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Resumo 

 

O avanço das capacidades aeronáuticas e tecnológicas nos últimos anos tem aumentado 

significativamente a versatilidade dos Veículos Aéreos Não Tripulados. Os drones 

atualmente possuem várias configurações, incluindo asas fixas, asas rotativas e designs 

híbridos, atendendo a uma ampla gama de propósitos, como atividades recreativas, 

agricultura, competições desportivas e monitoramento civil e militar. 

Os drones multirotores são acessíveis devido ao seu baixo custo e facilidade de uso e 

como consequência proliferam atualmente. Aproveitando esta eficácia e popularidade e 

utilizando um quadricóptero de monitorização, esta dissertação concentra-se no 

desenvolvimento de uma simulação na qual um drone pode ser controlado por um 

algoritmo básico em Python. Esse algoritmo é responsável por enviar comandos ao 

drone, permitindo que ele siga autonomamente uma frente de fogo florestal. 

O processo de criação da simulação envolveu várias etapas. Primeiramente, o drone 

virtual foi projetado em design auxiliado por computador (DAC), inspirado num modelo 

de drone real. Em seguida, o "script" do drone foi adaptado de um drone existente, 

permitindo que ele funcione dentro do ambiente de simulação. Um sistema de piloto 

automático foi implementado para fornecer controlo autónomo ao drone virtual, 

enquanto um programa de configuração de robôs foi utilizado para caracterizar o seu 

comportamento. Além disso, um ambiente virtual, baseado no laboratório de 

aerodinâmica e propulsão do Departamento de Ciências Aeroespaciais da Universidade 

da Beira Interior (UBI), foi criado para fornecer um cenário para a operação do drone. 

A implementação bem-sucedida da simulação de um drone quadricóptero no simulador 

Gazebo tem como principal foco a sua aplicação na monitorização de incêndios florestais. 

Num futuro próximo este projeto envolve testar o algoritmo e a simulação desenvolvidos 

num drone real dentro dos limites do laboratório. 
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Abstract 

 

The advancement of aeronautical and technological capabilities in recent years has 

significantly increased the versatility of Unmanned Aerial Vehicles. Drones nowadays 

come in various configurations, including fixed-wing, rotary-wing, and hybrid designs, 

catering for a wide range of purposes such as recreational activities, agriculture, sports 

competitions, military operations, and civil and military monitoring. 

Multirotor drones are accessible due to their low cost and ease of use, and as a result, 

they are currently proliferating. Taking advantage of this efficiency and popularity, and 

using a monitoring quadcopter, this dissertation focuses on the development of a 

simulation in which a drone can be controlled by a basic algorithm in Python. This 

algorithm is responsible for sending commands to the drone, allowing it to 

autonomously follow a forest fire front. 

The process of creating the simulation involved several stages. Firstly, the virtual drone 

was designed in computer aided design (CAD), inspired by a real drone model. Then, the 

drone's script was adapted from an existing drone, enabling it to function within the 

simulation environment. An autopilot system was implemented to provide autonomous 

control to the virtual drone, while a robot configuration program was used to characterize 

its behavior. Additionally, a virtual environment, based on the aerodynamics and 

propulsion laboratory of the Department of Aerospace Sciences at University of Beira 

Interior (UBI), was created to provide a scenario for drone operation. 

The successful implementation of a quadcopter drone simulation in the Gazebo 

simulator focuses primarily on its application in monitoring forest fires. Soon, this 

project involves testing the developed algorithm and simulation on a real drone within 

the confines of the laboratory. 
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Chapter 1 

 

Introduction 

 

1.1 Motivation 

Over the past few years, there has been a significant rise in natural disasters caused by human 

activities, leading to disturbances in ecosystems. Greenhouse gas emissions and ocean pollution 

have played a major role in this increase. Some common examples of these disasters include forest 

fires, floods, volcanic eruptions, and oil spills.[1], [2] 

To effectively monitor and track the development of these environmental disturbances, a 

combination of satellite images, information from Unmanned Aerial Vehicles (UAVs), geological 

data, and reports from affected individuals are utilized. Particularly, the versatility and 

effectiveness of UAVs have resulted in substantial investments in this field. Between 2021 and 

2026, the global drone market is expected to grow at a compound annual growth rate of over 16 

%, with projections indicating it will reach 58.4 billion dollars at the end of that period[3]. 

Notably, China and the United States generated revenues of 1.25 billion and 1.22 billion United 

States Dollars (USD), respectively, in 2022[4]. Key industry players, such as NVIDIA Corporation, 

Lockheed Martin, and The Boeing Company, are fiercely competing for future market shares in 

the drone industry[5]. Consequently, drones are expected to play an increasingly significant role 

in our daily lives, evolving and assisting us in various tasks, including the monitoring of natural 

disasters. 

Considering the growing importance of drones across different applications, particularly in 

environmental monitoring, the development of advanced algorithms for drone control has 

become a crucial area of research. Specifically, in the context of monitoring forest fires, the 

deployment of drones equipped with fire detection algorithms holds great promise. In this 

context, a project was proposed in order to develop a drone simulation where it detects wildfire 

with effectiveness. The project was divided into two parts: control and artificial intelligence (AI) 

fire tracking algorithm. This document describes the drone control part including state of the art, 

methodology and how the drone’s virtual environment was implemented with its results. 

1.2 Objectives 

This dissertation aims to develop a robust drone control algorithm for monitoring forest fires. 

Tasks include calculating moments of inertia, conducting literature research, and modeling the 

drone and its operating environment. The drone's control functions will be designed based on 

target distance, provided by an advanced fire front tracking algorithm. Rigorous virtual 
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simulations will validate the control algorithm and drone model, ensuring their reliability in 

monitoring forest fires. 

The objective is to create a tailored drone control algorithm that enhances fire detection and 

response, minimizing the impact of forest fires. By integrating the AI fire front tracking system, 

the effectiveness and efficacy of fire detection will be improved. It seeks to contribute to the field 

by designing and implementing a reliable system for monitoring forest fires, ultimately 

contributing to mitigate their devastating consequences. 

Throughout the work, specifically in Chapter 2, State of the art, the history of drones is 

demonstrated, their value in the current economy both presently and throughout their existence. 

Their applications in a real context to aid society are explored. In Chapter 3 and 4, Methodology 

and Model Implementation, the process of applying the multirotor in a virtual environment is 

showcased, along with the demonstration of the mathematical equations that underpin virtual 

flight. Finally, in Chapter 5 Results, the control of the UAV is verified through functions that 

establish a connection with the local host. 
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Chapter 2 

 

State of the art 

 

2.1 Brief history of UAVs 

UAVs, which are aircraft without on-board crew or passengers, have evolved significantly over 

time. They can either be automated drones or remotely piloted vehicles, capable of flying for 

extended periods at controlled speeds and altitudes and they play a crucial role in various aspects 

of aviation. The first type of unmanned aircraft was probably hot air balloons. Yet, these cannot 

be considered drones because their flight cannot be controlled like fixed-wing and multirotor 

aircraft.[6] 

During World War 1, the first UAVs were developed using radio control techniques like the 

Hewitt-Sperry automatic airplane and the Kettering Bug unmanned aerial torpedo (see Figures 

2.1 and 2.2). These were like flying bombs which had military purposes and were capable of 

striking ground targets. After World War 1, DH.82B Queen Bee (see Figure 2.3) was devised as a 

low-cost radio-controlled (RC) target aircraft, and if it survived the shooting, its controller would 

attempt to recover it for re-use. It was with the appearance of this aircraft that the term “drone” 

(a male bee) started being used for pilotless aircraft.[7] 

 

 
Figure 2.1 - Kettering Bug [8] 

Figure 2.2 - Hewitt-Sperry[9] 
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During World War 2, approximately 15000 Radioplane OQ-2 (see Figure 2.4) drones were 

produced by radio aircraft manufacturers for the US army. This drone was launched into the air 

and recovered using a parachute. The OQ-3, a subsequent version, was widely used throughout 

World War 2; roughly 9400 units were built during that time. After World War 2, drones were 

first utilized for aerial reconnaissance. The first drone of this kind, the MQM-57 Falconer (see 

Figure 2.5), had its first flight in 1955. 

Throughout the Vietnam War, the US employed Ryan Firebee drones (see Figure 2.6), whose 

development began in 1951. These were launched from Hercules transport aircraft, which had two 

Firebee drones mounted under each wing for a total of four Firebee drones. In this conflict, 

reconnaissance was first deployed on a large scale. Drones also began to use a wide range of new 

roles, such as acting as decoys in combat, launching missiles against fixed targets and dropping 

leaflets for psychological operations. 

 

 

 

 

Figure 2.3 - DH.82B Queen Bee [10] 

Figure 2.4 - Radioplane OQ-2 [11] Figure 2.5 - MQM-57 Falconer [12] 
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Countries outside of the United Kingdom (UK) and the United States of America paid attention 

to the relevance of drones in the Vietnam War and began to investigate and develop their own 

versions of the unmanned aerial technology. New models became more sophisticated, with 

improved endurance and the ability to maintain greater height. In recent years, models have been 

developed that use technology such as solar power to tackle the problem of fueling longer flights. 

For example, in Japan RC helicopters were developed in the late 1970s and these hobby-use model 

radio control helicopters were going to be mass produced around the world in the early 1980s. 

From 1990s to 2000s embedded system technology, small sensors, early micro-computers, 

communication devices and avionics systems such as autopilots appeared which led to a 

substantial growth period of the drone industry. Micro electromechanical systems (MEMS) were 

developed and made possible the development of a super lightweight Inertial Measurement Unit 

(IMU) that could be incorporated inside small multicopters making way to the consumers through 

the RC toy market. Research and development became active in universities and other academic 

fields.  Most studies focused on issues of higher performance, hardware, software, aerodynamics 

and autonomous flight control. 

From 2010 to today, a variety of flight controllers like ArduPilot (APM) and Pixhawk 4 (PX4) 

came out in the world. These open-source controllers combined with Linux Ubuntu, make drone 

controlling easy and flexible. Parrot Company and 3D Robotics are just some important 

lightweight manufacturing drone companies. Nowadays drones have many functions such as 

monitoring natural disasters, photography, filming, delivering goods, medical supplies etc. In 

Figure 2.7 it is shown a modern drone created by Parrot Company that is capable of performing 

such tasks. In the future it is foreseeable that drones will be truly autonomous, fully commanded 

with artificial intelligence.[14] 

 

 

Figure 2.6 - Ryan Firebee[13] 



 7 

 

 

 

 

 

 

2.2 UAV market 

The global UAV market is witnessing significant growth, with an expected increase from 26.03 

billion USD in 2022 to 29.93 billion USD in 2023 at a Compound Annual Growth Rate (CAGR) of 

15.0%. By 2027, it is projected to reach 52.21 billion USD, with a CAGR of 14.9%[16]. In 2019, the 

global UAV market size was valued at 10.72 billion USD.[17] 

North America held a larger market share in 2019 due to increased drone usage in infrastructure 

surveys, aerial mapping, and military applications. The market in Europe is expected to grow at a 

moderate pace, while the Asia Pacific region is anticipated to exhibit significant growth, 

particularly in the demand for modern warfare unmanned aerial vehicles. 

In a study from the year 2000, North America and Europe were projected to represent 60% of the 

total global UAV market in 2008, supporting diverse UAV capabilities. The Asia Pacific region, 

including countries like Australia, showed interest in tactical fixed wing capabilities and explored 

various civil uses of UAVs. Notably, the United States leads in drone use, but other countries like 

China, France, Germany, India, Israel, and Russia also possess or express interest in acquiring 

UAV technology. 

 

 

 

 

 

 

Figure 2.8 - Unmanned Aerial vehicles market growth by region (2022-2027)[18] 

Figure 2.7 - Parrot ANAFI USA drone[15] 
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In Figure 2.8 it is shown that Europe's market is expected to grow steadily due to increasing 

demand for cameras, software, avionics, and navigation systems. Major technology companies 

like Parrot Drones and Delair operate in European countries, addressing global demand. The Asia 

Pacific market is set for significant growth, driven by the demand for modern warfare unmanned 

aerial vehicles for strategic and tactical applications. Importer countries like India, Pakistan, and 

China are expected to generate substantial revenue. However, the rest of the world, including 

South Africa, Saudi Arabia, and Brazil, is likely to have a smaller market share due to limited 

market penetration. 

In Table 2.1, throughout the forecast period (1998-2008), different classes of UAV systems and 

market segments were expected to exhibit varying growth rates. However, the compound annual 

growth rate for the entire market reached 12.2%. The market's growth will primarily be driven by 

military funding, accelerated worldwide by successful operations, expanded capabilities, and 

increased political support. Sales of fixed wing tactical UAVs, operating within specific range and 

altitude parameters, contribute to the majority of market revenues as expected.[19] 

 

 

 

 

 

 

 

 

Increasing defense spending is a key driver for the growth of the UAV drone market. The 

procurement and purchase of UAV drones have become a force multiplier in combat operations 

worldwide. Notably, defense spending in the UK reached 42.4 billion British pounds (49.65 billion 

USD) in 2020-21, driving the market's growth. 

The UAV market is divided into military, commercial, and recreational segments in terms of 

application (see Figure 2.9). During the forecast period, the military segment is expected to hold 

the largest share, driven by increasing demand for tactical and strategic UAVs for military 

purposes. Various countries have ramped up their purchases of specialized UAVs, such as 

Table 2.1 - Total UAV systems market: revenue forecasts (world), 1998-2008 [19] 



 9 

Medium Altitude Long Endurance (MALE) and High-Altitude Long Endurance (HALE) UAVs, 

for a range of missions, which is likely to further drive demand in the coming years. 

