDB PCL FNS 20N

Preprocessing NB SVM IR NB SVM IR NB SVM IR NB SVM LR

DON 0.767 0.835 0.798 0.726 0.729 0.693 0.685 0.630 0.640 0.040 0.160 0.140
LOW 0.771 0.831 0.801 0.736 0.696 0.668 0.695 0.665 0.650 0.040 0.140 0.100
RSW 0.787 0.831 0.833 0.719 0.651 0.686 0.705 0.715 0.660 0.020 0.100 0.060
STM 0.741 0.794 0.773 0.683 0.678 0.691 0.675 0.645 0.640 0.040 0.160 0.080
LOW — RSW 0.787 0.828 0.833 0.706 0.671 0.683 0.720 0.690 0.680 0.040 0.140 0.040
LOW — STM 0.725 0.803 0.770 0.678 0.668 0.688 0.700 0.665 0.615 0.040 0.120 0.100
RSW — LOW 0.789 0.835 0.820 0.721 0.663 0.691 0.725 0.690 0.675 0.040 0.120 0.020
RSW — STM 0.780 0.794 0.811 0.671 0.641 0.656 0.680 0.695 0.675 0.020 0.160 0.100
STM — LOW 0.725 0.803 0.800 0.678 0.668 0.673 0.700 0.665 0.635 0.040 0.120 0.060
STM — RSW 0.775 0.790 0.821 0.681 0.641 0.646 0.675 0.675 0.670 0.020 0.140 0.120
LOW — STM — RSW 0.750 0.799 0.820 0.678 0.623 0.648 0.695 0.680 0.645 0.040 0.140 0.080
LOW — RSW — STM 0.747 0.794 0.821 0.668 0.636 0.661 0.700 0.685 0.650 0.040 0.140 0.080
STM — LOW — RSW 0.749 0.797 0.814 0.678 0.623 0.661 0.690 0.675 0.645 0.040 0.140 0.080
STM — RSW — LOW 0.749 0.797 0.814 0.678 0.623 0.661 0.690 0.685 0.655 0.040 0.140 0.080
RSW — LOW — STM 0.757 0.797 0.807 0.673 0.623 0.678 0.720 0.670 0.655 0.040 0.140 0.120
RSW — STM — LOW 0.756 0.797 0.803 0.673 0.623 0.651 0.720 0.675 0.685 0.040 0.160 0.080

combination of techniques applied. Considering the DL models, devi-
ation from the median along the five runs is more consistent also for
this dataset if compared with Transformers.

The results obtained by the three NDL models on the same dataset
are reported in Table 6. The best result is obtained by the NB classifier
using the removing stop words and lowercasing combination as a pre-
processing technique. The gap between the best and the worst results
for each model is still under the 5% also for this dataset. The worst
results for the NB model involve stemming. However, as in the case of
the LR and of the SVM, the worst performance is obtained performing
no preprocessing at all.

5.4. 20N

The results obtained by the three NDL models on the 20N dataset
are reported in Table 6. It is worth repeating that this dataset entails
a multi-class classification, and the accuracies reported are related
to the performance in assigning the correct category to a newsgroup
article. The best result of 0.160 is obtained by the SVM using different
preprocessing strategies. Even if stemming has rarely proved to be an
effective preprocessing choice, in this case it allows the SVM to perform
at its best. However, the results using stemming, removing stop words
and stemming and removing stop words stemming and lowercasing are
the same obtained with no preprocessing applied. There is no point
in using any preprocessing with NB. In this case, the gap between the

14

best and the worst result is irrelevant, and we do not even highlight
the best results obtained almost in every preprocessing combination.
The LR shows the most variable behavior in terms of results. In fact,
the gap between the worst and the best case is of the 12% and the best
result is obtained when no preprocessing is applied. Contrary to what
happens for the IMDB dataset, removing stop words and lowercasing
is the worst preprocessing combination. From a general perspective,
the preprocessing impact on the 20N datasets is similar to the one
exhibited on the PCL dataset. In two out of three models used, there
are no benefits in applying some preprocessing to the data.

Regarding the 20N dataset, we do not show the table about the DL
and the Transformer models. If this table had been shown it would
be, in most cases, a set of full red and black bold numbers. For the
same reason, we do not show the box plot for all the models. In fact,
for this dataset, we have found very small variations applying different
preprocessing strategies. While the range 0.080-0.012 of the accuracies
for every model is very similar to the one shown for the NDL models,
employing the deep learning classifiers the results are often more
consistent and around 0.100 regardless of the preprocessing strategy
applied. However, it is worth noting that the CNN for the DL models
and RoBERTa for the Transformers are the top performing models using
removing stop words as a preprocessing strategy. As already stated, the
detailed results of our experiments are available on GitHub.

M. Siino et al.

Information Systems 121 (2024) 102342

No Preprocessing (DON)

Removing Stop Words (RSW)

<document>Issa #HASHTAG# kinda day U See ya'll there “g @ #URL#</document>
<document>Love listens to the other person and searches for clues on ways to serve</document>
<document>Angola: Feud over Jonas Sayimbi's remains [The Morning Call] #URL#</document>
<document>Uber reports a $1 billion loss in first quarterly earnings after IPO #URL#</document>
<document>Dem Jams is on Ice #HASHTAG# 9 Soweto #URL#</document>

<document>Issa #HASHTAG# kinda day ¥ ya'll %@ @ #URL#</document>
<document>Love listens person searches clues ways serve</document>
<document>Angola: Feud Jonas Savimbi's remains Morning #URL#</document>
<document>Uber reports $1 billion loss quarterly earnings IPO #URL#</document>
<document>Dem Jams Ice #HASHTAG# ? Soweto #URL#</document>

Fig. 6. Effect of no-preprocessing and of one of the preprocessing strategy on a small part of a single sample from the FNS dataset.

6. Discussion

From a theoretical point of view, we have empirically shown that
the text preprocessing strategy can affect the performance of any
modern classifiers, including the most recent Transformers-based ar-
chitectures (RQ1). Along the different datasets used, it can be seen
that preprocessing only marginally affects DL models, while the most
significant impact is on the Transformers (RQ2). It is likely that this
result depends on the word embedding for the two classes of models.
While the Transformers take advantage of a pretraining phase, the
embedding trained from scratch in the case of the DL models could
be the main cause of the less sensitivity to the preprocessing strategy
applied. In Fig. 4 similar results between the IMDB and the PCL dataset
can be observed. Interestingly, the NDL models are also sensitive to the
preprocessing strategy applied, but not as much as the Transformers.
It is worth mentioning that while for the IMDB and the PCL datasets
the impact of the preprocessing strategy can significantly affect the
outcomes, in the case of the FNS dataset, the only model really sensitive
to the preprocessing strategy is the XLNet. In the other cases the result
distributions prove that the most common preprocessing strategies,
alone or in combination, do not significantly change the outcomes. This
fact could be due to the sample size in the FNS dataset. As already
stated, each sample is made up by the last one hundred tweets of an
author. So the impact of preprocessing could be less significant because
of the more information available in each sample with respect to the
samples in the IMDB and in the PCL dataset.

