
 

 

 
 

 

 

 

 

 

  

 

Point-to-point advanced self-coherent 200 Gb/s multicore fiber 
links supported by neural networks 
 
 
 
Lucas Filipe Rodrigues Oliveira 
 
 
 
Master's in Telecommunications and Computer Engineering 
 
 
 
Supervisor:  
PhD Tiago Manuel Ferreira Alves, Assistant Professor 
Iscte - Instituto Universitário de Lisboa 
 
 
 
Co-Supervisor: 
PhD Adolfo da Visitação Tregeira Cartaxo, Full Professor 
Iscte - Instituto Universitário de Lisboa 
 
 
 
October, 2023 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Department of Information Science and Technology 

 
 
Point-to-point advanced self-coherent 200 Gb/s multicore fiber 
links supported by neural networks 
 
 
 
Lucas Filipe Rodrigues Oliveira 
 
 
 
Master's in Telecommunications and Computer Engineering 
 
 
 
Supervisor:  
PhD Tiago Manuel Ferreira Alves, Assistant Professor 
Iscte - Instituto Universitário de Lisboa 
 
 
 
Co-Supervisor: 
PhD Adolfo da Visitação Tregeira Cartaxo, Full Professor 
Iscte - Instituto Universitário de Lisboa 
 
 
 
October, 2023 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Aos meus pais e irmã. 

 

Alzira Rodrigues e Válter Rodrigues. 

 

 





 

i 

 

Ackowledgements 

 

I would like to thank my supervisors Tiago Alves and Adolfo Cartaxo for their support and availability 

to answer all my questions. I would also like to thank the support provided by Instituto de 

Telecomunicações through the DigCORE project (BIL/Nº9/2023, DigCORE - UIDB/50008/2020), and 

for allowing me to use the facilities of their branch in Iscte-IUL.  

Thanks to all my college friends for the stress, advice, support and fun we had throughout the years, 

it was all worth it. Thank you to all my friends from Pernes who were always there for me when I needed 

them. To my housemates in Lisbon, thank you for becoming part of my life. Thanks for all the support 

and fun you have provided me. 

Thanks to Associação Duarte Tarré for the scholarship provided these past 4 years, it truly helped 

me a lot. I would also like to thank Huawei for investing in me with one of the fifty scholarships awarded 

in the first edition of the Huawei Scholarship program. 

A big thank you to my parents and my sister for the continued love and support. Thank you for the 

effort you made so that I could study in Lisbon.  

 

 

 

 

 

 

 

 

 

 

 

 

 





 

iii 

 

Resumo 

 

Este trabalho propõe um sistema de fibra multi-núcleo (MCF) de curto alcance de 200 Gb/s 

considerando lasers reais com ruído de fase (LPN) e recetores Kramers Kronig. Os lasers usados neste 

sistema consideram larguras de linha típicas de lasers de cavidade externa (ECL) e lasers de feedback 

distribuído (DFB). Uma rede neural feed-forward (FFNN) é implementada para mitigar os efeitos do 

LPN e da diafonia entre núcleos (ICXT). O objetivo principal deste trabalho é avaliar o impacto do LPN 

na melhoria de desempenho proporcionada pela FFNN proposta. Em primeiro lugar, um sistema sem 

LPN é estudado como referência. Posteriormente, o LPN é introduzido no sistema, com o sinal ótico 

injetado no núcleo interferente a considerar um laser com largura de linha típica de ECLs e lasers DFB. 

O sinal ótico injetado no núcleo interferido considera um laser ideal sem LPN. Concluiu-se que, 

aplicando a FFNN, o BER médio obtido com o ECL e o laser DFB, em comparação com o caso de 

referência, aumentou mais de uma ordem de grandeza. O BER médio obtido com ambos os lasers 

manteve-se abaixo do limite de BER quando o intervalo de tempo entre a fase de treino e uso da FFNN 

(ΔT) não excedeu 20% do tempo de coerência (Tc). Considerando ΔT/Tc=0.1, a FFNN proporcionou 

uma melhoria de 25% e 22% na probabilidade de indisponibilidade em comparação com a probabilidade 

de indisponibilidade antes da FFNN, ao considerar um ECL e um laser DFB, respetivamente. Essa 

melhoria diminui com o aumento de ΔT/Tc. 

Palavras-chave: Sistemas de comunicação por fibra ótica, data centers, fibras multi-núcleo,        

recetores auto-coerentes, redes neuronais, ruído de fase do laser. 
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Abstract 

 

This work proposes a 200 Gb/s short-reach multi-core fiber (MCF) system considering real lasers with 

laser phase noise (LPN) and Kramers Kronig receivers. The lasers employed in this system consider 

linewidths typical of external cavity lasers (ECL) and distributed feedback lasers (DFB). A feed-forward 

neural network (FFNN) is implemented to mitigate the effects of the LPN and inter-core crosstalk 

(ICXT). The main objective of this work is to assess the impact of the LPN on the performance 

improvement provided by the proposed FFNN. Firstly, a system without LPN is studied as reference. 

Afterwards, the LPN is introduced in the system as the optical signal injected in the interfering core 

considered a laser with linewidth typical of ECLs and DFB lasers. The optical signal injected in the 

interfered core considered an ideal laser without LPN. It was concluded that, when employing the FFNN, 

the mean BER obtained with the ECL and DFB laser, compared to the reference case, increased more 

than one order of magnitude. Furthermore, the mean BER obtained with both lasers was kept below the 

BER threshold when the time interval between the training phase and the use of the FFNN (ΔT) did not 

exceed 20% of the coherence time (Tc). Considering ΔT/Tc=0.1, the FFNN provided a 25% and a 22% 

improvement on the outage probability when compared with the outage probability before the FFNN, 

while considering an ECL and a DFB laser, respectively. This improvement will decrease with the 

increase of the ΔT/Tc. 

Keywords: Optical fiber communication systems, data centers, multi-core fibers,                                        

self-coherent receivers, neural networks, laser phase noise. 
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𝒆𝒄𝒐𝒓𝒆,𝒙(𝒕) SSB signal at the transmitter output for core ∈ {m, n} and polarization x 

𝒆𝒄𝒐𝒓𝒆,𝒙
′ (𝒕) SSB signal with polarization rotation at the output of core ∈ {m, n} for polarization x 

𝒆𝒄𝒐𝒓𝒆,𝒚(𝒕) SSB signal at the transmitter output for core ∈ {m, n} and polarization y 

𝒆𝒄𝒐𝒓𝒆,𝒚
′ (𝒕) SSB signal with polarization rotation at the output of core ∈ {m, n} for polarization y 

𝒆𝑰𝑪𝑿𝑻,𝒏,𝒑(𝒕) The ICXT optical field induced by core m into core n for each polarization p ∈ {x, y} 

𝑬𝒊𝒏   Optical field of the laser at the DP-MZM input 

𝑬𝒊𝒏,𝟏,𝟐   Optical field of the laser at the input of each inner MZM 

𝒆𝒐𝒖𝒕(𝒕)  Optical field of the information-bearing signal at the output of the DP-MZM 
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𝒆𝒐𝒖𝒕,𝒏,𝒑(𝒕) Optical field with ICXT at the output of core n for each polarization p ∈ {x, y} 

𝒆𝑺𝑺𝑩(𝒕)  Optical field of the SSB signal at the output of the transmitter 

𝒇   Frequency 

𝑭𝒑,𝒃(𝝎) Transfer function that models the ICXT induced by core m into core n with p,b ∈ {x, y} 

𝑭−𝟏  Inverse Fourier transform 

𝑯  Hilbert transform 

𝑯𝒇(𝝎)  Transfer function of the SMF 

𝑯𝑯𝑷𝑭(𝒇) Transfer function of the HPF 

𝑯𝑹𝑹𝑪(𝒇)  Transfer function of the RRC filter 

𝒊(𝒕)  Electrical current at the output of the PIN 

𝒊𝒏(𝒕)  Electrical noise 

𝑲𝒏𝒎̅̅ ̅̅ ̅̅   Discrete coupling coefficient 

L  Length of the MCF in meters 

m  Interfering core 

n  Interfered core 

𝒏𝒆𝒇𝒇  Effective refractive index of the fiber 

𝑵𝒊𝒄  Number of interfering cores 

𝑵𝑷𝑴𝑷  Number of phase matching points 

p  Polarization 

𝒑𝑰𝑪𝑿𝑻(𝒕) Average ICXT power 

𝑷𝒎  Average power at the input of core m 

𝑷𝒏  Average power at the input of core n 

Pout laser  Average power at the laser output 

Pout,m  Average power at the input of core m 

Pout,n  Average power at the input of core n 

Ptotal,m  Total power injected in core m 

𝑹𝝀  PIN responsivity 

Rs  Symbol rate 

𝑺𝝀𝟎  Slope of the dispersion parameter 

S(t)  Information-bearing signal  

𝑺𝒎𝒏  Skew between cores m and n 

𝒕  Time 

𝑇   Symbol period 

𝑻𝒄  Coherence time 

𝒗𝟏,𝟐(𝒕)   Voltage of the signal applied to either the upper or lower arm of the MZM 

𝒗𝑨𝑪,𝟏,𝟐(𝒕)  Voltage of the electrical signal that contains the information for the upper or lower arm 
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𝑽𝒃,𝟏,𝟐   Bias voltage applied to each inner MZM 

𝑽𝒃,𝟑   Bias voltage of the outer MZM 

𝒗𝒈  Group velocity 

𝑽𝒔𝒗   Switching voltage 

𝑿𝑪  ICXT level 

𝒛𝒌  K-th random coordinate 
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CHAPTER 1 

Introduction 

1.1. Background and motivation 

Current optical fiber networks are reaching the so-called capacity crunch of 100 Tb/s per single core 

fiber [1][2]. Space division multiplexing (SDM) has been indicated as a powerful solution to provide an 

ultimate capacity increase as it explores the only known physical dimension left to be exploited in optical 

networks [3][4]. There are several types of SDM such as few mode fibers (FMF) where multiple spatial 

modes propagate through the fiber, or multi-core fibers (MCF) where N independent cores provide a 

capacity increase of N-fold compared with standard single-mode fibers (SMF) used in current networks. 

These MCFs can be further distinguished based on the number of modes propagating in each core, 

resulting in single-mode MCFs (SM-MCF) and few-mode MCFs (FM-MCF) [1][5]. MCF-based SDM 

systems have been mainly proposed to respond to:  

(i) The growing capacity demands in core networks, through new advanced transmission 

techniques and/or modulation formats. 

(ii) The space limitations in short-reach networks as intra or inter data center (DC) communications. 

 

Due to cost purposes, short-reach MCF-based systems should employ off-the-shelf lasers and DD 

receivers. However, these systems may present significant performance degradation due to the laser 

phase noise (LPN), photodetection nonlinearity, chromatic dispersion (CD) and random evolution of the 

inter-core crosstalk (ICXT), with the latter being caused by the optical power inserted in one core being 

coupled with neighboring cores during propagation. 

In DC communications, the single-mode fiber’s potential is not fully utilized due to strict limitations 

in transceiver size, cost and power dissipation [6]. In contrast, MCFs and FMFs are a good fit to increase 

the available bandwidth in these systems because they can effectively achieve a higher capacity than 

standard SMF. This type of communications prioritizes low cost, power consumption and latency, 

making direct detection (DD) systems the preferred solution. However, conventional intensity 

modulation and direct detection (IM-DD) systems have some limitations in terms of the bitrate. 

Although 4-PAM was proposed to increase the bitrate, it presented a 10 km limit in reach due to the 

intolerance of these systems to chromatic dispersion, so, focus was placed on systems that make use of 

the complex optical field [8]. Thus, advanced self-coherent receivers emerged as a DD solution that has 

a higher reach and allows higher-order modulation formats, resulting in higher bitrates and requiring a 

single photodiode [7]. The Kramers Kronig (KK) receiver is an example of this type of receivers, having 

been proposed to mitigate some effects such as the photodetector nonlinearity. The combined use of 
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these technologies will therefore result in higher bitrates and reach than current DC systems utilizing 4-

PAM and parallel fibers.  

As computing power increased over the years, machine learning (ML) began being used in multiple 

areas of investigation, including optics, in order to improve system performance. Multiple experiments 

have been conducted, with ML algorithms having been effectively used in fiber nonlinearity 

compensation [9], as equalizers to compensate the photodetector nonlinearity of DD receivers [10], and 

for the compensation of ICXT induced by MCFs [11].  

In this work, ML algorithms based on neural networks (NN) are proposed to mitigate the combined 

effect of the ICXT and phase noise introduced by the laser source in 200 Gb/s MCF systems employing 

self-coherent KK receivers. 

 

1.2. Research questions 

Within the scope of this dissertation, the following questions are to be answered: 

• What parameters should the chosen NN algorithm have, in order to improve the overall system’s 

performance (number of neurons and training samples)? 

• How does the LPN impact the performance improvement provided by the NNs? 

• How long does the FFNN mitigate the combined effect of the LPN and ICXT? 

 

1.3. Objectives 

The general purpose of this work is to unlock the capacity provided by next generation optical networks. 

This is accomplished by proposing an SDM system for point-to-point transmission with a dedicated 

capacity of >200 Gb/s using KK receivers and NNs for system performance optimization. Particularly, 

the following objectives are pursued: 

(i) To integrate a software platform for simulation of over 200 Gb/s SDM optical fiber systems 

employing self-coherent KK receivers, MCF transmission, LPN and NNs. 

(ii) To identify the main advantages and challenges of different classes of NN algorithms.  

(iii) To implement a NN technique in the simulator of step (i) for end-to-end performance 

optimization in point-to-point >200 Gb/s QAM-SDM optical fiber links employing DD and 

impaired by the combined effect of the ICXT and LPN. 

(iv) To assess the impact of the random nature of the LPN and ICXT along time on the performance 

of the proposed ML technique. 
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1.4. Methodology 

The Design science research methodology (DSRM) described in [12] will be followed in the elaboration 

of this dissertation, on account of the engineering nature of the subject. Its process model is composed 

of several activities which have different possible entry points, as seen in figure 1. 

 

Figure 1: DSRM model. 

In the context of this work, a problem centered approach is taken since the problem, which is the 

impact of the LPN and ICXT on the performance of MCF systems, has already been observed and the 

main goal of this work is to create a software platform that employs NNs and KK receivers in order to 

assess the impact of the LPN on the performance improvement provided by the neural networks on the 

ICXT. Considering this, the first development stage of this dissertation is the problem identification and 

motivation. In this report, the problem and motivation are firstly introduced in section 1.1 and further 

explained in the literature review. Afterwards the solution’s objectives were defined and are represented 

in section 1.3. The next activity involves the design and development of the intended simulator that was 

concisely described in the first objective of section 1.3. Here, a proper architecture of the simulator has 

to be determined before starting the development, resorting, for example, to a schematic diagram. After 

the simulator has been successfully developed, in the demonstration activity, it is going to be run with 

all the required parameters. 

Subsequently, in the evaluation activity, with all the results obtained from the simulation, the impact of 

the LPN on the performance improvement provided by the chosen neural network technique is going to 

be assessed. Finally, in the communication phase, when all the desired results have been analyzed, the 

work done is going to be published in the form of a master’s dissertation. 
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1.5. Dissertation structure 

 

The dissertation is organized as follows: 

• Chapter 2 includes the literature review of several key concepts in this work, namely self-

coherent detection (KK receivers), MCFs and its main drawback - the ICXT, the phase noise 

present in real lasers and the use of ML in optical communications. 

• Chapter 3 presents the system architecture, providing a thorough description and validation of 

all the models to be used in the simulation of each element in this system. 

• Chapter 4 studies the optimum parameters for the intended NNs and the impact of the LPN on 

their performance improvement, considering external cavity and distributed feedback lasers 

(ECL and DFBs). 

• Chapter 5 provides the main conclusions of these studies, while also suggesting some future 

work. 

 

1.6. Main contributions 

 

The main contributions of this work are: 

• Implementation of a FFNN that mitigates the combined effect of the LPN and ICXT induced 

by the neighboring cores in systems with skew×symbol rate << 1. 