 

 

 

 

 

 

 

 

The demand for UAVs is fueled by major operations such as border monitoring, surveillance, and 

border security worldwide. Additionally, the commercial segment is poised for significant growth 

in the future, fueled by the rapid adoption of UAVs in surveying, aerial mapping, crop monitoring, 

forest monitoring, and logistics. Major companies like Uber, investing in Air Taxi development, 

and logistics giant  Dalsey Hillblom and Lynn (DHL) Logistics, innovating new air transportation 

using UAVs, are expected to contribute to the high growth of the commercial segment during the 

forecast period.[17] 

The UAV market faced a moderate impact from the COVID-19 outbreak. Countries' budget 

reallocations towards developing medical infrastructure have limited defense budget 

expenditures for research, development, and acquisition of deep-tech products. 

The shift towards unmanned systems reflects the military's inclination to leverage advanced 

technology and adapt to the emergence of asymmetrical warfare. Initiatives for indigenous 

aerospace platforms are on the rise, leading to an increase in the development of home-grown 

UAVs, which is expected to significantly boost the UAV market in the Asia-Pacific region. The 

growing number of initiatives by Original Equipment Manufacturers in indigenous UAV 

development will also enhance the adoption rate of this technology by providing easier access to 

low-cost UAVs. 

The integration of unmanned vehicles in manned combat operations has opened up new business 

opportunities within the military segment. In November 2021, China's People's Liberation Army 

announced plans for joint manned and unmanned aerial operations, utilizing indigenously 

manufactured J-20 fighter jets in tandem with four drones for trial purposes. These operations 

Figure 2.9 - Global Unmanned Aerial Vehicle Market share, by application, 2019 [17] 
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are poised to significantly enhance the country's aerial military capabilities, including 

surveillance, search, rescue, and close combat operations.[18] 

 

2.2.1 The American Case 

The increased demand for drone technology witnessed following the Gulf conflict was further 

amplified by the post-9/11 conflicts in Afghanistan and Iraq. These significant military 

engagements, intertwined with the broader Global War on Terror, created an unprecedented 

opportunity for the extensive utilization of drones. The surge in interest is evident in the 

Department of Defense's spending on Unmanned Aerial Systems (UAS). Post-9/11, the 

expenditure on drones surged from $363 million in 2001 to $2.9 billion in 2013 as shown in 

Figure 2.10. Moreover, between 2002 and 2010, the Department of Defense's UAS inventory 

witnessed a staggering 40-fold increase. While unmanned aircraft comprised only 5% of military 

aircraft in 2005, by 2012, UAVs accounted for one-third of the entire fleet. In 2003, a mere 163 

UAS were in use, but by 2012, the inventory reported a remarkable total of 7,454 UAS—an 

astounding surge of over 4,400% in less than a decade. The political economy framework sheds 

light on the factors driving this dramatic expansion in the drone industry. 

 

 

 

 

 

 

 

 

 

Drones have revolutionized military operations with their compact design, advanced features, and 

ease of deployment. UAVs excel in data gathering and provide valuable situational awareness. 

Their attack capabilities offer a significant advantage in engaging targets quickly compared to 

ground units. Drones are highly adaptable, capable of operating in challenging environments and 

remaining airborne for extended periods. They serve multiple purposes, including land surveying 

Figure 2.10 - USA Department of Defense spending on UAS [20] 
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and measuring coverage across various terrains. The evolving nature of conflicts in Iraq and 

Afghanistan, spanning diverse landscapes, further highlighted the value of UAV technology. 

While the military demand generated by Afghanistan, Iraq, and the broader War on Terror played 

a central role in propelling the drone industry's expansion, it was not the sole driver of growth. 

Established industry giants in the defense sector, such as Lockheed Martin, Northrop Grumman, 

Boeing, General Dynamics, and General Atomics, recognized the potential for significant profits 

presented by US military engagements. The allure of defense spending, including investments in 

UAV technologies, was a clear incentive. By 2012, global governments were already allocating 

over $6.6 billion USD annually to UAVs, with projected profits expected to reach $11.4 billion per 

year over the next decade, contributing to a market worth over $89 billion. The Government 

Accountability Office revealed that the 2012 acquisition plan by the Department of Defense 

required substantial payments to drone manufacturers, totaling more than $34.9 billion for the 

desired quantity of drones. Beyond manufacturing new drones, the industry also anticipates 

additional revenue from drone repairs and modifications. Given these promising prospects and 

the increased military demand, the political economy model correctly predicted intense rent 

seeking by stakeholders in the defense industry.[20] 

 

 

2.3 UAV applications 

The number of applications where UAVs become a useful tool seems almost unlimited and is 

continually growing. Yet the most relevant are photogrammetry, agricultural and forestry, 

humanitarian aid, merchandise delivery, cultural heritage and archaeology, atmospheric 

observation, air analysis and pollution, monitoring natural disasters and specifically wildfires. 

These mentioned areas are explained in the following subsections. 

2.3.1 Photogrammetry 

Photogrammetry is the art and science of extracting 3D information from photographs. Remote 

measurements from photos taken by UAVs with enough sensor technology can then be processed 

to create 3D terrain mapping (see Figure 2.11) with Digital Elevation Models containing forms, 

surface reconstruction, elevation contours, or features. Orthographic images are also final or 

intermediate products that are important for cartography and topography. In most cases, 

photogrammetry serves as the foundation for additional applications. It can also be used for 

inspection in cultural heritage and archaeological applications, for historical building restoration 

and damage evaluation after a natural disaster or acts of vandalism.[21] 
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2.3.2 Agricultural and forestry 

Through extremely different and varied implementations, UAVs are just recently becoming a 

component of remote sensing applications in agriculture and forestry. Some of them are 

improving in performance while being more affordable than traditional platforms. Drones can fly 

at lower altitudes and slower speeds than satellites and aerial remote sensing systems, providing 

near-earth data including wildlife populations, biophysical characteristics, gaps in the forest 

canopy, and single tree identification. 

In the context of agricultural and forestry, the control of biophysical variables is of special interest 

for various purposes, such as chlorophyll and biomass determination for forest site specific 

treatments. Crops and weed management in precision agriculture are two key activities for 

different purposes, such as yield estimations, herbicide applications (Figure 2.12), and pesticide 

control resulting in cost savings and minimal environmental impact. Many applications in crops 

are oriented to the generation of maps for monitoring weed infestations and coverage, biomass 

estimation, yield prediction, or crop stress. Imaging maps are commonly georeferenced and 

orthorectified, where positioning accuracy becomes an important consideration in map 

generation.[23] 

The estimation of biophysical parameters can be done using several vegetation indices. The leaf 

area index, chlorophyll content, water stress detection, plant health, canopy analysis, 

photosynthesis, mapping of areas (including 3D), and soil analysis are just a few examples of the 

image-based products that can be produced based on these factors.[25] 

Figure 2.11 - Historical layer model obtained by use of photogrammetry - 3D model[22]  
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2.3.3 Humanitarian aid 

Humanitarian aid, that is, providing essential supplies to otherwise inaccessible people in war or 

disaster areas is another useful application of drones. Similarly, medical delivery (see Figure 2.13) 

of organs and blood is another time-critical, life-saving application that has previously seen field 

trials[26]. Per example, during Covid-19 pandemic, it helped to reduce the virus infections spread 

as they were used to deliver automated external defibrillators, protective equipment like gloves 

and face masks, collect blood samples for analysis.[27] 

 

 

 

 

 

 

 

2.3.4 Merchandise delivery 

Lightweight merchandise delivery has the potential to reduce the cost and carbon footprint of the 

enormous logistics and delivery industry. Several companies like Google and Amazon are taking 

Figure 2.12- Spraying drone for herbicide applications [24] 

Figure 2.13 - Zipline's company drones delivering medical supplies [28] 
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initial steps in the drone delivery business. The cargo transported by each drone should not be 

heavy because the drones utilized by these companies are small-sized.[26] 

 

2.3.5 Atmospheric observation, air analysis and pollution 

Drones are taking on new challenges in atmospheric observations, some have been specifically 

designed for such purposes. The most significant information gathered is: air gas concentrations, 

aerosol concentrations, ozone concentrations, temperature, humidity, pressure, and wind fields. 

Unmanned gliders are launched from heights and recover this data for analysis during the auto-

piloted descent.[23] 

 

2.3.6 Monitoring natural disasters 

Since their inception, and even more recently, unmanned aerial vehicles have been considered 

beneficial for operations in disaster zones if they are conveniently fitted with cutting-edge sensors 

and technologies. Nuclear incidents, spills in the ocean, floods, avalanches, earthquakes and 

wildfires are clear causes of disaster where UAVs can play an important role. These are examples 

of man-made catastrophes where drones have been used, although they are not exclusive and can 

lay the groundwork for other disaster applications in the future. 

For instance, nuclear leaks are a high-risk occurrence that present significant hazards at all levels, 

frequently at large distances from the incident, making it imperative to take rapid action in the 

aftermath. The nuclear leaks at Chernobyl (Union of Soviet Socialist Republics (USSR), 1986) and 

Fukushima (Japan, 2011) are well-known examples.[23] 

Oil slicks and perhaps other pollutants on the sea surface are becoming more prevalent creating 

large, contaminated areas. Remote sensing is frequently employed in the marine environment to 

locate, monitor, and map oil spills on a water surface. Typically, a variety of airborne or 

spaceborne remote sensing techniques, such as thermal scanners, fluorosensor lasers, and 

hyperspectral imaging, are utilized to achieve this goal.[29] 

In floods, drones can be used with antennas that identify transmitters on the ground, building a 

distribution map. When a flood occurs the movements of these devices on the ground will be 

detected. In hurricane Katrina,2005 in the United States of America (USA), (see Figure 2.14) 

drones were essential for the aftermath because they could fly through inaccessible areas. 
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In avalanches, drones can be used for the study and detection of temporal evolution in wet snow 

in avalanche prone areas but also for search and rescue under the snow with infrared radiation 

(IR) cameras. For earthquakes, stereoscopic techniques can be used for 3D reconstruction of 

buildings for determining possible damage for post seismic analysis. After a disaster it can provide 

rapid intervention giving abundant and detailed information with imaging-based surveillance 

tasks.[23] 

 

2.3.7 Wildfires 

In nature, forests fulfill a number of significant roles. They have the ability to clean water, 

maintain stable soil, cycle nutrients, control climate, and store carbon. Additionally, they support 

environments rich in biological diversity and provide habitat for species. Economically speaking, 

forests support the forest products business, which generates billions of dollars in revenue and 

hundreds of thousands of jobs. 

The use of UAVs, equipped with sensory technologies, was early identified for its potential use in 

fire detection. UAVs have developed to more advanced, precise, and high-performing technology 

and methodologies. The coordination between fire brigades during crisis management in fires is 

crucial for putting the fire out during its evolution stage (see Figure 2.15). As part of cooperative 

surveillance, UAVs scan different areas. If a fire is discovered, they position the incident using the 

system's GPS to provide the response brigades with the fire measurements and remotely sensed 

locations they need to plan their resources for fighting the fire or for civilian rescue. Flames can 

Figure 2.14 - Flood devastation caused by hurricane Katrina in the USA [30] 
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be followed if they have thermal or IR imaging equipment. If the drone has chemical sensors, it 

detects components of gases that identify the existence of fire.[23] 

As a result of forest fires spreading quickly through convection and a quick combustion cycle, it is 

essential to identify and put out them as soon as possible. This will help to reduce the amount of 

damage they may inflict. Traditional forest fire monitoring and detection techniques use either 

mechanical tools or people to keep an eye on the area, but both techniques can be risky and 

expensive in terms of the human resources needed. 

 

 

 

 

 

 

 

 

 

 

 

Satellite systems' path planning and technological updates are less flexible, and their temporal 

and spatial resolution may be insufficient for operationally capturing precise data and battling 

forest fires. Typically, manned aerial vehicles are big and expensive. Furthermore, dangerous 

conditions and operator tiredness may pose a threat to the pilot's life. 

The expansion of UAV applications in the fire domain area mainly pertains to the domain of 

wildfire remote sensing. When dealing with uncontrolled fires, manned aircraft wildfire 

monitoring is expensive and extremely dangerous. Thus, moving the aircraft operator from the 

air to the ground increases the effectiveness and efficiency of attempts to put out wildfires while 

freeing up resources for other firefighting-related tasks. UAVs are capable of performing a variety 

of functions in addition to remote sensing, such as aerial lighting of prescribed fires and even 

Figure 2.15 - Different stages in the evolution of a fire [31] 
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firefighting, however the latter has not yet been developed in practical contexts due to the need to 

transport large volumes of water and fire retardant.[32] 

Fire mapping, which highlights the spots that are on fire at a specific time on a map of a region 

using georeferenced aerial imagery, is the most frequent mission in the field of wildfire remote 

sensing. The fire maps can also be processed to establish the current fire perimeter and to provide 

an estimate of the fire's location in unseen areas. Monitoring is the process of continuously 

mapping, such as when tracking a fire's perimeter to update the fire map on a frequent basis. 

