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Summary: In this paper, we estimate the path of daily SARS-CoV-2 infections in England 
from the beginning of the pandemic until the end of 2021. We employ a dynamic intensity 
model, where the mean intensity conditional on the past depends both on past intensity of 
infections and past realized infections. The model parameters are time-varying, and we em- 
ploy a multiplicative specification along with logistic transition functions to disentangle the 
time-v arying ef fects of nonpharmaceutical polic y interv entions, of dif ferent v ariants, and of 
protection (waning) of vaccines/boosters. Our model results indicate that earlier interventions 
and vaccinations are key to containing an infection wave. We consider several scenarios that 
account for more infectious variants and different protection levels of vaccines/boosters. These 
scenarios suggest that, as v accine protection wanes, containing a ne w wave in infections and an 
associated increase in hospitalizations in the near future may require further booster campaigns 
and/or nonpharmaceutical interventions. 
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1. INTRODUCTION 

In this paper, we use data on SARS-CoV-2 infections in England to estimate a time series model,
where the intensity of infections depends on both the level and intensity of past infections. We
use this model to quantify the impact of the Omicron B A.1/B A.2 sub-variants and of the waning
of immunity from vaccines/boosters on the COVID-19 epidemic in England, and to assess the
timing and intensity of nonpharmaceutical interventions (NPIs) and further booster campaigns
that may still be needed to curb future infection waves. Our model results suggest that further
infections waves still require interventions. 
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There are two main challenges when fitting a model of COVID-19 to the data. First, the true
umber of cases is not observed and the ratio of unreported to reported cases varies o v er time,
ue to both changes in testing capacity and in testing behaviour. Some econometric studies ignore
nreported cases and model only reported cases (Lee et al. 2021 , Liu et al. 2021 , Jiang et al.
023 , and Khismatullina and Vogt, 2023 ); this can lead to inconsistent parameter estimates or
o serious mid- and long-term forecasting errors, depending on the goal of the study (Korolev,
021 ). Other studies employ various strategies to identify the share of unreported cases: Li et al.
 2020 ) and Horta c ¸su et al. ( 2021 ) identify the unreported cases through their mobility across
e gions; Rozhno va et al. ( 2021 ), Toulis ( 2021 ), Viana et al. ( 2021 ), and Arias et al. ( 2023 ),
se random sample serology tests; Gourieroux and Jasiak ( 2023 ) use parametric time-varying
ransition probabilities, and Sonabend et al. ( 2021 ) use random tests in the population. We use
he last identification strategy, as England runs a bi-weekly random sample population surv e y
ased on polymerase chain reaction (PCR) tests, from which we construct a time-varying ratio
f total to reported cases, and apply it to (delayed) daily reported cases to approximate the total
aily cases. 

The second main challenge is model complexity. Most of the large-scale stochastic epidemio-
ogical modelling papers that address the ef fecti veness of policy interventions compartmentalize
he population into susceptible, exposed, infected, recovered, and possibly other states such as
ospitalizations or deaths. These models are necessarily complex over longer periods of time, be-
ause, for example, only modelling infections in vaccinated or waned vaccinated typically require
ntroducing another set of compartments for each, and therefore more unobservables (see, e.g.,
onabend et al., 2021 , and the citations therein). Because data on each infection type is typically
ot available at higher frequenc y, sev eral parameters in these models are unidentified and require
alibration. With these additional calibrations, these models can be estimated by Bayesian filter-
ng methods, although, due to nonlinearity compound with sev eral (unobserv ed) state variables
nd many parameters, their estimation can pose substantial computational challenges. 1 

To reduce model complexity while allowing for vaccination and its waning, we propose a
ifferent approach, where the population is not compartmentalized, and the effect of seasonality,
accination, and waning enters the model parameters multiplicatively to the effect of variants
f concern and that of NPIs. To that end, we employ a dynamic intensity model with time-
arying parameters, where infections are assumed to follow a ne gativ e binomial distribution to
llow for o v erdispersion. This model is akin to inte ger generalized autore gressiv e conditional
eteroskedasticity (INGARCH) models, but instead of modelling variance clustering, it models
ntensity clustering: when the intensity of the infection process is high, it stays high for a while
nd it is reinforced by the level of past infections. 2 

The model parameters vary based on individuals’ behaviour as a result of NPIs. We estimate
oth the timing and the magnitude of the behavioural response following NPIs in a similar fashion
o Rozhnova et al. ( 2021 ) and Viana et al. ( 2021 ). The parameters also vary with vaccination,
1 See, e.g., the Supplementary Material in Sonabend et al. ( 2021 ), which describes how they estimate an age-structured, 
egional, multiple vaccine type, multiple variant model. 

2 The dynamic INGARCH model was also used by Agosto and Giudici ( 2020 ), Roy and Karmakar ( 2021 ), and 
iudici et al. ( 2023 ) to model COVID-19 in the USA and Italy, although without accounting for o v erdispersion. The first 

tudy assumes stationarity and constant parameters, therefore not accounting for NPIs. The second study models NPIs 
onparametrically, with Bayesian B-Splines, which makes it difficult to establish which periods relate to a particular NPI. 
iudici et al. ( 2023 ) use the Oxford COVID-19 Go v ernment Response Tracker to create NPI variables, which are then 

ncluded as exogenous variables in the model, but this approach ignores endogeneity of individuals’ responses to NPIs. 
nlike our study, all three studies mentioned only use reported infections and do not account for vaccination, waning of 
accines, or variants of concern. 

The Author(s) 2023. 
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and we estimate the intensity reduction from vaccination based on the vaccine schedule and the
total infections. This allows us to combine different administered vaccines into a single vaccine
intensity reduction parameter without requiring separate data on infections of vaccinated and
nonv accinated indi viduals, data which is not av ailable at daily frequency. The parameters also
v ary with v ariants of concern, and we estimate the timing and the effect of these variants in
a similar fashion to Viana et al. ( 2021 ). The seasonality cannot be identified separately and is
calibrated based on previous studies. 

The advantage of our model o v er more comple x models is that it can be estimated relatively
quickly, and therefore can be used in real-time to inform policy makers on the interventions
needed and their timing, depending on new variants and (waning) effects of boosters. The
disadvantage compared to more complex epidemiology models is that we did not separately
account for temporary protection due to a pre vious infection. Ho we ver, since a large fraction of
individuals are susceptible to Omicron, regardless of their previous infection status (Reynolds
et al., 2022 ), our model provides a good approximation to the path of infections in the near
future. 

As the infection data is not stationary o v er long periods, we estimate the model via Bayesian
Hamiltonian Monte Carlo methods. Disentangling the effect of vaccines and boosters from those
of variants and NPIs allows us to employ counterfactuals and provide scenarios for the future six
months, both using NPIs and further booster campaigns. 

Our counterfactuals show that the timing of NPIs and of vaccines and boosters is key in
curbing infections waves. We find that the recent Omicron wa ve could ha ve been substantially
mitigated by earlier timing and faster speed of vaccine and booster schedules, or two weeks of
lockdown in mid-December 2021. Our scenarios show that another wave is likely due to booster
waning, and its occurrence depends on a range of factors. First, on the transmissibility of the
Omicron sub-variants: if its intensity increase relative to Omicron BA.1 is 10% or larger, a new
wave occurs earlier. Second, on the choice of NPIs: maintaining semi-lockdown restrictions from
mid-December of 2021, in the absence of a ne w v ariant, may delay the next infection wave to the
summer. Third, on the ef fecti veness of boosters: if the booster intensity reduction is sufficiently
high, under some scenarios another infection wave is substantially delayed. 

In the Online Appendix we also examine the implications these scenarios have for new hos-
pital admissions. Our projected hospital admissions track well observed hospital admissions,
and we find that new hospitalizations rise steeply, shortly after the start of another infection
wave. 