• Demonstration of how long the FFNN is able to mitigate the combined effect of the LPN and 

ICXT without having to be trained again. 

• Demonstration of the impact the LPN has on the performance improvement provided by the 

FFNN. 

 



 

5 

 

CHAPTER 2 

Literature review 

2.1. Optical networks 

Optical networks are divided into different segments in a hierarchical structure with three layers: core, 

metropolitan, and access (figure 2) [14][17]. Access networks are on the edge of the network and are 

the ones that actually serve the end users. These networks are usually of smaller distances up to 20 km, 

although recent research on passive optical networks (PON) have shown a maximum coverage of 60 km 

[13].  

Metropolitan networks essentially collect business, residential and mobile traffic of end users at 

central offices (COs) spread across cities and towns, i.e., from the access networks, and span between 

dozens and hundreds of kilometers [14]. Most of the traffic collected will go to the core, to reach, e.g., 

content distribution network services [17]. 

Finally, core networks span large distances from hundreds to thousands of kilometers, serving 

metropolitan networks offering them connectivity and transporting large volumes of aggregated traffic 

[14]. This is the network segment that transports the most amount of traffic, so it is very important to 

use the available spectrum efficiently. Initially, in the dense wavelength division multiplexing (DWDM) 

era, core networks used fixed-grid channel spacings of 50 GHz in the C-band reaching bitrates of 10 

Gb/s per channel, while utilizing the intensity modulation and direct detection scheme (IM-DD). With 

the continuous growth of traffic, technology evolved to reach data rates of 100 Gb/s on a single 

wavelength carrier, employing coherent technology. Using two polarizations with quadrature phase shift 

keying (QPSK) as the modulation scheme, a data rate of 100 Gb/s was attained, achieving a spectral 

efficiency of 2 bit/s/Hz [18][19]. Research was later focused on higher order quadrature amplitude 

modulation (QAM) to reach higher bitrates and spectral efficiencies, with results revealing that there is 

a higher optical signal to noise ratio (OSNR) limit, therefore reaching lower distances [19]. In fixed grid 

systems, spectrum was a lot of times wasted, so to avoid that, flexible grid systems were introduced and 

essentially eliminated that problem, since the channel spacings are multiples of 12.5 GHz, therefore 

having higher granularity and lower waste of spectrum [19]. All this combined with sophisticated 

forward error correction (FEC) schemes and the use of digital signal processing (DSP) enabled systems 

to operate close to their theoretical Shannon limits, reaching aggregate per-fiber capacities of up to 70 

Tbps, using the C (1530-1565 nm) and L (around 1565-1625 nm) bands. Furthermore, experiments 

based on the C+L band single mode fiber (SMF) transmission over 1000 km have barely surpassed 100 

Tbps, thus marking this number as the capacity limit/crunch of SMF [2]. 
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Figure 2: Optical Network's hierarchy. 

 

Even though multi-core fibers (MCF) could be used on these networks segments, the system 

proposed in this dissertation is intended for data centers (DC), which will be introduced in section 2.3. 

 

2.2. Receiver detection techniques 

 

This section presents the main detection techniques used in today’s receivers, such as direct detection 

(DD), coherent detection and self-coherent detection. 
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2.2.1. Direct detection  

DD receivers dominated optical communication networks since the first generation [15]. The 

information is sent only through optical field intensity, using the on-off keying (OOK) modulation 

scheme, thus having a limitation in the maximum bit rate achievable. In the beginning of the 2010s there 

was a big focus on developing transceivers based on the coherent technology, which eventually replaced 

IM-DD based systems in some segments of the optical networks, namely the metro and core systems 

[3] [15]. DD systems are still used in access networks mainly to bring down cost, since the receiver 

design is much simpler, requiring a single photodiode [20]. However, with this need for higher bit rates, 

these networks must follow this evolution, or take the chance of becoming obsolete. With that in mind, 

several new proposals for DD systems appeared.  

One proposal reported in [16] was to use pulse amplitude modulation (PAM) in order to send more 

bits per symbol, encoding the information in M intensity levels. The performance of this scheme is 

determined by the noise variance in each level, since if one level has a high noise variance, its symbols 

can be interpreted in the receiver as a level above or below. With a bit rate of 112 Gb/s using 4-PAM 

(M=4) modulation, results showed that the dispersion has an effect on the receiver sensitivity, with the 

penalty imposing a limit in the reach of the link, if the dispersion is left uncompensated. This modulation 

is proposed for short reach links such as intra data center links. Higher bit rates of 200 Gb/s were also 

accomplished with 4-PAM, although the reach was very limited, being up to 10 km in the O-band (1260-

1360 nm) [21]. However, these systems could still be used in DCs and access networks. 

2.2.2. Digital coherent  

This technique was a breakthrough in optical fiber systems, allowing information to be coded in 

amplitude, phase, and polarization. Digital coherent receivers are the most advanced type of receivers 

and are characterized by having a local oscillator at the receiver for extracting the phase information of 

the signal [22]. They are also able to compensate channel impairments such as CD via DSP, which is 

one of the key enablers of this technique [23]. Although these are many advantages of using coherent 

technology, some disadvantages are associated with it, such as cost and complexity, requiring complex 

designs [22]. 

It has been experimentally demonstrated a 400 Gb/s per channel wavelength division multiplexing 

(WDM) transmission on the 50 GHz grid, over 990 km standard SMF with erbium-doped fiber 

amplification (EDFA) [24]. The WDM signal consisted of 8 channels using probabilistic shaping (PS) 

64-QAM together with polarization multiplexing, resulting in a 414 Gb/s net bit rate per channel. This 

approach brings OSNR gain comparing to regular 64-QAM, while also providing a transmission 

distance improvement of about 83% over regular 64-QAM. This type of technology shows potential for 

longer-reach links such as the ones found in core networks. 
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In [25], it was demonstrated a 5 channel WDM transmission on the 125 GHz grid over 6400 km of 

ultra large effective area fiber (ULAF) which has a lower attenuation. Signal amplification was made 

via Raman amplifiers which, together with ULAF, increases the transmission distance more than three 

times than that of the standard SMF with EDFA. Dual polarization PS-16-QAM was employed, having 

a net bit rate of 640 Gb/s per carrier. As seen in the preceding experiment, PS-16-QAM also has a 

sensitivity and transmission gain when compared to regular 16-QAM. The reach improvement can be 

of about 48% when using Volterra non-linear equalization (VNLE) at the receiver, thus reaching the 

6400 km mark. This type of system can be used effectively in ultra-long-haul WDM transmissions, such 

as transoceanic. 

Long distance transmission of a WDM signal consisting of 5 channels with a net bit rate of 800 

Gb/s each has been accomplished in [26]. Truncated probabilistic shaping (TPS) 64-QAM was used 

along with polarization multiplexing. This signal was transmitted along 2000 km of ULAF, being 

amplified with Raman amplifiers to maximize reach and using a Volterra equalizer. Similarly to the 

previous stated experiments, a sensitivity gain was obtained from using 100 Gbaud TPS-64QAM instead 

of 100 Gbaud regular 32-QAM. On that account, this type of system is appropriate for long-haul WDM 

transmissions. 

2.2.3. Self-coherent direct detection 

Between the traditional IM-DD and digital coherent solutions there is a technique that is a combination 

of both, and it is called self-coherent. The transmission of an optical carrier along with the data signal 

makes it possible for, in the receiver, using filters with a very narrow bandwidth, the recovery of the 

optical carrier, therefore employing it as a local oscillator [7]. Digital coherent systems require a LO at 

the receiver, while these ones do not, hence why they are called self-coherent. Essentially, it is a 

compromise between the two main solutions, having a trade-off between performance and complexity. 

These systems make higher order modulation possible in a direct detection manner.  

A single sideband (SSB) 16-QAM system with signal-signal beat interference (SSBI) cancellation 

technique was proposed in [20] for metro and regional networks. The experiments were carried out with 

a channel bitrate of 25 Gb/s occupying only 8.75 GHz of bandwidth, over 560 km and 800 km of fiber. 

In DD systems, the phase information is lost because of the square-law photodiode so, to avoid that, the 

QAM signal is sent alongside an optical carrier at a nearby frequency, enabling the receiver to obtain 

the amplitude and phase information from the beating of the signal with the optical carrier. The SSBI 

cancellation technique is required to mitigate the signal-signal products, and these experiments showed 

that it was able to effectively reduce the nonlinear distortion caused by the square-law detection.  

In [8], it was possible to transmit and correctly receive an 8 channel WDM signal, with a channel 

bit rate of 256 Gb/s, over 200 km of Corning TXF fiber. This was accomplished by sending, on each 

channel, a SSB 16-QAM signal together with a digital tone (virtual carrier), which is generated together 
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with the information and simplifies the implementation. Unlike the preceding proposal, this one does 

not have a gap between the information and the carrier. In the receiver, both two stage SSBI cancellation 

technique and Kramers-Kronig (KK) field reconstruction algorithm were experimented, with both 

working very well based on the system’s performance margin, although the KK algorithm slightly 

outperformed the SSBI cancellation technique. This type of system shows potential for DC interconnect 

applications. 

 

2.3. Data centers 

The infrastructure for many online services such as on-demand video delivery, storage and file 

sharing are provided by DCs. These provide flexible access to scalable computing and storage resources, 

which today is a big necessity for cloud computing [27].  

Large internet content providers (ICPs) have started to host and process a lot of data in hyperscale 

DCs in recent years. Virtualization and cloud computing caused the evolution of traffic patterns, 

resulting in a shift from north-south traffic, i.e., traffic from outside to the servers in the DC, to east-

west traffic, i.e., traffic from servers to other servers in the same DC or other DCs nearby [16], which 

according to [28] would represent 85% of DC traffic by 2021. To better accommodate this type of traffic, 

these hyperscale DCs have shifted from a traditional three tier architecture to a flatter two tier 

architecture illustrated in figure 3. This requires high-capacity optical links inside the datacenters and 

between them, while keeping cost, power consumption and latency down [16][29]. DCs still use IM-

DD technology, and for a long time the solution to scale the link’s capacity has been to employ multiple 

wavelengths or parallel fibers while using OOK [16]. However, this is considered a limitative 

technology due to its inability to reach high bit rates like the coherent technology. Also, this combination 

of technologies is not scalable resulting in high cost, complexity, and power consumption [16], while 

the multiple parallel fibers solution takes too much space. So, to scale the fiber capacity while still using 

DD as the baseline technology, to minimize power consumption and cost, research was focused on more 

spectrally efficient modulation formats such as 4-PAM and orthogonal frequency division multiplexing 

(OFDM) [16]. 
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Figure 3: Hyperscale DC's network architecture. 

There are two types of DC links: the intra-data center links which are of short reach and are used to 

connect servers to top-of-rack (TOR) switches (<100 m), TOR switches to leaf switches (>100 m and 

<10 km), and leaf switches to spine switches (>100 m and <10 km), and inter-data center links which 

are of longer reach and are used to connect the border leaf switches (<100 km). Intra-DC links have no 

need for amplification due to the short link lengths (up to 10 km), which keeps the cost down. To 

minimize the CD in links above 100 m and below 10 km, these systems operate in the O Band at around 

1310 nm. In addition, several channels can be multiplexed with local area network (LAN) WDM or 

coarse WDM to increase system bitrate [16]. Intra-DC links are further differentiated depending on its 

distance [30]: short reach for 100 m distances based on multi-mode vertical-cavity-surface-emitting 

lasers (VCSELs) and parallel multi-mode fibers (MMFs), which will limit the data rate and reach due 

to modal dispersion caused by the multiple transverse modes not travelling at the same speed, thus 

causing inter-symbol interference (ISI) at the receiver; DC reach which generally reach up to 500 m 

distances using single-mode parallel fibers; far reach and long reach for up to 2 km and 10 km, 

respectively, using WDM and SMFs. As an example, by 2017, according to [31], Google’s intra-data 

center optical interconnects of up to 100 m, operated with 50 Gb/s 4-PAM modulation using up to 8 

lanes via space division multiplexing (SDM) using parallel MMFs, therefore being able to achieve a bit 

rate of 400 Gb/s. For longer reach intra-data center connections (> 100 m), SMF was used, while the 8 

lanes were achieved via coarse WDM, thus eliminating the need for multiple fibers. 

Inter-DC links have a longer reach of up to 100 km, so amplification is required. These systems 

operate on the C-Band at around 1550 nm for the ability of being amplified by EDFAs [16]. Operating 
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in this band has the disadvantage of having significant CD that needs to be compensated for using, for 

instance, dispersion compensating fibers (DCF). In this particular case, DD technology is still the better 

choice, due to rack space and power limitations, with 4-PAM modulation being the standard. This will 

allow a DWDM transmission with 40 channels at 100 Gb/s, thus reaching a total bit rate of 4 Tbps per 

fiber pair [32]. 

2.4. Space division multiplexing 

There are several ways to increase fiber capacity such as the use of multiple transmission bands. This is 

currently done by transmitting in both C and L bands, while recent research is being focused on also 

including other bands such as the O, E, S and U-bands, in order to realize the so-called ultra-wide band 

(UWB) transmission. However, this is primarily indicated for long-haul systems where it is paramount 

to scale the fiber capacity as much as possible, unlike short-reach applications, where cable deployment 

costs are much lower, therefore it is preferable to multiply the capacity in another way, such as via SDM 

[2].  

SDM is another solution to increase system bandwidth. Currently, it is used in the form of multiple 

parallel fibers, which takes too much space [16]. Parallel spatial paths incorporated into a single fiber 

are an evolution of SDM and are still compatible with WDM and signal formatting, allowing for high 

flexibility, increasing the bandwidth available and increasing the spatial efficiency [4]. There are a few 

types of SDM solutions for different applications such as MCFs and few-mode fibers (FMF) [1][4]. 

 

2.4.1. Mode division multiplexing 

Mode division multiplexing is accomplished via FMFs or MMFs. FMFs are a simpler alternative to 

MMFs, utilizing only a small number of modes propagating in the fiber, theoretically being able to scale 

up to a few dozen modes within a standard cladding diameter of 125 µm, thus achieving a high spatial 

density, meaning a high number of spatial channels per unit area. They can be either weakly coupled 

(figure 4) or strongly coupled (figure 5), differing on whether it is designed to suppress mode coupling 

or to reduce differential mode group delay, respectively [5]. Its core diameter is larger than SMFs while 

strongly coupled FMFs have an even larger core diameter than weakly coupled ones. Figures 4 and 5 

display the core diameters of commercially available 6-mode weakly coupled (step-index) and strongly 

coupled (graded-index) YOFC FMFs [55]. It is important to note that these values vary depending on 

the number of modes and manufacturer. Weakly coupled FMFs are designed to suppress mode coupling 

between different mode groups so, in order to recover the signals, only low complexity multiple input 

multiple out (MIMO) DSP is necessary at the receiver. The fiber may use a step index profile which will 

limit the channel count. Strongly coupled FMFs use graded-index profiles, therefore reducing the 

differential mode group delay and increasing the channel count. However, this will require complex 
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MIMO signal processing [5]. Along with MIMO signal processing, there needs to be a mode 

multiplexer/demultiplexer to separate the several transmitted modes into individual SMFs [29]. Core 

diameters for both types may vary but, in general, strongly coupled FMFs have larger core diameters 

compared do weakly coupled ones. 

It has been demonstrated in [33], a transmission of 402.7 Tbps over a 48 km 10-mode weakly 

coupled FMF with standard 125 µm cladding. Each mode carried a WDM signal consisting of 747 

channels in the C and L bands, employing polarization multiplexing and PS-16-QAM modulation, at a 

symbol rate of 12 Gbaud. A low complexity MIMO DSP was used at the receiver. This is four times 

more than the so-called capacity crunch. 