Additionally, the obtained data aids in the development of 3D flame reconstruction algorithms 

using aerial stereo imagery, which helps academics understand how fire spreads. Aerial thermal 

IR imaging can also be used in automated wildfire monitoring (see Figure 2.16). Wildfire 

perimeters are tracked and this information is used to improve the parameters of its propagation 

simulator. Such wildfire prognosis capability could be integrated in an automated fire decision 

support tool.[33] 

 

 

 

 

 

 

 

 

 

 

The earliest application of UAVs for gathering information on forest fires can be traced back to 

1961 by the United States Forest Services Forest Fire Laboratory. UAV-based forest fire systems 

typically include the following: 

• various frames and sensors, including GPS, IMUs, cameras; 

• specific algorithms and strategies for fire monitoring, detection, diagnosis and prognosis; 

• Guidance, Navigation and Control (GNC) systems for both single and multiple UAVs; 

Figure 2.16 - IR image of wildfire hotspots from drone camera [30] 
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• cooperative localization, deployment and control systems for UAV fleets to optimally 

cover fire areas; 

• a dedicated ground station that includes equipment for communication, ground 

computation, visualization of fire detection, tracking and prediction with automatic fire 

warning or alarm, as well as all equipment necessary for the safe and efficient operation 

of UAVs. 

 

UAV forest fire fighting missions can generally be broken down into three stages: fire search, fire 

detection, and fire observation. Fire search with visual images can be done with color and motion 

features based on RGB (red, green and blue) model combined with fire detection algorithms. It 

can also be done in conditions of weak or no light using IR images. 

It is also useful to use IR sensors during daytime since IR images are not affected by smoke. To 

improve the accuracy, reliability, and robustness of fire detection algorithms and to reduce the 

rate of false alarms, visual and IR images can be fused together, generally using fuzzy logic, 

probability, and statistical methods. 

After detection, the segmented fire area requires geolocation information for measuring its 

geometrical features such as fire front location, fire site width and perimeter, flame length and 

height, inclination angle, coordinates of burnt areas and location of hot spots. Meanwhile, the 

location of the UAVs themselves is known using Global Positioning System (GPS) and with the 

help of Ground Central Stations for information exchange (Figure 2.17). The orientation of the 

UAVs camera is computed by composing the orientation angles of the pan and tilt system with 

the orientation angles of the UAV airframe, which is estimated by IMUs and compasses. 

Fire observation is detrimental to predict the behavior of fire propagation and is essential for 

developing quick, effective, and advanced forest fire fighting strategies. Hence, it is important to 

know the evolution of the fire front, as well as other properties of the fire such as rate of spread as 

well as the ones mentioned earlier in the fire detection and confirmation period. 

Rate of spread, in particular, is one of the most significant parameters in the characterization of 

forest fire behavior, as it is directly associated with fire intensity and flame front geometry, two 

key indicators of the danger levels of fire propagation.[32] 
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Forest fires are highly sophisticated and non-structured so, it is crucial to use multiple sources of 

information at different locations. Furthermore, the rate at which this information is updated may 

be unsatisfactory if only a single UAV is deployed for either a single, large-scale forest fire or for 

multiple forest fires. More efficient forest fire monitoring, detection, and even fighting can be 

achieved when a fleet of multiple UAVs are deployed instead of a single UAV. However, this also 

requires that more practical algorithms for task assignment and cooperative control for multiple 

UAVs be developed. These algorithms are intended to achieve efficient cooperation between 

vehicles for optimal coverage, as well as deployment for the most efficient fire detection, tracking, 

and prediction in the cases of large, multiple, and simultaneous fire events. 

In order to combat forest fires, single UAV systems can be used. Remotely piloted High Altitude 

Long Endurance UAVs are used alongside satellite monitoring systems for extended flights and 

carrying heavy payloads. However, they are expensive and do not offer more precise data 

compared to satellites. 

Between 2006 and 2010, National Aeronautics and Space Administration (NASA) and the US 

Forest Service conducted new imaging missions using a HALE UAV equipped with a 

hyperspectral camera and on-board computing power. These missions successfully detected 

burning areas by applying a threshold to specific IR bands. Additionally, the OSIRIS project in 

Europe aims to develop a solar-powered HALE UAV for wildfire monitoring. This UAV can follow 

a predefined flight plan, which can be updated from a Ground Control Station. During its mission, 

the aircraft captures high-resolution images and transmits them in real-time to the ground station 

via a satellite link. 

Figure 2.17 - Conceptual UAV- based  forest fire monitoring, detection and fighting system [32] 
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The use of multiple UAVs offers new forms of operation. The extent of a wildfire is frequently too 

vast to be covered by a solitary Unmanned aircraft, a challenge that can be addressed by fleets of 

UAVs. But systems built upon multiple UAVs also imply new design challenges, as vehicles must 

communicate and collaborate in some way to exploit the full potential of the fleet. 

There are several approaches to using UAV systems for wildfire detection and monitoring. One 

method involves using a fleet of UAVs equipped with binary sensors to observe the fire front 

defined by control points. The observations are processed by a Kalman filter that estimates the 

location of the perimeter control. After that a planning algorithm prioritizes the observation of 

uncertain control points. 

Another example involves an early fire detection platform that uses ground sensors and UAVs. 

Small quadrotor drones are used for early fire verification, while a blimp equipped with smoke 

detectors and radiometers monitors hot spots.[33] 

 

2.4 UAV types and examples 

The first characteristic is based on aerodynamic factors. UAVs can be classified into three types: 

a) fixed-wing, b) rotary-wing and c) hybrid (Figure 2.18). 

The first type (fixed-wing) possesses a predefined airfoil and fixed -wings that enable lift based 

on the UAV forward airspeed. The control of such a UAV is accomplished through elevators, 

ailerons and rudder that are attached to the tailplane, wings and vertical tail, respectively. These 

construction characteristics enable UAV to turn around pitch, roll and yaw axes. 

The second type (rotary-wing) is composed of rotors that generate the appropriate power 

necessary for vertical take-off. Based on this airflow and in contrast to the first one (fixed-wing), 

this type does not need a forward airspeed for lifting. Accordingly, the control of such a UAV is 

based on the torque and thrust of the rotors. For instance, the speed of the diagonal rotors 

determines the yaw movement. More specifically, depending on the number of rotors, a rotary-

wing UAV can be classified into the following categories a) tricopters, b) quadcopters, c) 

hexacopters and d) octocopters. It is noteworthy that each of the types mentioned above presents 

the corresponding pros and cons. For example, a rotary-wing UAV can hover in place for extended 

periods which allows to perform tasks such as observation and firefighting with greater precision. 

On the other side, a fixed-wing UAV presents an efficient and simpler architecture facilitating the 

maintenance processes and is also characterized by a longer flight duration and larger 

coverage.[34] 
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Finally, there is a third type (hybrid-wing) which combines the previous ones. In particular, this 

type possesses rotors for taking off and landing, but also includes fixed wings utilized for covering 

large areas.[35] 

 

 

 

 

 

 

 

 

A second characteristic is the level of autonomy of the drone. The autonomy can vary from full 

autonomous operation to fully controlled by a remote pilot. There are four types of autonomy. 

The first type, named human-operated system defines that the system operator is responsible for 

controlling all operations of the unmanned system. The second type called human delegated 

system is characterized by a higher level of autonomy compared to the first one, by maintaining 

the ability to take autonomously some restricted decisions. The third level is named human 

supervised system and can take various decisions based on the directions of the system operator. 

Specifically, in this case, both the system operator and the unmanned system can perform various 

actions based on the data received. Finally, the last level is named fully autonomous systems and 

is responsible for all its operations. In this case, the unmanned system receives data from the 

system operator and interprets it into specific tasks. Surely, in the case of an emergency, the 

system operator has the ability to intervene in the function of the unmanned system. 

Another noteworthy characteristic is weight. It can vary from several grams to hundreds of 

kilograms. Several countries and researchers have categorized UAVs based on their size and 

weight. If a UAV exceeds the weight of 150 kg, then it is characterized as heavy. Otherwise, it is 

specified as light. Other classifications separate the fixed-wing and rotary-wing. It considers that 

fixed-wing UAVs whose weight is between 20 kg and 150 kg can be characterized as large. On the 

other side, if a fixed-wing UAV does not exceed 20 kg, then it can be characterized as small. 

Similarly, rotary-wing UAVs whose size ranges from 25 kg to 100 kg, are considered large. 

Accordingly, if a rotary-wing UAV does not exceed 25 kg, then it is small. 

Figure 2.18 - Different types of UAV. a) rotary-wing; b) fixed-wing; c) hybrid-wing [36] 
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Moreover, it is considered that the small UAVs can be distinguished further, extracting a new 

subcategory called mini. These UAVs are those whose weight ranges from some grams to several 

kilograms.[37] DJI Mavic mini (Figure 2.19) has a takeoff weight of 249 grams. 

 

 

 

 

 

Finally, UAVs can also be categorized based on the power source utilized for their flight. There 

are four main types of energy for a UAV: a) kerosene, b) battery cells, c) fuel cells and d) solar 

cells. 

Kerosene is usually employed by large fixed-wing UAVs appropriate for military purposes. An 

example of such a UAV is the Predator. Conversely, the small rotary-wing UAVs incorporate 

battery cells, since their functional needs require less operating time. An example of such a UAV 

is DJI Phantom. A fuel cell is an electric device which transforms chemical substances into 

electrical energy. 

Finally, solar cells can be used for both fixed-wing UAVs and rotary-wing UAVs. Google and 

Facebook have already directed their attention towards UAVs using this technology, with the aim 

of elevating such UAVs within the atmosphere, thus enabling a more extensive Internet 

connection.[35] 

 

2.5 Flight controllers software and simulators 

 

2.5.1 Flight controllers software 

Software flight controllers are essential components in the development and operation of 

autonomous systems, particularly UAVs. They handle critical tasks such as sensor data 

processing, control algorithm execution, and ensuring stable flight. With a variety of software 

flight controllers available, it is crucial to observe the pros and cons of each. 

Figure 2.19 - DJI Mavic mini [38] 
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The flight controllers showcased are the Multiwii Series flight controllers which include: 

Baseflight, Cleanflight, Hackflight, Betaflight, INAV and Raceflight (which has stopped 

developing). The OpenPilot Series flight controllers which include: LibrePilot, Tau Labs, and 

dRonin. Lastly, the two most famous: ArduPilot and PX4. 

Multiwii Series - The 1st multiwii Series(see Figure 2.20) flight controller is known for its user-

friendly interface and straightforward setup process. It is often recommended for beginners who 

are new to autonomous systems development. The flight controller may have limitations in terms 

of sensor integration options compared to more advanced flight controllers. This could impact the 

ability to incorporate specific sensors or advanced features in the system. Development of the 

Multiwii Series flight controller has stopped, with the focus shifting to more modern flight 

controllers. This may result in a lack of support for newer technologies or compatibility issues 

with contemporary software frameworks[39]–[41]. Baseflight came after the first multiwii series 

controller. 

 

 

 

 

 

 

 

 

Cleanflight – is an open-source flight controller software which is a 32-bit version of the original 

8-bit MultiWii code. Cleanflight offers extensive configurability options, allowing users to fine-

tune flight parameters, control settings, and sensor calibrations. This level of customization 

enables users to optimize their drone's performance and flight characteristics. Cleanflight is 

closely integrated with Betaflight, another popular open-source flight controller software. This 

integration allows users to benefit from the best features and optimizations of both Cleanflight 

and Betaflight, providing a comprehensive suite of options for drone control.[43], [44] 

 

Figure 2.20 - Development history originating from the original Multiwii flight controller software [42] 
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Betaflight – It is the largest flight firmware in the first-person view (FPV) drone racing and 

freestyle community due to its cutting-edge performance, features, reliability and wide range of 

hardware support.[44], [45] 

 

INAV – offers seamless integration with GPS modules, enabling accurate position hold, return-

to-home functionality, and autonomous missions based on GPS coordinates. This feature is 

beneficial for applications that require accurate positioning and navigation capabilities. INAV 

supports both multirotor and fixed-wing aircraft, making it a versatile option for users who work 

with different types of drones. While INAV offers a user-friendly interface, configuring advanced 

features and customizing complex flight parameters may require a deeper understanding of the 

software and its underlying concepts.[46] 

 

OpenPilot Series – is a flight controller software package that has been developed through 

many projects and by different developers. OpenPilot (Figure 2.21) was the original flight 

controller software in this series, but development was stopped in 2015. 

 

 

 

 

 

 

 

 

LibrePilot – started as a fork of OpenPilot in 2015 and supports a wide range of sensors, 

including gyros, accelerometers, magnetometers, and barometers. This allows users to gather 

accurate data for flight control and stabilization, enabling smooth and precise flying. LibrePilot 

offers a user-friendly interface, making it easier for users to configure and customize flight 

parameters. The intuitive interface simplifies the setup process and allows users to quickly get 

their drones up and running. LibrePilot may face compatibility issues with newer flight controller 

hardware or components.[47], [48] 

Figure 2.21 - Development history of the OpenPilot series flight controller software [42] 
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ArduPilot – benefits from a large and active development community. This ensures frequent 

updates, bug fixes, and continuous improvements to the software, keeping it up to date with the 

latest advancements in autonomous systems. the controller can run under Linux, enabling it to 

be used on a large class of electronics from single-board computers all the way up to a full  Portable 

Computer (PC) system. ArduPilot has a desktop Ground Control Station for mission planning, 

calibration, and vehicle setup for Windows, Linux and Mac ArduPilot requires specific hardware 

components for optimal performance.[49], [50] 

 

PX4 – The PX4 flight stack and autopilot are a part of the DroneCode collaborative project which 

covers both Ground Control Station, Pixhawk hardware platforms and simulation. PX4 is built 

around the MAVLink communication protocol, which facilitates interoperability and integration 

with other systems and components. This allows seamless communication between the flight 

controller and companion computers and other MAVLink-compatible devices. It supports a wide 

range of vehicles, including multirotors, fixed-wing aircraft and more, providing versatility for 

various applications. 