The rest of the paper is organized as follows. Section 2 describes the model. Subsection 3.1
describes the data. Subsection 3.2 contains estimation results. Subsection 3.3 presents the coun-
terfactual analysis, and Subsection 3.4 provides projections of daily infections for the spring and
summer of 2022. Section 4 concludes. The Online Appendix provides a further discussion of
behavioural aspects implied by our model and results, robustness checks related to the uncertainty
in the constructed total case data, plots of parameter posterior distributions along with param-
eter identification results obtained by simulation, additional counterfactuals and scenarios, and
implications of some scenarios for new hospital admissions. 

2. MODEL 

We model the daily total COVID-19 cases (reported and unreported), y t , as a ne gativ e binomial
conditional response model. When exposed to the virus, individuals are typically heterogeneous
© The Author(s) 2023. 
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n terms of their latent period (duration from exposure to becoming infectious) and their infectious
eriod/transmission of disease. A common and parsimonious way to account for this heterogeneity
hen aggregating across individuals is to use the negative binomial distribution, which is a Gamma
ixture of Poisson distributions, where the Gamma distribution models heterogeneous delays in

ecoming exposed and infectious—see, e.g., Wearing et al. ( 2005 ) and Lloyd-Smith et al. ( 2005 ).
herefore, the conditional response model is: 

y t | F t−1 ∼ NegBinomial ( λt , φ) . (2.1)

he probability distribution function is given by (
y + φ − 1 

y 

) (
λt 

λt + φ

)y (
φ

λt + φ

)φ

, 

ith λt ∈ R 

+ , φ ∈ R 

+ , y ∈ N . 3 The mean and the variance are given by E[ y t | F t−1 ] = λt and
 ar[ y t | F t−1 ] = λt + λ2 

t /φ, where λ2 
t /φ is the additional variance abo v e the mean λt , F t−1 =

 y t−1 , λt−1 , y t−2 , λt−2 , . . . } , and 

λt = λ
npi 
t s t voc t vir t bir t , (2.2)

here λnpi 
t is the daily intensity of infections due to NPIs (either restrictions or relaxation of

estrictions), s t is seasonality, and voc t , vir t , and bir t are changes in intensity due to variants of
oncern, vaccines, and boosters. To account for the seasonal pattern of SARS-CoV-2 (by which
ransmission is lower in summer and higher in winter), we define the sinusoidal function s t 
Sonabend et al., 2021 , Supplementary Material, p. 44): 

s t = 1 + 0 . 1 cos (2 π ( t − t ∗) / 365 . 25) , 

here t ∗ is 1 January (due to coldest weather). 
To account for the increase in intensity due to variants of concern, we define: 

voc t = (1 − g α,t ) + (1 + ρα) g α,t (1 − g δ,t ) + (1 + ρα)(1 + ρδ) g δ,t (1 − g o,t ) 

+ (1 + ρα)(1 + ρδ)(1 + ρo ) g o,t , 

here the parameters ρα , ρδ , and ρo represent the relative intensity increase of the Alpha, Delta,
nd Omicron BA.1 variants that became dominant in England in January 2021, June 2021, and
ecember 2021, respectively. The intensity increase as the new variants take o v er is described
sing the logistic functions: 

g j,t = 

1 

1 + exp ( −κj ( t − t ∗j )) 
, (2.3)

here j = α, δ, o are the variants of concern, κj is the steepness of the logistic function, and
 

∗
j is the midpoint of the logistic function. The functions g j,t can be interpreted as probabilities
f contracting the new variant, which increase o v er time, while ρj can be interpreted as the
elative intensity increase when the ne w v ariant completely takes o v er. Therefore, as described
3 We chose this alternative formulation of the ne gativ e binomial distribution to emphasize that we are modelling the 
ynamics in the conditional mean λt . If, instead, we use the formulation y t ∼ NegBinomial ( r, p t ) , where y t is the number 
f failures that occurred, given r successes (and p t is the probability of success), then φ = r and λt = 

1 −p t 
p t 

r , and one 

an calculate from λt the implied odds ratio 1 −p t 
p t 

. 

The Author(s) 2023. 
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in Subsection 3.1 , we fitted the logistic functions ( 2.3 ) to external gene sequencing data as in
Viana et al. ( 2021 ) and Hansen ( 2022 ), while ρj is estimated directly from fitting infection
data. 4 

The effect of vaccinations and boosters and their waning is modelled as: 

vir t = (1 − g v,t ) + (1 − vir w v,t ) g v,t , 

bir t = (1 − g b,t ) + (1 − bir w b,t ) g b,t , 

where vir t and bir t describe the vaccine and booster-induced intensity reduction. If there are no
v accinated indi viduals, vir t and bir t are equal to 1. As more vaccines are administered, vir t and
bir t decrease to (1 − vir w v,t ) g v,t and (1 − bir w b,t ) g b,t , respectively, where ‘vir’ is the vaccine
(two doses) intensity reduction parameter and ‘bir’ is the booster intensity reduction parameter.
The transition from no vaccination to vaccination is described by the logistic functions g v,t and
g b,t : 

g j,t = 

c 

1 + exp ( −h j ( t − t ⊥ 

j )) 
, (2.4) 

with j = v, b, where h j is the steepness and t ⊥ 

j is the midpoint of the transition function. We
assume c = 0 . 7 (the fraction of the total population of England that had the second dose of the
vaccine by the beginning of January 2022 when our sample ends). The logistic transition function
for the vaccine and booster uptake g v,t and g b,t are fitted to the total share of vaccinations and
boosters administered in the population, as explained in Subsection 3.1 . Following Keeling et al.
( 2021 ), we introduce waning of vaccine protection against infection through the exponential
function: 

w j,t = 

{
exp ( − t −t + 

180 ) , if t > t + , 

1 , if t + ≤ t , 
(2.5) 

where j = v, b. For the estimation, we assume that the waning of vaccines starts on 28 June 2021,
hence t + = 28 June 2021 (six months after the first second-dose vaccine was administered on 29
December 2020). For the booster, we do not assume waning in the estimation since our estimation
ends on 24 December 2021 (three months after the first dose of the booster was administered on 16
September 2021). Ho we ver, in the counterfactuals (Subsection 3.3 ) and scenarios (Subsection 3.4 )
we assume that the boosters wane after five months, while the results for four and six months are
relegated to the Online Appendix. 
4 To moti v ate this choice further, note that the probabilities g j,t are unlikely to be identified within the dynamic intensity 
model separately from the time-varying effect of vaccinations and NPIs. Additionally, G ̈otz et al. ( 2021 ) show that if the 
number of susceptible individuals is equal to the population in an SIR (susceptible-infected-reco v ered) model with two 
virus strains, then g j,t fitted to the share of the ne w v ariant in all cases within a period can be used to approximate the 
transition in infectiousness from the old variant to the new one. Hansen ( 2022 ) shows this as well, without using an SIR 

model. In both papers, the κj parameter directly relates to relative infectiousness of the new variant. We instead estimate 
ρα , ρδ , and ρo directly within the dynamic intensity model, following Viana et al. ( 2021 ), and therefore assuming that we 
reach an average new intensity when the transition is completed. 

© The Author(s) 2023. 
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Table 1. NPIs transition functions. 