More recently, a record transmission of 1.53 Pbps over a 25.9 km 55-mode MMF with a standard 

125 µm cladding has been realized. In this case, only the C-band was used, which makes it a much more 

spectrally efficient approach than previous ones. Each mode carried a WDM signal consisting of 184 

channels employing polarization multiplexing and 16-QAM modulation. A complex 110 × 110 MIMO 

DSP was required at the receiver [34]. 

The above-described experiments show that FMFs and MMFs are an interesting approach to 

increase capacity. Although the reach is limited due to the modal dispersion, high-capacity transmission 

is attainable, reaching bitrates 15.3 times more than the capacity crunch. However, these systems require 

more complex receivers, on account of the need of MIMO signal processing and mode 

multiplexers/demultiplexers. 

 

 

 

 

2.4.2. Multi-core fiber 

MCFs gained more attention in the late 2000s due to the capacity of the SMF getting close to reaching 

its fundamental limit at around 100 Tbps [1][2]. MCF is applicable for short distance interconnects and 

long-haul links. Multiple experiments have been conducted for long haul links, however, due to some 

technology constraints, viable commercial options are still to be available for this type of systems [2]. 

Nevertheless, MCF-based systems are well-suited for short reach links, given that they do not require 

Figure 5: Strongly coupled FMF. Figure 4: Weakly coupled FMF. 
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optical amplification (the losses of MCFs can be kept low). The main impairments are inter-core 

crosstalk (ICXT) and relative signal propagation delay between cores (skew) [4].  

Similarly to FMFs, there are two types of multi-core fibers: weakly-coupled and strongly-coupled. 

Figures 6 and 7 illustrate these fibers, referencing the core diameters of ideal homogeneous MCFs [5]. 

In weakly-coupled MCFs, multiple cores are incorporated in a single fiber with enough distance between 

each other to guarantee low ICXT. The typical core to core distance is around 40 μm [1], thus sacrificing 

core density, and the cladding diameter tended to be bigger than the standard 125 μm [5]. However, 

some experiments have already been carried out employing SM-MCFs in a 125 μm cladding 

[34][36][37][38], though the number of cores is kept low (4 or less). This type of MCFs can have low 

complexity MIMO DSPs at the receiver to recover the signal but work well without it [1]. Strongly-

coupled fibers have crosstalk purposefully introduced between cores by decreasing the core to core 

distance, which is less than 30 μm [1], meaning it improves core density while also being able to 

maintain the 125 μm cladding [5]. This type of MCF needs MIMO signal processing at the receiver to 

recover the signal [1]. 

Spatial efficiency in MCFs should be higher than conventional SMF. The number of cores to be 

placed in a fiber is determined by the distances between each other, which in turn is determined by the 

maximum allowable crosstalk. Another limitation to the number of cores is the cladding diameter, since 

a smaller one is preferable due to its reliability for bending [1].  

 

 

 

 

 

 

2.4.2.1. Single-mode multi-core fiber 

A possible application for single-mode MCFs (SM-MCFs) is using transceivers based on parallel single-

mode fiber (PSM) transmission in data centers like the PSM4. In this type of transmission there are 4 

links associated with each direction, so it is achievable with an MCF with 8 cores or two MCFs with 4 

cores instead of 8 individual fibers, thus saving space [4]. 

In [34], a 4-core weakly coupled SM-MCF in a 125 µm cladding with 45 km was employed for a 

post-FEC error free single channel 200 Gb/s transmission using coherent technology. The modulation 

Figure 7: Strongly coupled SM-MCF. Figure 6: Weakly coupled SM-MCF. 



14 

 

format used was 16-QAM with polarization multiplexing at 32 Gbaud. A fan-in was used in the 

transmitter side, while a fan-out was used in the receiver side. The ICXT was significantly low, and the 

performance of this fiber was compared with a traditional SMF, showing similar performance. This type 

of system could therefore be used in the context of inter-data center links. 

In [36], a 4-core weakly coupled SM-MCF was successfully employed to achieve an error free 

transmission of an aggregate 400 Gb/s bit rate (4 × 106 GbE) with FEC using 50 Gbaud 4-PAM 

modulation, reaching up to 12 km and making it applicable for intra-data center links.  

Some high-capacity and long-distance experiments were also realized utilizing digital coherent 

technology. In [37], a transmission of 3 WDM signals with 359 channels, employing polarization 

multiplexing and 16-QAM modulation at a symbol rate of 24.5 Gbaud was realized over 2040 km of a 

strongly coupled 3-core SM-MCF, with a standard cladding diameter of 125 µm. The C-band was 

combined with the L-band to allow the increase of the number of multiplexed channels, thus reaching a 

total bit rate of 172 Tbps. 

In [38], a transmission of 4 WDM signals with 152 channels employing polarization multiplexing 

and 4-QAM modulation at a symbol rate of 24 Gbaud was realized over 9150 km of a strongly coupled 

4-core SM-MCF, with standard cladding of 125 µm. In this case, only the C-band was used, achieving 

a 50.47 Tbps total bit rate. Even though it is unable to achieve the same capacity as the above referenced 

experiment, it has more than 4 times the reach. This MCF could be used in submarine cable systems 

scenarios, where there are space limitations, and high capacity and reach are necessary. 

In [1], experiment results for weakly-coupled SM-MCFs have shown that there is a tradeoff between 

high spatial efficiency and low crosstalk. While one experiment led to a spatial channel count (SCC) of 

7 and a worst-case crosstalk of -64 dB in a 100 km link at 1550 nm, another one managed to reach an 

SCC of 30 with a worst-case scenario of -42 dB crosstalk also in a 100 km link at 1550 nm, thus 

confirming the tradeoff scenario. The experiments reported in this subsection demonstrate that, unlike 

FMFs, high-distance and high-capacity transmission is achievable on MCFs, thus making this type of 

fiber more versatile. Furthermore, MCF transmission does not require complex receivers. 

2.4.2.2. Few-mode multi-core fiber 

Few-mode multi-core fibers (FM-MCF) are another type of SDM. They are similar to figures 6 and 7, 

but the cores are larger in order to accommodate more modes. It is a result of the combination of core 

multiplexing with mode multiplexing. With it come more limitations, namely in long-distance links 

where complex MIMO DSP is necessary to separate coupled modes during propagation [1]. Basically, 

the complexity of the DSP will determine the number of modes allowed, low complexity DSP means 

lower number of modes and vice-versa. The distance between cores needs to be larger than in SM-MCFs 

to achieve the same amount of crosstalk, since there are several modes of propagation in each core which 

is a cause for higher crosstalk.  
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In 2019, a 1.2 Pbps single-span transmission was achieved over 3.37 km FM-MCF [39]. This fiber 

had 4-cores with 3-modes each and a 160 μm cladding, therefore being larger than the standard ones. In 

the L-band at around 1608.8 nm, the ICXT between modes of adjacent cores ranged between -54 dB/km 

and -31 dB/km. The C+L bands were used with channels having a 25 GHz spacing and containing a 

24.5 Gbaud polarization multiplexed 256-QAM signal, which were combined to form a WDM signal 

with 368 channels that would be replicated over 12 spatial channels (4 cores times 3 modes), thus 

reaching the 1.2 Pbps bit rate. 

A 10.66 Pbps transmission was reported in [40]. In this transmission, a weakly-coupled 38-core 3-

mode FM-MCF with a length of 13 km was used. This fiber was designed to have low differential-mode 

delay within each core, in order to achieve higher throughputs. Furthermore, being weakly coupled with 

38 cores, resulted in having a much larger cladding diameter of 312 μm. Both C and L bands were used 

in each spatial channel. i.e., each mode of a core, to transmit 369 WDM channels in a 25 GHz grid, each 

with a 24.5 Gbaud 64-QAM or 256-QAM signal. Employing FEC, an aggregated 10.66 Pbps data-rate 

was attained, while each spatial channel carried, on average, a 93.5 Tbps signal. This means that a bit 

rate 106.6 times greater than the capacity-crunch was achieved. It is important also to note that the ICXT 

was kept below -35 dB.  

In a 100 km link at 1550 nm, experiment results for weakly-coupled FM-MCFs showed a SCC of 

12 (4 cores with 3 modes each) with a crosstalk of -39 dB and an SCC of 114 (19 cores with 6 modes 

each) with a crosstalk of -19 dB. There were also experiments achieving lower crosstalk of around -55 

dB to -58 dB with an SCC of 36 [1]. These results, despite demonstrating FM-MCFs are able to transport 

a higher number of channels, also show a much higher crosstalk than in SM-MCFs that needs to be 

compensated for, in another way. Nevertheless, this type of fiber allows for the highest capacity 

transmissions, although the reach is still very limited and complex receivers are required. 

 

2.5. Performance degradation contributors 

 

This work studies the use of neural networks to compensate the ICXT on multi-core optical fiber systems 

also impaired by LPN, making it crucial to understand both these concepts. 

2.5.1. Inter-core crosstalk 

ICXT is an important problem in MCFs and is caused by the optical power launched in one core 

being coupled with neighboring cores during propagation [1]. It varies randomly along the fiber over 

time and frequency [41]. 

Studies have shown that the impact of the ICXT depends on modulation format, data-rate, temporal 

skew between cores (time delay) and type of optical receiver employed. DD systems that use carrier 
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supported signals are impaired by ICXT power, which may fluctuate significantly over time [41]. In 

[49], the impact of the ICXT on the performance evolution of OOK-DD systems along time was 

evaluated for low and high skew×symbol rate. It was shown that the impact of the ICXT on the received 

symbols depends on the skew×symbol rate. When the skew×symbol rate << 1, the ICXT induced in the 

interfered core only depends on the symbol transmitted in the interfering core at the same time instant, 

and the received amplitudes showed two levels for each bit, with the levels’ spacing becoming larger 

with the increase in short-term average crosstalk (STAXT), which is the average ICXT power 

measurement over a certain short period of time. When skew×symbol rate >> 1, the ICXT induced in 

the interfered core results from the contributions of several symbols transmitted in the interfering core, 

and the received amplitudes presented a noise-like behavior. Considering the same outage probability, 

i.e., the probability that the BER exceeds a given BER threshold, it was shown that when skew×symbol 

rate >> 1, there is an additional ICXT tolerance of around 3 dB, so, the rule of thumb when using a 

OOK-DD MCF-based system impaired by ICXT, is to use cores with a skew longer than the symbol 

period to transmit information. 

There are different techniques to suppress ICXT. One way of decreasing it is reducing the coupling 

coefficient. In weakly coupled MCFs this coupling coefficient is much lower than in strongly coupled 

MCFs, because it is directly related to the distance between cores. To reduce it, one proposal used trench 

assisted MCFs. In trench-assisted MCFs, a low-index trench layer of a determined thickness is put 

around the core, therefore suppressing the overlap of electromagnetic fields between cores. Results have 

shown a 30 dB crosstalk reduction. Another approach is to have the multiple cores with intrinsic index 

difference between them, also known as heterogenous MCFs, and a third way is by using the 

propagation-direction interleaving (PDI), where adjacent cores have a different direction. The 

combination of the aforementioned techniques results in low crosstalk and high core count [1].  

2.5.2. Laser phase noise 

Light emission is done by the photon generation, which has two fundamental processes: stimulated 

emission, where all photons have similar energy, phase and propagation direction, and spontaneous 

emission, where photons are emitted in random directions without any relation between its phases. 

Ideally, in the case of optical systems, a laser source emits light through stimulated emission, resulting 

in a monochromatic (coherent) oscillator with a certain frequency. However, in reality, all light sources, 

including lasers, generate photons though stimulated and spontaneous emission, resulting in a noisy 

oscillator. This noise results in a non-monochromatic (incoherent) oscillator, whose power spectral 

density (PSD) of the optical field at the laser’s output is not represented by a single line, instead having 

a certain linewidth which is associated with the phase fluctuation of the laser [43][44].  

There are several types of lasers, such as single-mode and multi-mode lasers. Fabry-Perot lasers are 

multi-mode lasers with a linewidth between tens and hundreds of GHz, having a limited bit-rate×reach 
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product [43]. Commonly used single-mode lasers include distributed feedback lasers (DFB) and external 

cavity lasers (ECL), which usually have a linewidth of a few MHz and tens of kHz, respectively.  

In [50], the impact of the LPN in the instantaneous ICXT power, STAXT and performance of OOK-

DD weakly coupled MCFs was studied for a skew×bit rate >> 1. Simulation results showed that the 

level of the fluctuations of the STAXT power were higher for smaller linewidths. They also showed that 

the amplitude of the fluctuations of the instantaneous ICXT power increased with the increase of the 

laser linewidth. The experimental results corroborated the simulation results, showing a higher outage 

probability for lasers with higher linewidth, owing to the fact that the errors on the OOK bit stream are 

dependent on the instantaneous ICXT power, which can be higher for higher LPN. For that reason, the 

level of the fluctuations of the STAXT was shown to be a bad metric to characterize the system 

performance. It was also concluded that this type of system operating with a DFB laser may need an 

extra ICXT margin of up to 8 dB comparatively to ECL lasers. In [51] similar results were obtained, 

revealing that when the skew×symbol rate << 1 and skew×linewidth << 1, the effect of the LPN on the 

instantaneous ICXT and STAXT is negligible. In contrast, when skew×linewidth and skew×symbol rate 

>> 1, considering a laser with a 10 MHz of linewidth, the instantaneous ICXT power reveals much 

larger fluctuations when compared with an ideal laser, proving that the LPN can have a big impact on 

the ICXT. When analyzing the BER for the case when skew×symbol rate and skew×linewidth << 1 - 

lower variation of the instantaneous ICXT and insignificant impact of the LPN on the ICXT - it was 

also concluded that the dispersion only effects the BER when a laser of high linewidth is used in the 

interfered core. Moreover, higher laser linewidths result in higher BERs, with results implying that when 

these are used in the interfered core instead of the interfering one, a slightly higher BER is observed. 

 

2.6. Machine learning 

Machine Learning (ML) is based on the idea that patterns and trends in a set of data can be learned 

automatically through algorithms [45]. This learning process makes it possible that in the future, 

predictions and decisions be made with other data but with the same objective. Over the years, as a result 

of the increase in computing power, ML began being used in multiple areas of investigation, including 

optical communications. It has applications in different layers of optical communications systems, 

namely in the physical and network layer [46].  

ML algorithms mainly perform two types of pattern recognition: trying to find some functional 

description in the given data, with the aim of predicting values for new inputs in the future – regression 

problem; trying to find decision boundaries in the data so that different data is indeed classified 

differently – classification problem. In the context of optical communications, parameter estimation and 

symbol detection are regression and classification problems, respectively, therefore being possible to 

resolve via ML. As high-capacity links are increasingly getting limited by transmission impairments 

like fiber nonlinearity, explicit statistical characterizations of inputs/outputs become difficult. 
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Consequently, there has been an increasing focus on ML techniques to compensate system impairments, 

for example: fiber nonlinearity, CD, laser chirp and transceiver components imperfections [45]. 

 

2.6.1. Unsupervised learning and Reinforcement learning 

In unsupervised learning, the algorithm does not know what the correct output should be, instead 

needing to come up with one. It requires unlabeled data, i.e. no context is provided to the ML algorithm, 

with that being the main difference with supervised learning, which requires labeled data. The algorithm 

will learn the similarities between the various inputs to either group them together or determine a better 

representation of the original data. This type of algorithm is becoming increasingly more important since 

in real circumstances it is hard to obtain labeled data for the training process. They are mainly used for 

clustering and features extraction but could also be used in combination with supervised algorithms, 

with the raw data going through it beforehand to extract some useful features. Algorithm examples 

include k-means clustering, which is able to cluster information, and principal component analysis 

(PCA), which is a technique for features extraction [45].  

In reinforcement learning (RL), the algorithm interacts with the environment in order to learn something, 

with every action affecting the environment and returning a reward that will quantify its success [46]. 

The input of the algorithm, called observation, is associated with the reward or reinforcement signal. 

The output, also called the action, will determine the next observation. Every action has a direct 

relationship with the reward, with the model being rewarded with a good output and punished with a 

bad one. It will try different actions until it learns a set of parameters that lead to better rewards, therefore 

learning to choose the actions that will give better results [45]. Examples include deep Q learning (DQN) 

that uses deep neural networks (DNN) to estimate the optimal action-value function, and deep 

deterministic policy gradient (DDPG) which is inspired on DQN [46].  