As a consequence of the high impact of the preprocessing, even
simple classification methods can achieve state-of-the-art results, out-
performing more complex and recent pre-trained architectures (i.e., the
Transformer-based ones) (RQ3). We discovered that also for pre-trained
architectures, the preprocessing step plays a significant role, and it
is able to drastically revert the final outcome of a classifier. In other
words, this confirms that different and simple preprocessing strategies
constitute a critical aspect in the pipeline of any TC task. Eventually,
the preprocessing stage can also affect the classification performance
more than the classification model itself.

With regard to the box plots, it can be stated that appear irrele-
vant to focus on preprocessing when dealing with DL models without
pre-trained word embedding like the ones evaluated here. Similar
observations can be likely extended to datasets containing samples
with long text instead of just few sentences, as in the case of the
IMDB or the PCL datasets. Consequently, the preprocessing strategy to
apply when dealing with Transformer-based models should be carefully
evaluated, considering that the most used techniques not necessarily
lead to improvements compared to not performing preprocessing at all.
On the other hand, it is evident from the box plots in Fig. 4 that a wrong
preprocessing strategy in place of the best one can significantly change
the outcomes of the same model.

As proved by the results provided, the impact of preprocessing
is increasingly important depending on the size of the dataset sam-
ples. In fact, looking at the box plots, the larger the samples of the
dataset are (as in the case of FNS) the less the chosen preprocessing
strategy matters. Furthermore, Transformers-based models are the less
sensitive to the preprocessing combination employed, with respect to
not performing any preprocessing. Finally, while lowercasing can be
considered as the first choice when dealing with ELECTRA, removing

15

stop words and do not performing preprocessing should be considered
when using RoBERTa or XLNet. On the other hand, stemming should
be carefully employed when in combination with other techniques. In
fact, as discussed in the previous section, for any deep model used
in this study it often degrades performance. The only interesting and
surprisingly result is the case of the CNN on the PCL dataset. In this
case, the use of stemming leads to the best result obtained by the CNN.

For the multi-class classification task regarding the 20N dataset, we
have found a similar impact of preprocessing when looking at the PCL
dataset. This could be motivated by a similar structure of the samples
in the two datasets or, eventually, to similar contents. For this reason,
given different preprocessing strategy applied, a certain model could
respond similarly in terms of performance gap.

6.1. Qualitative analysis

In this section, we conduct a brief qualitative analysis to show
how the text preprocessing alters dataset samples and how the specific
strategy affects the performance.

As previously reported, the minor impact of preprocessing is visible
on the FNS dataset regardless of the model used. An example without
and with preprocessing (i.e., removing stop words) is shown in Fig. 6.
Any snippet of text enclosed within tags document represents tweets
from the same author. In this case, the classification task is about
classifying an author as an FNS or as a non-FNS. To accomplish the
task, 100 tweets written by the author are evaluated.

From the example shown, it is possible to understand that the
impact of preprocessing is minimal. This result is confirmed by the
results of the experiments. Especially considering that the one reported
is only an extract of a sample relating to an author and not the entire
sample including the other tweets. Therefore, what emerged from the
results of the experiments on the FNS dataset can be motivated by the
fact that having to classify an author using the set of tweets he wrote,
regardless of the preprocessing applied, the stylistic information that
allows to classify an author as FNS or non-FNS is however present.
Therefore, the impact of the preprocessing strategy used is minimal and
on a dataset of this type, preprocessing could be neglected.

On the other hand, looking at Fig. 7, it is easy to understand the
reason preprocessing is so relevant on datasets similar to the IMDB
one. The goal of classification in this case is to understand whether a
single review is positive or negative. In this case, the average length
of the single sample is shorter than that of the samples of the FNS
dataset. Therefore, one preprocessing choice rather than another can
drastically change the results obtained while maintaining the same
model. For example, in the case of XLNet, the best classification result
was obtained using the removal of stop words as the only preprocessing
strategy. Instead, the worst result was obtained by the strategy that
involves the removal of stop words followed by stemming. In this case,
the accuracy gap is above 18%. This result is easy to be understood,
looking at the three samples from the dataset shown in Fig. 7.

7. Conclusion and future works
In this study, we have presented the most popular preprocessing

techniques found in the literature. We have then evaluated and com-
pared the effect of the three most common preprocessing techniques

M. Siino et al.

Information Systems 121 (2024) 102342

Removing Stop Words (RSW)

Removing Stop Words -> Stemming - (R)->(S)

1a) Ned aKelly story Australians movie awful.
Australian story set America.
Ned Australian Irish accent...it worst film long time

2a) earlier film enjoyable trite.

Although Turturro actor generally Luzhin resembled

bad Rain Man impression portrayal genius semi-autistic man annoying.
Overall film hard ends pompous

in spite fine performances.

3a) worst movie Adam's point life,
he happy movie. 3 4 laughs

| fast button Don't waste time.

| wanted movies, sucked.

1b) Ned aKelli stori Australian movi aw .
Australian stori set America .
Ned Australian Irish accent ... it worst film long time

2b) earlier film enjoy trite.

Although Turturro actor gener Luzhin resembl

bad Rain Man impress portray geniu semi - autist man annoy.
Overal film hard end pompou in spite fine perform.

3b) worst movi Adam's point life,
he happi movi. 3 4 laugh

| fast button Don ' t wast time.

| want movi, suck.

Fig. 7. Effect of removing stop words only and of stemming after removing stop words on the IMDB dataset. Three different samples from the dataset are shown.

Table 7

Techniques discussed in related work that proposes at least three different preprocessing methods.
Article RNS RSA RCT RRP RPT RNB LOW RSW SCO POS LEM STM ECR EMO NEG WSG
Alam (2019) [118] X X X
Albalawai (2021) [119] X X X X X X X
Alzahrani (2021) [120] X X X X
Anandarajan (2019) [46] X X X X X X X X
Angiani (2016) [6] X X X X X X
Araslanov (2020) [121] X X X X X X
Babanejad (2020) [31] X X X X X X X X X
Bao (2014) [17] X X X X X
Denny (2018) [4] X X X X X
Duong (2021) [122] X X X X X X X X X X
Hacohen (2020) [123] X X X X X
Haddi (2013) [124] X X X X
Hickman (2022) [3] X X X X X X X X X
Jianqiang (2017) [20] X X X X X X
Kadhim (2018) [125] X X X
Kathuria (2021) [2] X X X X X X X X X X X
Koopman (2020) [126] X X X X X
Kowsari (2019) [127] X X X X X X
Kumar (2019) [128] X X X X X X X X
Kunilovskaya (2021) [129] X X X X X
Lison (2017) [130] X X X X
Mohammad (2018) [131] X X X X X X
Naseem (2021) [14] X X X X X X X X X X X X
Petrovic (2019) [132] X X X X
Pradha (2019) [133] X X X X X X X
Rosid (2020) [134] X X X
Singh (2016) [12] X X X X X
Smelyakov (2020) [135] X X X
Symeonidis (2018) [13] X X X X X X X X X X X X X X
Toman (2006) [136] X X X X X
Uysal (2014) [48] X X X
Zong (2021) [137] X X X X X

on four datasets from different domains. To determine the impact
of various preprocessing combination on various datasets, extensive
testing was done. Nine machine learning models were used to evaluate
each preprocessing method. The article also lists the worst- and best-
performing strategies in terms of the dataset and the model evaluated,
and it suggests techniques that, whether employed alone or in combina-
tion, consistently outperform the others. Results vary also in relation to
the different algorithm, which demonstrates that selecting a learning al-
gorithm that is appropriate for the task at hand is crucial for enhancing
the TC performance. The best preprocessing strategies, either separately
or in combination, that produce the best classifier performance are
suggested following tests with various strategies and observation of
the interactions of the preprocessing method employed. Our analysis
emphasizes how crucial preparing data is to ensure consistency when
comparing various learning models. Moreover, our research highlights
that, depending on the preprocessing method selected, the results are
highly variable, also using modern Transformers. Our findings ought
to motivate researchers to pick their preprocessing choices carefully
and to document those choices when assessing or contrasting various
models.