NPI transitions Meaning 

f 1 ,t First lockdown in 2020 to relaxation measures in the summer 2020 
f 2 ,t Relaxation measures in the summer 2020 to second lockdown in No v ember 2020 
f 3 ,t Second lockdown to some relaxation measures before Christmas 2021 
f 4 ,t Relaxation measures before Christmas 2020 to third lockdown in January 2021 
f 5 ,t Lockdown in January 2021 to relaxation measures in spring 2021 
f 6 ,t Further relaxation measures and big gatherings (the Euro 2020 football tournament 

end of June to beginning of July 2021) 
f 7 ,t No big crowded events (July 2021, after the end of the Euro 2020 tournament) 
f 8 ,t Transition to a period with full relaxation (no restrictions) including 

Schools/universities opening (from July 2021 to October 2021) 
f 9 ,t Transition from school opening to school holiday (after late October 2021) 
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We specify λ
npi 
t as: 

λ
npi 
t = θ

npi 
t y t−1 + β

npi 
t λ

npi 
t−1 , 

θ
npi 
t = θ0 (1 − f 1 ,t ) + 

8 ∑ 

i= 1 

θi f i,t (1 − f i+ 1 ,t ) + θ9 f 9 ,t , (2.6)

β
npi 
t = β0 (1 − f 1 ,t ) + 

8 ∑ 

i= 1 

βi f i,t (1 − f i+ 1 ,t ) + β9 f 9 ,t . 

s can be seen from ( 2.6 ), λnpi 
t is triggered by the previous day infections ( y t−1 ) and previous day

ntensity ( λnpi 
t−1 ). The parameters, θi ≥ 0 and βi ≥ 0 , i = 0 , . . . , 9 associated with y t−1 and λ

npi 
t−1

hange in each NPI regime by γi and ω i , respectively: θi = θi−1 + ( −1) i γi , βi = βi−1 + ( −1) i ω i

 = 1 , . . . , 9 , through the following logistic transition functions which are estimated within the
odel: 

f i,t = 

1 

1 + exp ( −k i ( t − t + 

i )) 
, i = 1 , . . . , 9 , (2.7)

here k i describe the speed at which restrictions or relaxation measures are taken up by individ-
als, and t + 

i describe the mid-time of the take-up of a restriction/relaxation. The correspondence
etween each regime and NPIs is described in Table 1 , where only the last regime does not refer
o an NPI, but to an transition to school holidays; nevertheless, we refer to it for simplicity as an
PI regime. 
We now discuss the model assumptions embedded in the specification of λnpi 

t . First, we assume
hat NPIs are ef fecti ve in changing behaviour, by setting ω i , γi �= 0 , and, for counterfactuals and
rojections, we also assume that this behavioural change would not have happened in the absence
f the NPIs we modelled. Second, we impose the direction of this behavioural change following
ach NPI, by assuming the changes in θi , βi are ( −1) i ω i , ( −1) i γi . This means that lockdowns
ecrease θi , βi and relaxations increase θi , βi , except when relaxations are very gradual, as in
egime 1 in Table 1 . Third, the logistic functions f i,t approximate the timing and speed of
ndividuals’ behavioural adjustment following NPIs, similarly to Rozhnova et al. ( 2021 ) and
iana et al. ( 2021 ). As a new NPI is implemented, the average number of contacts, and therefore
The Author(s) 2023. 
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also θi , βi , change gradually to a new level, and the timing, speed, and magnitude of this change
is influenced by behaviour, which is allowed to adjust ahead or after measures are implemented,
and differently in each regime in the sample. Fourth, we did not explicitly model temporary
protection from a previous infection, along with its waning o v er time. 5 

3. RESULTS 

3.1. Data and estimation method 

Data on variants of concern. We obtained the weekly percentage of COVID-19 positive cases by
gene pattern and Cycle threshold (Ct) value from the Office for National Statistics (ONS) ( 2022a )
Coronavirus (COVID-19) Infection Surv e y from England, and we linearly interpolated them to
obtain the daily percentage of COVID-19 positive cases. For the Alpha variant we used gene
sequencing data from 3 December 2020 until 10 January 2021. The Alpha variant was identified
if the ORF1ab and N genes were present. For the Delta variant we used gene sequencing data
between 26 April 2021 and 6 December 2021. The Delta variant was identified if ORF1ab, N
and S genes were present. For the Omicron BA.1 variant we used gene sequencing data between
29 No v ember 2021 and 3 January 2022. The Omicron BA.1 variant was identified because of the
absence of the S-gene in combination with the presence of the ORF1ab and N genes. The logistic
functions ( 2.3 ) were fitted to the daily percentage of COVID-19 positive cases by gene. 

Data on vaccines and boosters. We used daily observations for England from the official
COVID-19 UK dashboard (UK Health Security Agency, 2022 ) on ne w people v accinated with
the second dose and new people receiving a booster dose (from December 29, 2021 until January
13, 2022, and from September 16, 2021 until January 13, 2022, respectively). The logistic
functions ( 2.4 ) were fitted to the daily cumulative fraction of people vaccinated with the second
dose and receiving the booster. 

Constructed Daily Cases. For the model in ( 2.2 ), our data is from 3 May 2020 until 22 January
2022, a total of N = 630 daily infections. 6 We estimate ( 2.2 ) until 24 December, and use the
data from 25 December 2021 until 22 January 2022 to assess the out of sample fit of the model’s
projections (in Subsection 3.4 ). The daily infections y t in ( 2.6 ) refer to the reported and unreported
cases, y t = y r t + y u t . For the reported daily infections y r t , we used new cases by specimen date
obtained from the official COVID-19 UK dashboard (Office for National Statistics, 2022b ).
To approximate the total daily infections, we proceeded as follows. Denote by Y 

r 
1 = 

∑ t 14 
t= t 1 

y r t 
the reported cases by specimen date for the period 3–16 May 2020, . . . , Y 

r 
45 = 

∑ t 630 
t= t 617 

y r t the
reported cases by specimen date for the period 9–22 January 2022. The reported cases are
considered to be reported with a delay of two days since the onset of the symptoms (Casey-
5 In principle, this could be modelled by an upper-truncated ne gativ e binomial model, where the upper truncation is 
time-varying and depends on the number of individuals susceptible in the population at a given time. This would require 
further assumptions about the duration of protection from an infection and its waning. But these may be differential 
among the vaccinated and nonvaccinated, and our model does not distinguish between infection types. Therefore, in our 
model, temporary protection and its waning are partly absorbed by the parameters θi and βi . To see why, recall that the 
parameter βi models intensity clustering, in a similar fashion to volatility clustering in GARCH models: everything else 
constant, if this parameter is low (for example because many individuals are still protected from a new infection by a 
previous infection), then a wave may die out quicker, and if it is high, it may persists for longer. The parameter θi is also 
tied to the average number of contacts in the population, and therefore can also be influenced by temporary protection 
and its waning. This is a drawback relative to more sophisticated epidemiological models, and we take this drawback into 
account when interpreting the results in the next sections. 

6 The first observation for the PCR test surveillance in random samples of the population is 3 May 2020. 

© The Author(s) 2023. 
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Figure 1. Total infections and reported infections between May 3, 2020 until January 22, 2022 in England. 
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ryars et al., 2021 ). Denote by Y 1 = 

∑ t 12 
t= t 1 −2 y t the total infections for the period 1–14 May

020, . . . , Y 45 = 

∑ t 628 
t= 615 y t the total infections for the period 7–20 January 2022. From the ONS

nfection Surv e y (Office for National Statistics, 2022c ) we hav e the estimated percentage (say p j )
f the population that had COVID-19 for a time period of 14 days. Then, Y j = p j × 56550138 ,
here 56550138 is the population in England (based on the ONS mid-year population estimates,

une 2020). We calculate r j = Y j /Y 

r 
j , the ratio of total to reported infections in the two-week

eriod j , j = 1 , . . . , 45 . To calculate the daily total cases we assume the daily ratio of total to
eported infections within a 14-day period is equal to the two-week ratio corresponding to that
4-day period. Let ˜ r t denote the daily ratio of total to reported cases; then the total cases are
 t = ˜ r t y r j . Note that we constructed daily data because some of the NPIs transition functions are
oo short to use bi-weekly data, and could not have been estimated otherwise. 

