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NEW APPLICATIONS OF EXTREMELY REGULAR

FUNCTION SPACES

TROND A. ABRAHAMSEN, OLAV NYGAARD, AND MÄRT PÕLDVERE

Abstract. Let L be an infinite locally compact Hausdorff topologi-
cal space. We show that extremely regular subspaces of C0(L) have
very strong diameter 2 properties and, for every real number ε with
0 < ε < 1, contain an ε-isometric copy of c0. If L does not contain
isolated points they even have the Daugavet property, and thus contain
an asymptotically isometric copy of `1.

1. Introduction

Throughout, let L be an infinite locally compact Hausdorff topological
space, and denote as usual by C0(L) the Banach space of continuous K-
valued functions on L that “vanish at infinity”, where K is the field of either
real or complex numbers.

Definition 1.1 (Cengiz [8]). An extremely regular function space is a linear
subspace A of C0(L) such that for every x0 ∈ L, every real number ε with
0 < ε < 1, and every open neighbourhood V of x0, there exists an f ∈ A
such that

‖f‖ = 1 = f(x0) > ε > sup
x∈L\V

|f(x)|.

The interest in extremely regular function spaces came from their impor-
tance in Banach–Stone type theorems. An example, also due to Cengiz [8],
is as follows: If L1 and L2 are locally compact Hausdorff topological spaces
such that there exists a linear isomorphism ϕ from an extremely regular sub-
space of C0(L1) onto such a subspace of C0(L2) with ‖ϕ‖‖ϕ−1‖ < 2, then
L1 and L2 are homeomorphic (here C0(L1) and C0(L2) are complex spaces).
Properties of extremely regular function spaces were studied in [9].

In this paper, we demonstrate that extremely regular function spaces
play a role in a quite recent theory of Banach spaces, namely that involving
Daugavet spaces, diameter 2 spaces, and octahedral spaces. Let us briefly
explain some main lines of this theory before returning to extremely regular
function spaces and our results.

Let X be a Banach space and BX its unit ball. By a slice of BX we mean
a set of the form S(x∗, ε) := {x ∈ BX : Rex∗(x) > 1 − ε}, where x∗ is in
the unit sphere SX∗ of X∗ and ε > 0. A finite convex combination of slices
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of BX is a set S of the form S =
∑n

i=1 λiS(x∗i , εi) where n ∈ N, λi > 0,∑n
i=1 λi = 1, x∗i ∈ SX∗ , and εi > 0.

Definition 1.2. A Banach space X has the strong diameter 2 property
(briefly, SD2P) if every finite convex combination of slices of BX has diam-
eter 2.

A lemma by Bourgain [11, page 26, Lemma II.1] (and independently
rediscovered by Shvydkoy in [18]) says that every non-empty relatively weakly
open subset of BX contains a finite convex combination of slices. Thus the
SD2P implies that every non-empty relatively weakly open subset of BX

has diameter 2, which in turn implies that every slice of BX has diameter
2. None of these implications is reversible ([6], [13]).

It is an important observation of Deville and Godefroy from the late 1980s,
stated without proof in [12], that X having SD2P is equivalent to X∗ being
octahedral. A Banach space Z is octahedral if, for every finite-dimensional
subspace F of Z and every ε > 0, there exists a y ∈ SZ such that

‖x+ ty‖ ≥ (1− ε)(‖x‖+ |t|) for every x ∈ F and every t ∈ K.

A complete proof of this equivalence can be found in [5, Corollary 2.2] (the
proof is carried out for the real case, but it is not too hard to see that the
result holds also in the complex case). More on the history of the equivalence
can be found in [3, Remark 1.4].

Definition 1.3. A Banach space X

(1) is almost square (briefly, ASQ) if whenever n ∈ N and x1, . . . , xn ∈
SX , there exists a sequence (yk) in BX such that ‖xi ± yk‖ −−−→

k→∞
1

for every i ∈ {1, . . . , n} and ‖yk‖ −−−→
k→∞

1.