When encountering issues or bugs, troubleshooting and debugging in PX4 can be challenging, 

especially for users with limited technical expertise. Comprehensive debugging tools and 

resources may be required to identify and resolve complex issues.[51]–[54] 

 

2.5.2 Simulation platforms 

Simulation platforms play a crucial role in the development and testing of autonomous systems, 

such as drones, self-driving cars, and robotics. These platforms provide a virtual environment 

where developers can assess the performance, validate algorithms, and refine control strategies 

before deploying their solutions in the real world. However, with a multitude of available open-

source simulation platforms, selecting the most suitable one for a specific application can be a 

daunting task. 

Below a comprehensive comparative analysis of several popular open-source simulation 

platforms is provided, highlighting their advantages and disadvantages. By understanding the 

unique features and limitations of each platform, it is easier to make an informed decision about 

which simulator best aligns with this project requirements. 

AirSim – provides a high-fidelity simulation environment for autonomous vehicle development, 

including drones and self-driving cars. It offers realistic physics modeling, accurate sensor 
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simulation, and realistic rendering for immersive simulations. It has a user-friendly interface, 

making it accessible to developers at different levels of expertise. It provides an easy-to-use 

Application Programming Interface (API) and graphical unit interface (GUI) for scenario 

creation, configuration, and control of simulations. 

However, running AirSim simulations with high-fidelity graphics and complex scenarios may 

require a powerful computer with a capable graphics processing unit (GPU) and sufficient 

computational resources.[55]–[57] 

 

MORSE – supports the simulation of various sensors commonly used in robotics, including 

cameras, lasers, and range finders. This feature allows developers to generate simulated sensor 

data and evaluate the performance of perception algorithms without the need for physical sensors. 

Morse integrates well with Robot Operating Systems (ROS). 

Compared to some other simulation platforms like Gazebo or AirSim, Morse may have a smaller 

user community and a more limited availability of resources.[58], [59] 

 

jMAVSim – seamlessly integrates with the MAVLink communication protocol, which is widely 

used in the drone ecosystem. This integration enables developers to test and validate their 

software and control systems in a simulated environment that closely resembles real-world drone 

operations. 

While jMAVSim provides a fast and efficient simulation of drone flight dynamics, its sensor and 

environment simulation capabilities may be more limited compared to more advanced simulators 

like AirSim or Gazebo.[59] 

 

Gazebo – supports a wide range of sensors commonly used in robotics, including cameras, 

LiDAR, GPS, and IMU. It allows developers to generate simulated sensor data, enabling the 

evaluation and testing of perception algorithms without the need for physical sensors. It offers a 

highly customizable and flexible environment. It allows users to create and modify virtual worlds, 

models, and robot behaviors to match specific project requirements. This flexibility makes it 

suitable for a wide range of applications and research purposes. Gazebo seamlessly integrates with 

ROS. This integration allows for easy communication with ROS nodes and the use of ROS tools, 

libraries, and packages within the simulator environment. It is perfect for drone flight simulations 

(see Figure 2.22). 
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Gazebo has a steeper learning curve compared to some other simulation platforms. It requires 

users to understand concepts such as simulation world setup, models, and the plugin system. 

However, the extensive documentation and community support help mitigate this challenge.[60], 

[61] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22 - Inside a gazebo world simulation [62] 
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Chapter 3 

 

Methodology 

This chapter outlines the methodology employed in this dissertation, elucidating the steps that 

culminated in the simulation of drone control, an integral component of the wildfire tracking 

drone project. The process commenced with the calculation of UAVs' moments of inertia, 

progressing through the depiction of the laboratory setup and the development of the multirotor 

CAD model, ultimately encompassing the fundamental drone control functionalities. 

In a summarized format, this dissertation has proceeded in the following stages: 

1. Measurement of the drone operating space inside the Laboratory of Aerodynamics and 

Propulsion in the Department of Aerospace Sciences at UBI. 

2. Modeling of the referred space in a virtual environment (Gazebo Simulator), defining the 

limits of operation. 

3. Calculating UAV moments of inertia and inserting that data in the UAV model code which 

allows realistic flight path to the final objective of wildfire tracking. 

4. Virtually modeling the UAV based on a real multirotor and on its moments of inertia. 

5. Creation of basic control functions (in Python) that send commands to the drone based 

on a distance to a certain target position. 

6. Virtual implementation of the multicopter and its results. 

 

3.1 Software Tools 

The software tools used in this dissertation, are the following ones: 

Robot Operating Systems 

ROS is a widely used platform in the field of robotics, developed by a global community of millions 

of developers and users over a decade. ROS is used for teaching robotics, cutting-edge research 

projects, and deployed in production robots worldwide. It is versatile and adaptable, being an 

open-source platform that allows developers to customize it to suit their specific needs and 

seamlessly integrate with existing software stacks. This program is designed for a wide range of 

robotics applications (including drones) and is supported on multiple operating systems. Its 
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open-source approach fosters interoperability and collaboration within the robotics 

community.[63] 

ROS has a package called MAVROS that acts like a bridge between the autopilot system such as 

PX4 and itself. It provides a set of ROS messages and services for MAVLink protocol. 

 

Gazebo 

Gazebo is a 3D dynamic simulator with the ability to accurately and efficiently simulate 

populations of robots in complex indoor and outdoor environments. While similar to game 

engines, Gazebo offers physics simulation at a much higher degree of fidelity, a suite of sensors, 

and interfaces for both users and programs. 

Typical uses of Gazebo include testing robotics algorithms, designing robots, performing model 

testing with realistic scenarios. A few key features of Gazebo include multiple physics engines, a 

rich library of robot models and environments, a wide variety of sensors, convenient 

programming and graphical interfaces.[64] 

 

Microsoft Excel 

Microsoft Excel is a software that utilizes spreadsheets for organizing data, programming, data 

analysis and calculations. For the present work, this software was used for volumetric mass 

calculations of the different drone parts and to obtain the proportion between a real wildfire and 

a laboratory test fire. 

 

CATIA V5 

CATIA V5, is a multi-platform software for CAD, Computer-Aided Manufacturing (CAM), 

Computer-Aided Engineering (CAE), 3D modeling, and Product Lifecycle Management (PLM) 

made by Dassault Systems. This software is utilized for obtaining the 3D model of the aircraft and 

for calculating the UAVs moments of inertia. 

 

Microsoft 3D Viewer 
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The Microsoft 3D Viewer is a software application that allows users to view and interact with 3D 

models on Windows-based devices. It supports various 3D file formats (including Standard 

Tessellation Language (STL) and Digital Asset Exchange (DAE) format), provides viewing, 

editing, and basic texture capabilities, and is compatible with virtual reality and augmented reality 

environments. 

 

Visual Studio Code 

Visual Studio Code is a lightweight but powerful source code editor which runs in a desktop and 

is available for Windows, macOS and Linux. It comes with built-in support for JavaScript, 

TypeScript and Node.js and has a rich ecosystem of extensions for other languages and runtimes 

(such as C++, C sharp, Java, Python, Go,).[65] 

 

QGroundControl 

QGroundControl (QGC) is a software that provides flight control and vehicle setup for PX4 or 

ArduPilot powered vehicles. It is user-friendly for beginners yet offers advanced features for 

experienced users. Key features include setup/configuration for ArduPilot and PX4 Pro vehicles, 

flight support for various autopilots, mission planning for autonomous flight, flight map display, 

video streaming with overlays, multi-vehicle management, and compatibility with Windows, Mac, 

Linux, iOS, and Android platforms.[66] 

 

PX4 Autopilot 

PX4 is an open-source flight control software stack for UAVs and autonomous vehicles. It 

provides a flexible and extensible platform for controlling, navigating, and executing missions. 

With its modular architecture, it supports various UAV platforms and offers features like 

firmware for flight controllers, middleware for communication, autonomous flight modes, 

simulation capabilities, and compatibility with ground control stations. PX4 is widely used and 

has an active community of developers.[67] 

 

3.2 Test laboratory 

In order to carry out this task, measurements were taken of the test area inside the Aerodynamics 

and Propulsion Laboratory in the Aerospace Sciences Department at UBI. 
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This area is located on the upper floor of the laboratory and has the following dimensions: 

- 9 meters in length, 4.1 meters in width, and 2.6 meters in height. 

 

It is a place without obstacles, trying to recreate its operating environment in a real context, that 

of monitoring a forest fire. Although in Figure 3.1 and 3.2, the testing space of the drone is 

occupied by scaled-down aerial models, they are removed before the UAV flight. The height is 

limited by a truss beam linked to the roof and the width by the ventilation ducts attached to the 

side wall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 - Laboratory in aerospace sciences department at UBI 

Figure 3.2 - UAV testing area in the upper floor 
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The upper floor area is then represented at a virtual level through the Gazebo simulation software. 

In Section 4.2, the test laboratory virtual representation is explained in terms of its code, how it 

was adapted from a default file of the simulator and the creation of the fire pattern models with 

their corresponding sizes. 

These fire patterns are a scaled representation of real fires, depicting their shape and size. They 

take on various forms: continuous and discontinuous, curved and straight. Aerial images from 

manned and unmanned vehicles reveal exactly that. 

These three examples below reveal that wildfires have shapes similar to letters of the Latin 

alphabet but a little bit distorted. In Figure 3.3, an “F” shape is considered, in Figure 3.4 an “S” 

and in Figure 3.5 a “V” shape. 

 

 

 

 

 

 

 

 

 

Figure 3.3 - Wildfire aerial view Yakutsk, Russia[68] Figure 3.4 - Wildfire aerial view near Izmir, 
Turkey[69] 

Figure 3.5 - Wildfire aerial view near Chiang Mai, Thailand[70] 
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3.3 Multirotor CAD model 

In order to obtain the multirotor virtual display, the following steps were proceeded: 

• The drone was disassembled into 25 distinct parts. Their mass (in grams) and geometric 

dimensions were measured. 

• Each part was drawn in CATIA V5. 

• From this moment on, the “CATProduct” file was converted into a “CATPart” file, making 

the drone one whole part. 

• After that, tessellation is applied (see figure 3.6) and converted into a STL file. 

• To preview and inspect the drone model before adding it into the simulation, Microsoft 

3D viewer is utilized. 

• Then, the STL file is placed in the “meshes” folder within the “typhoon_h480” drone 

folder that is used as an adaptation to this multirotor. This file is then called from within 

the code that defines the UAV, “typhoon_h480.sdf”, making way to the appearance of the 

multirotor virtual display, that is explained in more detail in section 4.4. 

In figures 3.6, 3.7 and 3.8 it is demonstrated that the axis system has the x-axis facing the front of 

the drone, the y-axis facing to the right, and the z-axis facing downwards. It is noted that the GPS 

antenna is located on the rear of the drone. The images of the drone in CATIA V5 have rotors 

hidden from view to facilitate the visualization of the axes. The exact place of the center of the axis 

system is calculated in the next Section. 

 

 

 

 

 

 

 

 

 

Figure 3.6 - Tessellation in CATIA V5 
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3.4 UAV moments of inertia 

In order to obtain the moments of inertia, it was proceeded with the following steps: 

• Using the “Measure Inertia” tool, the volume of each part was obtained in cm³. 

• Gathering this data, the density of each part was calculated and placed in an Excel sheet. 

• A file called "CATMaterial2" was created which has a material assigned to each part of the 

drone with its respective density. 

• In the file that compiles all the parts, called "Product1", the "Measure Inertia" option was 

used and acquired the UAV center of mass. 

• An axis system was created with the origin at the UAV’s center of mass. 

• With this axis system, it is finally computed the inertia matrix. 

The following Table 3.1 indicates the mass, volume and density of each part that makes up the 

drone. The mass was measured a digital scale which measures to the nearest tenth of gram and 

the volume was calculated with a standard ruler. 