The total and reported new cases are shown in Figure 1 . The divergence between the two series
s highest in times of high incidence, possibly due to limits to testing capacity, but also possibly
ue to testing behaviour, suggesting that correcting for unreported cases is essential to remo v e
he time-varying sample selection bias in reported cases. 7 

Estimation. Because total cases are not stationary, we use Bayesian estimation with Hamil-
onian Monte Carlo (HMC) methods, implemented in R Stan, and for simplicity we also did
o for stationary data such as the share of ne w v ariants or cumulati ve v accine/boosters uptake.
eal ( 2011 ) and Fern ́andez-Villaverde and Guerr ́on-Quintana ( 2021 ) provide a description of

he HMC, and highlight its computational ef ficiency relati ve to traditional Markov Chain Monte
arlo (MCMC) methods, due to exploiting information from the gradient of the posterior, which

educes the correlation between successive parameter values in the Markov chain, and therefore
nsures that the Markov chain converges much faster than in MCMC. 
7 The Online Appendix Section S1, Figure S1, shows the time-varying ratio of total to reported cases. 

The Author(s) 2023. 
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Table 2. Prior distributions of the parameters in the model. 

Parameter Prior Description 

θ0 LogN(0, 1) Vague prior (infections data) 
γi LogN(0, 1) i = 1 , . . . , 9 , vague prior (infections data) 
β0 LogN(0, 1) Vague prior (infections data) 
ω i LogN(0, 1) i = 1 , . . . , 9 , vague prior (infections data) 
ρα LogN(0, 0.5) Vague prior for Alpha (infections data) 
ρδ LogN(0, 1) Larger scale than for Alpha (infections data) 
ρo LogN(2, 2) Larger scale than for Delta (infections data) 
vir Beta(5, 2) Gives more probability mass to values larger than 0.5 (infections data) 
bir Beta(5, 2) Gives more probability mass to values larger than 0.5 (infections data) 
k i Exp(1) i = 1 , . . . , 9 (infections data) 
t + 1 N(35,7) 35 = 6 June 2020, relaxation in the summer 2020 (infections data) 
t + 2 N(140,7) 140 = 19 September 2020, transition to the second lockdown in No v ember 

2020 (infections data) 
t + 3 N(200,7) 200 = 18 No v ember 2020, transition from the lockdown in No v ember 

2020 to relaxation (infections data) 
t + 4 N(230,7) 230 = 18 December 2020, transition from relaxation to lockdown in 

January 2021 (infections data) 
t + 5 N(270,7) 270 = 27 January 2021, transition from the lockdown in January 2021 to 

relaxation (infections data) 
t + 6 N(425,7) 425 = 1 July 2021, transition to large crowds events (Euro 2020) 

(infections data) 
t + 7 N(440,7) 440 = 16 July 2021 transition to no large crowed events (infections data) 
t + 8 N(515,7) 515 = 29 September 2021 transition to a period with full relaxation and 

schools/universities opening (infections data) 
t + 9 N(555,7) 555 = 8 No v ember 2021, transition from school opening to school holiday 

(infections data) 
φ LogN(0,1) Vague prior (infections data) 
κi Exp(1) As in Rozhnova et al. ( 2021 ), κi = 1 means lift-up ∼ 6 days ( i = α, δ, o) 

(gene data) 
t ∗α N(10,7) 10 = 12 December 2020, around the date when Alpha became dominant 

(gene data) 
t ∗δ N(10,7) 10 = 26 April 2021, around the date that Delta emerged (gene data) 
t ∗o N(17,7) 17 = 15 December 2021, around the date Omicron became dominant 

(gene data) 
σj LogN(0,1) Vague prior, j = α, δ, o, v, b (gene/vaccination/booster data) 
h i Exp(1) i = v, b (vaccination/booster data) 
t ⊥ v N(190,7) 190 = 6 July 2021, around the date when 50 % of the population had the 

vaccine (2nd dose) (vaccination data) 
t ⊥ b N(106,7) 106 = 12 December 2021, around the date 50% of the population had the 

booster (booster data) 
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Denoting by x j,t the daily percentage of COVID-19 positive cases due to the new variant or
the daily cumulated vaccine/booster uptake, we assumed x j,t ∼ N ( g j,t , σ

2 
j ) , where g j,t is given

by ( 2.3 ) (with j = α, δ, o) or ( 2.4 ) (with j = v, b). Table 2 lists the priors for all parameters—
whether they are estimated using sequenced gene data, vaccine data, or infections—and moti v ates
their choice. 
© The Author(s) 2023. 
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(a) (b)

Figure 2. (a) Transition functions variants of concern (b) Transition functions vaccine/booster. 
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3.2. Posterior estimates 

he transition functions for sequenced gene data and vaccination are shown in Figure 2 a and b. 
The estimated steepness of the transition functions based on sequenced gene data is the highest

or the Omicron BA.1 variant, 0.1508, while the steepness of transition function for the Delta
ariant, 0.0377, is slightly higher than for the Alpha variant, which is 0.0372. The estimated
ransition functions for the vaccines and boosters from the vaccination data show that the uptake
f the booster is faster than the uptake of the vaccine second dose. 

The median from the posterior predictive distribution, is plotted in Figure 3 . 8 We can see from
his figure that the discrepancies between the simulated data and real data are small. 9 

The rest of the parameters are estimated within the dynamic intensity model. The posterior
edians along with their 90 % credible intervals are listed in Table 3 . 10 As can be seen from
able 3 , the Alpha, Delta, and Omicron BA.1 variants result in 26 % , 81 % , and 41 % higher
elative intensity. The vaccine intensity reduction parameter estimates ‘vir’ and ‘bir’ are 49 %
nd 69 % , respectively. 11 The posterior medians for steepness of the transition functions in the
egimes 8 and 9 (since the full relaxation in the summer 2021) are the highest (1.33 and 1.22,
espectiv ely). The o v erdispersion parameter estimate is large, showing that a model without
 v erdispersion would fit the data poorly. 
8 We perform a posterior predictive check by simulating new replicated data from the posterior predictive distribution 
the distribution o v er ne w observ ations gi ven pre vious observ ations), see Gelman et al. ( 2020 ). We obtained 4,000 draws 
rom the posterior predictive distribution and in Figure 3 we plot the median of these draws. 

9 In our framework we implicitly also model the V ar[ y t | F t−1 ] = λt + λ2 
t /φ because of φ. We fit well the o v erall 

o v ement of ̂ V ar [ y t | F t−1 ] (obtained by plugging in the posterior medians from Table 3 below), but we o v erpredict the 
ize of the deviations, which may be a drawback of the negative binomial. 

10 Note that in the paper, we only use the total case data as constructed in the previous section. However, the ONS survey 
Office for National Statistics, 2022c ) also reports 95% credible intervals to adjust for residual nonrepresentativeness 
n terms of age, sex, and region–Pouwels et al. ( 2021 ). In the Online Appendix Section S4 we report the results of our 
nalysis with data constructed based on the 95% lower and upper credible intervals limits of the ONS surv e y, showing 
hat our results are very robust to this measured uncertainty in the data. Ho we ver, there may be other unobserved sources 
f selection bias in the surv e y, which we cannot control for and may bias our results. 

11 We stress here that ‘vi’ and ‘bir’ cannot be interpreted as vaccine and booster ef fecti veness against infection, as this 
s a term usually reserved for comparing vaccinated with nonvaccinated in a controlled setting. 

The Author(s) 2023. 
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Table 3. Posterior medians. 