(2) has the symmetric strong diameter 2 property (briefly, SSD2P) if
whenever n ∈ N, S1, . . . , Sn are slices of BX , and ε > 0, there exist
xi ∈ Si, i = 1, . . . , n, and y ∈ BX such that xi ± y ∈ Si for every
i ∈ {1, . . . , n} and ‖y‖ > 1− ε.

ASQ Banach spaces were studied in [1]. The SSD2P has not been fully
explored yet, but can be found in [2, Lemma 4.1], where it is observed that
the SD2P is implied by the SSD2P. In turn, it is not too hard to show that
ASQ Banach spaces have the SSD2P. On the other hand, the space L1[0, 1]
has the SD2P (see [14, Remark 3.3]), but not the SSD2P, and the space
C[0, 1] has the SSD2P, but is not ASQ.

The property of a Banach space to be ASQ—and also the SSD2P—is
rather strong. The widest class of spaces known to be ASQ are non-reflexive
M -embedded spaces [1, Corollary 4.3]. Also, c0(X) is ASQ for any Banach
space X. The widest class of spaces known to have the SSD2P are uniform
algebras [2, Theorem 4.2]. Also, `∞(X) has the SSD2P for any Banach
space X (see [14, Proposition 3.4]).

Let us also relate the Daugavet property to the diameter 2 properties. Re-
call that a bounded linear operator T on a Banach space X is said to satisfy
the Daugavet equation if ‖I + T‖ = 1 + ‖T‖. Daugavet himself discovered
in [10] that every compact operator on C[0, 1] satisfies this equation, thus
initiating a very important topic in the theory of Banach spaces. In [16],
Lozanovskĭı obtained the analogous result for L1[0, 1].
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Definition 1.4. A Banach space X has the Daugavet property if every
rank 1 operator on X satisfies the Daugavet equation.

Note that if a Banach space X has the Daugavet property, then, in fact,
every weakly compact operator on X satisfies the Daugavet equation (see,
e.g., [15, Theorem 2.3] or [19, Theorem 2.7]).

Towards the end of the 1990s, the Daugavet property was described in
geometrical terms (see [15, Lemmas 2.1 and 2.2], [18, Lemmas 2 and 3], and
[19, Lemmas 2.2–2.4]). Spaces with the Daugavet property have the SD2P
[2, Theorem 4.4] and are octahedral [5, Corollary 2.5].

Finally, we can announce our main results: An extremely regular subspace
of C0(L)

• has the SSD2P (Theorem 2.2);
• is ASQ whenever L is non-compact (Theorem 2.5);
• has the Daugavet property whenever L does not contain isolated

points (Theorem 2.6);
• contains an ε-isometric copy of c0 whenever 0 < ε < 1 (Theorem

3.1).

In fact, we prove these results for a wider class of subspaces of C0(L) than
extremely regular ones, that we call somewhat regular subspaces (see Defini-
tion 2.1 below). Throughout the paper, it should not make any confusion to
denote, for a functional µ ∈ C0(L)∗, its representing (regular) Borel measure
also by µ.

2. Diameter 2 properties for subspaces of C0(L)

Definition 2.1. We call a linear subspace A of C0(L) somewhat regular,
if, whenever V is a non-empty open subset of L and 0 < ε < 1, there is an
f ∈ A such that

(2.1) ‖f‖ = 1 and |f(x)| ≤ ε for every x ∈ L \ V .

Notice that, in this case, |f(x0)| = 1 for some x0 ∈ V , thus one may choose
an f ∈ A satisfying (2.1) so that f(x0) = 1 for some x0 ∈ V .

It is clear that extremely regular subspaces of C0(L) are somewhat regular.
On the other hand, whenever x1 and x2 are different accumulation points of
L, the subspace {f ∈ C0(L) : f(x1) = 2f(x2)} of C0(L) is somewhat regular
by courtesy of Urysohn’s lemma, but fails to be extremely regular. Thus the
class of somewhat regular subspaces of C0(L) is strictly larger than that of
extremely regular ones.