While one could conclude that removing stop words and lower-
casing are two well-performing preprocessing technique, based on our

16

study, it should be noticed that performing no preprocessing at all, is
rarely the best choice for optimal results. The recent significant growth
in model understanding capabilities (e.g., Transformers) has caused
the emphasis to shift away from data and toward the evolution and
development of newer and more powerful models. With this work,
we aimed to draw attention to and explore the importance of the
impact of the source data and associated preprocessing, which should
not be disregarded. Specific preprocessing can aid in both increasing
effectiveness and performance to better understand the behavior of the
most recent Transformers-based NLP models, such as ChatGPT. Because
of the very automated and promising performance of Transformers,
the current trend is to underestimate the best preprocessing method
of text (and this is proven by the increasing lack of attention on
the subject). However, it is just on the Transformers that we have
found the greatest gap between the best and the worst combination
of preprocessing techniques used. This increased understanding could
lead to the creation of newer models that are not only improved in
performance but also developed more consciously.

Future research in this area can further look into the impact of
these and other preprocessing approaches for NLP tasks others than
TC. Also, other preprocessing technique combinations and how they
interact could be further investigated. Future studies could eventually

M. Siino et al.

investigate other classes of models and the impact of the preprocessing
in relation to the samples size in the dataset evaluated. In fact, as
also noted in [99,111,138], concerning three different author profiling
tasks, the best performance obtained by the NDL and the DL models
in place of Transformers should be investigated. For all of these author
profiling datasets, the impact of preprocessing could be investigated to
further corroborate the findings reported in our study. Finally, different
preprocessing methods could also be used to further investigate the
behaviors of DL and Transformer-based models. The benefit could be
to unveil some interesting mechanisms happening under the hood, with
particular regard to the field of the deep learning.

CRediT authorship contribution statement

Marco Siino: Conceptualization, Formal analysis, Investigation,
Methodology, Resources, Software, Validation, Visualization, Writing
- original draft, Writing - review & editing, Supervision. Ilenia Tin-
nirello: Writing - review & editing. Marco La Cascia: Writing - review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data that supports the findings of this study are available from the
references specified in the Section 4.

Acknowledgments

The authors would like to thank Elisa Di Nuovo for assisting in the
proofreading of this paper. The authors would also like to thank the
Editor and the anonymous reviewers for their valuable advices.

References

[1] D.W. Otter, J.R. Medina, J.K. Kalita, A survey of the usages of deep learning
for natural language processing, IEEE Trans. Neural Netw. Learn. Syst. 32 (2)
(2021) 604-624, http://dx.doi.org/10.1109/TNNLS.2020.2979670.

[2] A. Kathuria, A. Gupta, R. Singla, A review of tools and techniques for
preprocessing of textual data, Comput. Methods Data Eng. (2021) 407-422.

[3] L. Hickman, S. Thapa, L. Tay, M. Cao, P. Srinivasan, Text preprocessing for
text mining in organizational research: Review and recommendations, Organ.
Res. Methods 25 (1) (2022) 114-146.

[4] M.J. Denny, A. Spirling, Text preprocessing for unsupervised learning: Why it
matters, when it misleads, and what to do about it, Political Anal. 26 (2) (2018)
168-189.

[5] F.S. Al-Anzi, D. AbuZeina, Stemming impact on arabic text categorization
performance: A survey, in: 2015 5th International Conference on Information
& Communication Technology and Accessibility, ICTA, IEEE, 2015, pp. 1-7.

[6] G. Angiani, L. Ferrari, T. Fontanini, P. Fornacciari, E. Iotti, F. Magliani,
S. Manicardi, A comparison between preprocessing techniques for sentiment
analysis in Twitter, in: CEUR Workshop Proceedings. Vol. 1748, KDWeb, 2016,
pp. 1-11.

[7] S. Agarwal, S. Godbole, D. Punjani, S. Roy, How much noise is too much: A
study in automatic text classification, in: Seventh IEEE International Conference
on Data Mining, ICDM 2007, IEEE, 2007, pp. 3-12.

[8] H. Uguz, A two-stage feature selection method for text categorization by
using information gain, principal component analysis and genetic algorithm,
Knowl.-Based Syst. 24 (7) (2011) 1024-1032.

[9] J.T. Hancock, C. Landrigan, C. Silver, Expressing emotion in text-based com-

munication, in: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 2007, pp. 929-932.

H. Jamshed, S.A. Khan, M. Khurram, S. Inayatullah, S. Athar, Data preprocess-

ing: A preliminary step for web data mining, 3c Tecnol. Glosas Innov. Apl.

Pyme 8 (1) (2019) 206-221.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L.

Kaiser, 1. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst.

30 (2017).

[10]

[11]

17

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Information Systems 121 (2024) 102342

T. Singh, M. Kumari, Role of text pre-processing in twitter sentiment analysis,
Procedia Comput. Sci. 89 (2016) 549-554.

S. Symeonidis, D. Effrosynidis, A. Arampatzis, A comparative evaluation of
pre-processing techniques and their interactions for twitter sentiment analysis,
Expert Syst. Appl. 110 (2018) 298-310.

U. Naseem, I. Razzak, P.W. Eklund, A survey of pre-processing techniques to
improve short-text quality: a case study on hate speech detection on twitter,
Multimedia Tools Appl. 80 (28) (2021) 35239-35266.

A. Kurniasih, L.P. Manik, On the role of text preprocessing in BERT embedding-
based DNNs for classifying informal texts, Int. J. Adv. Comput. Sci. Appl. 13
(6) (2022) 927-934, http://dx.doi.org/10.14569/1JACSA.2022.01306109.

U.H. Hair Zaki, R. Ibrahim, S. Abd Halim, LI. Kamsani, Text detergent: The
systematic combination of text pre-processing techniques for social media
sentiment analysis, in: International Conference of Reliable Information and
Communication Technology, Springer, 2022, pp. 50-61.

Y. Bao, C. Quan, L. Wang, F. Ren, The role of pre-processing in twitter sentiment
analysis, in: International Conference on Intelligent Computing, Springer, 2014,
pp. 615-624.