 

 

Figure 3.7 - Side view of the UAV in CATIA V5 Figure 3.8 - Upper view of the UAV in CATIA V5 
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Table 3.1- Mass and volumetric mass of each part of the UAV 

 
part mass, g Volume, 

𝑐𝑚3 

Density 

(g/ 𝑐𝑚3) 

Density (kg/ 

𝑚3) 

Number 

of parts 

Arm 53.73 36.74 1.46 1462.44 4 

Battery 435.47 192.89 2.26 2257.66 1 

Battery plate 17.22 8.34 2.06 2064.75 1 

Bottom main plate 58.52 35.21 1.66 1662.12 1 

Connector arm frame 13.56 10.45 1.30 1297.98 4 

Connector leg frame 10.00 6.10 1.64 1639.34 2 

Connector leg land 

Gear 

11.46 5.94 1.93 1928.64 2 

GPS ant 32.87 20.68 1.59 1589.84 1 

GPS base 10.61 4.89 2.17 2167.96 1 

GPS top base 3.99 1.95 2.05 2048.26 1 

GPS tube 2.61 1.76 1.48 1483.80 1 

Hanger 1.90 1.46 1.30 1297.81 10 

Hanger rubber 1.52 1.08 1.41 1411.33 10 

Landing Gear 16.71 45.75 0.37 365.23 2 

Leg 13.82 9.42 1.47 1467.87 2 

Motor 65.98 19.62 3.36 3362.21 4 

Nylod stud 0.12 0.10 1.25 1250.00 8 

Payload tube 13.47 7.07 1.91 1905.50 2 

pdb 22.18 7.70 2.88 2882.02 1 

Pixhawk 4 31.82 37.68 0.84 844.55 1 

Power Module 23.99 9.16 2.62 2619.85 1 

Rpi 50.45 21.50 2.35 2346.73 1 

Rpi plate 19.99 9.72 2.06 2056.16 1 

Slide bar clip 6.51 5.49 1.19 1185.79 2 

Top main plate 56.34 37.56 1.50 1500.08 1 

TOTAL 1454.25 832.82 
   

TOTAL, kg 1.45 
    

 

The total mass of the drone of 1.454 kg and the total volume is 832.819 𝑐𝑚3. The calculated center 

of mass is at the coordinates of (0.7; -10.8; -16.6) and the matrix of inertia of the UAV (Equation 

3.1), considering the axis represented in Figures 3.7 and 3.8: 
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𝑰 = [
𝟎. 𝟎𝟐𝟏 −𝟔. 𝟎𝟖𝟕 × 𝟏𝟎−𝟓 𝟒. 𝟖𝟔𝟖 × 𝟏𝟎−𝟒

−𝟔. 𝟎𝟖𝟕 × 𝟏𝟎−𝟓 𝟎. 𝟎𝟐𝟑 𝟐. 𝟐𝟑𝟖 × 𝟏𝟎−𝟓

𝟒. 𝟖𝟔𝟖 × 𝟏𝟎−𝟒 𝟐. 𝟐𝟑𝟖 × 𝟏𝟎−𝟓 𝟎. 𝟎𝟑𝟐

]     (3.1) 

 

 

3.5 Basic drone control functions 

The drone's fundamental control functions are designed to facilitate communication with various 

flight control software systems such as PX4 and MAVROS. This enables the drone to detect forest 

fire paths and safely navigate by avoiding potential obstacles it may encounter during its flight. 

MAVROS stands for "MAVLink to ROS" and it is a popular open-source middleware that enables 

communication between a MAVLink-enabled autopilot system (such as PX4) and ROS. MAVROS 

allows users to control and monitor autonomous vehicles, such as drones, using ROS tools and 

libraries. It provides a convenient interface for exchanging messages, accessing vehicle telemetry 

data, and controlling vehicle behavior within the ROS ecosystem. MAVROS is widely used in the 

field of robotics and unmanned aerial systems for research, development, and implementation of 

various applications.[71], [72] 

The way the drone control algorithm accesses the MAVROS package is through nodes, which are 

individual software processes that perform specific functions within a robotic system. They are 

like individual workers in a factory, each responsible for a particular task. Nodes (Figure 3.9) are 

coordinated by a main node called ROS master.[73] 

  

 

 

 

 

 

 

 

 

Figure 3.9 - Nodes communication model in the ROS environment [74] 
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Nodes communicate with each other through 5 different ways: messages, publishing and 

subscribing(topics), parameters, services, actions. 

• Messages: ROS defines a set of standardized message types that nodes use to 

communicate. These message types define the structure and content of the data being 

exchanged between nodes. Nodes need to agree on the message type used for a specific 

topic to ensure proper communication.[75] 

• Publishing and subscribing (topics): Topics in ROS serve as named communication 

channels through which nodes exchange messages. They follow an anonymous 

publish/subscribe model, allowing information production and consumption to be 

decoupled. Nodes are not aware of the specific nodes they are communicating with; 

instead, they subscribe to topics they are interested in, while publishers provide data by 

publishing messages to relevant topics. Multiple nodes can act as publishers or 

subscribers for a single topic. Topics are primarily designed for one-way, continuous 

communication.[76] 

• Parameters: The parameter server in ROS acts as a network-accessible, shared 

dictionary. It allows nodes to store and retrieve parameters during runtime. While it is 

not optimized for high-performance operations, it serves as an efficient solution for 

managing static, non-binary data, particularly configuration parameters. The parameter 

server is designed to provide a global view of the system's configuration state, making it 

convenient for tools to inspect and modify the parameters as needed.[77] 

• Services: ROS provides a Service-based communication model. Services are defined by 

a pair of messages: one for the request and one for the reply. A ROS node offering a service 

specifies a unique name, and clients can call the service by sending a request message and 

waiting for the corresponding reply. This interaction is often presented to programmers 

as if it were a remote procedure call. Services are defined using “srv” files, which are 

compiled into source code by a ROS client library. To enhance performance, a client can 

establish a persistent connection with a service. However, this approach may be less 

robust to changes in service providers.[78] 

• Actions (actionlib): actions provide a way to perform long-running, asynchronous 

tasks that require feedback, cancellation, and goal status monitoring. Actions are useful 

when the outcome of a task is not immediate and may take a significant amount of time 

to complete. The action communication model in ROS involves three main components: 

the action server, the action client, and the action messages. Actions in ROS provide 

several benefits, such as the ability to track progress, receive intermediate feedback, 

preempt or cancel tasks, and handle tasks that require long-duration execution. They are 

commonly used for complex behaviors, motion planning, and coordination tasks in 

robotic systems. The action communication model in ROS complements the publish-

subscribe messaging and service communication models.[79], [80] 
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Nodes are activated by assigning various functions within the drone control code. This algorithm 

is represented as follows: 
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The “setup_pubsub” function is responsible for setting up the publishers and subscribers. 

In this code, several subscribers are created using the “rospy.Subscriber” function. Each 

subscriber is associated with a specific topic and message type. For example, “self.altitude_sub” 

subscribes to the topic “/mavros/altitude” and expects messages of type “Altitude”. Similarly, 

other subscribers are created for topics such as “state”, “extended state”, “setpoint raw local”, 

“local position”, IMU data, “home position”, and “image guidance”. 

On the other hand, two publishers are set up using the “rospy.Publisher” function. The 

“self.setpoint_raw_pub” publisher sends messages of type “PositionTarget” to the 

“/mavros/setpoint_raw/local” topic, and the “self.setmission_pub” publisher sends messages of 

type Bool to the “/mission/start” topic. 

The “setup_services” function sets up various services that the node can use to interact with the 

system. Services allow the node to request specific actions or retrieve information from other 

nodes or components. 

In this code, the “rospy.wait_for_service” function is used to wait for the availability of services 

with specified names. These services include parameter retrieval, arming, mode setting, takeoff, 

landing, and parameter setting. Once the services are available, the node logs a message indicating 

that they are connected and ready. 
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Afterward, the code creates service proxies using the “rospy.ServiceProxy” function. These proxies 

allow the node to call the respective services. For example, “self.get_param_srv” is a proxy for the 

“/mavros/param/get” service, which retrieves parameter values. 

The “set_param” function sets a parameter value by using the “/mavros/param/set” service. It 

takes a parameter name and value as arguments, converts the value to an integer, and attempts 

to set the parameter. If successful, it logs a message indicating that the RC failsafe is disabled. 

The “set_mavros_stream_rate” function configures the stream rate for MAVROS messages. It 

creates a “StreamRateRequest” object with the desired stream ID, message rate, and enables the 

stream. It calls the “/mavros/set_stream_rate” service to set the stream rate. If the service call 

fails, it logs an error message. 

 

Also in the code, “mode functions” are written in order to control the state of a vehicle. These 

functions utilize various MAVROS services and publishers to control the vehicle's behavior and 

mode of operation. 

• The arm() function attempts to arm the vehicle if it is not already armed. 

• The disarm() function disarms the vehicle. 

• The set_mode(mode) function changes the mode of the vehicle to the specified mode. 

• The set_takeoff(takeoff_altitude_local, yaw_deg, yaw_rate) function sets the target pose 

for takeoff and engages the OFFBOARD mode. It publishes the target pose until the target 

position is reached. 

• The set_position_local(target_x, target_y, target_z, yaw_deg, yaw_rate) function sets 

the target pose for local position control and engages the OFFBOARD mode. It publishes 

the target pose until the target position is reached. 

 

Regarding the more relevant functions of this code, they are responsible for the drone's control 

behavior by following a fire path and avoiding obstacles. The main function initializes the drone, 

performs takeoff, sets position setpoints, and calls the “followGuidance” function. 

The “followGuidance” function sets the target pose for the drone based on the fire path guidance 

and continuously publishes the setpoints. It ensures the drone is in the correct mode and armed. 

The code includes functions to calculate distances to walls and return True if it is too close to the 

wall. 

Overall, this snippet of the code provides a basic framework for controlling the drone's movement, 

handling guidance, obstacle avoidance, and trajectory execution which is detailed in Chapter 5. 
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Chapter 4 

 

Model implementation 

 

4.1 Mathematical models of the flight simulation 

The mathematical models of the project’s flight simulation can be based on several physics’ 

engines. These are software libraries or modules that simulate the physical laws and principles 

governing the behavior of objects in a virtual environment. They provide the necessary algorithms 

and calculations to realistically model and simulate various aspects of physics, such as motion, 

forces, collisions, and interactions between objects. Gazebo simulator supports four distinct 

physics engines[81]: 

• Open Dynamics Engine (ODE) - for simplified robot dynamics  

• Bullet - for gaming  

• Dynamic Animation and Robotics Toolkit (DART) - for computer graphics and robot 

control  

• Simbody - for biomechanics 

 

These physics engines provide the underlying computational algorithms and calculations 

necessary to simulate the physical interactions and dynamics of objects in Gazebo. Each physics 

engine has its own set of mathematical models. Gazebo integrates with these physics engines to 

provide a realistic and accurate simulation environment. The simulator provides the flexibility to 

switch between these different physics engines based on the simulation file configuration. 

As ODE is meant for simplified robot dynamics then it is the chosen physics engine for this 

simulation in Gazebo as well as because it is the most appropriate since it closely approximates 

the simulation of a multirotor for flight dynamics with the required performance and 

precision.[82], [83] 

ODE’s physical and mathematical concepts include an explanation in rigid bodies, step sizing, 

vectors, forces, collision and constraints. 
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4.1.1 Rigid bodies, equations of motion and state vector 

A rigid body in simulation has various properties that can change over time and others that 

remain constant. The changing properties include the position vector of the body's point of 

reference (x, y, z), the linear velocity of the point of reference (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧), the orientation 

represented by a quaternion or a 3x3 rotation matrix, and the angular velocity vector (𝑤𝑥, 𝑤𝑦 , 𝑤𝑧). 

Constant properties include the body's mass, the position of the center of mass with respect to the 

point of reference (which must coincide in the current implementation), and the inertia matrix 

that describes how the body's mass is distributed around the center of mass. There are two 

coordinate frames: the body coordinate frame (Figure 4.1) and the global coordinate frame. The 

shape of a rigid body is not a dynamic property, except for its influence on the various mass 

properties.[84], [85] 

 

 

 

 

 

 

 

 

The rigid bodies have equations of motion applied to them. These equations describe their motion 

state and dynamics. They can be derived from Newton's laws of motion and are typically expressed 

in terms of linear and angular quantities. The world-space location of the body is written in 

Equation 4.1: 

𝒑(𝒕) =  𝑹(𝒕) 𝒑𝟎 + 𝒙(𝒕)                      (4.1) 
 

Being x(t) the translation of the body at time 𝑡. R(t) is a 3x3 matrix that characterizes the rotation 

around the center of mass, with each column indicating the directions of the body’s axes in the 

world-space coordinates (x,y and z). Finally, 𝑝0 represents a fixed point in the object. 

 

Figure 4.1 - The body coordinate frame[84] 
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Besides the location, there is also the linear velocity that can be defined as the derivative of the 

position of the body in time 𝑡 (Equation 4.2) and the angular velocity that is related to the 

direction of the body (Equation 4.3): 

𝒗(𝒕) =  𝒙̇(𝒕)      (4.2) 
 

𝒓̇(𝒕) = 𝒘(𝒕) 𝒓(𝒕)     (4.3) 

 
P(t) is the sum of the products of the mass and velocity of each particle (Equation 4.4).  

𝑷(𝒕) = ∑ 𝒎𝒊𝒓𝒊̇(𝒕)      (4.4) 
 

The mass of each particle in the body is represented by 𝑚𝑖 and the velocity of each particle is 

denoted as 𝑟𝑖̇(𝑡) and can be simplified by treating it as a single particle with mass M and a center 

of mass coordinate system. The Equation 4.5 can be expressed as follows: 

𝑷(𝒕) = 𝑴 𝒗(𝒕)       (4.5) 
 

L(t) is the total angular momentum. 𝐿(𝑡) is calculated by multiplying the inertia matrix and 

angular velocity (Equation 4.6): 

𝑳(𝒕) = 𝑰(𝒕) 𝒘(𝒕)      (4.6) 
 

The angular velocity refers to the rate at which it rotates around a certain axis and the inertia 

matrix (3x3) describes how the mass of a rigid body is distributed around its center of mass. 

 

Finally, the rigid body state vector can be defined as (Equation 4.7): 

𝒀(𝒕) =  (

𝒙(𝒕)

𝒓(𝒕)
𝑷(𝒕)

𝑳(𝒕)

)       (4.7) 

 

The derivative of the 𝑌(𝑡) vector is implemented and computed in the simulator physics. It serves 

the purpose of achieving accurate and real-time simulations. It allows for numerical integration, 

ensuring smooth motion updates. The derivatives enable the detection and response to collisions, 

incorporating external forces, and providing a realistic and interactive experience.[86], [87] 
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4.1.2 Step sizes and simulation integration 

The process of simulating the rigid body system through time is known as integration. It involves 

updating the state of the rigid bodies at each time step. Two main considerations when choosing 

an integrator are accuracy and stability. Accuracy refers to how closely the simulated behavior 

matches real-life behavior, while stability ensures that calculation errors do not lead to non-

physical behavior. ODE's current integrator is stable but lacks accuracy unless the step size is 

small. While ODE generally produces physically plausible results, it is not recommended for 

precise engineering applications until accuracy concerns are addressed in future releases. 