Theorem 2.2. Somewhat regular linear subspaces of C0(L) have the SSD2P.

Theorem 2.2 is a corollary from the following lemma.

Lemma 2.3. Let A be a somewhat regular linear subspace of C0(L), and
let n,m ∈ N, f1, . . . , fn ∈ BA, µ1, . . . , µm ∈ BC0(L)∗, and ε > 0. Then there
are g1, . . . , gn, φ ∈ BA such that, for every j ∈ {1, . . . , n},

(1) |µi(fj − gj)| < ε for every i ∈ {1, . . . ,m};
(2) |µi(φ)| < ε for every i ∈ {1, . . . ,m};
(3) ‖φ‖ > 1− ε;
(4) ‖gj ± φ‖ ≤ 1.
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When dealing with subspaces of C0(L), the main challenge is often to find
a substitute for Urysohn’s lemma (see, e.g., [7, Section 2]). The following
lemma—which the proofs of both Lemma 2.3 and Theorem 2.6 below rely
on—is a “Urysohn’s lemma” for somewhat regular subspaces of C0(L). The
lemma is inspired by [17, proof of Theorem 1].

Lemma 2.4 (cf. [17, proof of Theorem 1]). Let A be a somewhat regular
linear subspace of C0(L), let V be a non-empty open subset of L, and let
0 < ε < 1. Then there are an x0 ∈ V and an f ∈ A such that

(1) f(x0) = 1 ≤ ‖f‖ ≤ 1 + ε;
(2) |1− f(x)| ≤ 1 + ε for every x ∈ V ;
(3) |f(x)| ≤ ε for every x ∈ L \ V .

Proof. Let 0 < δ < 1 and let n ∈ N satisfy 2/n < δ. Putting V0 := V , by
courtesy of the somewhat regularity of A, one can recursively find points
x1, . . . , xn ∈ V , functions g1, . . . , gn ∈ A, and nonvoid open subsets V0 ⊃
V1 ⊃ · · · ⊃ Vn such that, for every j ∈ {1, . . . , n},

xj ∈ Vj−1, gj(xj) = ‖gj‖ = 1, |gj(x)| ≤ δ for every x ∈ L \ Vj−1,

and Vj =
{
x ∈ Vj−1 : |gj(x) − 1| < δ

}
; thus, in fact, xj ∈ Vj . Defining

x0 := xn and

g :=
g1 + · · ·+ gn

n
,

one has ‖g‖ ≤ 1, |g(x)| ≤ δ for every x ∈ L \ V , and

|1− g(x)| ≤ 1

n

n∑
j=1

|1− gj(x)| for every x ∈ L.

Now let x ∈ V . Put k := max
{
j ∈ {0, 1, . . . , n} : x ∈ Vj

}
. For 1 ≤ j ≤ k,

one has |1 − gj(x)| < δ; δ ≤ |1 − gk+1(x)| ≤ 2; and, for k + 2 ≤ j ≤ n, one
has |gj(x)| ≤ δ and hence |1− gj(x)| ≤ 1 + δ. Thus

|1− g(x)| ≤ (n− 1)(1 + δ) + 2

n
< 1 + δ +

2

n
< 1 + 2δ.

Since x0 = xn ∈ Vn, one has |gj(x0) − 1| < δ for every j ∈ {1, . . . , n} and
thus |g(x0) − 1| < δ. Defining f :=

(
1/g(x0)

)
g, it remains to observe that,

taking, from the very beginning, δ to be “small enough”, the conditions
(1)–(3) obtain, because, since |g(x0)| > 1− δ,

1 = f(x0) ≤ ‖f‖ =
‖g‖
|g(x0)|

<
1

1− δ
,

for every x ∈ V ,

|1− f(x)| = |g(x0)− g(x)|
|g(x0)|

<
|g(x0)− 1|+ |1− g(x)|

1− δ
<

1 + 3δ

1− δ
,

and, for every x ∈ L \ V ,

|f(x)| = |g(x)|
|g(x0)|

<
δ

1− δ
.