N. Garg, K. Sharma, Text pre-processing of multilingual for sentiment analysis
based on social network data., Int. J. Electr. Comput. Eng.(2088-8708) 12 (1)
(2022).

M. Arief, M.B.M. Deris, Text preprocessing impact for sentiment classification
in product review, in: 2021 Sixth International Conference on Informatics and
Computing, ICIC, IEEE, 2021, pp. 1-7.

Z. Jiangiang, G. Xiaolin, Comparison research on text pre-processing methods
on twitter sentiment analysis, IEEE Access 5 (2017) 2870-2879.

W. Cunha, V. Mangaravite, C. Gomes, S. Canuto, E. Resende, C. Nascimento,
F. Viegas, C. Franca, W.S. Martins, J.M. Almeida, T. Rosa, L. Rocha, M.A.
Gongalves, On the cost-effectiveness of neural and non-neural approaches
and representations for text classification: A comprehensive comparative
study, Inf. Process. Manage. 58 (3) (2021) 102481, http://dx.doi.org/10.
1016/j.ipm.2020.102481, URL https://www.sciencedirect.com/science/article/
pii/S0306457320309705.

J.A. Gonzélez, L.-F. Hurtado, F. Pla, Transformer based contextualization of
pre-trained word embeddings for irony detection in Twitter, Inf. Process.
Manage. 57 (4) (2020) 102262, http://dx.doi.org/10.1016/].ipm.2020.102262,
URL https://www.sciencedirect.com/science/article/pii/S0306457320300200.
W. Cunha, S. Canuto, F. Viegas, T. Salles, C. Gomes, V. Mangaravite, E.
Resende, T. Rosa, M.A. Gongalves, L. Rocha, Extended pre-processing pipeline
for text classification: On the role of meta-feature representations, sparsification
and selective sampling, Inf. Process. Manage. 57 (4) (2020) 102263, http:
//dx.doi.org/10.1016/j.ipm.2020.102263, URL https://www.sciencedirect.com/
science/article/pii/S030645731931461X.

M. Hassler, G. Fliedl, Text preparation through extended tokenization, WIT
Trans. Inf. Commun. Technol. 37 (2006).

P. McNamee, J. Mayfield, Character n-gram tokenization for European language
text retrieval, Inf. Retr. 7 (1) (2004) 73-97.

S. Vijayarani, R. Janani, Text mining: open source tokenization tools-an
analysis, Adv. Comput. Intell. Int. J.(ACII) 3 (1) (2016) 37-47.

L.A. Mullen, K. Benoit, O. Keyes, D. Selivanov, J. Arnold, Fast, consistent
tokenization of natural language text, J. Open Source Softw. 3 (23) (2018)
655.

R. Sennrich, B. Haddow, A. Birch, Neural machine translation of rare words
with subword units, in: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 2016, pp.
1715-1725.

T. Kudo, Subword regularization: Improving neural network translation models
with multiple subword candidates, in: Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), 2018,
pp. 66-75.

M. Schuster, K. Nakajima, Japanese and korean voice search, in: 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP,
IEEE, 2012, pp. 5149-5152.

N. Babanejad, A. Agrawal, A. An, M. Papagelis, A comprehensive analysis
of preprocessing for word representation learning in affective tasks, in: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, 2020, pp. 5799-5810,
http://dx.doi.org/10.18653/v1/2020.acl-main.514, URL https://aclanthology.
org/2020.acl-main.514.

A. Agarwal, B. Xie, I. Vovsha, O. Rambow, R. Passonneau, Sentiment analysis
of twitter data, in: Proceedings of the Workshop on Language in Social Media,
LSM 2011, 2011, pp. 30-38.

L. Ketsbaia, B. Issac, X. Chen, Detection of hate tweets using machine learning
and deep learning, in: 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications, TrustCom, IEEE, 2020,
pp. 751-758.

S. Indra, L. Wikarsa, R. Turang, Using logistic regression method to classify
tweets into the selected topics, in: 2016 International Conference on Advanced
Computer Science and Information Systems, Icacsis, IEEE, 2016, pp. 385-390.

http://dx.doi.org/10.1109/TNNLS.2020.2979670
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb2
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb2
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb2
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb3
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb3
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb3
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb3
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb3
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb4
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb4
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb4
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb4
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb4
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb5
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb5
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb5
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb5
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb5
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb6
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb6
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb6
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb6
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb6
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb6
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb6
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb7
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb7
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb7
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb7
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb7
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb8
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb8
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb8
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb8
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb8
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb9
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb9
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb9
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb9
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb9
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb10
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb10
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb10
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb10
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb10
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb11
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb11
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb11
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb11
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb11
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb12
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb12
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb12
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb13
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb13
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb13
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb13
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb13
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb14
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb14
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb14
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb14
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb14
http://dx.doi.org/10.14569/IJACSA.2022.01306109
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb16
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb16
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb16
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb16
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb16
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb16
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb16
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb17
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb17
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb17
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb17
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb17
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb18
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb18
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb18
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb18
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb18
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb19
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb19
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb19
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb19
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb19
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb20
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb20
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb20
http://dx.doi.org/10.1016/j.ipm.2020.102481
http://dx.doi.org/10.1016/j.ipm.2020.102481
http://dx.doi.org/10.1016/j.ipm.2020.102481
https://www.sciencedirect.com/science/article/pii/S0306457320309705
https://www.sciencedirect.com/science/article/pii/S0306457320309705
https://www.sciencedirect.com/science/article/pii/S0306457320309705
http://dx.doi.org/10.1016/j.ipm.2020.102262
https://www.sciencedirect.com/science/article/pii/S0306457320300200
http://dx.doi.org/10.1016/j.ipm.2020.102263
http://dx.doi.org/10.1016/j.ipm.2020.102263
http://dx.doi.org/10.1016/j.ipm.2020.102263
https://www.sciencedirect.com/science/article/pii/S030645731931461X
https://www.sciencedirect.com/science/article/pii/S030645731931461X
https://www.sciencedirect.com/science/article/pii/S030645731931461X
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb24
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb24
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb24
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb25
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb25
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb25
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb26
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb26
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb26
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb27
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb27
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb27
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb27
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb27
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb28
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb28
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb28
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb28
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb28
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb28
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb28
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb29
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb29
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb29
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb29
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb29
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb29
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb29
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb30
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb30
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb30
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb30
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb30
http://dx.doi.org/10.18653/v1/2020.acl-main.514
https://aclanthology.org/2020.acl-main.514
https://aclanthology.org/2020.acl-main.514
https://aclanthology.org/2020.acl-main.514
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb32
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb32
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb32
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb32
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb32
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb33
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb33
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb33
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb33
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb33
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb33
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb33
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb34
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb34
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb34
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb34
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb34

M. Siino et al.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

A. Aljebreen, W. Meng, E. Dragut, Segmentation of tweets with urls and its
applications to sentiment analysis, in: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, 2021, pp. 12480-12488.

F. Resyanto, Y. Sibaroni, A. Romadhony, Choosing the most optimum text
preprocessing method for sentiment analysis: Case: iphone tweets, in: 2019
Fourth International Conference on Informatics and Computing, ICIC, IEEE,
2019, pp. 1-5.