Parameter Posterior median 
90 % credible 

interval 

Parameter associated with y t−1 θ0 0 .94 [0.80, 1.16] 
Parameter associated with y t−1 in regime 1 γ1 0 .06 [0.02, 0.29] 
Parameter associated with y t−1 in regime 2 γ2 0 .03 [0.01, 0.06] 
Parameter associated with y t−1 in regime 3 γ3 0 .44 [0.22, 0.71] 
Parameter associated with y t−1 in regime 4 γ4 0 .20 [0.06, 0.46] 
Parameter associated with y t−1 in regime 5 γ5 0 .05 [0.02, 0.10] 
Parameter associated with y t−1 in regime 6 γ6 0 .10 [0.04, 0.20] 
Parameter associated with y t−1 in regime 7 γ7 0 .17 [0.08, 0.30] 
Parameter associated with y t−1 in regime 8 γ8 0 .10 [0.03, 0.24] 
Parameter associated with y t−1 in regime 9 γ9 0 .14 [0.06, 0.28] 
Parameter associated with λt−1 β0 0 .24 [0.12, 0.51 ] 
Parameter associated with λt−1 in regime 1 ω 1 0 .05 [0.02, 0.28] 
Parameter associated with λt−1 in regime 2 ω 2 0 .03 [0.01, 0.06] 
Parameter associated with λt−1 in regime 3 ω 3 0 .15 [0.06, 0.29] 
Parameter associated with λt−1 in regime 4 ω 4 0 .14 [0.06, 0.23] 
Parameter associated with λt−1 in regime 5 ω 5 0 .06 [0.03, 0.12] 
Parameter associated with λt−1 in regime 6 ω 6 0 .07 [0.03, 0.16] 
Parameter associated with λt−1 in regime 7 ω 7 0 .17 [0.09, 0.28] 
Parameter associated with λt−1 in regime 8 ω 8 0 .09 [0.04, 0.21] 
Parameter associated with λt−1 in regime 9 ω 9 0 .09 [0.04, 0.20] 
Intensity increase Alpha (relative to 

wild-type) 
ρα 0 .26 [0.15, 0.43] 

Intensity increase Delta (relative to Alpha) ρδ 0 .81 [0.44, 1.34] 
Intensity increase Omicron BA.1 (relative to 

Delta) 
ρo 0 .41 [0.10, 0.76] 

Vaccine intensity reduction vir 0 .49 [0.22, 0.81] 
Booster intensity reduction bir 0 .69 [0.38, 0.92] 
Steepness NPI transition function regime 1 k 1 0 .63 [0.12, 2.93] 
Steepness NPI transition function regime 2 k 2 0 .66 [0.12, 2.96] 
Steepness NPI transition function regime 3 k 3 0 .11 [0.10, 0.14] 
Steepness NPI transition function regime 4 k 4 0 .17 [0.11, 0.62] 
Steepness NPI transition function regime 5 k 5 0 .54 [0.12, 2.75] 
Steepness NPI transition function regime 6 k 6 0 .81 [0.13, 3.15] 
Steepness NPI transition function regime 7 k 7 0 .12 [0.10, 0.82] 
Steepness NPI transition function regime 8 k 8 1 .33 [0.35, 3.75] 
Steepness NPI transition function regime 9 k 9 1 .22 [0.22, 3.46] 
Mid-time NPI transition function regime 1 t + 1 25 .50 [1.70, 43.75] 
Mid-time NPI transition function regime 2 t + 2 140 .70 [128.17, 153.50] 
Mid-time NPI transition function regime 3 t + 3 201 .38 [199.20, 206.56] 
Mid-time NPI transition function regime 4 t + 4 217 .34 [212.59, 227.90] 
Mid-time NPI transition function regime 5 t + 5 260 .72 [256.34, 271.44] 
Mid-time NPI transition function regime 6 t + 6 426 .72 [414.96, 434.92] 
Mid-time NPI transition function regime 7 t + 7 441 .96 [440.14, 447.71] 
Mid-time NPI transition function regime 8 t + 8 532 .02 [519.98, 532.94] 
Mid-time NPI transition function regime 9 t + 9 535 .63 [535.04, 542.43] 

© The Author(s) 2023. 
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Table 3. Continued 

Parameter Posterior median 
90 % credible 

interval 

Overdispersion parameter φ 18 .60 [16.74, 20.56 ] 
Steepness transition function Alpha κα 0 .0372 [0.0316, 0.0429] 
Steepness transition function Delta κδ 0 .0377 [0.0331, 0.0433] 
Steepness transition function Omicron BA.1 κo 0 .1508 [0.1186, 0.1880] 
Mid-time transition function Alpha t ∗α 14 .67 [12.90, 16.23] 
Mid-time transition function Delta t ∗δ 41 .78 [39.65, 43.85] 
Mid-time transition function Omicron BA.1 t ∗o 16 .44 [15.20, 17.74] 
Steepness transition function vaccines second 

dose 
h v 0 .0285 [0.0279, 0.0291] 

Standard deviation N ( g α,t , σ
2 
α ) σα 0 .0533 [0.0441, 0.0658] 

Standard deviation N ( g δ,t , σ 2 
δ ) σδ 0 .0988 [0.0915, 0.1072] 

Standard deviation N ( g o,t , σ
2 
o ) σo 0 .1551 [0.1216, 0.2023] 

Standard deviation N ( g v,t , σ
2 
v ) σv 0 .0909 [0.0856, 0.0967] 

Standard deviation N ( g b,t , σ
2 
b ) σb 0 .0153 [0.0138, 0.0172] 

Steepness transition function booster h b 0 .0414 [0.0406, 0.0422] 
Mid-time transition function vaccine second 

dose 
t ⊥ v 155 .32 [154.49, 156.16] 

Mid-time transition function booster t ⊥ b 85 .47 [84.98, 85.94] 

Figure 3. Fitted versus total cases. 
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The way the model is written may suggest that some parameters only enter multiplicatively
nd cannot be identified; ho we v er, the re gimes o v er which these parameters are identified only
artially o v erlap, and this is ensured by gluing the transition functions, allowing identification
rom the time variation in the nono v erlap periods. In the Online Appendix, Section S2, we show
hat the posteriors for most parameters are tighter than their priors, and further demonstrate
The Author(s) 2023. 
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Figure 4. Estimated time evolution of posterior median estimates of the parameters associated with 
previous day infections y t−1 . 
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Figure 5. Estimated time evolution of posterior median estimates of the parameters associated with 
previous day intensity λt−1 . 
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identification through simulations. The model implies that E[ λt | F t−1 ] = θ̄t y t−1 + β̄t λt−1 , where
θ̄t = 

ˆ θnpi 
t s t ̂ voc t ̂ vir t ̂ bir t and β̄t = 

ˆ βnpi 
t s t ̂ voc t ̂ vir t ̂ bir t . All parameters with ‘hat’ denote the pos-

terior median from Table 3 . All parameter functions with ‘hat’ are obtained by plugging in the
posterior median of all estimated parameters from Table 3 . In Figures 4 and 5 , we plot θ̄t and
β̄t against vaccinations and the timing of various measures. In these figures, Steps 1–4 refer to
© The Author(s) 2023. 
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he steps in the roadmap out of the third lockdown (that took place in early 2021) in England.
e further plot the contribution to the time evolution of θ̄t of the estimates ˆ θnpi 

t s t and 

ˆ θnpi 
t s t ̂  voc t ,

nd similarly for β̄t . Figure 4 shows that, in principle, conditional on our model assumptions,
nd assuming these parameters do not only capture temporary protection from a previous in-
ection, NPIs were ef fecti v e should the y hav e been implemented against the wild-type variant,
ut because of new variants their effectiveness dropped over time. The figure also shows that
accines and boosters substantially mitigated this drop. We see a drop in θ̄t in the summer of
020, followed by an increase in autumn 2020. This second wave seems to be brought under
ontrol by a second lockdown, but θ̄t starts to increase again as the Alpha variant takes o v er. At
he same time, vaccinations begin and this tempers down the increase until the Delta variant takes
 v er and large events such as the Euro-2020 cup (that took place in summer 2021) are allowed,
n which period the transmission soars. With these events no longer in place, the transmission
ecreases again, but then schools open and we see another steep surge, which is tempered by
chool holidays, but most importantly by boosters being widely administered. We see a similar
volution for β̄t in Figure 5 , except that as the Omicron BA.1 variant becomes dominant (end
f 2021), this parameter stays low. This can be explained by the fact that β̄t measures intensity
lustering, and with Omicron, because of immune escape from previous variants, a large share
f the population gets infected quickly, and therefore the wave also dies off faster. Nevertheless,
he estimate of β̄t is not close to zero, indicating that this dependence is not negligible. This also

oti v ates our use of the reinforcing term β̄t λt−1 : without it, the dependence on infections on the
ecent past infections cannot be easily quantified. 