�
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Proof of Lemma 2.3. Let 0 < δ < 1/2. Since L is infinite, there is a point
y ∈ L such that max

1≤i≤m
|µi|
(
{y}
)
< δ; hence, by the regularity of µ1, . . . , µm

and the continuity of f1 . . . , fn, there is a non-empty open subset V of L
such that

max
1≤i≤m

|µi|(V ) < δ and max
1≤j≤n

sup
x,z∈V

|fj(x)− fj(z)| < δ.

Since, by our assumption, A is somewhat regular, there are x0 ∈ V and
f ∈ A satisfying the conditions (1)–(3) of Lemma 2.4 with ε replaced by δ.
For every j ∈ {1, . . . , n}, defining αj := fj(x0) and hj := fj −αj f ∈ A, one
has hj(x0) = 0 and ‖hj‖ ≤ 1 + 2δ, because

|hj(x)| ≤

{
|fj(x)− αj |+ |αj | |1− f(x)| ≤ 1 + 2δ, if x ∈ V ;

|fj(x)|+ |αj | |f(x)| ≤ 1 + δ, if x ∈ L \ V .

For every j ∈ {1, . . . , n}, defining gj := (1 − 2δ)hj , one has ‖gj‖ ≤ 1 − 4δ2

and, for every i ∈ {1, . . . ,m}, since

|µi(f)| ≤
∫
L\V
|f | d|µi|+

∫
V
|f | d|µi| ≤ δ |µi|(L \ V ) + 2|µi|(V ) < 3δ,

also

|µi(fj − gj)| ≤ 2δ|µi(fj)|+ (1− 2δ)|αj ||µi(f)| < 5δ.

Choose an open neighbourhood U ⊂ V of x0 such that

max
1≤j≤n

sup
x∈U
|gj(x)| ≤ δ.

Since A is somewhat regular, there is a ψ ∈ A such that

‖ψ‖ = 1 and |ψ(x)| ≤ 4δ2 for every x ∈ L \ U .

Put φ := (1 − δ)ψ. Then, for every j ∈ {1, . . . ,m}, one has ‖gj ± φ‖ ≤ 1,
i.e., the condition (4) holds, and, for every i ∈ {1, . . . ,m},

|µi(φ)| ≤
∫
L\V
|φ| d|µi|+

∫
V
|φ| d|µi| ≤ 4δ2 |µi|(L \ V ) + |µi|(V ) < 5δ.

Thus, one observes that taking, from the very beginning, δ to be “small
enough”, also the conditions (1)–(3) hold. �

If the space L is non-compact, a stronger statement than that of Theo-
rem 2.2 is true.

Theorem 2.5. Assume that L is non-compact. Then every somewhat reg-
ular linear subspace of C0(L) is ASQ.

Proof. Let A be a somewhat regular linear subspace of C0(L), and let n ∈ N,
f1, . . . , fn ∈ SA, and ε > 0. It suffices to find an f ∈ A such that ‖f‖ = 1
and

(2.2) ‖fj ± f‖ ≤ 1 + ε for every j ∈ {1, . . . , n}.
To this end, observe that the sets Kj :=

{
x ∈ L : |fj(x)| ≥ ε

}
, j = 1, . . . , n,

are compact; thus also their union K :=
⋃n

j=1Kj is compact, and its com-

plement V := L \ K is non-empty and open. By the somewhat regularity
of A, there is an f ∈ A satisfying (2.1). This f also satisfies (2.2). �
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Our next result produces examples of spaces with the Daugavet property.

Theorem 2.6. Assume that L does not contain isolated points. Then every
somewhat regular linear subspace of C0(L) has the Daugavet property.