E. Borra, B. Rieder, Programmed method: Developing a toolset for capturing
and analyzing tweets, Aslib J. Inf. Manag. 66 (3) (2014) 262-278.

S. Benzarti, R. Faiz, EgoTR: Personalized tweets recommendation approach, in:
Intelligent Systems in Cybernetics and Automation Theory: Proceedings of the
4th Computer Science on-Line Conference 2015 (CSOC2015), Vol 2: Intelligent
Systems in Cybernetics and Automation Theory, Springer, 2015, pp. 227-238.
L. Tan, H. Zhang, C. Clarke, M. Smucker, Lexical comparison between wikipedia
and twitter corpora by using word embeddings, in: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 2:
Short Papers), 2015, pp. 657-661.

E. Kouloumpis, T. Wilson, J. Moore, Twitter sentiment analysis: The good the
bad and the omg!, in: Proceedings of the International AAAI Conference on
Web and Social Media, Vol. 5, 2011, pp. 538-541.

D. Sagolla, 140 Characters: A Style Guide for the Short Form, John Wiley &
Sons, 2009.

M. Thelwall, The heart and soul of the web? Sentiment strength detection in the
social web with SentiStrength, in: Cyberemotions, Springer, 2017, pp. 119-134.
A. Balahur, Sentiment analysis in social media texts, in: Proceedings of the 4th
Workshop on Computational Approaches To Subjectivity, Sentiment and Social
Media Analysis, 2013, pp. 120-128.

C. Lin, Y. He, Joint sentiment/topic model for sentiment analysis, in: Proceed-
ings of the 18th ACM Conference on Information and Knowledge Management,
2009, pp. 375-384.

M. Siino, E. Di Nuovo, T. Ilenia, M. La Cascia, Detection of hate speech
spreaders using convolutional neural networks, in: PAN 2021 Profiling Hate
Speech Spreaders on Twitter@ CLEF, vol. 2936, CEUR, 2021, pp. 2126-2136.
M. Anandarajan, C. Hill, T. Nolan, Text preprocessing, in: Practical Text
Analytics, Springer, 2019, pp. 45-59.

J. Camacho-Collados, M.T. Pilehvar, On the role of text preprocessing in neural
network architectures: An evaluation study on text categorization and sentiment
analysis, in: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, 2018, pp. 40-46.

AK. Uysal, S. Gunal, The impact of preprocessing on text classification, Inf.
Process. Manag. 50 (1) (2014) 104-112.

N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Radosavljevic, N. Bhamidipati,
Hate speech detection with comment embeddings, in: Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 29-30.

M. Gerlach, H. Shi, L.A.N. Amaral, A universal information theoretic approach
to the identification of stopwords, Nat. Mach. Intell. 1 (12) (2019) 606-612.
H.P. Luhn, Key word-in-context index for technical literature (kwic index), Am.
Document. 11 (4) (1960) 288-295.

H. Saif, M. Fernandez, Y. He, H. Alani, On stopwords, filtering and data
sparsity for sentiment analysis of Twitter, in: Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evaluation, LREC'14, 2014, pp.
810-817.

M. Makrehchi, M.S. Kamel, Automatic extraction of domain-specific stopwords
from labeled documents, in: Advances in Information Retrieval: 30th European
Conference on IR Research, ECIR 2008, Glasgow, UK, March 30-April 3, 2008.
Proceedings 30, Springer, 2008, pp. 222-233.

C. Van Rijsbergen, Information Retrieval, second ed., Butterworth-Heinemann
Newton, MA, USA, 1979.

C. Courseault Trumbach, D. Payne, Identifying synonymous concepts in
preparation for technology mining, J. Inf. Sci. 33 (6) (2007) 660-677.

T.M. Cover, Elements of Information Theory, John Wiley & Sons, 1999.
R.T.-W. Lo, B. He, 1. Ounis, Automatically building a stopword list for an
information retrieval system, in: Journal on Digital Information Management:
Special Issue on the 5th Dutch-Belgian Information Retrieval Workshop (DIR),
vol.5, 2005, pp. 17-24.

J.M. Joyce, Kullback-leibler divergence, in: International Encyclopedia of
Statistical Science, Springer, 2011, pp. 720-722.

T. Mullen, R. Malouf, A preliminary investigation into sentiment analysis
of informal political discourse, in: AAAI Spring Symposium: Computational
Approaches To Analyzing Weblogs, 2006, pp. 159-162.

D. Virmani, S. Taneja, A text preprocessing approach for efficacious information
retrieval, in: Smart Innovations in Communication and Computational Sciences,
Springer, 2019, pp. 13-22.

C.D. Manning, H. Schiitze, G. Weikurn, Foundations of statistical natural
language processing, SIGMOD Rec. 31 (3) (2002) 37-38.

L. Barbosa, J. Feng, Robust sentiment detection on Twitter from biased
and noisy data, in: Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, COLING ’10, Association for Computational
Linguistics, USA, 2010, pp. 36-44.

18

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Information Systems 121 (2024) 102342

E. Boiy, P. Hens, K. Deschacht, M. Moens, Automatic sentiment analysis in on-
line text, in: Openness in Digital Publishing: Awareness, Discovery and Access -
Proceedings of the 11th International Conference on Electronic Publishing Held
in Vienna - ELPUB 2007, Vienna, Austria, June 13-15, 2007. Proceedings, 2007,
pp. 349-360, URL https://nbn-resolving.org/urn:nbn:se:elpub-138_elpub2007.
E. Guzman, W. Maalej, How do users like this feature? A fine grained sentiment
analysis of app reviews, in: 2014 IEEE 22nd International Requirements
Engineering Conference, RE, 2014, pp. 153-162, http://dx.doi.org/10.1109/RE.
2014.6912257.

E. Leopold, J. Kindermann, Text categorization with support vector machines.
How to represent texts in input space? Mach. Learn. 46 (1) (2002) 423-444.
1. Kuznetsov, I. Gurevych, From text to lexicon: Bridging the gap between word
embeddings and lexical resources, in: Proceedings of the 27th International
Conference on Computational Linguistics, 2018, pp. 233-244.

D.I. Hernandez Farias, R.M. Ortega-Mendoza, M. Montes-y Gémez, Exploring the
use of psycholinguistic information in author profiling, in: Mexican Conference
on Pattern Recognition, Springer, 2019, pp. 411-421.

J.B. Lovins, Development of a stemming algorithm., Mech. Transl. Comput.
Linguist. 11 (1-2) (1968) 22-31.

M.F. Porter, An algorithm for suffix stripping, Program Electron. Libr. Inf. Syst.
14 (3) (1980) 130-137.

V. Srividhya, R. Anitha, Evaluating preprocessing techniques in
categorization, Int. J. Comput. Sci. Appl. 47 (11) (2010) 49-51.

S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text
mining-an overview, Int. J. Comput. Sci. Commun. Netw. 5 (1) (2015) 7-16.
F. Gemci, K.A. Peker, Extracting turkish tweet topics using LDA, in: 2013
8th International Conference on Electrical and Electronics Engineering, ELECO,
IEEE, 2013, pp. 531-534.