2.6.2. Supervised learning 

In supervised leaning, labeled data is required so that the algorithm is able to use it as a target when 

learning [46]. The ML algorithm will generalize them to provide the best possible output to new input 

data. It can be considered a closed-loop feedback system since the error between the algorithm’s output 

and the target output will be used in the learning process [45]. 

2.6.2.1. Feed-forward neural networks 

Neural Network’s (NN) structure is inspired by an animal’s brain, being formed by several layers of 

neurons that are connected via edges with a determined weight. The most commonly used type of NN 

in ML is the feed-forward NN (FFNN). This type has an input layer, whose inputs consist of features 

previously obtained from the data by humans (human crafted features), followed by one hidden layer 
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and then an output layer (figure 8). The hidden layer neurons have a function associated with them called 

the activation function, which is applied to all its inputs, with the result being forwarded to the next 

layer. The output layer can have one or multiple neurons [46]. 

The choice of structure for a NN, like the choice of the activation function or the number of hidden 

layer neurons, is often done in trial and error, turning NNs into black box like systems due to the 

difficulty of interpretation by humans [46]. The most commonly used activation functions have for a 

long time been the sigmoid and hyperbolic tangent also known as the tangent sigmoid [45].  

The training process determines the optimal set of weights that resolve a given problem and are 

able to resolve other similar problems in the future that have different data from the training one. There 

are different possibilities for the training process, the most common being backpropagation (BP) and 

gradient descent. A loss function also must be chosen to measure how far the prediction is from the 

target output, with the most common being the mean squared error (MSE) [46]. Several datasets are 

used in this process. The training dataset typically has the size of ten times the number of weights. The 

validation dataset, usually a third of the size of the training dataset, is employed to check on how well 

the NN is working, looking for possible cases of overfitting, in which the NN does not generalize, instead 

fitting perfectly to the training data, or underfitting, which is the opposite of overfitting. Finally, the 

testing dataset will evaluate the performance of the NN [45].  

 

Figure 8: Architecture of a regression FFNN. 

 

2.6.2.2. Recurrent neural networks 

Recurrent Neural Networks (RNN) are characterized by performing pattern recognition on sequential 

data. This data has important spatial/temporal dependencies to be learned, so to enable the memorization 

of information, these networks have feedback connections. This will allow the RNNs to analyze 

sequential data by taking advantage of their inherent memory. A RNN (figure 9) has an input i(t), a 

hidden state h(t) in the middle that represents the memory of the network, and an output o(t). The edges 
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that connect these nodes all have different weights, but these weights will be replicated in the unfolding 

process across all time periods, since the same task is being performed at each time period, but with 

different inputs. These are limited by the vanishing gradient problem but also by the so-called exploding 

gradient problem during training. The solution is to use a special type of RNN architecture, the long 

short-term memory networks (LSTM), which can model and learn temporal sequences and their 

dependencies more accurately. It will decide to store or delete the information based on the importance 

it attributed to it [45]. 

These are suitable for channel characterization and data detection in nonlinear channels with 

memory such as long-haul transmission links with fiber nonlinearity, direct detection systems with CD, 

chirp or other component nonlinearities. It can also be useful in network traffic prediction [45]. 

 

Figure 9: Architecture of a RNN. 

2.6.2.3. Deep learning 

The increase in computational power, recent breakthroughs in theory and algorithms together with the 

abundance of information to work with contributed to an advancement in ML, originating deep learning, 

a new type of ML that shows superior performance to previously mentioned supervised learning 

concepts. These algorithms have a deeper architecture, meaning more than one hidden layer and possibly 

containing more complex structures such as feedback and memory [45]. Examples of deep learning are 

DNNs and Convolutional Neural Networks (CNN). 

Deep learning (DL) algorithms automatically learn and extract high level features of data from 

lower-level ones as the input propagates through the algorithm’s various layers. Different learning stages 

are distributed through its various layers at an increasing level of complexity, essentially splitting a 

certain problem in different parts, thus allowing the system to learn complex relationships between 

inputs and outputs directly from the original data itself, instead of human crafted features. For example, 
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considering a conventional NN, such as the FFNN, it is possible to obtain the OSNR from a given eye 

diagram. The FFNN’s inputs, however, are the variances of the “1” and “0” levels, and the eye’s height 

and width (human crafted features). With a DNN, which is essentially a DL based multilayer NN, the 

input can just be an image of the eye diagram since the algorithm will learn by itself OSNR features 

without human intervention [45]. 

 

2.6.2.4. Deep neural networks 

One of the main differences between DNNs and conventional NNs is that the former contains multiple 

hidden layers (figure 10). Regularly used BP and gradient-based learning methods used for training are 

not effective in multiple layer networks due to the vanishing gradient problem. This results in different 

layers learning at different speeds which will lead, in a worst-case scenario, to the network stopping its 

learning process. Some solutions have been proposed, including: using the rectified linear unit (ReLu) 

activation function; pretraining of the network layers one at a time, later fine-tuning the entire network 

with the BP algorithm; and avoiding gradient methods [45]. 

 

Figure 10: Architecture of a classification DNN. 

 

2.6.2.5. Convolutional neural networks 

CNNs are mainly used for pattern recognition within images, but also have their use in other areas such 

as speech recognition, natural language processing and video analysis. The name derives from the fact 

that in some of the hidden layers, convolution is used instead of general matrix multiplication. Its typical 

structure (figure 11) comprises of a few alternating convolutional and pooling layers, with a standard 
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FFNN-like structure at the end that will provide the output. The convolutional layer usually has a 

multidimensional array of data as the input, for example an image, and will output a feature map after 

the convolution operation. This operation is done between the input (the image) and a certain filter (or 

kernel), where the filter is obtained after the training phase and will manage to extract features. It is 

important to acknowledge that the more filters a CNN has, the more feature maps it will return. After 

each convolutional layer, there is a pooling layer that will replace the outputs with a summary statistic 

of the nearby outputs. A typically used operation in this layer is the max pooling, which will operate 

over the feature maps picking the largest value out of a certain number of neurons, essentially down-

sampling the feature maps reducing its size, therefore resulting in a reduction of computational load. 

The training process uses a modified BP algorithm which updates convolutional filters’ weights 

[45][47]. 

 

Figure 11: Architecture example of a classification CNN. 

 

2.6.3. Applications in optical communications 

In optical communications, supervised algorithms are more predominantly used but RL algorithms also 

have some use. For physical layer applications like the compensation of nonlinear effects, supervised 

regression algorithms are usually employed, whereas network layer applications tend to use supervised 

classifiers or RL algorithms [46]. 

Optical fiber communications suffer from nonlinearity due to the Kerr effect, rendering classical 

linear systems equalization suboptimal. The majority of nonlinear compensation (NLC) methods work 

by solving or approximating the nonlinear Schrödinger equation’s (NLSE) solutions, which models the 

signal propagation in the presence of Kerr nonlinearity in the fiber, with a tradeoff existing between 
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complexity and the degree of compensation [9]. Building a black-box model of the transmission link is 

a simpler task and is possible recurring to ML algorithms, therefore ignoring the complicated 

interactions between nonlinearity, CD and noise in the NLSE. With this in mind, a NN solution with 

one hidden layer that applies a technique called extreme learning machine (ELM) was proposed in [48]. 

This ML model has as inputs the I and Q components of the signal after CD compensation in the coherent 

receiver. Simulations have shown that this ML model achieves similar results to other NLC techniques 

such as digital back propagation (DBP), a capable procedure but of complex computation, due to the 

interactions between signal, nonlinearity, CD and noise. In [9], a DNN with two hidden layers was 

studied, where the scaled exponential linear unit (SELU) activation function was used in order to avoid 

the vanishing and exploding gradient problems referenced before. This DNN has as inputs the received 

symbols that were affected by the nonlinearities in the fiber (real and imaginary parts are fed separately 

into the DNN) and other relevant information related to nonlinearities, outputting the real and imaginary 

parts of the estimated nonlinear perturbation, which will make the compensation possible. It is preferable 

than the ones which existed before due to it being system agnostic, making it versatile and adaptable. 

Since all linear channel effects such as CD are converted into nonlinear ones by the square-law 

detection in DD, it is challenging to properly compensate the signal distortion. In [10], different neural-

network-based nonlinear equalizers were investigated in an experiment with 20 km of standard SMF 

and a 50 Gb/s 4-PAM signal using a DD system, therefore being a possible solution for data center 

interconnections. The four types of neural networks used were the FFNN, radial basis function neural 

networks (RBF-NN), auto-regressive RNNs (AR-RNN) and layer RNNs (L-RNN). Only one hidden 

layer was considered for all NNs since it is enough to achieve efficient equalization. In terms of the 

output, a single neuron was employed to reduce the computational complexity. The inputs contained the 

4-PAM symbol received and some other past and post symbols. The activation function employed in 

the input and hidden layer was the hyperbolic tangent function (tanh) while the output layer used a pure-

linear function. Results showed that there is a tradeoff between computational complexity and BER 

performance. Considering all NNs have the same number of inputs and hidden neurons, it was found 

that AR-RNN achieved the best performance, while the FFNN had the lowest computational complexity. 

With 11 input and 7 hidden layer neurons, all NNs showed good BER performance while an acceptable 

performance was also attained with 5 and 4 respectively. Overall, the AR-RNN performed better, with 

the FFNN being the worst. Furthermore, it was proven that all of them are superior in terms of 

performance to conventional DD without resorting to ML algorithms. 

As mentioned before, ICXT is one of the main impairments of MCFs, varying randomly along the 

fiber length, time and frequency therefore affecting the system’s performance. In order to minimize this 

impact, some machine learning techniques were proposed in [11], namely one unsupervised learning 

technique - k-means clustering - and also two supervised ones – FFNN and k nearest neighbor (KNN). 

The NN employed had four inputs consisting of the I and Q components of both the interfered and 

interfering cores at the end of the KK receivers, as well as 10 hidden layer neurons with the output layer 
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predicting the I and Q components without the transmission impairments. The experiment involved the 

transmission of a 16-QAM 64 Gbaud signal on a 35 km 2-core MCF with an ICXT level of -13 dB. 

Results indicated that k-means clustering and KNN algorithms do not provide any notable performance 

improvement. However, the FFNN is able to mitigate the ICXT-induced BER degradation, allowing a 

BER below the defined threshold. It was also shown that for received optical powers (ROP) below -14 

dBm the FFNN did not provide any performance improvement, while a ROP above -10 dBm allowed 

the system to achieve a mean BER below the defined threshold. Regarding the skew×symbol rate, in 

[54], results showed that these NNs perform better when the skew×symbol rate << 1. This work 

considered ideal lasers which do not exist in real systems. As explained on subsection 2.5.2, real lasers 

are affected by phase noise, which can significantly impact the performance of a system. On account of 

that, the impact of real noisy lasers on the performance improvement provided by these NNs needs to 

be assessed, with that being the main objective of the work to be developed in this dissertation. 

 

2.7. Summary 

 

In this chapter, the main concepts of this work were presented as well as some studies regarding them. 

Self-coherent detection is shown to have potential for DC interconnects since it allows for the 

transmission of higher order modulation formats, therefore higher bitrates, as well as reaching distances 

of hundreds of kms, while keeping complexity and cost down. MCFs are applicable for either short or 

long-distance transmissions, making it a versatile solution, and suitable for DCs. The ICXT is introduced 

and some existing techniques to suppress it are mentioned. The LPN is also introduced, and the main 

types of lasers are mentioned, including their typical linewidth. Furthermore, when the skew×linewidth 

<< 1 (the case considered in this work), the LPN has an insignificant impact on the ICXT.  FFNNs, 

which will be used in this work, are shown to have been successfully employed in optical 

communications, namely compensating transmission impairments, optimizing network performance, 

and mitigating the ICXT in systems employing ideal lasers when skew×symbol rate << 1.
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CHAPTER 3 

Architecture of the NN-assisted self-coherent MCF system 

 

This chapter describes the architecture of the 200 Gb/s short-reach self-coherent MCF system employing 

NNs. Section 3.1 gives a brief overview of the system to be studied by numerical simulation. Section 

3.2 details the model of the transmitter, namely the filter and the modulator, while also presenting and 

validating the simulation model for the laser phase noise of real lasers. Section 3.3 presents and validates 

the transmission model for weakly coupled MCFs. Section 3.4 introduces the KK algorithm of the KK 

receivers employed in this work. Finally, section 3.5 presents a summary of the chapter. 

 

3.1. System architecture 

 

Figure 12 illustrates the architecture of the 200 Gb/s short-reach self-coherent MCF system employing 

NNs, considered in this work. This system is composed of two optical transmitters that produce different 

SSB optical signals and inject them into each of the two cores of the weakly coupled MCF, the 

interfering and interfered cores m and n. Once the optical signals have travelled through the MCF, they 

will reach the receivers, one for each core, where the received optical signal is photodetected and 

digitally processed. 
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Figure 12: Architecture of the short-reach self-coherent 2-core fiber system employing NNs. 

 

3.2. Optical transmitter 

 

This section describes the blocks of the optical transmitter. In particular, the equations implemented in 

the simulator to model each component of the transmitter are presented. The transmitter block, which is 

shown in figure 12, includes a QAM signal generator that generates 16-QAM symbols, which are 

separated into the in-phase and quadrature components, subsequently going through a digital-to-analog 

converter (DAC). Once this is done, Nyquist shaping is applied to the signal waveform by using a root-

raised cosine (RRC) filter. The I and Q components of the signal waveform at the filter output are then 

fed separately into the dual-parallel Mach-Zehnder modulator (DP-MZM). The optical signal injected 

in the DP-MZM is obtained through a non-ideal laser characterized by the laser linewidth. 
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3.2.1. Root-raised cosine filter 

 

The RRC filter is present in both transmitter and receiver, in order to generate pulses with Nyquist 

shaping at the output of the receiver, thus minimizing the ISI at the optimal sampling time. The filter is 

implemented according to the following: 

 

                                𝐻𝑅𝑅𝐶(𝑓) =

{
 
 

 
 1, (0 ≤ |𝑓| <

1−𝜌

2𝑇
)

√
1

2
{1 + cos [

𝜋 𝑇

𝜌
(|𝑓| −

1−𝜌

2𝑇
)]}

0, (|𝑓| >
1+𝜌

2𝑇
)

 ,   (
1−𝜌

2𝑇
≤ |𝑓| ≤

1+𝜌

2𝑇
)        ( 1 ) 

 

where 𝜌 is the roll-off factor, 𝑇 is the symbol period and 𝑓 is the frequency. It is also important that the 

receiver has the filter with the same parameters as the ones used at the transmitter side, in order to attain 

minimal ISI at the optimal sampling time. 

 

3.2.2. Dual-Parallel Mach-Zender Modulator 

 

The DP-MZM has the ability to perform the modulation of the I and Q components in order to have 

QAM signals at its output. It is composed of two arms, each of which having a Mach-Zehnder modulator 

(MZM), one for each component, biased at the null-point in order to suppress the carrier. The DP-MZM 

still includes an outer MZM, biased at the quadrature-point, to guarantee an optical phase difference of 

90 degrees between the lightwaves at the output of each inner MZM. The optical field at the output of 

the DP-MZM is defined as: 

 

                                     𝑒𝑜𝑢𝑡(𝑡) =
𝐸𝑖𝑛

2
[𝑒
𝑗

𝜋

2𝑉𝑠𝑣
𝑉𝑏,3  

𝑒1(𝑡)

𝐸𝑖𝑛,1
+ 𝑒

−𝑗
𝜋

2𝑉𝑠𝑣
𝑉𝑏,3  

𝑒2(𝑡)

𝐸𝑖𝑛,2
]                ( 2 ) 

 

where 𝐸𝑖𝑛 is the optical field of the laser at the DP-MZM input, 𝑉𝑠𝑣 is the switching voltage which varies 

for different MZMs, 𝑉𝑏,3 is the bias voltage of the outer MZM, 𝑒1(𝑡) and 𝑒2(𝑡) are the optical fields at 

the output of each inner MZM, and 𝐸𝑖𝑛,1 and 𝐸𝑖𝑛,2 are the optical fields at the input of each inner MZM. 