Proof. Let A be a somewhat regular linear subspace of C0(L), let g ∈ SA,
let µ ∈ SC0(L)∗ be such that ‖µ|A‖ = 1, and let α, ε > 0. In order for A
to have the Daugavet property, by [19, Lemma 2.2] (or [15, Lemma 2.2]), it
suffices to find a ψ ∈ SA satisfying

(2.3) Reµ(ψ) > 1− α and ‖g + ψ‖ > 2− ε.

To this end, let δ ∈ (0, 1/3), let φ ∈ SA be such that Reµ(φ) > 1− δ, let
y0 ∈ L be such that |g(y0)| = 1, and let an open neighbourhood U of y0 be
such that

|g(x)− g(y0)| < δ and |φ(x)− φ(y0)| < δ for all x ∈ U .

Since y0 is not an isolated point, the set U is infinite; thus there is a point
z0 ∈ U such that |µ|

(
{z0}

)
< δ. By the regularity of µ, there is an open

neighbourhood V of z0 such that |µ|(V ) < δ. One may assume that V ⊂ U
and thus

|φ(x)− φ(z)| < 2δ for all x, z ∈ V .

Since A is somewhat regular, there are x0 ∈ V and f ∈ A satisfying the
conditions (1)–(3) of Lemma 2.4 with ε replaced by δ. Put h := φ−φ(x0)f ;
then h(x0) = 0 and ‖h‖ ≤ 1 + 3δ (this can be shown as in the proof of
Theorem 2.2 for hj); indeed,

|h(x)| ≤

{
|φ(x)− φ(x0)|+ |φ(x0)| |1− f(x)| ≤ 1 + 3δ, if x ∈ V ;

|φ(x)|+ |φ(x0)| |f(x)| ≤ 1 + δ, if x ∈ L \ V .

Since h(x0) = 0, there is an open neighbourhood W of x0 such that

|h(x)| < δ for all x ∈W .

One may assume that W ⊂ V . Since A is somewhat regular, there are

w0 ∈W and f̂ ∈ A such that

f̂(w0) = ‖f̂‖ = 1 and |f̂(x)| ≤ δ for every x ∈ L \W .

Putting ψ̂ := h+ g(w0)f̂ , one has ‖ψ̂‖ ≤ 1 + 4δ, because

|ψ̂(x)| ≤ |h(x)|+ |f̂(x)| ≤

{
δ + 1, if x ∈W ;

(1 + 3δ) + δ = 1 + 4δ, if x ∈ L \W .

Since

‖ψ̂ + g‖ ≥ |ψ̂(w0) + g(w0)| ≥ 2|g(w0)| − |h(w0)|
≥ 2|g(y0)| − 2|g(y0)− g(w0)| − |h(w0)|
> 2− 2δ − δ = 2− 3δ,

one has ‖ψ̂‖ > 1− 3δ; thus, for ψ := ψ̂/‖ψ̂‖, one has

‖ψ̂ − ψ‖ =

∣∣∣∣1− 1

‖ψ̂‖

∣∣∣∣‖ψ̂‖ =
∣∣‖ψ̂‖ − 1

∣∣ ≤ 4δ,
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and hence

‖g + ψ‖ ≥ ‖g + ψ̂‖ − ‖ψ̂ − ψ‖ > 2− 3δ − 4δ = 2− 7δ.

One has

Reµ(ψ̂) = Reµ(h) + Re g(w0)µ(f̂) = Reµ(φ)− Reφ(x0)µ(f) + Re g(w0)µ(f̂)

> 1− δ − |µ(f)| − |µ(f̂)|.

Since

|µ(f)| ≤
∣∣∣∣∫

L
f dµ

∣∣∣∣ ≤ ∫
L
|f | d|µ| =

∫
V
|f | d|µ|+

∫
L\V
|f | d|µ|

≤ (1 + δ)|µ|(V ) + δ|µ|(L \ V ) < (1 + δ)δ + δ = (2 + δ)δ < 3δ,

and, similarly, |µ(f̂)| < 2δ, it follows that Reµ(ψ̂) > 1− 6δ, and thus

Reµ(ψ) =
Reµ(ψ̂)

‖ψ̂‖
≥ Reµ(ψ̂)

1 + 4δ
>

1− 6δ

1 + 4δ
.