A.A. Akin, M.D. Akin, Zemberek, an open source NLP framework for turkic
languages, Structure 10 (2007) 1-5.

F. Can, S. Kocberber, E. Balcik, C. Kaynak, H.C. Ocalan, O.M. Vursavas,
Information retrieval on turkish texts, J. Am. Soc. Inf. Sci. Technol. 59 (3)
(2008) 407-421.

V. Gupta, G.S. Lehal, Punjabi language stemmer for nouns and proper names, in:
Proceedings of the 2nd Workshop on South Southeast Asian Natural Language
Processing, WSSANLP, 2011, pp. 35-39.

C. Moral, A. de Antonio, R. Imbert, J. Ramirez, A survey of stemming algorithms
in information retrieval., Inf. Res. Int. Electron. J. 19 (1) (2014).

C.D. Paice, Another stemmer, SIGIR Forum 24 (3) (1990) 5661, http://dx.doi.
org/10.1145/101306.101310.

A. Bakliwal, P. Arora, S. Madhappan, N. Kapre, M. Singh, V. Varma, Mining
sentiments from tweets, in: Proceedings of the 3rd Workshop in Computational
Approaches To Subjectivity and Sentiment Analysis, 2012, pp. 11-18.

A. Hogenboom, D. Bal, F. Frasincar, M. Bal, F. De Jong, U. Kaymak, Exploiting
emoticons in sentiment analysis, in: Proceedings of the 28th Annual ACM
Symposium on Applied Computing, 2013, pp. 703-710.

H. Wang, J.A. Castanon, Sentiment expression via emoticons on social media,
in: 2015 leee International Conference on Big Data, Big Data, IEEE, 2015, pp.
2404-2408.

S. Pecar, M. Simko, M. Bielikova, Sentiment analysis of customer reviews:
Impact of text pre-processing, in: 2018 World Symposium on Digital Intelligence
for Systems and Machines, DISA, 2018, pp. 251-256, http://dx.doi.org/10.
1109/DISA.2018.8490619.

G.A. Miller, WordNet: a lexical database for english, Commun. ACM 38 (11)
(1995) 39-41.

D.D. Palmer, A trainable rule-based algorithm for word segmentation, in:
35th Annual Meeting of the Association for Computational Linguistics and
8th Conference of the European Chapter of the Association for Computational
Linguistics, 1997, pp. 321-328.

H. Yamaguchi, K. Tanaka-Ishii, Text segmentation by language using mini-
mum description length, in: Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 2012, pp.
969-978.

K. Shah, H. Patel, D. Sanghvi, M. Shah, A comparative analysis of logistic
regression, random forest and knn models for the text classification, Augment.
Hum. Res. 5 (1) (2020) 1-16.

M. Siino, L. Tinnirello, M. La Cascia, T100: A modern classic ensemble to profile
irony and stereotype spreaders, in: CEUR Workshop Proceedings, Vol. 3180,
CEUR, 2022, pp. 2666-2674.

R.H. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound
constrained optimization, SIAM J. Sci. Comput. 16 (5) (1995) 1190-1208.

A. McCallum, K. Nigam, A comparison of event models for naive bayes text
classification, in: AAAI-98 Workshop on Learning for Text Categorization, Vol.
752, Citeseer, 1998, pp. 41-48.

S. Raschka, Naive bayes and text classification i-introduction and theory, 2014,
arXiv preprint arXiv:1410.5329.

F. Colas, P. Brazdil, Comparison of SVM and some older classification algo-
rithms in text classification tasks, in: IFIP International Conference on Artificial
Intelligence in Theory and Practice, Springer, 2006, pp. 169-178.

text

http://refhub.elsevier.com/S0306-4379(23)00178-3/sb35
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb35
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb35
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb35
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb35
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb36
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb36
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb36
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb36
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb36
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb36
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb36
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb37
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb37
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb37
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb38
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb38
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb38
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb38
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb38
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb38
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb38
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb39
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb39
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb39
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb39
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb39
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb39
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb39
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb39
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb39
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb40
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb40
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb40
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb40
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb40
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb41
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb41
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb41
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb42
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb42
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb42
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb43
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb43
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb43
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb43
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb43
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb44
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb44
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb44
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb44
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb44
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb45
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb45
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb45
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb45
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb45
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb46
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb46
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb46
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb47
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb47
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb47
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb47
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb47
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb47
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb47
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb48
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb48
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb48
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb49
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb49
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb49
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb49
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb49
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb50
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb50
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb50
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb51
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb51
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb51
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb52
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb52
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb52
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb52
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb52
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb52
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb52
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb53
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb53
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb53
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb53
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb53
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb53
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb53
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb54
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb54
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb54
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb55
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb55
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb55
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb56
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb57
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb57
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb57
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb57
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb57
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb57
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb57
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb58
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb58
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb58
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb59
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb59
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb59
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb59
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb59
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb60
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb60
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb60
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb60
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb60
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb61
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb61
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb61
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb62
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb62
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb62
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb62
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb62
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb62
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb62
https://nbn-resolving.org/urn:nbn:se:elpub-138_elpub2007
http://dx.doi.org/10.1109/RE.2014.6912257
http://dx.doi.org/10.1109/RE.2014.6912257
http://dx.doi.org/10.1109/RE.2014.6912257
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb65
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb65
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb65
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb66
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb66
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb66
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb66
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb66
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb67
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb67
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb67
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb67
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb67
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb68
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb68
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb68
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb69
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb69
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb69
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb70
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb70
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb70
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb71
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb71
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb71
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb72
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb72
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb72
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb72
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb72
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb73
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb73
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb73
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb74
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb74
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb74
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb74
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb74
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb75
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb75
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb75
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb75
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb75
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb76
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb76
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb76
http://dx.doi.org/10.1145/101306.101310
http://dx.doi.org/10.1145/101306.101310
http://dx.doi.org/10.1145/101306.101310
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb78
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb78
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb78
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb78
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb78
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb79
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb79
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb79
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb79
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb79
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb80
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb80
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb80
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb80
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb80
http://dx.doi.org/10.1109/DISA.2018.8490619
http://dx.doi.org/10.1109/DISA.2018.8490619
http://dx.doi.org/10.1109/DISA.2018.8490619
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb82
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb82
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb82
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb83
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb83
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb83
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb83
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb83
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb83
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb83
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb84
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb84
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb84
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb84
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb84
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb84
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb84
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb85
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb85
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb85
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb85
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb85
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb86
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb86
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb86
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb86
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb86
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb87
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb87
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb87
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb88
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb88
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb88
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb88
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb88
http://arxiv.org/abs/1410.5329
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb90
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb90
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb90
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb90
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb90

M. Siino et al.

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Z. Liu, X. Lv, K. Liu, S. Shi, Study on SVM compared with the other text
classification methods, in: 2010 Second International Workshop on Education
Technology and Computer Science, Vol. 1, IEEE, 2010, pp. 219-222.