 

                                        𝑒1,2(𝑡) =
𝐸𝑖𝑛,1,2

2
(𝑒

𝑗
𝜋

2𝑉𝑠𝑣
𝑣1,2(𝑡) + 𝑒

−𝑗
𝜋

2𝑉𝑠𝑣
𝑣1,2(𝑡) )                  ( 3 ) 

 

where 𝑣1,2(𝑡) is the signal applied to either the upper or lower arm, being given by the following 

equation: 

                                                                 𝑣1,2(𝑡) = 𝑉𝑏,1,2 + 𝑣𝐴𝐶,1,2(𝑡)                   ( 4 ) 
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where 𝑉𝑏,1,2 is the bias voltage applied to the inner MZMs, which should correspond to the null-bias 

point, and 𝑣𝐴𝐶,1,2(𝑡) is the electrical signal that contains the information for either the upper or lower 

arm. 

 

3.2.3. Laser phase noise 

 

The purpose of this work is to evaluate the impact of the LPN on the performance improvement provided 

by NNs. To do this, a general LPN model is implemented, as described in [53]. No intensity noise is 

considered. This model to describe the LPN is characterized by a Wiener (Brownian motion) process 

with zero mean and a variance that increases with time, given by 2𝜋∆𝜈𝑙𝑡, where t is time and ∆𝜈𝑙 is the 

linewidth of the laser spectrum at half power (-3 dB). The phase noise is the integral of the frequency 

noise, as illustrated in the following equation: 

 

                                                                𝜙(𝑡) = 2𝜋 ∫ 𝜇(𝜏) 𝑑𝜏,      𝑡 > 0
𝑡

0
                                         ( 5 ) 

 

where 𝜇(𝜏) is the frequency noise. This frequency noise is gaussian, having zero mean and a PSD given 

by 
∆𝜈𝑙

2𝜋
. For t=0, 𝜙(𝑡) is uniformly distributed between 0 and 2𝜋. 

The LPN is characterized by the coherence time of the laser field, which is a time interval where 

the phases of the laser field at different time instants have some correlation. If the time interval between 

those time instants exceeds the coherence time, the phases become weakly correlated or uncorrelated 

[50]. The coherence time is given by [50]: 

 

                                                                            𝑇𝑐 =
1

𝜋∙∆𝜈𝑙
                                                                     ( 6 ) 

 

Figure 13: Evolution of the phase noise and phase noise variance with time, considering a linewidth of 1 MHz. 

a) Evolution of the phase noise with time. b) Evolution of the phase noise variance with time. 
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Figure 13a) presents the evolution of the LPN with time. Considering a DFB laser with a linewidth 

of 1 MHz, figure 13a) shows that the LPN, for different noise samples, has independent walks due to 

the random nature of the model. For the first time sample, each noise sample has different phase noises 

because this first time sample is uniformly distributed between 0 and 2π, with the following time samples 

depending on the ones before. Figure 13b) presents the evolution of the phase noise variance with time. 

To obtain the variance, 1500 noise samples were considered, and it is possible to observe that, in fact, 

the variance increases linearly with time, according to the theoretical expression mentioned in the 

beginning of this section. Theoretically, the variance of a uniformly distributed number between 0 and 

2π is given by 
𝜋2

3
, which is approximately the value of the variance for the first time sample. 

 

 

Figure 14 shows the spectrum of the laser fields considering a linewidth of a) 100 kHz and b) 1 

MHz, which was averaged over 1500 noise samples. The spectrum follows the theoretical Lorentzian 

curve [56], and the linewidth, measured at -3 dB, is 100 kHz and 1 MHz as expected.   

 

3.2.4. Formatting the SSB signal 

 

In self-coherent systems such as the one considered in this work, a strong optical tone must be sent 

alongside the signal, while the information-bearing signal must also be spectrally shifted, thus forming 

the SSB signal [8].  In this work, the tone is sent on the left edge of the signal. The following equation, 

represents the optical field at the output of the transmitter: 

 

                                                 𝑒𝑆𝑆𝐵(𝑡) =  [𝐴 + 𝑒𝑜𝑢𝑡(𝑡) ∙ 𝑒
𝑗2𝜋(

𝐵𝑠𝑖𝑔𝑛𝑎𝑙

2
+𝐵𝑔)𝑡] 𝑒𝑗𝜙(𝑡)    ( 7 ) 

 

a) 100 kHz linewidth. b) 1 MHz linewidth. 

Figure 14: Spectrum of the optical field at the laser output. 
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where 𝐴 is the amplitude of the optical field of the carrier,  𝑒𝑜𝑢𝑡(𝑡) is the information-bearing signal 

obtained in (2), 𝐵𝑠𝑖𝑔𝑛𝑎𝑙 corresponds to the bandwidth of the information-bearing signal, which should 

be equal to the symbol rate Rs, 𝐵𝑔 is a guard band between the carrier and 𝑒𝑜𝑢𝑡(𝑡), and 𝜙(𝑡) is the LPN. 

Considering a Rs of 60 GBaud and a guard band corresponding to 7% of 𝐵𝑠𝑖𝑔𝑛𝑎𝑙, figures 15 and 16 

present PSDs of the signal at various stages of the SSB formatting. 

 

Figure 15a) presents the PSD of the information-bearing signal 𝑒𝑜𝑢𝑡(𝑡) at the DP-MZM output. The 

bandwidth of the signal is approximately the same as Rs, as expected. Figure 15b) presents the PSD of 

the information-bearing signal after being spectrally shifted, i.e., 𝑒𝑜𝑢𝑡(𝑡) ∙ 𝑒
𝑗2𝜋(𝐵𝑠𝑖𝑔𝑛𝑎𝑙/2+𝐵𝑔)𝑡 from (7). 

 

 

Figure 16a) presents the SSB signal without LPN, i.e., looking at (7), it represents                                

𝐴 + 𝑒𝑜𝑢𝑡(𝑡) ∙ 𝑒
𝑗2𝜋(𝐵𝑠𝑖𝑔𝑛𝑎𝑙/2+𝐵𝑔)𝑡. Figure 16b) presents the SSB signal with LPN, considering a linewidth 

a) Information-bearing signal. b) Information-bearing signal spectrally shifted.  

Figure 15: PSDs of the information-bearing signal before and after being spectrally shifted. 

a) SSB signal without LPN. b) SSB signal with LPN. 

Figure 16: PSDs of the SSB signals with and without the LPN, considering a linewidth of 1 MHz. 
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of 1 MHz, which corresponds to 𝑒𝑆𝑆𝐵(𝑡) in (7). The carrier is shown on the left side of the signal. Due 

to the phase noise, in figure 16b) this carrier is not represented as a single line, instead spreading across 

the band, in contrast to figure 16a), which represents the ideal case where the laser is monochromatic 

(single line). 

 

3.3. MCF model 

 

This section explains how the MCF model presented in [42] is implemented in the simulator. Two cores 

are considered, the interfering and interfered cores, from here on out also referred as core m and n, 

respectively. The interfering core’s purpose is to transport a signal with a different bitstream from the 

one in the interfered core, which is going to interfere in the form of ICXT. The interfered core is the one 

that transports the signal impaired by the ICXT. Furthermore, two polarizations are considered in each 

core, with the power of the modulated signal being split by the two. Each core has linear propagation, 

thus being modeled by the following linear SMF transfer function: 

  

                                              𝐻𝑓(𝜔) = 𝑒
−𝑗𝛽0𝐿−𝑗𝛽1𝜔𝐿−𝑗

𝛽2
2
𝜔2𝐿−𝑗

𝛽3
6
𝜔3𝐿 ∙ 𝑒−

𝛼

2
𝐿
    ( 8 ) 

    

where 𝜔 is the angular frequency, L is the length of the fiber in meters, 𝛼 is the fiber attenuation in Np/m 

and 𝛽0, 𝛽1, 𝛽2 and 𝛽3 are given by the following equations: 

 

                                                                           𝛽0 =
𝑛𝑒𝑓𝑓∙2𝜋

𝜆0
                   ( 9 ) 

 

                                                                              𝛽1 = 
1

𝑣𝑔
                 ( 10 ) 

 

                                                                          𝛽2 = −
𝜆0

2𝐷𝜆0
2𝜋𝑐

                             ( 11 ) 

 

                                                               𝛽3 = (
𝜆0

2

2𝜋𝑐
)
2

𝑆𝜆0 + 
𝜆0

3𝐷𝜆0
2𝜋2𝑐2

                             ( 12) 

 

where 𝑛𝑒𝑓𝑓 is the effective refractive index of the fiber, 𝜆0 is the channel wavelength, 𝑣𝑔 is the group 

velocity, 𝐷𝜆0 is the dispersion parameter of the fiber and 𝑆𝜆0 is the slope of the dispersion parameter, 

both for a certain wavelength 𝜆0 and, finally, 𝑐 is the speed of light in vacuum which is 299792458 m/s. 

Considering core ∈ {m, n}, the optical field at the output of a certain core with polarization rotation 

is given by [42]: 
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               𝑒𝑐𝑜𝑟𝑒,𝑥
′ (𝑡) = [𝑒𝑗𝜃 cos(𝛤) ∙ 𝑒𝑐𝑜𝑟𝑒,𝑥(𝑡) − 𝑒

−𝑗𝜓sin (𝛤) ∙ 𝑒𝑐𝑜𝑟𝑒,𝑦(𝑡)] ∗ 𝐹
−1[𝐻𝑓(𝜔)]         ( 13 ) 

 

               𝑒𝑐𝑜𝑟𝑒,𝑦
′ (𝑡) = [𝑒𝑗𝜓 sin(𝛤) ∙ 𝑒𝑐𝑜𝑟𝑒,𝑥(𝑡) + 𝑒

−𝑗𝜃cos (𝛤) ∙ 𝑒𝑐𝑜𝑟𝑒,𝑦(𝑡)] ∗ 𝐹
−1[𝐻𝑓(𝜔)]        ( 14 ) 

 

where 𝐹−1 is the inverse Fourier transform, 𝑒𝑐𝑜𝑟𝑒,𝑥(𝑡) and 𝑒𝑐𝑜𝑟𝑒,𝑦(𝑡) are the SSB signals at the 

transmitter output obtained in (7), for each core and polarization, and the phases 𝜓, 𝛤, 𝜃 are random 

processes assumed constant along each time fraction. This time fraction is a short time window with a 

much shorter duration than the ICXT decorrelation time, which is in the order of a few minutes [42]. 

The ICXT is induced by core m into core n and is uncorrelated between time fractions, which means 

that, in different time fractions, the ICXT has a different impact on the signal [42]. Considering                   

p ∈ {x, y}, the ICXT optical field induced by core m into core n for each polarization is given by [42]: 

 

                      𝑒𝐼𝐶𝑋𝑇,𝑛,𝑝(𝑡) = 𝐹
−1[𝑒𝑚,𝑥(𝜔) 𝐹𝑥,𝑝(𝜔)] + 𝐹

−1[𝑒𝑚,𝑦(𝜔) 𝐹𝑦,𝑝(𝜔)]                             ( 15 ) 

 

where 𝑒𝑚,𝑥(𝜔) and 𝑒𝑚,𝑦(𝜔) are the SSB signals at the transmitter output obtained in (7), for core m and 

each polarization, 𝜔 is the angular frequency, and 𝐹𝑝,𝑏(𝜔) with b ∈ {x, y} is a transfer function given 

by: 

 

                                    𝐹𝑝,𝑏(𝜔) = −𝑗
𝐾𝑛𝑚̅̅ ̅̅ ̅̅

√2
𝐻𝑓(𝜔)∑ 𝑒−𝑗 ∆�̅�𝑚𝑛(𝜔) 𝑧𝑘  𝑒

−𝑗𝜙𝑝,𝑏
(𝑘)

𝑁𝑃𝑀𝑃
𝑘=1                                     ( 16 ) 

 

where NPMP is the number of phase matching points (PMP), 𝐾𝑛𝑚̅̅ ̅̅ ̅̅  is the discrete coupling coefficient 

given by: 

 

                                                                 𝐾𝑛𝑚̅̅ ̅̅ ̅̅ = √
𝑋𝐶∙𝑃𝑛

𝑁𝑃𝑀𝑃∙𝑃𝑚
                ( 17 ) 

 

where 𝑋𝐶 is the ICXT level, which is defined as the ratio between the mean ICXT power and signal 

power, at the output of the interfered core [49], and 𝑃𝑚 and 𝑃𝑛 are the average powers at the input of the 

interfering and interfered cores, respectively. 

The parameter ∆�̅�𝑚𝑛(𝜔) is given by: 

 

                                                          ∆�̅�𝑚𝑛(𝜔) = ∆�̅�0,𝑚𝑛 + 𝑑𝑚𝑛𝜔 − 
∆𝐷𝑚𝑛𝜆

2𝜔2

4𝜋𝑐
                               ( 18 ) 
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where ∆�̅�0,𝑚𝑛 is the difference between the averages of the propagation constants, ∆𝐷𝑚𝑛 is the 

difference between the dispersion parameters of the cores, 𝑑𝑚𝑛 is the walkoff parameter measured 

between cores m and n and is obtained from the skew, 𝑆𝑚𝑛, as: 

 

                                                                                   𝑑𝑚𝑛 = 
𝑆𝑚𝑛

𝐿
                                           ( 19 ) 

 

where L is the fiber length in meters. 

Furthermore, 𝜙𝑝,𝑏
(𝑘)

 are random phase shifts (RPS) that model random fluctuations of the ICXT 

induced by perturbations of the physical structure of the MCF. These RPSs are random variables with 

uniform distribution between 0 and 2π, with the k-th contribution being introduced at the k-th random 

coordinate 𝑧𝑘, which is uniformly distributed between (k-1)L/NPMP and kL/NPMP, with NPMP 

corresponding to the number of PMPs. Furthermore, these RPSs are uncorrelated between time 

fractions, meaning that for each one, a new value has to be calculated. 

Finally, considering p ∈ {x, y}, the optical field at the output of core n for each polarization is given 

by: 

 

                                                    𝑒𝑜𝑢𝑡,𝑛,𝑝(𝑡) = 𝑒𝑛,𝑝
′ (𝑡) + 𝑒𝐼𝐶𝑋𝑇,𝑛,𝑝(𝑡)                                              ( 20 ) 

 

where 𝑒𝑛,𝑝
′ (𝑡) is obtained in (13) and (14) for polarization x and y, respectively, and 𝑒𝐼𝐶𝑋𝑇,𝑛,𝑝(𝑡) is 

obtained in (15). 

The instantaneous power of the ICXT at the output of core n is given by: 

 

                                                 𝑝𝐼𝐶𝑋𝑇(𝑡) = |𝑒𝐼𝐶𝑋𝑇,𝑛,𝑥(𝑡)|
2
+ |𝑒𝐼𝐶𝑋𝑇,𝑛,𝑦(𝑡)|

2
               ( 21 ) 

 

where 𝑒𝐼𝐶𝑋𝑇,𝑛,𝑥(𝑡) and 𝑒𝐼𝐶𝑋𝑇,𝑛,𝑦(𝑡) are obtained from (15). 

Another important concept is the STAXT, which was briefly introduced in section 2.5.1. This value 

is the average ICXT power (𝑝𝐼𝐶𝑋𝑇) measured over a short period of time usually around 100 to 200 ms 

[42]. In this work, it is simply calculated as the mean value of 𝑝𝐼𝐶𝑋𝑇(𝑡) over the time window of the 

simulation, which depends on the number of symbols sent. 