After acknowledging the accuracy challenges within the current integrator framework, it becomes 

pivotal to explore numerical methods that mitigate these limitations. This subsection 4.1.2 

delineates how diverse numerical techniques address these accuracy concerns, paving the way for 

improved simulations in complex systems like Gazebo. In a canonical initial value problem, the 

behavior of the system is described by equation 4.8 which is an ordinary differential equation of 

the form: 

𝑥̇ = 𝑓(𝑥, 𝑡)     (4.8) 

In the above equation 𝑓 is a known function, 𝑥 is the state of the system and 𝑥̇ is x time derivative. 

These are considered vectors of the system. 

ODE uses Euler’s basic numerical method, as well as Runge-Kutta of order 4 method for 

approximating solutions to ordinary differential equations. Euler’s involves discretizing the 

independent variable into small intervals and iteratively updating the approximation based on 

the derivative at each point.[88] 

It picks an initial value of integration 𝑥0 = 𝑥(𝑡0) and then computes 𝑥(𝑡0 + ℎ) by taking a step in 

the derivative direction. In Equation 4.9 it is considered ℎ as a step size parameter. 

𝒙(𝒕𝟎 + 𝒉) = 𝒙𝟎 + 𝒉𝒙̇(𝒕𝟎)     (4.9) 
 

While it is straightforward to implement, Euler’s method is neither stable nor accurate. It 

produces significant errors especially for systems with complex or rapidly changing dynamics 

such as Gazebo. 

It specifically introduces a local truncation error proportional to the square of the step size (ℎ2). 

As the step size increases, the error grows rapidly, limiting the accuracy of the approximation. To 

understand how this method can be improved, it is important to look closely at the error it 

produces. The key to understanding what is going on is the Taylor series in Equation 4.10: 
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𝒙(𝒕𝟎 + 𝒉) = 𝒙(𝒕𝟎) + 𝒉𝒙̇(𝒕𝟎) + 
𝒉𝟐

𝟐!
𝒙̈(𝒕𝟎) +

𝒉𝟑

𝟑!
𝒙⃛(𝒕𝟎) + ⋯ +

𝒉𝒏

𝒏!

𝝏𝒏𝒙

𝝏𝒕𝒏 + ⋯   (4.10) 

 

Euler’s method would only be accurate if all derivates beyond the first were equal to zero. Higher-

order numerical methods, such as the Runge-Kutta methods, offer improved accuracy by reducing 

the truncation error through the inclusion of more terms from the Taylor series expansion. 

Runge-Kutta of 2nd order (Midpoint method) improves Euler's method by evaluating the 

derivative at the current point, estimating the slope at the midpoint, and updating the 

approximation accordingly. It strikes a balance between accuracy and computational efficiency. 

The Equation 4.11 is as follows: 

𝒙(𝒕𝟎 + 𝒉) = 𝒙(𝒕𝟎) +
𝒉

𝟐
 (  𝒇(𝒙𝟎) +  𝒇(𝒙𝟎 + 𝒉 𝒇(𝒙𝟎)))   (4.11) 

 

The function 𝑓(𝑥) represents the derivative function or rate of change of 𝑥 with respect to time. 

This formula first evaluates a Euler step, then performs a second derivative evaluation at the 

midpoint of the step, using the midpoint evaluation to update 𝑥. Hence the name midpoint 

method. 

The most popular procedure for reducing the computation errors in simulators and dynamics 

engines (possibly in Gazebo), is the Runge-Kutta of order 4 and has an error step of ℎ4. The 

Equations 4.12-4.16 for computing 𝑥(𝑡0 + ℎ) are listed below: 

𝒌𝟏 = 𝒉𝒇(𝒙𝟎, 𝒕𝟎)      (4.12) 

 

 

𝒌𝟐 = 𝒉𝒇 (𝒙𝟎 +
𝒌𝟏

𝟐
, 𝒕𝟎 +

𝒉

𝟐
)    (4.13) 

 

𝒌𝟑 = 𝒉𝒇 (𝒙𝟎 +
𝒌𝟐

𝟐
, 𝒕𝟎 +

𝒉

𝟐
)     (4.14) 

 

 
𝒌𝟒 = 𝒉𝒇(𝒙𝟎 + 𝒌𝟑, 𝒕𝟎 + 𝒉)     (4.15) 

 

 

𝒙(𝒕𝟎 + 𝒉) = 𝒙𝟎 +  
𝟏

𝟔
𝒌𝟏 + 

𝟏

𝟑
𝒌𝟐 +  

𝟏

𝟑
𝒌𝟑 +

𝟏

𝟔
𝒌𝟒   (4.16) 

 

 

The Butcher algorithm offers superior precision and adaptability compared to the fixed-

coefficient Runge-Kutta method. Its adaptive coefficients allow for fine-tuning accuracy and 

stability, ideal for simulations requiring high precision. Particularly adept at handling stiff 
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equations with rapid solution changes, the Butcher algorithm maintains accuracy with larger step 

sizes, reducing computational load for complex systems. 

However, its increased computational complexity limits real-time applications and resource-

constrained environments. In contrast, the Runge-Kutta of order 4 method, preferred in Gazebo 

simulations due to its reasonable accuracy and lower computational demands, remains a practical 

choice despite slightly lower precision. 

 

 

4.1.3 Collisions and constraints 

Collision detection is the only aspect concerned with the detailed shape of the body. In the 

collision detection algorithm, bounding boxes are computed for each rigid body during a 

preprocessing step. The goal is to efficiently determine overlapping pairs of bounding boxes 

among the given set. If two rigid bodies' bounding boxes do not overlap, they can be disregarded. 

However, overlapping pairs require further consideration. The algorithm then checks for inter-

penetration or contact points between convex polyhedra representing the rigid bodies. Two bodies 

can also interact not by collision but through joints and constraints. However, there can be errors 

in the joints.[89] 

The presence of joint error can occur when the positions and orientations of bodies connected by 

a joint do not meet the required constraints. Joint error can arise from user-defined 

positions/orientations or simulation errors causing the bodies to deviate from their required 

alignment (see Figure 4.2). To mitigate joint errors, a corrective force is applied to each joint 

during each simulation step. The magnitude of this force is determined by the Error Reduction 

Parameter (ERP), which ranges between 0 and 1. In the present simulation the value is set to 0.2. 
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In physics simulation, constraints can be classified as either "hard" or "soft". Hard constraints 

represent conditions that are never violated, while soft constraints are designed to allow for some 

degree of violation. 

Most constraints are hard by default, ensuring strict adherence to the specified conditions. 

However, unintentional errors can introduce violations, which can be corrected using the ERP. 

Soft constraints intentionally allow for some violation. For example, the contact constraint that 

prevents object penetration can be made soft to simulate softer materials, allowing for natural 

penetration when objects collide. 

The classification of constraints as hard or soft is controlled by two parameters. The ERP controls 

the reduction of error in hard constraints, while the Constraint Force Mixing (CFM) value 

determines the softness of constraints. By adjusting these parameters, the behavior of constraints 

can be customized to achieve desired simulation effects. In the current simulation, CFM value is 

set to 0, which makes “hard” constraints. 

𝑬𝑹𝑷 =  
𝒉𝒌𝒑

𝒉𝒌𝒑+𝒌𝒅
     (4.17) 

 

𝑪𝑭𝑴 =  
𝟏

𝒉𝒌𝒑+𝒌𝒅
      (4.18) 

 

 

Equations 4.17 and 4.18 are shown above, where ℎ is the step size, 𝑘𝑝is the spring constant that 

characterizes the stiffness or elasticity of a spring, 𝑘𝑑 is the damping constant which represents 

the resistance to motion in a system.[84] 

Figure 4.2 - An example of an error in ball and socket joint [84] 
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4.1.4 Aerodynamics and propulsion 

 

The ODE is primarily a physics engine focused on simulating rigid body dynamics, collisions, and 

constraints for a wide range of applications, including robotics and virtual environments. It does 

not inherently include aerodynamic modeling or specific equations for propulsion. Instead, it 

focuses on the basic physics of rigid body motion and collision detection/response. 

In order to incorporate propulsion modeling into a simulation using ODE, it is needed to include 

plugins in the quadrotor’s code to implement these equations. These plugins are shown in Section 

4.4. 

Regarding aerodynamics, it is simulated by applying force accumulators that are continuously 

applied to the drone over several time steps. During each integrator step, forces can be applied to 

the rigid body. These forces are accumulated in the rigid body object's "force accumulators". When 

the next integrator step occurs, the total sum of all applied forces is utilized to determine the 

body's movement. After each integrator step, the force accumulators are reset to zero. 

 

 

4.2 Test lab virtual model 

4.2.1 Parameters 

 

The virtual model of the testing laboratory was adapted from a file that comes from the ROS 

installation. In this way, the physics of the virtual environment/space that are already included 

and defined in the base code are leveraged. This "world" is also defined in the launch files of the 

simulation "mavros_posix_sitl.launch," making it easier to adapt to this case and preventing 

unintentional corruption of installation files. The parameters that are defined under the physics 

tag in the world simulation are[90], [91]: 

 

• type: ODE, bullet, simbody, and DART. 
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• max step size: when using "ODE," only the "step size" is defined because this "physical 

engine" is a "fixed step solver" (default is 0.001, it is 0.004 in this simulation). Smaller 

step sizes make the simulation more accurate. 

• real time update rate: this is the frequency at which simulation time is advanced 

(default is 1000). It is 250 in this simulation because a higher number requires more 

computing power. 

• real time factor: 𝑚𝑎𝑥 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑋 𝑟𝑒𝑎𝑙 𝑡𝑖𝑚𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑟𝑎𝑡𝑒 (if < 1, then the simulation is 

slower than real-time). In this simulation it is 1. 

• max contacts: the maximum number of contacts between two entities with defined 

collision (walls and drone). In this simulation, the definition of this variable is omitted 

because the simulation is not meant to simulate interactions between the drone and other 

entities. Therefore, there is no need to allocate data resources for this variable. 

 

ODE (the chosen one) has 4 main parameters: solver, constraints, friction, and contact. Only the 

first two are defined in the virtual environment because since it is a drone simulation, contact and 

friction between the multirotor and other surfaces should be avoided and then the simulation 

assumes default values since they are not so relevant. It was decided that it would be best not to 

modify any parameters since the ones already defined are suitable for real-time circumstances 

and simplify the simulation. 

• Solver: there are two types of solvers, quick and world. The 1st iterates several solutions 

in order to reach an accurate enough solution. The 2nd gives an accurate solution if it can 

solve the problem. Quick is selected in this simulation. 

• Constraints: constraint parameters are used to define relationships and limitations 

between rigid bodies or joints, enabling the simulation of realistic physical interactions. 

ERP and CFM are enabled in this part. 

• Friction: these parameters control the magnitude of the friction forces between objects. 

Coefficient of friction and direction are specified. 

• Contact: represented by stiffness and damping constants. 
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The following code defines the simulation conditions for the virtual environment created. It has 

the physics of the world where the drone operates. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 - Diagram with the ODE simulation parameters 
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• Iters: The number of iterations for the solver to run for each time step. It is set to 10 in 

this simulation, prioritizing quicker simulation with some accuracy. 

• Sor: Successive Over Relaxation method is an iterative technique used to solve linear 

systems of equations. If it is close to 1 then the convergence is slower during each 

iteration. The value is set to 1.3 prioritizing stability. 

• Use_dynamic_moi_rescaling: This parameter is related to moments of inertia. It is 

set to false/zero assuming that the moments of inertia of objects remain constant 

throughout the simulation. 

• Cfm: By setting CFM to zero, the simulation assumes that the constraints are perfectly 

rigid, and any violation of the constraint conditions results in an immediate correction to 

enforce the constraints precisely. This leads to a very accurate and stable simulation. 

• Efm: When the ERP is set to 0.2, it means that the position correction applied to resolve 

constraint violations is 20% of the total error. In other words, if there is a constraint 

violation between two objects in the simulation, the position correction will attempt to 

reduce the error by 20% during each iteration of the simulation. 

• Contact_max_correcting_vel: it means that the maximum velocity at which contact 

correction is applied between objects in contact is limited to 100 meters per second. 

• Contact_surface_layer: it means that a virtual layer with a thickness of 0.001 meters 

is added to the contact surface of objects. This layer helps prevent objects from 

penetrating each other due to numerical errors or small inaccuracies in the simulation. 

 

 

4.2.2 Operation limits 

The operating limits were defined based on 4 default files from the ROS installation: "big_box," 

"big_box2," "big_box3," and "big_box4." In Figure 4.4, one of the walls was hidden to better 

understand the depth/length in this perspective. 

The Extended Markup Language (XML) language code related to one of the operating limits is 

demonstrated below. Within this XML code, the visual and collision properties are delineated like 

the chosen limit. This is a pivotal aspect of the simulation, as it defines how the system perceives 

and interacts with its surroundings. 