3.3. Counterfactual analysis 

e use the estimates from Subsection 3.2 to run counterfactuals regarding the timing and intensity
f booster campaigns (Figure 6 and Figure S12 from Section S5 in the Online Appendix) and
PIs (Figure 7 and Figure S15 from Section S5 in the Online Appendix). In all figures, the

haded areas represent the interquartile range from 4,000 ne gativ e binomial dra ws (in the Online
ppendix, Section S5, Figures S13–S14 and S16–S17, we included the same projections, but
ith the lower 5 % to the upper 95 % quantiles). In all figures, the projected daily infections (solid

ines) are given by the median of these 4,000 draws. Recall that we denote with a hat all posterior
edian estimates from Table 3 , which are then plugged in to obtain the estimates ˆ θi , ˆ βi , ˆ f i,s ,

 i = 1 , . . . , 9 ) and the corresponding time-varying functions ˆ θnpi 
s , ˆ βnpi 

s , ˆ g j,s ( j = α, δ, o, v, b),
 oc s in-sample: s = 1 , . . . T , and out-of-sample: s = T + �, . . . , with � > 1 . Similarly, ̂ vir s and̂ ir s are the in-sample time evolution of the estimated functions vir s , bir s for s = 1 , . . . , T . For

 = T + � ( � ≥ 1 ), a dra w from the ne gativ e binomial is: 

˜ y t ∼ NegBinomial ( ̃  λt , ˆ φ) , (3.1)

nd the parameters’ time evolution for this draw are given by 

˜ λnpi 
T + 1 = 

ˆ θnpi 
T + 1 y T + 

ˆ βnpi 
T + 1 ̂

 λ
npi 
T , and 

˜ λt = 

˜ λnpi 
t s t ̂ voc t ˜ vir t ˜ bir t , ˜ λnpi 

t = 

ˆ θnpi 
t ˜ y t−1 + 

ˆ βnpi 
t 

˜ λnpi 
t−1 , for t = T + �, � ≥ 2 , (3.2)

here ˜ vir t , ̃  bir t are defined below. Figure 6 shows a hypothetical scenario in which the booster
ampaign started as in reality, but the population is reached at different speeds and/or more people
eceived the booster. In this counterfactual, t = T + 1 in ( 3.1 ) corresponds to 27 November 2021
when the first case of Omicron BA.1 variant was identified in England). As one cannot have a
The Author(s) 2023. 
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Figure 6. Counterfactual when the vaccine booster campaign starts on 16 September 2021 and population 
is reached at different speeds; projection of daily infections from 27 No v ember 2021; bir = 0 . 69 (posterior 

median) and ρo = 0 . 41 (posterior median); booster wanes after five months. 

Figure 7. Counterfactual when there is a circuit break (two weeks hard lockdown) from 18 December 
2021 or 4 January 2022 (peak of infections) or when there is a semi-lockdown from 18 December 2021 

(for two weeks or four weeks); projection of daily infections from 18 December 2021; bir = 0 . 69 
(posterior median) and ρo = 0 . 41 (posterior median); booster wanes after five months. 

© The Author(s) 2023. 
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ooster without being fully vaccinated first, for vaccines we use the transition function estimated
rom the vaccination data, but with total vaccinated population share c ∈ { 0 . 7 , 0 . 8 , 0 . 9 } , where
 = 0 . 7 is what actually occurred, and c > 0 . 7 are hypothetical scenarios where the vaccination
peed is faster. More exactly, in ( 3.2 ) we use: 

˜ vir t = (1 − ˜ g v,t ) + (1 − ̂ vir w v,t ) ̃  g v,t , ˜ g v,t = 

c 

1 + exp ( − ˆ h v ( t − ˆ t ⊥ 

v )) 
, 

here the second dose vaccine waning, w v,t , starts on 28 June 2021 (as considered in the
stimation, Table 3 ), and c = 0 . 7 , 0 . 8 , 0 . 9 . For the booster, we use: 

˜ bir t = (1 − ˜ g b,t ) + (1 − ̂ bir w b,t ) ̃  g b,t , ˜ g b,t = 

c 

(1 + exp ( − ˆ h b ( t − ˜ t ))) 
, 

ith 

˜ t = 14 No v ember 2021 and c = 0 . 7 (70% of the population is vaccinated). This scenario
orresponds to the situation when 50% of the population is reached by the beginning of December
021. The booster waning, w b,t , starts five months after 16 September 2021. It is calculated as in
 2.5 ) with t + = 14 February 2022. In Figure 6 we also consider the hypothetical scenario when
0 % of the population is reached later in December 2021 and by the beginning of January 2022, in
hich case we take ̃  t = 9 December 2021 with different speeds: c = 0 . 9 (90 % of the population

s vaccinated), c = 0 . 8 (80 % of the population is vaccinated), c = 0 . 7 (70 % of the population
s vaccinated). In Figure 6 we present the projected daily infections from 27 No v ember 2021
when the first case of Omicron BA.1 variant was identified in England). The results in Figure 6
uggest that the speed of the booster campaigns would have been key to maintain the spread of
micron. The estimated model predicts that, had 50 % of the population received a booster before
hristmas 2021, then the winter wav e driv en by the spread of Omicron could have been a v oided.

f 50 % of the population is boosted by early January (which is what occurred), then the estimated
odel predicts a winter wave similar to what was observed up to the start of 2022 with a peak

eing reached in mid-January 2022. In reality, the number of infections peaked in early January,
hich suggests that the measures adopted during December 2021 (after mid-December masks
ecame mandatory in most public indoor venues, individuals were advised to work from home,
nd proof of vaccination was required to enter nightclubs or attend large gatherings) to contain
he spread of Omicron may have had an impact (note that the projected daily median infections
n the scenarios are considered to start on 27 No v ember 2021, which is prior to the adoption
f restriction measures in December 2021). Figure S12 from the Online Appendix, Section S5,
uggests that if the booster campaign started one month earlier (in mid-August rather than mid-
eptember 2021) and quickly reached a significant fraction of the population, the winter infection
a ve could ha ve been a v oided. Ho we ver, it also suggests that an early start would not have been

ufficient to a v oid a winter wave if the booster uptake was not fast enough. The Online Appendix,
ection S3, provides a discussion of the (limitations of giving) behavioural interpretations of our
odel and results. 
Figure 7 presents a counterfactual analysis with a circuit break er (tw o weeks of hard lockdown

s recommended by one member of the Scientific Advisory Group for Emergencies in England)
nd a semi-lockdown (similar to what was implemented by the go v ernment in England after
id-December 2021). The projected daily infections are from 18 December 2021 ( t = T + 1

n ( 3.1 ) corresponds to this date). In particular, ˜ vir t = ̂ vir t and 

˜ bir = 

̂ bir with booster waning
unction w v,t calculated as in ( 2.5 ) with t + = 14 February 2021 (waning starts five months after
The Author(s) 2023. 
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mid-September 2021). 12 We consider the following hypothetical evolution of the parameters due
to the NPIs: 