 

3.3.1. ICXT statistic validation 

 

To validate the ICXT statistic of the MCF model referred in [42] and implemented in the simulator, 

a continuous wave signal was injected in the interfering core, while no signal was launched into the 

interfered core. This way, it is possible to measure the ICXT power at the output of the interfered core. 
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Table 1 indicates the system parameters considered in the simulation, some of which, namely, Ptotal,m, 

Smn and  NPMP,  were retrieved from [41]. An L of 35 km, typical of DC interconnects, is considered. 

 

Table 1: Parameters for the validation of the ICXT statistic. 

Parameter Value 

Ptotal,m [dBm] 0 

L [km] 35 

Smn [ns] 2.4 

NPMP 1000 

ICXT level [dB] -15 

# Time fractions 100 000 

 

 

Figure 17: Evolution of the STAXT over 100 000 time fractions. 

 

Figure 17 illustrates the evolution of the STAXT over 100 000 time fractions for an ICXT level of -15 

dB. It is shown that, in almost every time fraction, the STAXT varies more than 15 dB, sometimes even 

exceeding 20 dB, as was also reported in [41]. According to [41], the theoretical mean STAXT is 

obtainable by the following equation: 

 

                                                  𝐸[𝑆𝑇𝐴𝑋𝑇(𝑡)] = 𝑁𝑃𝑀𝑃𝑠 ∑ 𝑝𝑡𝑜𝑡𝑎𝑙,𝑚|𝐾𝑛𝑚̅̅ ̅̅ ̅̅ |2𝑁𝑖𝑐
𝑚=1                            ( 22 ) 

 

where 𝑁𝑃𝑀𝑃𝑠 is the number of phase matching points, 𝑁𝑖𝑐 is the number of interfering cores, 𝑝𝑡𝑜𝑡𝑎𝑙,𝑚 is 

the total power injected in core m and |𝐾𝑛𝑚̅̅ ̅̅ ̅̅ | is the absolute value of the average discrete coupling 
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coefficient. To obtain |𝐾𝑛𝑚̅̅ ̅̅ ̅̅ | from (17), the optical power at the input of cores m and n is considered the 

same at 0 dBm. The simulation and theoretical mean values of the STAXT were both computed, 

returning very similar results of about -15 dBm. 

In [52] it was concluded that the probability density functions (PDF) of the amplitude of the ICXT 

field components follow a Gaussian distribution. In order to validate the ICXT model employed in this 

work, the amplitudes of the ICXT field components were obtained by simulation and overlapped with 

the Gaussian prediction presented in [52]. 

 

 

 

 

 

 

 

Figure 18 shows the PDFs of the amplitude of the ICXT field components for both polarizations 

overlapped with a Gaussian distribution, which was obtained from the mean and variance of the 

simulation results for each field component and polarization. All of the results above follow the Gaussian 

distribution, as presented in [52], therefore we can assume that the ICXT model is well implemented. 

a) PDF of the I component of the ICXT 

field in the x polarization. 

b) PDF of the Q component of the 

ICXT field in the x polarization. 

c) PDF of the I component of the ICXT 

field in the y polarization. 

d) PDF of the Q component of the ICXT 

field in the y polarization. 

Figure 18: PDFs of the amplitude of the ICXT field components. 
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3.4. KK receiver model  

 

In this section, the blocks that comprise the self-coherent KK receiver are detailed. Figure 19 displays a 

block diagram of the KK receiver employed in this work. 

 

 

Figure 19: Block diagram of the KK receiver. 

 

3.4.1. PIN photodetector 

 

After propagating in the MCF, the QAM signal arrives at the receiver impaired by the ICXT and the 

LPN. Considering that the KK receiver employs DD, a single photodiode is required. The positive-

intrinsic-negative (PIN) photodetector is responsible for converting the optical power at its input into 

electrical current in a process called photodetection. The electrical current at the output of the PIN is 

given by: 

 

                                                              𝑖(𝑡) = 𝑅𝜆|𝑒(𝑡)|
2 + 𝑖𝑛(𝑡)               ( 23 ) 

 

where 𝑅𝜆 is the PIN responsivity, 𝑒(𝑡) is the optical field at the output of core n of the MCF, obtained 

in (20) (with |𝑒(𝑡)|2 representing the instantaneous power of the optical signal at the PIN input) and 

𝑖𝑛(𝑡) is the electrical noise, presented in appendix C. 

 

3.4.2. KK field reconstruction 

 

This scheme allows for the reconstruction of the phase of the SSB signal, lost in the photodetection 

process. However, the minimum phase condition must be met and, for that to happen, the carrier-to-

signal power ratio (CSPR) must be larger than the peak-to-average power ratio (PAPR) [8]. A way to 

ensure this condition is verified is to check if the time trajectory of the SSB signal in the constellation 

does not include the origin [8].  

The CSPR and PAPR are given by the following equations: 

                                                                       𝐶𝑆𝑃𝑅 =
|𝐴|2

〈|𝑆(𝑡)|2〉
                             ( 24 ) 
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                                                                   𝑃𝐴𝑃𝑅 =
max (|𝑆(𝑡)|2)

〈|𝑆(𝑡)|2〉
                ( 25 ) 

 

where A represents the amplitude of the carrier and S(t) is the information-bearing signal obtained in 

(2). Section 3.4.3 demonstrates the importance of the minimum phase condition. 

The detected SSB signal after the photodetection, considering 𝑅𝜆 = 1 A/W, no electrical noise and 

no LPN, can be written as: 

 

            𝑖(𝑡) =  |𝐴|2 + 𝐴∗ ∙ 𝑆(𝑡) 𝑒𝑗2𝜋(𝐵𝑠𝑖𝑔𝑛𝑎𝑙/2+𝐵𝑔)𝑡 + 𝐴 ∙ 𝑆∗(𝑡) 𝑒−𝑗2𝜋(𝐵𝑠𝑖𝑔𝑛𝑎𝑙/2+𝐵𝑔)𝑡 + |𝑆(𝑡)|2        ( 26 ) 

 

where |𝑆(𝑡)|2 is the SSBI. The information-bearing signal is 𝐴∗ ∙ 𝑆(𝑡) 𝑒𝑗2𝜋(𝐵𝑠𝑖𝑔𝑛𝑎𝑙/2+𝐵𝑔)𝑡, which is in 

band with the SSBI, thus interfering with each other. If the minimum phase condition is met, this 

component does not degrade the signal, and the phase and absolute values of the SSB signal are related 

by the Hilbert transform [8]. Thus, the phase of the signal can be obtained from the intensity of the SSB 

signal as follows: 

                                                            𝜑(𝑡) = 0.5 ∙ 𝑯(ln(𝑖(𝑡)))               ( 27 ) 

 

where 𝑯 is the Hilbert transform.  

After the reconstruction of the complex-valued signal in (28), the information-bearing signal at the 

output of the KK receiver (figure 19) still has a carrier and is not in baseband. Figure 20 presents the 

PSD of the information-bearing signal at the output of the KK receiver (without LPN). 

 

                                                     𝑆(𝑡)𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 = √𝑖(𝑡) ∙ 𝑒
𝑗𝜑(𝑡)                           ( 28 )  

 

 

 

 

 

 

 

 

 

 

 

 

Filtering the signal from (28) and figure 20 with a high-pass filter (HPF), removes the carrier. Then, 

the information-bearing signal is shifted to baseband (figure 21): 

Figure 20: PSD of the information-bearing signal at the output of the KK 

receiver (without LPN). 
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                      𝑆(𝑡)𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 = 𝐹
−1[𝑆(𝑓)𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 ∙ 𝐻𝐻𝑃𝐹(𝑓)]                 ( 29 ) 

 

                                            𝑆(𝑡) = 𝑆(𝑡)𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 ∙  𝑒
−𝑗2𝜋(

𝐵𝑠𝑖𝑔𝑛𝑎𝑙

2
+𝐵𝑔)𝑡              ( 30 ) 

 

 

 

 

Once S(t) is reconstructed in (30), CD compensation can be performed. Afterwards, the signal 

passes through an RRC filter, equal to the transmitter, after which the symbols will finally be recovered. 

 

3.4.3. KK receiver validation 

 

For the validation of the KK receiver, the tests were executed in a B2B operation, i.e., without fiber, 

thus without ICXT, no LPN is considered, and the electrical noise is considered in the form of gaussian 

noise, for a given noise equivalent power (NEP). Table 2 summarizes the values considered in the 

simulation process. 

Table 2: Parameters for the validation of the KK receiver. 

Parameter Value 

Bit rate [Gb/s] 240 

Modulation SSB 16-QAM 

Pout laser [dBm] 0 

PAPR [dB] ∈ [6, 8] 

CSPR [dB] Variable 

Bg [% of Rs] 7 

NEP [pW/√Hz] 10 

a) Information-bearing signal modulated 

without carrier. 

b) Information-bearing signal in 

baseband without carrier. 

Figure 21: PSD of the information-bearing signal without carrier before and after the shift in frequency. 
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A Bg of 7% of Rs is considered, since it is shown to be within the range of values that achieve 

optimum performance [54]. Multiple tests were carried out for various CSPRs, in order to show the 

importance of the fulfillment of the minimum phase condition. Figures 22, 23 and 24 show the time 

trajectories of the signal and constellations at the KK receiver so as to verify a) if the minimum phase 

condition is met and b) the distortion of the symbols in the constellation.  

In figure 22, a CSPR of 4 dB is considered for the purpose of verifying that, in fact, when the CSPR 

is lower than the PAPR, the minimum phase condition is not met, and the SSBI degrades the SSB signal. 

As it is shown in figure 22a), the time trajectory of the signal includes the origin, which means that the 

condition does not hold. The constellation at the receiver shows that the symbols have a considerable 

amount of distortion, meaning that they are not well received due to the SSBI, making it undesirable 

since the LPN and the fiber’s associated effects (ICXT, attenuation) are yet to be introduced. 

 

 

 

Figure 22: Time trajectory of the signal and constellation for a CSPR=4 dB (< PAPR). 

a) Time trajectory of the signal. b) Constellation at the receiver. 

b) Constellation at the receiver. 

Figure 23: Time trajectory of the signal and constellation for a CSPR=PAPR. 

a) Time trajectory of the signal. 
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Figures 23 and 24 show the cases where the CSPR is the same as the PAPR, and higher than the 

PAPR, respectively. Both meet the minimum phase condition, as illustrated in the time trajectories of 

the signals in figures 23a) and 24a). At the receiver, figure 23b) shows that the symbols are well received 

but have some distortion due to the SSBI not being completely cancelled. Figure 24b) shows that when 

the CSPR is, indeed, high enough, the SSBI is completely cancelled, and the symbols are perfectly 

received.  

 

3.5. Summary 

 

Chapter 3 described the architecture of the 200 Gb/s short-reach self-coherent MCF system employing 

NNs, namely the simulation models considered for the transmitter, the weakly coupled MCF and KK 

receiver. In the LPN model, it was shown that different noise samples have independent walks due to 

the random nature of the model. Furthermore, the spectrums of the laser fields were shown to follow the 

theoretical Lorentzian curve. For the KK receiver model it was shown that, at the transmitter, the CSPR 

must be larger than the PAPR of the signal at the output of the DP-MZM, and only when the CSPR was 

set at 13 dB, did the KK receiver perfectly detect the SSB signal, with the constellations displaying the 

received symbols without any distortion. When validating the ICXT statistic, the STAXT was shown to 

sometimes vary more than 20 dB, which is in accordance with the theory. Moreover, it was demonstrated 

that the PDFs of the amplitude of the ICXT field components follow a Gaussian distribution, as already 

reported in theory. 

 

a) Time trajectory of the signal. b) Constellation at the receiver. 

Figure 24: Time trajectory of the signal and constellation for a CSPR=13 dB (> PAPR). 



 

41 

 

CHAPTER 4 

Performance of the NN-assisted self-coherent MCF system 

 

In this chapter, the impact of the LPN on the performance improvement provided by the NNs is assessed. 

In section 4.1, the system without LPN employing a 4 feature FFNN is studied, as reference. Section 

4.2 introduces the LPN in the system. Firstly, the optimum number of training samples and neurons of 

the FFNN is studied for an ECL with a linewidth of 100 kHz, and a DFB laser with a linewidth of 1 

MHz. Afterwards, the impact of the LPN on the performance improvement provided by the 4 feature 

FFNN is evaluated through the mean error vector magnitude (EVM), mean BER and the estimated 

complementary cumulative distribution function (CCDF) of the BER. The parameters from Tables 3 

and 4 were considered in all studies. 

 

                               Table 3: MCF parameters.                                    Table 4: Signal parameters. 

                           

 

 

  

 

 

 

4.1. System without laser phase noise 

 

In this section, the performance of the 200 Gb/s short-reach self-coherent MCF system employing NNs 

without LPN is assessed. In this work, a FFNN is studied, which requires some input features in order 

to learn and produce the desired outcome, which is the mitigation of the ICXT caused by neighboring 

cores.  

 

4.1.1. Study of the FFNN with 4 input features 

 

In order to reduce the system complexity, firstly a FFNN with only 2 input features – the I and Q 

components of the received signal from the interfered core - is considered. This study is detailed in 

appendix A and shows that 2 input features are definitely not enough for the FFNN to compensate for 

the ICXT. To do that, the FFNN must also have some information regarding the interfering core, since 

it is this core that induces the ICXT on the interfered core. It is known from [11] and [54] that a FFNN 

with 4 input features – the I and Q components of the received signal from both interfering and interfered 

Parameter Value 

Pout,m [dBm] 0 

Pout,n [dBm] 0 

λ [nm] 1550 

Modulation SSB 16-QAM 

Rs [GBaud] 60 

Parameter Value 

neff,n 1.4453 

neff,m 1.4455 

L [km] 35 

ICXT level [dB] -10 

Smn×Rs 0.001 
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cores - is able to efficiently compensate for this degradation caused by weakly coupled MCFs. However, 

these works consider ideal lasers in both transmitters when, in fact, real lasers are affected by LPN. As 

was said before, the objective of this work is to evaluate the impact that these real lasers have on the 

performance of the NNs but, to do that, the system without LPN must be studied as reference. Figure 25 

illustrates the structure of the FFNN to be studied. 

 

Figure 25: FFNN with 4 input features. 

 

The algorithms used in this FFNN are: the Levenberg-Marquardt for the training phase, the 

hyperbolic tangent and pure-linear for the activation functions of the hidden layer and output layer, 

respectively, and the MSE for the loss function. Furthermore, to train the network, the optimum number 

of neurons and training samples must be obtained. To do this, firstly, a few studies considering the EVM 

as a function of the number of training samples and number of neurons are conducted considering 4 time 

fractions, all with an EVM above -14 dB, thus ensuring that the ICXT significantly affects the signal. 

 

 

Figure 26: EVM vs #Training samples (10 neurons) – 4 inputs without LPN. 
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Figure 26 presents the EVM results with and without the FFNN with 4 input features, 10 neurons 

and a variable number of training samples for 4 time fractions, in order to quantify the performance 

improvement. Time fractions 1 and 4 show frequent and large fluctuations, with EVMs dropping below 

-30 dB sometimes, representing at least a 16 dB improvement. Time fraction 2 shows some fluctuations 

as well, with the EVM dropping to, as low as, -18 dB, representing a 7 dB improvement. The FFNN 

displays the worse performance for time fraction 3, with a maximum EVM improvement of, 

approximately, 2 dB. Time fractions 1, 2, 3 and 4, for a number of training samples above 1000, show 

an improvement of, at least, 2.5 dB, 3 dB, 1 dB and 2 dB, respectively. It is not possible to decide on 

the optimum number of training samples yet, so, 3 possibilities are going to be further evaluated, namely, 

256 (according to the theory, for a skew×symbol rate << 1, there are 162=256 combinations of symbols 

transmitted into the two cores, which should be sufficient for training [54]), 3000 and 20 000 samples, 

to better understand if increasing the number of samples will result in a better FFNN performance. 

 

 

Figure 27: EVM vs #Neurons (256 samples) – 4 inputs without LPN. 