 

 



 54 

 

 

 

 

 

 

 

 

It’s noteworthy that the values within this code, pertaining to the size of the walls, have been 

configured to mirror the dimensions of the real laboratory test. This ensures that the simulation 

faithfully replicates the conditions and constraints encountered during actual testing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 - Test lab virtual model 
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4.2.3 Fire patterns 

The code for the fire patterns was written in the same file as the simulation file "empty.world." 

Some figures that emit the shape of forest fires were obtained using XML code functions called 

"polyline," where the vertices need to be defined in coordinates/points. Other figures were drawn 

using the CATIA V5 program, and then their visual "mesh" file is called within a function. 

In Figure 4.5, The “F” shape and line patterns are described with a polyline and the semi-circles 

and circular crowns with a STL file generated in CATIA V5. 

 

 

 

 

 

 

 

Figure 4.5 - Fire patterns in Gazebo simulation 
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4.3 Physical models of the UAV and camera 

 

4.3.1 Raspberry Pi V2 

The chosen camera brand was "Raspberry Pi" because their cameras have several advantages over 

others. They are more affordable, making them suitable for this project with budget constraints. 



 57 

Raspberry Pi cameras are compact and lightweight, allowing for flexible integration into the 

chosen multirotor. They are user-friendly with clear documentation and strong community 

support. 

The Raspberry Pi V2 Camera (Figure 4.6) [92] offers several advantages over the other camera 

modules of the same brand. It is cheaper than the Module 3, Module 3 Wide, and High Quality 

Camera, making it a more affordable option. Additionally, it provides improved image quality 

compared to the Module v1. Since the camera and drone setup was purchased in 2022, the Module 

3, which was launched earlier this year, was not chosen. The Camera Module v2, with its 

affordability and enhanced quality, was selected as the preferred option. 

 

 

 

 

 

 

 

 

 

Table 4.1 provides a comprehensive comparison of camera module specifications, including size, 

weight, still resolution, video modes, sensor type, sensor resolution, sensor image area, focus 

capabilities, focal length, as well as horizontal and vertical field of view (FOV). This detailed 

comparison simplifies the process of selecting the most suitable camera for this specific project, 

enabling  to make a well-informed choice. 

Table 4.1 - Raspberry Pi Cameras hardware specifications[94] 

 
 Module v1 Module v2 Module v3 V3 Wide HQ camera GS camera 

Net price 25$ 25$ 25$ 35$ 50$ 50$ 

size 25x24x9 

mm 

25x24x9 

mm 

25x24x11.5 

mm 

25x24x12.4 

mm 

38x38x18.4 

mm 

38x38x19.8 

mm 

weight 3g 3g 4g 4g 30.4g 34g 

Figure 4.6 - Raspberry Pi V2 camera[93] 



 58 

Still 

resolution 

5 MP 8 MP 11.9 MP 11.9 MP 12.3 MP 1.58 MP 

Video 

modes 

1080p30, 

720p60 and 

640 × 

480p60/90 

1080p47, 

1640 × 

1232p41 

and 640 × 

480p206 

2304 × 

1296p56, 

2304 × 

1296p30 

HDR, 1536 

× 864p120 

2304 × 

1296p56, 

2304 × 

1296p30 

HDR, 1536 

× 864p120 

2028 × 

1080p50, 

2028 × 

1520p40 

and 1332 × 

990p120 

1456 x 

1088p60 

sensor OmniVision 

OV5647 

Sony 

IMX219 

Sony 

IMX708 

Sony 

IMX708 

Sony 

IMX477 

Sony 

IMX296 

Sensor 

resolution 

2592 × 1944 

pixels 

3280 × 

2464 

pixels 

4608 x 

2592 pixels 

4608 x 

2592 pixels 

4056 x 

3040 pixels 

1456 x 1088 

pixels 

Sensor 

image area 

3.76 × 2.74 

mm 

3.68 x 

2.76 mm 

(4.6 mm 

diagonal) 

6.45 x 

3.63mm 

(7.4mm 

diagonal) 

6.45 x 

3.63mm 

(7.4mm 

diagonal 

6.287mm x 

4.712 mm 

(7.9mm 

diagonal) 

6.3mm 

diagonal 

focus fixed adjustable motorized motorized adjustable adjustable 

Focal 

length 

3.60 mm 3.04 mm 4.74 mm 2.75 mm Depends on 

lens 

Depends on 

lens 

Horizontal 

FOV 

53.50º 62.2º 66º 102º Depends on 

lens 

Depends on 

lens 

Vertical 

FOV 

41.41º 48.8º 41º 67º Depends on 

lens 

Depends on 

lens 

 

 

4.3.2 Holybro X500 V2 

The chosen brand for the UAV was Holybro. Their collaboration with the Pixhawk project 

provides advanced flight control capabilities and compatibility with various peripherals. They 

offer good value for money with competitive pricing. Additionally, Holybro has a strong 

community support network that provides helpful resources and knowledge sharing. 

The X500 series consists of versatile drones designed for professional applications. These drones 

are used in aerial photography, videography, mapping, and surveying tasks. 

It is a drone that has a modular design for customization and stable flight performance. It offers 

extended flight time and supports autonomous flight modes for efficient mission planning and 
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execution. The Holybro X500 V2 (Figure 4.7) is made with full carbon fiber twill, with carbon 

fiber tube arms supported by the newly designed fiber reinforced nylon connectors with 

convenient notches on both motor and body sides, providing a much easier & more 

straightforward installation. Its flight time is 18 minutes hover with no additional payload and 

with 5000mAh battery, the maximum payload is 1kg. The wheelbase is 500mm, frame body 

144x144mm and landing gear height 215mm. Motor mount pattern is 16x16mm.[95] 

 

 

 

 

 

 

 

 

 

 

4.4 Multirotor virtual model 

For the virtual model of the multirotor, the base code is the same as the "typhoon_h480.sdf" that 

comes with the ROS installation, and the parameters have been modified to fit the projects’ 

multirotor. The base code used already utilizes the same source software-in the-loop (SITL) as the 

PX4 flight controller. Gazebo allows for defining the complete model, with various libraries 

already existing, including the propulsion libraries. The modifications to the virtual model file can 

be grouped into 4 topics: inertia, collision, visual, and plugins (propulsion and MAVlink). 

In the inertia part, the data is presented in Section 3.4, and applied in the drone's code. For 

collision, it was decided to define a parallelepiped that surrounds the drone instead of a perfect 

contour around the rotors, landing gear, antenna, and central block of the drone. This way, the 

program calculates fewer collision points between surfaces, reducing the chance of  program 

crashes. 

Figure 4.7 - X500 V2 Holybro drone [96] 
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In the visual part, the file is set to look for a mesh file named "x500v2.stl," which is the file 

extracted from the CATIA V5 program, as demonstrated in section 3.3. The rotors visually default 

to the "typhoon_h480.sdf" file, but the power and rotation parameters are altered in the code. In 

Figure 4.8 the X axis (red) has the same direction as in CATIA V5, while the Z (blue) and Y(green) 

axes have opposite directions in Gazebo. 

 

 

 

 

 

 

 

 

 

The code below defines the mass and inertia matrix of the drone. Subsequently, in the collision 

part, a box with dimensions of 0.50x0.50x0.4 meters is defined, which has its origin at the center 

of mass and encompasses the entire drone. Finally, the code that retrieves the graphical 

representation of the Holybro X500 V2 drone, previously designed in CATIA V5, is also 

demonstrated. 

 

 

 

 

 

Figure 4.8 - X500 V2 Holybro drone inside Gazebo simulation 
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In a Simulation Description format (SDF) file for a virtual drone simulation, plugins provide 

additional functionality. Propulsion plugins simulate the behavior of the drone's propulsion 

system, including thrust and control inputs. MAVLink plugins facilitate communication between 

the virtual drone and ground control software using the MAVLink protocol. They exchange 

telemetry data and commands. These plugins enhance simulation realism and integration with 

external systems. 

Some propulsion data used in the code was obtained from the Holybro Brushless 2216-880KV - 

CW (520049) motor. Complementary data was calculated using the following formulas: 

 

𝑲𝒎 =  𝝆 
𝝅

𝟐
 𝒉𝒎 (𝒓𝟎

𝟒 − 𝒓𝒊
𝟒)     (4.19) 

 

𝑲 =
𝑽

𝝅 𝑲𝒗
      (4.20) 

 

After meticulous calculations in Equations 4.19 and 4.20 the values of 𝐾𝑚 and 𝐾 (moment 

constant and motor constant) are 1.656 × 10−4 𝑘𝑔 𝑚2 and 0.00579 𝑁 𝑚. The ensuing code unveils 

the intricacies of the rotor plugin employed for the front right motor, bearing in mind that its 

values remain consonant with those of its motor counterparts., the code undergoes a 

transformation as the parameters within are altered. . The rotor drag coefficient, rolling moment 

coefficient and the time constants remain the same as the default values in the code. The 

maximum rotation velocity is 10464 RPM [97]. 
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Chapter 5 

 

Results 

In this chapter, the conclusive results of the simulation are presented. To access and view these 

results, a set of practical steps are required. Firstly, two software programs are initiated, namely 

Gazebo and QGC, in this specific order. The commencement process is carried out within the 

Ubuntu terminal using a bash script that contains the paths to activate the necessary packages. 

This is accomplished with the command “./teste.sh”, shown in Figure 5.1 and also the command 

“./QGroundControl.AppImage” show in Figure 5.2. 

 

 

 

 

 

 

 

 

These pathways lead to critical components of a ROS simulation: ROS Simulation Packages are 

pre-configured modules that build the virtual environment. The "catkin_ws" Directory serves as 

a flexible workspace for creating and adjusting simulation elements. The 

"mavros_posix_sitl.launch" Launch File initiates "mavros" and sets up the SITL environment, 

where a virtual aircraft is controlled and observed with precision. 

 

 

 

Figure 5.1 - Terminal in Ubuntu 20.04 initializing the script 
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To establish a successful connection with QGC and maintain consistent settings, it is needed to 

modify two files: "6011_typhoon_h480" and "6011_typhoon_h480.post." Originally designed for 

a hexacopter, was quickly adapted to work with a quadcopter. 

The script "6011_typhoon_h480" configures a quadrotor within the PX4 autopilot system. 

Originally designed for a hexarotor, it sets default flight control parameters, specifies the 

quadrotor type, and defines the mixer. The "6011_typhoon_h480.post" script configures the 

mixer for motor control and sets up MAVLink communication with specific port configurations. 

It also defines MAVLink streams for data transmission. Overall, these scripts configure 

communication and control for the quadrotor in the PX4 autopilot system, ensuring effective 

communication with external systems and control responses. After configuration, the drone goes 

through an arming process, preparing for flight and awaiting commands like in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 - Terminal in Ubuntu 20.04 initializing QGC 

Figure 5.3 - Gazebo and QGC side to side with the drone up and ready to fly 
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5.1 UAV control algorithm and fire tracking 

 

This specific section investigates the use of various drone control functions for continuous or 

discontinuous tracking fire line trajectories and various fire front shapes. The functions 

"set_position_local," and "followGuidance" belong to the Python script titled 

"droneControl4.py." This Python script plays a vital role in controlling the drone's behavior 

during simulated flights within the PX4 autopilot system. 

 

5.1.1 Continuous trajectories 

To achieve continuous tracking of fire line trajectories, the "droneControl4.py" script is employed, 

leveraging its "set_position_local" and "followGuidance" functions. The primary role of the 

"set_position_local" function is to guide the drone to precise local coordinates (X, Y, Z), while 

also considering the Yaw angle. 

In a real-world context, this implies that the drone receives global coordinates, potentially 

marking the origin of a fire outbreak. These coordinates can be disseminated by local authorities 

through various means, such as satellite imagery analysis, civilian reports, or forest ranger 

observations. 

Meanwhile, the "followGuidance" function empowers the drone to be controlled interactively via 

a keyboard interface, facilitated by the utilization of the "pynput" library[98], [99]. This versatile 

function enables the operator to make real-time adjustments, including alterations in altitude, 

forward and backward movements, as well as lateral shifts to the left or right. 

In a simulation scenario, is considered an initial movement where the drone is directed to the 

coordinates (1, 1, 2). This specific location serves as the starting point for tracking a fire line 

configured in the shape of the letter "F," as illustrated in Figure 3.3 from Chapter 3. 

To gain deeper insights into the execution process, the underlying code is exhibited, which 

showcases the implementation of these functionalities within the main function of the drone 

control algorithm: 
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Next, Figures 5.4 and 5.5 depict the drone's takeoff position and the starting point of the fire trail. 

Upon detecting the initiation point, the keyboard operator transmits the coordinates the drone 

will follow along the path to the terminal. These specific coordinates are then visualized in Figures 

5.6, 5.7, and 5.8, providing a comprehensive view of the drone's flight path and its relation to the 

fire trail's starting location. In Figures 5.9 and 5.10 upper views of the drone are demonstrated. 

 

 

 

 

 

 

 Figure 5.4 – Takeoff position coordinate (0,0,2) 
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During this fire surveillance journey, the drone operator only knows the starting point of the fire 

trail. In this case, as it involves an "F" shaped pattern consisting of two lines in the same direction, 

the drone must follow the closest line to itself, which consequently is also the shorter one and 

begins at the coordinates (4,1,2). After traversing this line, it returns to the main line and proceeds 

to follow the second line, which is further away, until reaching the coordinates (5,-1,2) marking 

the end of the trail. 