Hence one observes that, choosing, from the very beginning, δ to be “small
enough”, the function ψ meets the conditions (2.3). �

3. Containment of c0 and `1

Let X and Y be normed spaces, and let 0 < ε < 1. Recall that a linear
surjection T : X → Y is called an ε-isometry if

(1− ε)‖x‖ ≤ ‖Tx‖ ≤ (1 + ε)‖x‖ for every x ∈ X.

It is well known that C0(L) contains isometric copies of c0 (see e.g [4,
Proposition 4.3.11]), and the same is true for many of its subspaces. For the
somewhat regular linear subspaces of C0(L) we have the following theorem.

Theorem 3.1. Let A be a somewhat regular closed linear subspace of C0(L).
Then, whenever 0 < ε < 1, there is an ε-isometry from c0 onto a closed
linear subspace of A.

Proof. Let 0 < ε < 1. Choose pairwise disjoint nonvoid open subsets Uj ,
j ∈ N, of L. Since A is somewhat regular, for every j ∈ N, there are an
xj ∈ Uj and an fj ∈ A such that

fj(xj) = 1 and |fj(x)| ≤ ε

2j
for every x ∈ L \ Vj .

Denoting by c00 the linear subspace of finitely supported sequences in c0,
let S0 : c00 → A be the linear operator satisfying S0ej = fj for every j ∈ N
where ej are the standard unit vectors in c0. Observing that, whenever
a =

∑n
j=1 αjej ∈ Sc00 and x ∈ L, one has

|(S0a)(x)| =
∣∣∣∣ n∑
j=1

αjfj(x)

∣∣∣∣ ≤ n∑
j=1

|fj(x)| ≤ 1 +

n∑
j=1

ε

2j
< 1 + ε

(because |fj(x)| ≤ ε/2j whenever x 6∈ Uj , and there is at most one j ∈ N
such that x ∈ Uj (in which case |fj(x)| ≤ 1)), thus S0 is bounded and
‖S0‖ ≤ 1 + ε. Letting S : c0 → A be the bounded linear extension of S0,
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one has ‖S‖ ≤ 1 + ε as well, and it remains to observe that, whenever
a = (αj)

∞
j=1 ∈ c0, picking k ∈ N such that |αk| = ‖a‖, one has

‖Sa‖ =

∥∥∥∥ ∞∑
j=1

αjfj

∥∥∥∥ ≥ ∣∣∣∣ ∞∑
j=1

αjfj(xk)

∣∣∣∣ ≥ |αk| |fk(xk)| −
∞∑
j=1
j 6=k

|αj | |fj(xk)|

≥ ‖a‖ − ‖a‖
∞∑
j=1

ε

2j
= (1− ε)‖a‖,

because, for j 6= k, one has xk 6∈ Vj and thus |fj(xk)| ≤ ε. �

It is natural to ask about containment of `1 in somewhat regular lin-
ear subspaces of C0(L). If L does not contain isolated points, we have
from Theorem 2.6 and [15, Theorem 2.9] that all somewhat regular lin-
ear subspaces of C0(L) contain `1 (even asymptotically isometric copies of
`1). But, if L contains isolated points, the picture is not so clear. In this
case there might be somewhat regular subspaces of C0(L) which contain
`1 and other such subspaces which do not. For an example, take C(βN)
and its subspaces X = {f ∈ C(βN) : f(x) = 0 for every x ∈ βN \ N} and
Y = {f ∈ C(βN) : f(y) = 0} where y ∈ βN \ N is a fixed element. It
is straightforward to show that both these subspaces are somewhat regular.
Moreover, X is isometrically isomorphic to c0 and Y is isomorphic to C(βN).
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