 

Figure 27 presents the EVM as a function of the number of neurons to be employed in the hidden 

layer, considering only 256 training samples, and 4 time fractions, different than those used in the 

simulation of figure 26. After employing the FFNN, time fractions 2 and 4 have EVMs below -28 dB, 

which means that the ICXT is effectively compensated for. Looking at time fractions 1 and 3, it is 

possible to see that increasing the number of neurons will not actually improve the EVM. Considering 

only 2 neurons, time fraction 1 shows a performance improvement of at least 12 dB, while time fraction 

3 presents an improvement of around 9 dB. The other two have improvements of at least 18 dB, which 

represents promising results. Thus, a possible configuration is a FFNN with 2 neurons and 256 training 
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samples. These results suggest that increasing the number of neurons when considering a low number 

of training samples, does not lead to an effective performance improvement. 

 

 

Figure 28 presents the EVM as a function of the number of neurons, considering a) 3000 samples 

and b) 20 000 samples, for the same 4 time fractions from figure 27. It can be seen that, considering a 

higher number of training samples, increasing the number of neurons results in an actual decrease of the 

EVM, in contrast to figure 27. Looking at figure 28a), in time fraction 1, a number of neurons higher 

than 14 will result in an EVM below, approximately, -28 dB and, in time fraction 3, disregarding some 

fluctuations, using a NN with 10 or more neurons can result in an EVM lower than -27 dB, which is at 

least a 6 dB improvement comparing to the FFNN with 2 neurons and 256 training samples. 

Furthermore, increasing the number of samples from 3000 to 20 000 (figure 28b)), does not result in a 

significant improvement of the EVM, with similar values being obtained for 10 and 14 neurons. These 

studies only considered 4 time fractions. However the ICXT is uncorrelated between time fractions and, 

for that reason, the performance improvement provided by the FFNN must be analyzed more deeply. 

Therefore, based on these studies, a detailed analysis of the dependence of the system performance on 

the time fractions will be accomplished considering 5 configurations, which should make us able to 

confidently decide on the optimum configuration. Table 5 aggregates the 5 configurations. 

 

Table 5: FFNN configurations – 4 inputs without LPN. 

Configuration Number of training samples Number of neurons 

1 256 2 

2 3000 10 

3 20 000 10 

4 3000 14 

5 20 000 14 

Figure 28: EVM vs #Neurons (3000 and 20 000 samples) – 4 inputs without LPN. 

a) EVM vs #Neurons – 3000 samples. b) EVM vs #Neurons – 20 000 samples. 
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Figure 29a) presents the mean BER of 5 FFNN configurations as a function of the number of time 

fractions used for the average. It shows that, when employing a NN, the BER stabilizes at around 1000 

time fractions. Configuration 1 is clearly the worst one, while the other four return very similar results. 

From configurations 2, 3, 4 and 5 it is possible to observe that significantly increasing the number of 

training samples from 3000 to 20 000, or the number of neurons from 10 to 14 will not lead to a 

significantly better performance. Therefore, since all four configurations have very similar mean BERs, 

the configuration chosen for the FFNN will be configuration 2 which requires only 3000 training 

samples and 10 neurons. Figure 29b) presents the BER for 100 time fractions while considering the 

chosen FFNN configuration (2), in order to show the performance of the FFNN for each time fraction. 

From these 100 time fractions, several resulted in a BER below 10-3, reason why they are not shown in 

the figure. Only on one occasion, the BER while employing the chosen FFNN was above 10-3 which 

shows that this configuration with 10 neurons on the hidden layer and 3000 training samples is able to 

effectively compensate for the ICXT.  

 

4.1.2. Performance assessment  

 

In this subsection, the performance of the 200 Gb/s short-reach self-coherent MCF system employing 

NNs is going to further evaluated for several ICXT levels. A Monte Carlo simulation was used to 

calculate the BER and, for each ICXT level, 1000 time fractions were considered to calculate the mean 

BER. A sequence of 219 bits was considered in each time fraction to present BERs in the order of 10-4 

with a reasonable confidence interval. Considering 20% FEC, the line bitrate is 240 Gb/s and net bitrate 

is 200 Gb/s, while the threshold for the system outage is set at BER=10-1.8.  

a) Mean BER vs 1000 time fractions – 4 inputs 

without LPN. 

b) BER vs 100 time fractions – 4 inputs 

without LPN, configuration 2. 

Figure 29: Evolution of the BER as a function of the time fractions with and without the FFNN – 4 inputs 

without LPN. 
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Figure 30: Mean BER vs ICXT level without LPN – 4 input features. 

 

Figure 30 presents the mean BER as function of the ICXT level. The BER was averaged over 1000 

time fractions in order to get a stabilized BER estimate. These results indicate that the FFNNs provide 

a 7 dB tolerance, i.e., the system employing the FFNN can achieve the same mean BER with an ICXT 

level 7 dB higher than the system without the FFNN. Considering an ICXT level of -10 dB, the mean 

BER of the system employing the FFNN is, approximately, 2×10-4, which is well below the defined 

threshold (10-1.8) and represents a significant performance improvement compared to the system without 

the ML algorithm. 

 

Figure 31a) and b) show the constellations of the received signal before and after using the FFNN, 

respectively. As seen in figure 31a), each 16-QAM symbol is affected by 16 different symbols due to 

the ICXT, resulting in high BERs and EVMs. Figure 31b) perfectly illustrates the improvement provided 

by the FFNN on this system, revealing a constellation with little distortion. All the results in this section 

are in accordance with what was reported in [11] and [54]. 

 

a) Constellation before using the FFNN. b) Constellation after using the FFNN. 

Figure 31: Constellations before and after using the FFNN. 
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4.2. System with laser phase noise  

 

In this section, the laser of the interfering core is affected by LPN characterized by two linewidths: 100 

kHz and 1 MHz, typical of ECLs and DFB lasers, respectively. An ideal laser, with no phase noise, is 

considered to generate the optical signal to be injected in the interfered core. 

 

4.2.1. Study of the FFNN with 4 input features – ECL with 100 kHz linewidth 

 

The LPN is characterized by the coherence time of the laser field, which is a time interval where the 

phases of the laser field have some correlation [50]. The coherence time of this ECL is 3.18 μs as is 

shown in Table 6. Figure 32a), which presents the phase noise variation as a function of time, shows us 

that the phase noise for different time instants during the coherence time can have significant variations. 

However, to guarantee an adequate training of the FFNN, it must be employed in a time window where 

the phase noise variation is limited, since the FFNN requires symbols from the interfering core, which 

are affected by the LPN. That way, the FFNN is trained and subsequently employed with symbols whose 

phase noise is highly correlated, thus being able to improve the performance of the system.  

 

Table 6: Coherence time and time window – 100 kHz of linewidth. 

Tc - Coherence time [μs] ~3.18 

Number of symbols 215 

Time window [μs] 215×1/Rs=~0.55 

 

 

 

a) Phase noise variation as a function of time 

along the coherence time. 

b) Phase noise variation as a function of time 

along the time window of the simulation. 

Figure 32: Phase noise variation as a function of time for a 100 kHz linewidth. 
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Figure 32 presents the phase noise variation along a) the coherence time and b) the time window of 

the simulation considered for a linewidth of 100 kHz. As it can be seen from figure 32b), when 

considering a time window 5 times smaller than the coherence time, the phase noise of this sample varies 

around the same values, with a maximum variation of 27.5 degrees, which is much smaller than the 

maximum variation if we considered a time window the size of the coherence time (figure 32a)). For 

that reason, the FFNN is studied for a time window considerably smaller than the coherence time. 

With the LPN introduced in the system, a new study of the optimum number of training samples 

and neurons is conducted considering the number of symbols and time window presented in Table 6. 

 

Figure 33: EVM vs #training samples (10 neurons) - 100 kHz linewidth. 

Figure 33 presents the EVM as a function of the number of training samples to be employed in the 

FFNN, considering 10 neurons on the hidden layer. The EVM of time fractions 1 and 3 seem to improve 

and to be roughly stable from 1000 to 13 000 training samples at around -14 dB (~3 dB improvement) 

and -15 dB (~1 dB improvement), respectively. Time fractions 2 and 4 show large fluctuations having 

a minimum improvement of 4 dB and approximately 2.5 dB, respectively, and a maximum improvement 

of at least 16 dB and 9 dB, respectively. This study from figure 33 did not provide any definite 

possibilities so, the dependence of the system performance on the number of neurons is optimized 

considering 1000, 6000 and 20 000 samples.  

 

a) EVM vs #neurons (1000 samples) – 100 kHz linewidth. 
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Figure 34 presents the EVM as a function of the number of neurons considering a) 1000 b) 6000 

and c) 20 000 training samples, for 4 time fractions, different than those used in the simulation of figure 

33. Figure 34a) exhibits the same sort of behavior as observed before in figure 27, in which the EVM 

stays roughly stable with the increase of number of neurons for all 4 time fractions. In this case the 

number of training samples is not as low as before (in figure 27 only 256 training samples were 

employed), and the EVM of time fraction 3 varies around 2-3 dB, but these results also suggest that 

when the number of training samples is low, increasing the number of neurons does not result in a 

significantly better performance. Figures 34b) and c) show that time fractions 2 and 3 present the best 

performance improvement when considering 16 neurons. Time fractions 1, 2 and 4 also have notable 

improvements when employing only 10 neurons. Hence, a detailed analysis of the dependence of the 

system performance on the time fractions will be accomplished considering 10 and 16 neurons. Table 7 

displays all 6 configurations to be considered. 

 

Table 7: FFNN configurations - 4 inputs with LPN (100 kHz). 

Configuration Number of training samples Number of neurons 

1 1000 10 

2  1000 16 

3 6000 10 

4 6000 16 

5 20 000 10 

6 20 000 16 

b) EVM vs #neurons (6000 samples) – 100 kHz 

linewidth. 

c) EVM vs #neurons (20 000 samples) – 100 kHz 

linewidth. 

Figure 34: EVM vs #neurons with 1000, 6000 and 20 000 training samples – 100 kHz 

linewidth. 
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Figure 35a) presents the evolution of the mean BER for the 6 configurations over 300 time fractions. 

The best configuration is number 6, however, configuration number 5 with 20 000 samples and 10 

neurons is the chosen one for the FFNN, since it requires less neurons and achieves approximately the 

same performance as configuration 6. Figure 35b) presents the BER over 100 time fractions, for 

configuration 5, and it can be observed that the FFNN is always able to provide some sort of 

improvement, except for time fractions 33 and 99 (highlighted in red), in which it worsens the 

performance. These results are a lot different than those observed in figure 29b), illustrating the impact 

that the LPN has on the performance of the FFNN. It is important to note that, from these 100 time 

fractions, several resulted in a BER below 10-3, hence why they are not shown. 

 

4.2.2. Study of the FFNN with 4 input features – DFB laser with 1 MHz linewidth 

 

For the same reasons mentioned in section 4.2.1, a time window 5 times smaller than the coherence time 

of the laser was, once again, considered. Table 8 presents the coherence time of the DFB laser, number 

of symbols and time window of the simulation. 

 

Table 8: FFNN configurations - 4 inputs with LPN (1 MHz). 

Tc - Coherence time [ns] ~318.31 

Number of symbols 212 

Time window [ns] 212×1/Rs=~68.27 

a) Mean BER vs 300 time fractions – 4 inputs 

with LPN (100 kHz). 

b) BER vs 100 time fractions – 4 inputs with 

LPN (100 kHz). 

Figure 35: Evolution of the BER as a function of the time fractions with and without the FFNN – 4 inputs with 

LPN (100 kHz). 
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Figure 36 presents the phase noise variation along a) the coherence time and b) the time window of 

the simulation considered for a linewidth of 1 MHz. Figure 36b) shows that the phase noise of this 

sample varies around the same values until 40 ns. Considering the full time window, the phase noise 

varies a maximum of, approximately, 44 degrees. Although this is a significant variation, it is still 

smaller than the maximum variation considering a time window the size of the coherence time, as was 

already concluded in section 4.2.1. Since we are considering a different laser with a different linewidth 

and a different time window of simulation, a new study for the optimum number of training samples 

and neurons is conducted considering the number of symbols and time window presented in Table 8. 

 

Figure 37: EVM vs #training samples (10 neurons) - 1 MHz linewidth. 

 

a) Phase noise variation in function of time along 

the coherence time. 

b) Phase noise variation in function of time along 

the time window of the simulation. 

Figure 36: Phase noise variation as a function of time for a 1 MHz linewidth. 
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Figure 37 presents the EVM as a function of the number of training samples for a linewidth of 1 

MHz, considering 10 neurons. For time fraction 1, the EVM only seems to stabilize at around 1500 

training samples, showing a maximum improvement of 1.6 dB. Time fraction 2 displays some large 

fluctuations and a maximum improvement of more than 6.7 dB. The EVM seems to be stable at around 

1000 training samples for time fractions 3 and 4, showing an improvement of 2.2 dB and 1.7 dB, 

respectively. For these reasons, the dependence of the system performance on the number of neurons is 

optimized considering 1000 and 2000 training samples. 

 

Figure 38 presents the EVM as a function of the number of neurons considering a) 1000 and b) 

2000 training samples, for 4 time fractions, different than those used in the simulation of figure 37. 

Looking at time fraction 1 in figure 38a), 16 neurons seem to achieve the best performance. Time 

fractions 2, 3 and 4 indicate that 18 neurons provide the best performance. Figure 38b) seems to suggest 

the same, although, for time fraction 1, when employing the FFNN, the EVM drops below -30 dB for 

12 and 14 neurons. As was seen before in figures 27 and 34a), increasing the number of neurons with a 

low number of training samples does not necessarily lead to notable performance improvement. On that 

account, a detailed analysis of the dependence of the system performance on the time fractions will be 

carried out considering a FFNN with 10 and 16 neurons. Table 9 indicates all 4 configurations to be 

studied. 

Table 9: FFNN configurations - 4 inputs with LPN (1 MHz). 

Configuration Number of training samples Number of neurons 

1 1000 10 

2 1000 16 

3 2000 10 

4 2000 16 

a) EVM vs #neurons (1000 samples) – 1 MHz 

linewidth. 

b) EVM vs #neurons (2000 samples) – 1 MHz 

linewidth. 

Figure 38: EVM vs #neurons considering 1000 and 2000 training samples - 1 MHz linewidth. 
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Figure 39a) shows the evolution of the mean BER over 300 time fractions. The mean BER reveals 

that either configuration 3 or 4 is the best, since the curves are overlapped. Considering that 

configuration 3 requires less neurons, it will be the chosen one for the FFNN, and it is confirmed that 

increasing the number of neurons with a low number of training samples, does not improve the 

performance. Figure 39b) presents the BER over 100 time fractions for configuration 3, and it can be 

seen that the FFNN is always able to somewhat improve the performance, except for time fractions 4, 

26 and 94 (highlighted in red), which reveal that the FFNN can sometimes also worsen the BER. It is 

important to note that, from these 100 time fractions, several resulted in a BER below 10-3, hence why 

they are not shown. 

 

4.2.3. Performance assessment 

 

In this subsection, several studies considering the mean BER and mean EVM as a function of time, and 

the estimated CCDF of the BER as a function of BER are conducted. The main goals of these studies 

are to i) quantify the impact of the LPN on the performance improvement provided by the FFNN through 

the mean BER, mean EVM and estimated CCDF of the BER, and ii) understand how long the FFNN is 

able to mitigate the combined effect of the ICXT and LPN without having to be trained again. Firstly, 

the FFNN is trained with Ntraining samples during a time interval Ttraining. Then, the EVM and BER are 

evaluated for a fixed number of symbols NBER/EVM and time interval TBER/EVM, while varying the time 

interval ΔT, which represents the time interval between the training phase and the symbol sequence in 

which the FFNN is employed. Figure 40 represents an illustrative diagram of the time basis of the 

simulations.  

 

a) Mean BER vs 300 time fractions – 4 inputs 

with LPN (1 MHz). 

b) BER vs 100 time fractions – 4 inputs with 

LPN (1 MHz). 

Figure 39: Evolution of the BER as a function of the time fractions with and without 

the FFNN – 4 inputs with LPN (1 MHz). 