θ̄
npi 
t = 

ˆ θ0 (1 − ˆ f 1 ,t ) + 

8 ∑ 

i= 1 

ˆ θi ̂
 f i,t (1 − ˆ f i+ 1 ,t ) + 

ˆ θ9 ̂  f 9 ,t (1 − f 10 ,t ) 

+ ( ̂  θ9 − 0 . 05) f 10 ,t (1 − f 11 ,t ) + ( ̂  θ9 − 0 . 05 + ˆ γ8 ) f 11 ,t 

≈ ˆ θ9 ̂  f 9 ,t (1 − f 10 ,t ) + ( ̂  θ9 − 0 . 05) f 10 ,t (1 − f 11 ,t ) + ( ̂  θ9 − 0 . 05 + ˆ γ8 ) f 11 ,t , (3.3) 

β̄
npi 
t = 

ˆ β0 (1 − ˆ f 1 ,t ) + 

8 ∑ 

i= 1 

ˆ βi ̂
 f i,t (1 − ˆ f i+ 1 ,t ) + 

ˆ β9 ̂  f 9 ,t (1 − f 10 ,t ) 

+ ( ̂  β9 − 0) f 10 ,t (1 − f 11 ,t ) + ( ̂  β9 + ˆ ω 8 ) f 11 ,t 

≈ ˆ β9 ̂  f 9 ,t (1 − f 10 ,t ) + ( ̂  β9 − 0) f 10 ,t (1 − f 11 ,t ) + ( ̂  β9 + ˆ ω 8 ) f 11 ,t , (3.4) 

where the approximations in ( 3.3 ) and ( 3.4 ) follow from the fact that for t = T + 1 , . . . , the
transition function 

ˆ f 9 ,t is the dominant one and the transition functions for the previous regimes
have no impact. In ( 3.3 ) and ( 3.4 ) above, f 10 ,t is the transition function from relaxation to hard
lockdown or semi-lockdown: 

f 10 ,t = 

1 

1 + exp ( −k 10 ( t − t ∗)) 
, 

with t ∗= 22 December 2021 (for the circuit breaker starting on 18 December 2021), t ∗= 8 January
2022 (for the circuit breaker starting on 4 January 2022 when total infections reach their peak),
and t ∗= 28 December 2021 (for the semi-lockdown that starts on 18 December 2021). We take
k 10 = 0 . 1 (similar to 

ˆ k 3 , the estimate of steepness of the transition function 

ˆ f 3 ,t from relaxation
to hard lockdown in No v ember 2020 in Table 3 , therefore also assuming that protection from a
previous infection, which is not explicitly modelled, but may be absorbed in the estimation of the
NPI specific parameters, is the same as that embedded in estimation of ̂  k 3 ). For the hard lockdown,
the midpoint of the transition function is reached four days after the lockdown is imposed, while
for the semi-lockdown the midpoint is reached after 10 days. Hence, the transition function is
steeper for the hard lockdown compared to the semi-lockdown. The exit from lockdown in period
with relaxation is captured through the transition function 

f 11 ,t = 

1 

1 + exp ( −k 11 ( t − t −)) 
, 

with steepness equal to k 11 = 1 ( ≈ ˆ k 8 the steepness of the transition function 

ˆ f 8 ,t to a period of full
relaxation in the summer and autumn 2021, see Table 3 ). Moreo v er, t −= 20 February 2022 (for the
circuit breaker on 18 December with exit in two weeks), t −= 8 March 2022 (for the circuit breaker
on 4 January with exit in two weeks), t −= 10 March 2022 (for the semi-lockdown on 18 December
with an exit in two weeks), t −= 23 March 2022 (for the semi-lockdown on 18 December with an
exit of four weeks). For all scenarios in Figure 7 we assume that the exit is in two or four weeks after
the lockdown is imposed, but we allow for the fact that restrictions are usually lifted gradually, not
in one go. To account for this, the midpoint of the transition function from lockdown to relaxation
is reached 50 days after the measures are lifted. The choice of 50 days is moti v ated by the fact that
12 The cases when booster waning starts earlier in t + = 15 January 2021 (four months after mid-September 2021) or 
later in t + = 16 March 2021 (six months after mid-September 2021) are presented in Online Appendix Figure S15. 

© The Author(s) 2023. 
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etween the midpoint of ˆ f 7 ,t and that of ˆ f 8 ,t (between the big sport event at the beginning of July
021 and the peak of infections in late October 2021 when full relaxation measures were in place
nd the Delta variant was dominant) there are 90 days. The results from Figure 7 are similar if the
idpoint of f 11 ,t is reached after 100 days (if restrictions are lifted slower). As seen from ( 3.3 ),

he parameter associated with previous day infections, y t−1 , transitions from 

ˆ θ9 to 

ˆ θ9 − 0 . 05
uring lockdown (to reflect that the lockdown reduces the infections). The choice of 0.05 is
imilar to ˆ γ5 (see Table 3 ) in regime 5 (after the third lockdown that started in January 2021).
s seen from ( 3.4 ), the parameter associated with past daily intensity λt−1 remains unchanged.
his is moti v ated by the fact that, starting with the period when Omicron became dominant, the

mportance of λt−1 has diminished, while the importance of y t−1 in triggering new infections
as increased, reflecting the fact that Omicron is more transmissible than previous variants,
nd e v ades pre vious temporary immunity from an infection with a pre vious v ariant. Once the
ockdown ends, the parameters increase by ˆ γ8 and ˆ ω 8 (the posterior medians of the parameters
ssociated with the NPI in the summer 2021 when full relaxation measures were in place) from
able 3 . 
Figure 7 suggests that the timing of adoption of restriction measures may be crucial. If a

ockdown had been implemented in mid-December 2021 then the estimated model predicts
hat the increase in cases in early winter due to Omicron could have been mitigated. How-
 ver, a late lockdo wn or a semi-lockdown of either two or four weeks would not have been
s ef fecti ve. Note that the semi-lockdo wn scenario of four weeks is close to what the gov-
rnment implemented (the go v ernment restrictions were put in place between mid-December
o late January, approximately six weeks) and the estimated model projections track well the
otal realized daily cases out of sample. The similarity between the counterfactual cases of
wo and four weeks semi-lockdown indicates that perhaps the go v ernment could hav e ended
estrictions earlier than it did and that would not have resulted in a significant increase in
nfections. 