D. Croce, D. Garlisi, M. Siino, An SVM ensamble approach to detect irony and
stereotype spreaders on Twitter, in: CEUR Workshop Proceedings, Vol. 3180,
CEUR, 2022, pp. 2426-2432.

C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM
Trans. Intell. Syst. Technol. (TIST) 2 (3) (2011) 1-27.

W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous
activity, Bull. Math. Biophys. 5 (4) (1943) 115-133.

F. Rosenblatt, The perceptron: a probabilistic model for information storage and
organization in the brain., Psychol. Rev. 65 (6) (1958) 386.

S. Mangione, M. Siino, G. Garbo, Improving irony and stereotype spreaders
detection using data augmentation and convolutional neural network, in: CEUR
Workshop Proceedings, Vol. 3180, CEUR, 2022, pp. 2585-2593.

M. Siino, I. Tesconi, Profiling cryptocurrency influencers with few-shot learning
using data augmentation and electra, in: CEUR Workshop Proceedings, Vol.
3497, CEUR, 2023, pp. 2772-2781.

M. Siino, I. Tinnirello, XInet with data augmentation to profile cryptocurrency
influencers, in: CEUR Workshop Proceedings, Vol. 3497, CEUR, 2023, pp.
2763-2771.

F. Rangel, G.L. De la Pefa Sarracén, B. Chulvi, E. Fersini, P. Rosso, Profiling
hate speech spreaders on Twitter task at PAN 2021., in: CLEF (Working Notes),
2021, pp. 1772-1789.

J. Nowak, A. Taspinar, R. Scherer, LSTM recurrent neural networks for short
text and sentiment classification, in: International Conference on Artificial
Intelligence and Soft Computing, Springer, 2017, pp. 553-562.

M. Siino, M. La Cascia, I. Tinnirello, Mcrock at SemEval-2022 task 4: Pa-
tronizing and condescending language detection using multi-channel CNN,
hybrid LSTM, distilBERT and XLNet, in: Proceedings of the 16th International
Workshop on Semantic Evaluation, SemEval-2022, Association for Computa-
tional Linguistics, Seattle, United States, 2022, pp. 409-417, http://dx.doi.org/
10.18653/v1/2022.semeval-1.55, URL https://aclanthology.org/2022.semeval-
1.55.

D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized bert pretraining
approach, 2019, arXiv preprint arXiv:1907.11692.

K. Clark, M.-T. Luong, Q.V. Le, C.D. Manning, Electra: Pre-training text encoders
as discriminators rather than generators, 2020, arXiv preprint arXiv:2003.
10555.

F. Lomonaco, G. Donabauer, M. Siino, COURAGE at CheckThat! 2022: Harmful
tweet detection using graph neural networks and ELECTRA, in: Working Notes
of CLEF 2022—Conference and Labs of the Evaluation Forum, CLEF ’2022,
Bologna, Italy, 2022, pp. 573-583.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R.R. Salakhutdinov, Q.V. Le, Xlnet:
Generalized autoregressive pretraining for language understanding, Adv. Neural
Inf. Process. Syst. 32 (2019).

G. Chen, S. Ma, Y. Chen, L. Dong, D. Zhang, J. Pan, W. Wang, F. Wei, Zero-shot
cross-lingual transfer of neural machine translation with multilingual pretrained
encoders, in: Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, 2021, pp. 15-26.

Y. Li, R. Yu, C. Shahabi, Y. Liu, Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting, 2017, arXiv preprint arXiv:1707.01926.
P. Pradhyumna, G.P. Shreya, Mohana, Graph neural network (GNN) in image
and video understanding using deep learning for computer vision applications,
in: 2021 Second International Conference on Electronics and Sustainable
Communication Systems, ICESC, IEEE, 2021, pp. 1183-1189.

M. Siino, M. La Cascia, I. Tinnirello, WhoSNext: Recommending Twitter users
to follow using a spreading activation network based approach, in: 2020
International Conference on Data Mining Workshops, ICDMW, IEEE, 2020, pp.
62-70.

F. Rangel, A. Giachanou, B.H.H. Ghanem, P. Rosso, Overview of the 8th author
profiling task at pan 2020: Profiling fake news spreaders on twitter, in: CEUR
Workshop Proceedings, Vol. 2696, Sun SITE Central Europe, 2020, pp. 1-18.
C. Pérez-Almendros, L.E. Anke, S. Schockaert, SemEval-2022 task 4: Patronizing
and condescending language detection, in: Proceedings of the 16th Inter-
national Workshop on Semantic Evaluation, SemEval-2022, Association for
Computational Linguistics, 2022, pp. 298-307.

C. Pérez-Almendros, L.E. Anke, S. Schockaert, Don’t patronize me!
annotated dataset with patronizing and condescending language towards vul-
nerable communities, in: Proceedings of the 28th International Conference on
Computational Linguistics, 2020, pp. 5891-5902.

A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, C. Potts, Learning word
vectors for sentiment analysis, in: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies,
Association for Computational Linguistics, Portland, Oregon, USA, 2011, pp.
142-150, URL http://www.aclweb.org/anthology/P11-1015.

K. Lang, Newsweeder: Learning to filter netnews, in: Machine Learning
Proceedings 1995, Elsevier, 1995, pp. 331-339.

an

19

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Information Systems 121 (2024) 102342

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T.
Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y.
Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, A. Rush,
Transformers: State-of-the-art natural language processing, in: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, 2020, pp. 38-45.

M. Siino, E. Di Nuovo, I. Tinnirello, M. La Cascia, Fake news spreaders
detection: Sometimes attention is not all you need, Information 13 (9) (2022)
426.

S. Alam, N. Yao, The impact of preprocessing steps on the accuracy of machine
learning algorithms in sentiment analysis, Comput. Math. Organ. Theory 25 (3)
(2019) 319-335.

Y. Albalawi, J. Buckley, N.S. Nikolov, Investigating the impact of pre-
processing techniques and pre-trained word embeddings in detecting arabic
health information on social media, J. Big Data 8 (1) (2021) 1-29.

E. Alzahrani, L. Jololian, How different text-preprocessing techniques using
the BERT model affect the gender profiling of authors, 2021, arXiv preprint
arXiv:2109.13890.

E. Araslanov, E. Komotskiy, E. Agbozo, Assessing the impact of text prepro-
cessing in sentiment analysis of short social network messages in the Russian
language, in: 2020 International Conference on Data Analytics for Business and
Industry: Way Towards a Sustainable Economy, ICDABI, IEEE, 2020, pp. 1-4.
H.-T. Duong, T.-A. Nguyen-Thi, A review: preprocessing techniques and data
augmentation for sentiment analysis, Comput. Soc. Netw. 8 (1) (2021) 1-16.
Y. HaCohen-Kerner, D. Miller, Y. Yigal, The influence of preprocessing on text
classification using a bag-of-words representation, PLoS One 15 (5) (2020)
e0232525.

E. Haddi, X. Liu, Y. Shi, The role of text pre-processing in sentiment analysis,
Procedia Comput. Sci. 17 (2013) 26-32.

AL Kadhim, An evaluation of preprocessing techniques for text classification,
Int. J. Comput. Sci. Inf. Secur.(IJCSIS) 16 (6) (2018).