Figure 5.5 – Starting point of the fire trail coordinate (1,1,2) 

Figure 5.6 – Starting point of the F shaped trail Figure 5.7 – Coordinate (4,1,2) 

Figure 5.8 – Coordinate (5,-1,2) 
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After inspecting the entire length of the fire front, the multirotor reverts its path to assess the fire's 

progression, promptly communicating any observed discrepancies to the base (in a real-world 

scenario). 

Next, another example is examined resembling the "V" shape illustrated in Figure 3.5 from 

Section 3.2. This scenario represents another fire front characterized by straight-line segments. 

This example showcases the multirotor's versatility in monitoring different fire scenarios and 

reporting its findings for further analysis and decision-making. 

 

 

Figure 5.9 – Upper view of the coordinate (4,1,2) 

Figure 5.10 – Upper view of the coordinate (5,-1,2) 
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Once again, in Figures 5.11 and 5.12, the drone is showcased positioned directly above the fire's 

starting point and at the furthest vertex of the "V" shape. Subsequently, it descends to a height of 

z=1.0 m to gain a closer and more detailed view of the flames' size and thickness. 

Following this descent, in Figures 5.13, 5.14, and 5.15, we can observe the Ubuntu terminal's 

interface. This occurs after executing the "followGuidance" function and utilizing the keyboard to 

guide the drone. This user interface interaction allows for real-time control over the drone's 

movements, offering a hands-on approach to navigate and inspect the fire front from various 

angles and altitudes. This capability provides valuable insights into the dynamic behavior of the 

fire and supports informed decision-making during firefighting operations. 

Figure 5.11 – Perspective view of the drone in coordinate (3,1, 2.3) 

Figure 5.12 – Upper view of the drone in coordinate (7,0,2.3) 
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As evident in this simulation, velocity and acceleration data are deliberately excluded from the 

data display through the use of ignore flags that were added to the “set_position_local” method. 

This exclusion serves two primary purposes. Firstly, it prevents computational overload within 

the simulation since numerous iterations occur every second, typically ranging from 10 to 20 Hz. 

Secondly, it is worth noting that velocity and acceleration cannot reach high levels due to the 

confined nature of the simulation space, enclosed by four walls. As a result, these parameters can 

be safely ignored. 

This selective exclusion of velocity and acceleration data is a practical approach to optimize the 

simulation's computational efficiency while maintaining the accuracy of other critical data. It 

ensures that the simulation runs smoothly without being bogged down by excessive calculations, 

making it a practical and efficient tool for analyzing and simulating scenarios in limited spatial 

environments. 

 

5.1.2 Discontinuous trajectories 

For discontinuous flight paths, the process of takeoff and initiating fire front tracking remains the 

same. However, in this scenario, the objective is for the drone to have a new takeoff executed, 

Figure 5.13 – Coordinate (3,1, 2.3) Figure 5.14 – Coordinate (7,0,2.3) 

Figure 5.15 – Coordinate (3,-1,1) 
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utilizing a QGC feature. The QGC is used to ensure the drone's takeoff since sometimes, upon 

restarting the drone control algorithm, the simulator assumes the drone is already in "takeoff" 

mode when, in fact, it hasn't taken off yet (this aspect is detailed in section 5.2) .It is crucial to 

adjust the takeoff altitude in the mission settings to ensure that the drone does not exceed the 

hangar's maximum ceiling of 2.6 m. 

Subsequently, the drone control algorithms are relaunched in the Ubuntu terminal, and the drone 

is poised to navigate the new fire pattern. This operational approach ensures adaptability and 

safety when executing discontinuous flight paths. 

Figure 5.16 illustrates the drone at the end of the first fire trail which resembles the one from 

Figure 3.4 in Section 3.2. Subsequently, the drone increases its altitude to check for any additional 

fire sources. Since it does not detect any more forest fire sources and does not receive reports of 

sightings in other areas, it returns to the base. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 – Upper view of the drone in coordinate (3,0, 2.5) 

Figure 5.17 – Coordinate (3,0, 2.5) 
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Upon returning to the base, as shown in Figure 5.18, the drone receives information about a new 

fire outbreak further ahead, the QGC's takeoff functionality is activated, initiating the drone's 

journey toward the new fire source, which assumes a semi-circular shape. As it reaches the semi-

circular pattern, as shown in Figure 5.19 and 5.20, the drone meticulously navigates along the 

trail through keyboard commands issued by the operator. By observing the drone's camera image, 

the operator determines the direction of movement required. Upon reaching the end of the fire 

trail, the drone can relay to the firefighting teams the direction of fire movement. Finally, the 

drone returns to the base at the conclusion of the operation. The drone demonstrates its capability 

to successfully navigate around this configuration. 

This operation showcases the adaptability and maneuverability of the drone as it responds to 

changing fire patterns. The ability to effectively navigate a semi-circular fire pattern highlights 

the utility of such autonomous systems in responding to dynamic and evolving scenarios, 

ensuring efficient monitoring and response to wildfires. 

 

 

 

 

 

 

 

 

Figure 5.18 – Perspective view of the drone after returning from first fire path 

Figure 5.19 – Upper view of the drone in coordinate (6,1,1) 
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The next section demonstrates the errors and bugs that might be associated with this simulation 

and how they can be avoided. All the examples presented so far need to be tested in a real context 

to verify their functionality. 

 

 

5.2 Simulation errors and bugs 

 

In addition, errors and bugs may occur along these flight paths. One error encountered in this 

simulation indicates that  Gazebo is having trouble registering with the ROS master node. This 

can happen occasionally because the ROS master node is not running. It is essential that it is 

Figure 5.20 - Upper view of the drone in coordinate (6,-1,1) 

Figure 5.21 – Coordinate (6,1,1) Figure 5.22 – Coordinate (6,-1,1) 
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running because it manages different parts of the programs’ system. This can be solved by typing 

“roscore” in the Ubuntu terminal. Another reason can be because the simulation is relaunched 

again too quickly. In Figure 5.23 the problem in the terminal is shown. 

 

 

 

 

Another important point to highlight is the existence of a positioning discrepancy between Gazebo 

and what is displayed in QGC. Recognizing these factors is crucial for accurately interpreting and 

utilizing simulation data in testing and decision-making processes, considering their potential 

impact on simulation fidelity. In Figure 5.24, the QGC data is depicted while the drone is 

positioned for takeoff at coordinates (0,0,2) within Gazebo. Hence, a discernible discrepancy 

comes to light: the QGC data shows a positional error of 0.1 m along the z-axis and a 0.1-meter 

deviation in the X and Y axes. Interestingly, there is no corresponding discrepancy evident in the 

velocity data. 

This variance can arise for various reasons such as differences in simulation data between Gazebo 

and QGC. Firstly, Gazebo operates in discrete time steps, synchronizing with communication to 

QGC, potentially introducing discrepancies due to the discrete nature of updates and the 

complexity of calculations involved. Secondly, data transmission and processing delays between 

Gazebo and QGC can contribute to differences in reported data. Lastly, when using floating-point 

calculations, minor rounding errors can accumulate over time, leading to slight position 

discrepancies. 

Although these errors may seem relatively small, in a real-world context, they would translate to 

a significant positioning error spanning several meters. This underscores the importance of cross-

referencing data with other altimetry and positioning devices. Within the confines of a hangar, a 

0.1-meter discrepancy can be the difference between avoiding collision with a wall and a potential 

mishap. Also, this value of 0.1 m represents the UAV's position change after pressing a specific 

key on the keyboard. This means that a single misstep could potentially lead to a collision for the 

drone. Therefore, it is crucial to always exercise caution and allow for a margin of safety, even 

when seemingly minor discrepancies arise. 

 

 

Figure 5.24 – QgroundControl altimetry and position data 

 

Figure 5.23 – ROS master bug in Gazebo simulation 
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Concerning another bug is that it is crucial to understand that the “droneControl4.py” script keeps 

track of the most recent coordinate it receives from imageOutputScript.py. Once the drone 

successfully identifies all fires, the operator sends the multirotor to come back to its initial takeoff 

point using manual keyboard commands. This approach is designed to prevent a situation where, 

upon the next launch, the drone immediately heads towards the last known fire location which is 

not the same location for the next mission. 

Also, after running the drone control program once, it is necessary to initiate a "takeoff" operation 

in QGC. This is because the “droneControl4.py” script retains the drone's flight mode as "armed" 

since its last launch. As a result, the script still perceives the drone as being in an "armed" state 

when in QGC it is not. To transition the drone from this mode to an actual flight-ready state, it is 

essential to perform a "takeoff" operation using QGC. This action is vital to ensure that the drone 

is ready for flight operations, regardless of its previous state. 

The last error that occurs in this ROS-based simulation is related to the time synchronizer. It is 

essential that the timing of messages sent and received by different components of the system 

remain synchronized. This error is caused by hardware or system clock issues in the computer, 

delays in message processing or transmission or even high system resource usage that affects 

message processing speed. This makes the time synchronizer reset several times as shown in 

Figure 5.25. However, this error does not affect the flight path environment. 

 

 

 

 

5.3 Wall detection algorithm 

Also, in the course of this research, a wall detection algorithm was developed to enhance the 

spatial awareness and navigation capabilities of the UAV within a 3D environment. This algorithm 

serves as a crucial component of the overall simulation framework, contributing significantly to 

the drone's ability to navigate safely and efficiently. 

The primary function of the wall detection algorithm is to compute the distances between the 

UAV's current position and the surrounding walls in the 3D environment. Specifically, it 

determines the distances to four distinct walls, taking into account their coordinates within the 

Figure 5.25 – Time synchronizer error in Ubuntu terminal 
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simulated space. These distances are then utilized to assess the drone's proximity to its immediate 

surroundings. 

The algorithm's logic is straightforward: it checks whether the minimum distance to any of the 

nearby walls is less than or equal to a predefined threshold, set at 0.5 units. If the minimum 

distance falls within this threshold, it indicates that the UAV is in close proximity to a wall. 

One critical aspect of the wall detection algorithm's functionality is its real-time integration with 

the primary drone control algorithm. This integration ensures that the drone's control system is 

continually informed of its proximity to walls and can make instantaneous adjustments to its 

flight path as needed. Essentially, the wall detection algorithm operates continuously in the 

background, providing essential input for real-time decision-making. 

The algorithm's effectiveness is visually confirmed through the terminal output, where distance 

measurements and proximity alerts are displayed. For instance, when the drone takes off, the 

terminal reports that it is approximately 1 m away from the nearest wall, typically the one parallel 

to the Y-axis and closest to the origin as illustrated in Figure 5.26. 

 

 

 

 

 

 

 

 

 

 

 

As the drone maneuvers to positions with different coordinates, the terminal progressively reports 

distances to the nearest wall. When the drone approaches a wall to within half a meter, the 

terminal output switches to "True," indicating the drone's proximity to the wall. 

Figure 5.26 – Terminal with data from takeoff position 
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Immediately following the confirmation of "True" in the terminal, the multirotor will transition 

to a designated safety position located at the center of the virtual test laboratory. Subsequently, it 

will be poised for further guidance to a new set of coordinates, which can be provided by the 

operator. 

This operational procedure is a pivotal aspect of the multirotor functionality, as it ensures a secure 

and controlled starting point within the laboratory environment. The utilization of a safety 

position minimizes the potential for collisions, accidents, or unexpected interactions with the 

surroundings during the initial stages of operation. 
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Chapter 6 

 

Conclusion 

6.1 Overview 

In this dissertation, the primary objective was to develop drone control capabilities for wildfire 

detection in a simulation environment. Throughout the research process, several noteworthy 

challenges were encountered. Given the initial objectives, it is worth noting that the project was 

able to achieve the control of the drone through local position coordinates and keyboard 

commands. While the full scope of simulating autonomy with artificial intelligence remains a 

future challenge, these accomplishments signify a step forward in enhancing the drone's 

practicality and control capabilities. 

It's worth noting that the wall detection algorithm has successfully integrated with both the 

"imageOutputScript.py" (the keyboard command interface) and the "droneControl.py" (the 

primary drone control algorithm). These components operate in a cohesive manner, 

demonstrating effective collaboration. 

One significant challenge was the limited scope of existing scientific literature pertaining to UAV 

market studies. It became apparent that there was a dearth of comprehensive research 

collaboration among researchers in this field. This limitation constrained the availability of 

valuable resources for this study. 

Another noteworthy challenge I encountered was the need to acquire proficiency in Python and 

specifically for ROS through various online courses and tutorials. This endeavor presented a 

learning curve that inevitably affected the pace of development. 

A critical constraint in this project was the unavailability of essential sensors, necessitating the 

creation of a custom wall detection algorithm from the ground up. This development added a layer 

of complexity to the project and had implications for its overall performance. 

These challenges collectively underscore the complexities and limitations faced during this 

project. Addressing them will undoubtedly pave the way for further advancements in the field of 

drone-based wildfire detection. 
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6.2 Future work 

In future work, a top priority will be to address the compatibility issue between the wall detection 

algorithm and the “imageOutputScript.py” and “droneControl.py” components. This resolution 

will enhance the overall functionality and usability of the simulation. 

The project will progress by conducting validation tests within a controlled environment, such as 

a hangar. This step is crucial to verify the accuracy and reliability of the simulation. 

Soon, the project will expand beyond the hangar setting to real-world applications. This transition 

will involve adapting the simulation to handle real-world variables and challenges such as making 

it applicable in disaster monitoring scenarios. 

As part of future endeavors, careful consideration will be given to testing the simulation in the 

laboratory of the Department of Aerospace Sciences. This testing will be essential as the Gazebo 

simulator lacks realistic aerodynamic and propulsive properties, and adjustments will be needed 

to address these limitations. 
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