3.4. Scenarios 

n this section, we provide scenarios for the evolution of total COVID-19 cases six months out
f sample. As in Subsection 3.3 , the shaded areas in all figures represent the interquartile range
rom 4,000 ne gativ e binomial dra ws (in the Online Appendix, Section S6, we included the same
gures, but with the lower 5 % to the upper 95 % quantiles). The projected daily infections are
iven by the median from these 4,000 draws. The draws are obtained as described at the beginning
f Subsection 3.3 and are based on ( 3.1 )–( 3.2 ), with t = T + 1 corresponding to 25 December
021. Moreo v er, 

˜ voc t = (1 − ˆ g α,t ) + (1 + ˆ ρα) ̂  g α,t (1 − ˆ g δ,t ) + (1 + ˆ ρα)(1 + ˆ ρδ) ̂  g δ,t (1 − ˆ g o,t ) 

+ (1 + ˆ ρα)(1 + ˆ ρδ)(1 + ˆ ρo ) ̂  g o,t (1 − g BA. 2 ,t ) 

+ (1 + ˆ ρα)(1 + ˆ ρδ)(1 + ˆ ρo )(1 + ρBA. 2 ) g BA. 2 ,t 

≈ (1 + ˆ ρα)(1 + ˆ ρδ)(1 + ˆ ρo ) (1 − g BA. 2 ,t + (1 + ρBA. 2 ) g BA. 2 ,t ) , (3.5)

here the approximation ( 3.5 ) follows from the fact that Omicron is dominant at the end of the
ample; ρBA. 2 is the intensity increase parameter for the Omicron BA.2 variant relative to the
The Author(s) 2023. 
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Omicron BA.1 variant, and g BA. 2 ,t is the transition function of the Omicron BA.2 variant 

g BA. 2 ,t = 

1 

1 + exp ( − ˆ κo ( t − t ∗∗)) 
, 

with ˆ κo the steepness of the transition function for the Omicron BA.1 variant ˆ g o,t , and the mid-
time of g BA. 2 ,t is t ∗∗ = 5 February 2022, that is 12 days after the first cases of infections with the
Omicron BA.2 variant were genomically confirmed in England. For the Omicron BA.1 variant,
the mid-time in the transition function was estimated to be 16 days after the first case appeared in
England (27 No v ember 2021). Thus, we assume that the BA.2 variant spreads more rapidly than
the BA.1 variant. In obtaining the draws ˜ y t , we imposed: 

θ̄
npi 
t = 

ˆ θ0 (1 − ˆ f 1 ,t ) + 

8 ∑ 

i= 1 

ˆ θi ̂
 f i,t (1 − ˆ f i+ 1 ,t ) + 

ˆ θ9 ̂  f 9 ,t (1 − f 10 ,t ) + ( ̂  θ9 + ˆ γ8 ) f 10 ,t 

≈ ˆ θ9 ̂  f 9 ,t (1 − f 10 ,t ) + ( ̂  θ9 + ˆ γ8 ) f 10 ,t , 

β̄
npi 
t = 

ˆ β0 (1 − ˆ f 1 ,t ) + 

8 ∑ 

i= 1 

ˆ βi ̂
 f i,t (1 − ˆ f i+ 1 ,t ) + 

ˆ β9 ̂  f 9 ,t (1 − f 10 ,t ) + ( ̂  β9 + ˆ ω 8 ) f 10 ,t 

≈ ˆ β9 ̂  f 9 ,t (1 − f 10 ,t ) + ( ̂  β9 + ˆ ω 8 ) f 10 ,t , 

where f 10 ,t is the transition function from some relaxation measures to full relaxation 

f 10 ,t = 

1 

1 + exp ( −k 10 ( t − t ∗∗∗)) 
, 

with k 10 = 1 ( ≈ ˆ k 8 the steepness of the transition function 

ˆ f 8 ,t to a period of full relaxation in the
summer and autumn 2021, see Table 3 ). We consider two cases for t ∗∗∗. The first one corresponds
to a scenario with an early impact of measures lifted: t ∗∗∗ = 13 March 2022 (50 days after 27
January 2021 when measures of Plan B were lifted). 13 The second case corresponds to a scenario
with a late impact of measures lifted: t ∗∗∗ = 6 May 2022 (100 days after 27 January 2021 when
measures of Plan B were lifted). Finally, to obtain the draws ˜ y t , we have ̃  vir t = ̂ vir t and 

˜ bir t = (1 − ˆ g b,t ) + (1 − ˜ bir w b,t ) ̂  g b,t , 

where ̃  bir = 0 . 75 . We chose a higher bir because the scenarios with ̃

 bir = 

̂ bir = 0 . 69 (the posterior
median) seem pessimistic when plotted against infections in February 2022 (which were not used
in the estimation, but just plotted out of sample). In Figure 8 we consider the scenario with
a 10% relative intensity increase of the Omicron BA.2 variant ( ρBA. 2 = 10% ) with the shared
areas representing the interquartile range. In the Online Appendix, Section S6, we consider also
ρBA. 2 ∈ { 5% , 20% } (Figures S18–S19). In Figure 8 and Figures S18–S19 (Section S6 of the
Online Appendix) we assume that the booster wanes in five months, and the Online Appendix
(Section S7, Figures S23–S25) shows the same scenarios, but with waning of the booster after six
months. In all these figures, we consider projections when NPIs are not lifted, and lifted having
an early impact or a late impact on infections. Black dots indicate the observed total daily cases
and the black line the in-sample posterior medians from Section 2 . 
13 Plan B refers to measures introduced on 8 December 2021, in England: working from home for those who can, 
face mask wearing to most public indoor venues, vaccine passport, and daily tests for those who are contacts of Omicron 
cases. 

© The Author(s) 2023. 



Effect of NPIs, variants, and vaccines on SARS-CoV-2 infections 463 

Figure 8. Projected total cases from 25 December 2021, waning of boosters after five months, bir = 0 . 75 , 
ρo = 0 . 41 (posterior median), relative BA.2 intensity increase ρBA. 2 = 10% ; booster wanes after five 

months. 
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Figure 8 suggests that if there is a late impact from lifting the restrictions, or restrictions are
ot lifted, a new wave starts later, in mid-April 2022. If there is an early impact from lifting the
estrictions, a wave starts in March. In reality, the ONS survey and UK dashboard data indicate
hat a large infection wave did occur in March, consistent with early impact of lifting restrictions.
ince there is evidence that there were few reinfections with Omicron BA.2 after an infection
ith Omicron BA.1 around that time—Stegger et al. ( 2022 )—this can be attributed largely to

he go v ernment lifting restrictions and prev ention measure, and the av erage individual taking
dvantage of the relaxation measures. 14 

4. CONCLUSION 

e proposed a dynamic intensity model for SARS-CoV-2 infections in England to disentangle
etween NPIs, vaccines uptake, and variants of concern. We find that NPIs were effective at
educing infections in all waves so far, but that they worked best with the wild-type variant,
hich is natural, given the fact that more infectious variants are harder to contain. We also found

hat the decrease in ef fecti veness of the same NPIs due to more infectious variants was strongly
itigated by vaccines and boosters. Our counterfactuals suggest that, had the booster campaign

tarted one month earlier, or if it had reached a significant fraction of the population faster, then
he winter wave in December 2021 could have been a v oided. We also show that a two-week
ockdown implemented early would have been much more effective at reducing infections in
ecember 2021 than the longer semi-lockdown actually implemented. Projections suggest that

s booster protection wanes, another wave is predicted to occur. The predicted timing for the
ew wave is affected by several factors: (1) NPIs; (2) infectiousness of Omicron BA.2 variant;
3) timing for the waning of booster protection; and (4) efficacy of boosters at reducing infection
14 The Online Appendix Section S8 also sho ws ho w to use our results to project ahead hospital admissions, which we 
nd are still substantial in projected new waves. 

The Author(s) 2023. 
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intensity. While our scenarios are focused on Omicron BA.1 and BA.2, our framework can also be
employed for new variants of concern, to inform policy makers about the necessity and timing of
further booster campaigns and NPIs. Note that our analysis would not have been possible without
using both daily reported cases and correcting for under-reporting using the ONS surv e y (Office
for National Statistics, 2022c ), which to our knowledge is unique due to high frequency testing
of a large representative sample of the population. Other corrections, for example using available
seropre v alence or sewage data, require much more modelling due to their indirect relationship
to the number of cases, and are less reliable due to lower data frequency, waning, or weather
patterns in the case of sewage. This highlights the importance of designing such surv e ys for
other countries as well, and continually funding them, as long as the pandemic is not under
control, to inform policy makers about the total number of cases. Knowing the total number of
daily cases is important, not only for projecting future hospitalizations, but also for calculating
expected long COVID cases, and the disruptions to society created by illness absences at school
and work. 
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