C. Koopman, A. Wilhelm, The effect of preprocessing on short document
clustering, Arch. Data Sci. A 6 (1) (2020) 01.

K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, D. Brown,
Text classification algorithms: A survey, Information 10 (4) (2019).

P. Kumar, L. Dhinesh Babu, Novel text preprocessing framework for sentiment
analysis, in: Smart Intelligent Computing and Applications, Springer, 2019, pp.
309-317.

M. Kunilovskaya, A. Plum, Text preprocessing and its implications in a
digital humanities project, in: Proceedings of the Student Research Workshop
Associated with RANLP 2021, 2021, pp. 85-93.

P. Lison, A. Kutuzov, Redefining context windows for word embedding models:
An experimental study, in: Proceedings of the 21st Nordic Conference on
Computational Linguistics, 2017, pp. 284-288.

F. Mohammad, Is preprocessing of text really worth your time for toxic
comment classification? in: Proceedings on the International Conference on
Artificial Intelligence, ICAI, The Steering Committee of The World Congress
in Computer Science, Computer ..., 2018, pp. 447-453.

D. Petrovi¢, M. Stankovi¢, The influence of text preprocessing methods and
tools on calculating text similarity, Facta Univ. Ser. Math. Inform. 34 (2019)
973-994.

S. Pradha, M.N. Halgamuge, N.T.Q. Vinh, Effective text data preprocessing tech-
nique for sentiment analysis in social media data, in: 2019 11th International
Conference on Knowledge and Systems Engineering, KSE, IEEE, 2019, pp. 1-8.
M.A. Rosid, A.S. Fitrani, LR.I. Astutik, N.I. Mulloh, H.A. Gozali, Improving
text preprocessing for student complaint document classification using sastrawi,
in: IOP Conference Series: Materials Science and Engineering, Vol. 874, IOP
Publishing, 2020, 012017.

K. Smelyakov, D. Karachevtsev, D. Kulemza, Y. Samoilenko, O. Patlan, A.
Chupryna, Effectiveness of preprocessing algorithms for natural language pro-
cessing applications, in: 2020 IEEE International Conference on Problems
of Infocommunications. Science and Technology, PIC S&T, IEEE, 2020, pp.
187-191.

M. Toman, R. Tesar, K. Jezek, Influence of word normalization on text
classification, Proc. InSciT 4 (2006) 354-358.

C. Zong, R. Xia, J. Zhang, Data annotation and preprocessing, in: Text Data
Mining, Springer Singapore, Singapore, 2021, pp. 15-31, http://dx.doi.org/10.
1007/978-981-16-0100-2_2.

J. Bevendorff, B. Chulvi, E. Fersini, A. Heini, M. Kestemont, K. Kredens, M.
Mayerl, R. Ortega-Bueno, P. Pezik, M. Potthast, et al., Overview of PAN 2022:
Authorship verification, profiling irony and stereotype spreaders, and style
change detection, in: Experimental IR Meets Multilinguality, Multimodality, and
Interaction: 13th International Conference of the CLEF Association, CLEF 2022,
Bologna, Italy, September 5-8, 2022, Proceedings, Springer, 2022, pp. 382-394.

http://refhub.elsevier.com/S0306-4379(23)00178-3/sb91
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb91
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb91
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb91
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb91
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb92
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb92
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb92
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb92
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb92
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb93
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb93
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb93
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb94
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb94
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb94
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb95
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb95
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb95
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb96
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb96
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb96
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb96
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb96
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb97
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb97
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb97
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb97
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb97
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb98
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb98
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb98
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb98
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb98
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb99
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb99
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb99
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb99
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb99
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb100
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb100
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb100
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb100
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb100
http://dx.doi.org/10.18653/v1/2022.semeval-1.55
http://dx.doi.org/10.18653/v1/2022.semeval-1.55
http://dx.doi.org/10.18653/v1/2022.semeval-1.55
https://aclanthology.org/2022.semeval-1.55
https://aclanthology.org/2022.semeval-1.55
https://aclanthology.org/2022.semeval-1.55
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb105
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb105
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb105
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb105
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb105
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb105
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb105
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb106
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb106
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb106
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb106
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb106
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb107
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb107
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb107
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb107
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb107
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb107
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb107
http://arxiv.org/abs/1707.01926
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb109
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb109
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb109
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb109
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb109
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb109
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb109
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb110
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb110
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb110
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb110
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb110
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb110
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb110
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb111
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb111
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb111
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb111
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb111
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb112
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb112
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb112
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb112
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb112
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb112
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb112
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb113
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb113
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb113
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb113
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb113
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb113
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb113
http://www.aclweb.org/anthology/P11-1015
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb115
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb115
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb115
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb116
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb116
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb116
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb116
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb116
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb116
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb116
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb116
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb116
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb116
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb116
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb117
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb117
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb117
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb117
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb117
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb118
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb118
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb118
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb118
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb118
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb119
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb119
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb119
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb119
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb119
http://arxiv.org/abs/2109.13890
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb121
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb121
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb121
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb121
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb121
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb121
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb121
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb122
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb122
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb122
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb123
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb123
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb123
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb123
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb123
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb124
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb124
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb124
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb125
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb125
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb125
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb126
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb126
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb126
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb127
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb127
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb127
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb128
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb128
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb128
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb128
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb128
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb129
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb129
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb129
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb129
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb129
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb130
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb130
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb130
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb130
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb130
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb131
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb131
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb131
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb131
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb131
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb131
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb131
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb132
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb132
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb132
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb132
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb132
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb133
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb133
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb133
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb133
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb133
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb134
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb134
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb134
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb134
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb134
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb134
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb134
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb135
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb135
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb135
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb135
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb135
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb135
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb135
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb135
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb135
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb136
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb136
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb136
http://dx.doi.org/10.1007/978-981-16-0100-2_2
http://dx.doi.org/10.1007/978-981-16-0100-2_2
http://dx.doi.org/10.1007/978-981-16-0100-2_2
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb138
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb138
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb138
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb138
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb138
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb138
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb138
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb138
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb138
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb138
http://refhub.elsevier.com/S0306-4379(23)00178-3/sb138

	Is text preprocessing still worth the time? A comparative survey on the influence of popular preprocessing methods on Transformers and traditional classifiers
	Introduction
	Gaps in the literature
	Research questions
	Article organization

	Related work
	Preprocessing techniques
	Replace noise
	Replace slang and abbreviation
	Replace contraction
	Remove repeated punctuation
	Remove punctuation
	Remove numbers
	Lowercasing
	Remove stop words
	Spelling correction
	Part-of-Speech tagging
	Lemmatization
	Stemming
	Removing elongation
	Emoticon handling
	Negation handling
	Word segmentation

	Material and methods
	Evaluated models
	The datasets
	Fake news spreaders
	Patronizing and condescending language
	Internet Movie Database
	The 20 Newsgroup Data

	Experimental setup

	Results
	IMDB
	PCL
	FNS
	20N

	Discussion
	Qualitative analysis

	Conclusion and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