54 

 

 

 

 

 

 

 

In the simulation results, ΔT is normalized by the coherence time Tc. When ΔT/Tc << 1, the phase 

noise considered in the FFNN training phase (highlighted in blue in figure 40) is correlated with the 

phase noise associated to the symbol sequence in which the FFNN is employed (highlighted in green in 

figure 40). When ΔT/Tc >> 1 the phase noise considered in these two stages becomes highly 

uncorrelated. Consequently, we will be able to assess the impact that this uncorrelation has on the 

performance of the FFNN. 

The number of training samples was already obtained from sections 4.2.1 and 4.2.2. The number of 

symbols considered for the BER and EVM is obtained from the time window considered, which is 5 

times smaller than the coherence time of the respective laser. The time interval ΔT is proportional to the 

coherence time. Table 10 presents the values from figure 40 used in the simulation. 

 

Table 10: Parameters of the simulation. 

Laser - Linewidth ECL - 100 kHz DFB - 1 MHz 

Ntraining samples 20 000 2000 

Ttraining  ~333.33 ns ~33.33 ns 

Tc  ~3.18 μs ~318.31 ns 

ΔT/Tc [0, 3] [0, 3] 

TBER/EVM  ~0.55 μs ~68.27 ns 

NBER/EVM 215 212 

ICXT level  -10 dB -10 dB 

 

 

 

 

 

 

 

 

 

Figure 40: Diagram of the time basis of the simulations. 
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Figure 41 presents the evolution of the mean BER and mean EVM over the time interval ΔT 

normalized by the coherence time for a linewidth of 0, 100 kHz and 1 MHz. It is known from [50] and 

[51] that, when the linewidth×skew << 1, the LPN does not impact the ICXT power. In this work, a 

symbol rate of 60GBaud and a skew×symbol rate << 1 are considered so, the linewidth×skew << 1. 

Figure 41a) shows that the mean BER for all the lasers without the FFNN is approximately the same 

between 3×10-2 and 4×10-2. It was expected that it would be closer for the ECL and DFB laser, however, 

the mean BER of the systems employing the ECL and DFB laser was averaged over only 200 time 

fractions due to time constraints and is not completely stable (appendix B), while the mean BER when 

employing the ideal laser was averaged over 1000 time fractions (figure 30).  

Looking at figure 41a), for a ΔT of 0, it is possible to say that, while employing the FFNN, the mean 

BER rises more than one order of magnitude from 2×10-4 when employing an ideal laser (as seen in 

figure 30) to, approximately, 6.8×10-3 when employing an ECL or DFB laser. The performance of the 

FFNN is approximately the same for the ECL and DFB laser employed, up to ΔT/Tc=1. After, the FFNN 

starts to perform notably worse when an ECL with a 100 kHz linewidth is employed. Nevertheless, we 

are able to conclude that, for the ECL and DFB laser, the mean BER after the FFNN is kept below the 

BER threshold when the time interval between the training phase and the use of the FFNN does not 

exceed 20% of the coherence time (ΔTmax). Therefore, the FFNN will have to be trained every Ttraining + 

ΔTmax,100 kHz + TBER/EVM = 0.333 + 0.2×Tc,100 kHz + 0.55 = 1.52 μs, when employing an ECL with a             

100 kHz linewidth, and Ttraining + ΔTmax,1 MHz + TBER/EVM = 33.33 + 0.2×Tc,1 MHz + 68.27 = 165.26 ns, when 

employing a DFB with a 1 MHz linewidth. Furthermore, from figure 41b), it is possible to see that, with 

the EVM, the FFNN can provide some performance improvement with ΔT up to 80% of the coherence 

time, for both lasers. Although the performance of the FFNN is similar for both lasers, the ECL provides 

a) Mean BER vs ΔT/Tc. a) Mean EVM vs ΔT/Tc. 

Figure 41: Evolution of the mean BER and EVM as a function of ΔT normalized by the coherence time Tc, for a 

linewidth of 0, 100 kHz and 1 MHz. 
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the advantage of the FFNN having to be trained less frequently, due to the longer coherence time when 

compared to the DFB laser. 

In order to quantify the improvement in the EVM, the EVM gain is calculated between the cases 

when the FFNN is not employed, and when the FFNN is employed. Table 11 presents those results for 

both the ECL and DFB laser.  

 

Table 11: EVM gain for different ΔTs considering the ECL and DFB laser. 

ECL DFB laser 

ΔT/Tc EVM gain [dB] ΔT/Tc EVM gain [dB] 

0.001 6.1 0.001 5.3 

0.01 6 0.01 5.2 

0.1 4.9 0.1 4.2 

0.5 1.3 0.5 1.5 

1 -0.8 1 -0.2 

 

Looking at Table 11 we are able to conclude that, for both lasers, when ΔT/Tc << 1, the FFNN 

performs the best since the phase noise of the training phase and the phase noise associated to the symbol 

sequence in which the FFNN is employed is highly correlated, thus the FFNN can properly generalize 

and produce better results. Once the time interval between the training phase and the use of the FFNN 

is of the same order as the coherence time - ΔT/Tc=1, the FFNN will no longer provide any performance 

improvement, due to the uncorrelation between the phase noises considered in both stages of the 

simulation. 

 

 

 

a) Estimated CCDF of the BER for ΔT/Tc=0.1 – 

100 kHz. 

b) Estimated CCDF of the BER for ΔT/Tc=0.2 – 

100 kHz. 
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Figure 42 presents the estimated CCDF of the BER for several ΔT/Tc, and 200 different time 

fractions, while employing an ECL with a 100 kHz linewidth. Figure 42a) shows, for ΔT/Tc=0.1, an 

outage probability of 42% before the FFNN and 17% after the FFNN. This means that the FFNN 

provides a 25% improvement on the outage probability, compared with the outage probability before 

the FFNN. Figures 42b) and c) show that, when ΔT increases, the outage probability after the FFNN 

increases to 23% and 34.5%, representing an improvement of 19.5% and 8%, respectively. Figure 42d) 

tells us that, when ΔT is of the same order as coherence time, there is no improvement, with the outage 

probability being 1.5% worse after the FFNN. Therefore, the FFNN can only improve the performance 

when ΔT is kept as short as possible when, in reality, it was desired that it was as long as possible so 

that the FFNN did not have to be trained so often. 

 

 

a) Estimated CCDF of the BER for ΔT/Tc=0.1 – 

1 MHz. 

b) Estimated CCDF of the BER for ΔT/Tc=0.2 – 

1 MHz. 

c) Estimated CCDF of the BER for ΔT/Tc=0.5- 

100 kHz. 

d) Estimated CCDF of the BER for ΔT/Tc=1 – 

100 kHz 

Figure 42: Estimated CCDFs of the BER for several ΔT/Tc considering a laser with 100 kHz of linewidth. 
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Figure 43 presents the estimated CCDF of the BER for several ΔT/Tc, and 200 different time 

fractions, while employing a DFB laser with a 1 MHz linewidth. Figure 43a) shows, for ΔT/Tc=0.1, an 

outage probability of 36.5% before the FFNN and 14.5% after the FFNN. This means that the FFNN 

provides a 22% improvement on the outage probability, compared with the outage probability before 

the FFNN. Figures 43b) and c) show that, when ΔT increases, the outage probability after the FFNN 

increases to 20% and 28%, representing an improvement of 17% and 12%, respectively. Figure 43d) 

tells us that, when ΔT is of the same order as coherence time, there is no improvement, with the outage 

probability being approximately the same before and after the FFNN. Figures 42 and 43 show that the 

performance of the system in general, when employing an ECL laser with a 100 kHz linewidth is worse 

than when a DFB laser with a 1 MHz linewidth is employed. This can be due to the fact that only 200 

time fractions were considered, with the mean BER not being completely stable as shown in appendix 

B, resulting in a low confidence interval. 

c) Estimated CCDF of the BER for ΔT/Tc=0.5 – 

1 MHz. 

Figure 43: Estimated CCDFs of the BER for several ΔT/Tc considering a laser with 1 MHz of linewidth. 

d) Estimated CCDF of the BER for ΔT/Tc=1 – 

1 MHz. 

a) Constellation of the received signal in core m 

for ΔT/Tc=0.2. 

b) Constellation of the received signal in core m 

for ΔT/Tc=1. 

Figure 44: Constellations of the received signal in core m considering a DFB laser with a 1 MHz linewidth. 



 

59 

 

Figures 44a) and b) present the constellations of the received signal in core m for ΔT/Tc=0.2 and 

ΔT/Tc=1, respectively. These figures demonstrate the evolution of the LPN in the interfering core as ΔT 

increases. We can see the different effect the LPN has on the signal comparing figure 44a) and 44b). 

 

 

 

Figures 45 and 46 present the constellations of the signal received in core n before and after the 

FFNN for ΔT/Tc=0.2 and ΔT/Tc=0.5, respectively. Figures 45a) to 46a) show that the constellations 

before the FFNN for both cases exhibit differences, due to the evolution of the LPN over time in the 

interfering core, as evidenced in figure 44. From the analysis of figures 45b) and 46b), we can see that, 

when the LPN is present, the FFNN introduces a slight rotation in the symbols. Furthermore, we can 

also see the performance deterioration of the FFNN, expressed by the larger variance of the received 

symbols in turn of each one of the 16 affixes of the optimum 16-QAM constellation in figure 46b). 

 

a) Constellation of the received signal before the 

FFNN for ΔT/Tc=0.2. 

b) Constellation of the received signal after 

the FFNN for ΔT/Tc=0.2. 

Figure 45: Constellations of the received signal in core n for ΔT/Tc=0.2, considering a 

DFB laser with a 1 MHz linewidth. 

a) Constellation of the received signal before the 

FFNN for ΔT/Tc=0.5. 

b) Constellation of the received signal after 

the FFNN for ΔT/Tc=0.5. 

Figure 46: Constellations of the received signal in core n for ΔT/Tc=0.5, considering a 

DFB laser with a 1 MHz linewidth. 

. 
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CHAPTER 5 

Conclusion and future work 

 

5.1. Final conclusion 

 

In this work, a 200 Gb/s short-reach self-coherent MCF system employing NNs was implemented in 

order to assess the impact of the LPN on the performance improvement provided by the NNs. The study 

has been performed for lasers with linewidths typical of ECLs and DFB lasers and considered the ICXT 

of the MCFs, KK receivers and a FFNN to mitigate the combined effects of the LPN and the ICXT. 

In chapter 2, a literature review was conducted on the key elements of the system employed in this 

work, namely on self-coherent detection, space division multiplexing, LPN, ICXT, and ML applied to 

optical communications. Self-coherent detection and MCFs were shown to have potential for DC 

interconnects, which are of short distance and require increasingly higher bitrates at a low cost and 

complexity. It was also reported that, when skew×linewidth << 1 (the case considered in this work), the 

LPN has an insignificant impact on the ICXT, which are the two main impairments of the system 

considered in this work. Finally, NNs were reported to have been successfully employed in optical 

communications, namely at compensating transmission impairments such as the ICXT, and optimizing 

network performance. 

Chapter 3 described the architecture of the 200 Gb/s short-reach self-coherent MCF system 

employing NNs, namely the simulation models considered for the transmitter, the weakly coupled MCF 

and KK receiver. In the LPN model, it was shown that different noise samples have independent walks 

due to the random nature of the model. Furthermore, the spectrums of the laser fields were shown to 

follow the theoretical Lorentzian curve. For the KK receiver model it was shown that, at the transmitter, 

the CSPR must be larger than the PAPR of the signal at the output of the DP-MZM, in order to fulfill 

the minimum phase condition. When the CSPR was set at 13 dB, the KK receiver perfectly detected the 

SSB signal, with the constellations displaying the received symbols without any distortion. The ICXT 

model was presented and validated through the evolution of the STAXT over time and the PDFs of the 

amplitude of the ICXT field components. It was shown that the STAXT may vary more than 20 dB, 

which is in accordance with the results previously reported. Moreover, it was demonstrated that the 

PDFs of the amplitude of the ICXT field components follow a Gaussian distribution, as already reported 

in theory. 

In chapter 4, the impact of the LPN on the performance improvement provided by the NNs was 

evaluated. Firstly, the 200 Gb/s short-reach self-coherent MCF system employing NNs was studied 

considering ideal lasers, as reference. Afterwards, the LPN was introduced in the system, as the optical 

signal injected in the interfering core considered a laser with linewidth typical of ECLs and DFB lasers. 
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The optical signal injected in the interfered core considered an ideal laser without LPN. Due to the 

random evolution of the LPN over time, the study of the optimum number of training samples and 

neurons of the FFNN was accomplished considering a time window given by a fraction of the coherence 

time of the laser. With this, we want to guarantee that the variation of the phase noise field over time is 

limited, enabling adequate training of the proposed FFNN. The mean BER before the FFNN, with or 

without the LPN, was approximately the same, in accordance with the theory that the LPN does not 

impact the ICXT power. When studying the performance of the FFNN, it was concluded that the mean 

BER obtained with the ECL and DFB laser, compared to the reference case, increased more than one 

order of magnitude. The FFNN provided approximately the same performance for both lasers when the 

time interval between the training phase and the use of the FFNN (ΔT) did not exceed the coherence 

time, point where the system employing the ECL with a 100 kHz linewidth started to perform notably 

worse. Nevertheless, the mean BER obtained with both lasers was kept below the BER threshold when 

ΔT did not exceed 20% of the coherence time, although the ECL provides the advantage of the FFNN 

having to be trained less frequently, due to the longer coherence time when compared to the DFB laser. 

Finally, the outage probability of the system was evaluated and, considering a ΔT/Tc=0.1, the FFNN 

provides a 25% and a 22% improvement on the outage probability when compared with the outage 

probability before the FFNN, while considering an ECL and a DFB laser, respectively. This 

improvement will decrease with the increase of the ΔT/Tc. 

 

5.2. Future work 

 

This section presents suggestions for future work, based on the work developed in this dissertation: 

• To assess the outage probability of the proposed system, considering more time fractions to 

obtain more precise outage probability levels. 

• To study the possibility of adding another input feature to the FFNN related to the characteristics 

of the LPN. 

• To evaluate the impact of the LPN on the performance improvement provided by NNs when 

employing lasers with LPN for both interfering and interfered cores with a                  

skew×symbol rate << 1. 

• To evaluate the impact of the LPN on the performance improvement provided by another type 

of ML algorithm when skew×symbol rate << 1. 

 





 

63 

 

Appendix 

 

A. Feed-forward neural network with 2 input features 

 

In [54], after the digital processing of the received signals from the interfered and interfering cores, the 

I and Q components from both signals were fed into the FFNN, resulting in 4 input features. To reduce 

the system complexity and understand if the information regarding the interfering core is expendable, it 

is important to study the possibility of only consider the I and Q components from the signal received 

in the interfered core as input features. Thus, a FFNN with 2 input features is studied in this appendix.  

 

 

Figure 47: FFNN with 2 input features. 

 

Figure 47 illustrates the structure of the FFNN with 2 inputs. First of all, the required number of 

neurons and training samples is evaluated. To do that, studies considering the EVM as a function of the 

number of training samples and number of neurons are conducted considering 4 time fractions, all with 

an EVM above -14 dB, thus ensuring that the ICXT significantly affects the signal. To finally decide on 

the optimum configuration of training samples and neurons, a study is conducted to choose the 

configuration that results in the lowest mean BER.  
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Figure 48: EVM vs #Training samples (10 neurons) – 2 inputs. 

 

Figure 48 presents the EVM as a function of the number of training samples, initially considering 

10 hidden layers neurons. All time fractions had an EVM of around -10 and -12 dB when ML was not 

considered. With the FFNN, results showed that the EVM for time fractions 1, 3 and 4 improves and 

starts to stabilize at around 1000 training samples. For time fraction 2, the EVM stabilizes at around 

2000 samples. It is worth pointing out that, in time fractions 2, 3 and 4, considering 3000 training 

samples, the FFNN was able to reduce the EVM, compared with the case in which the FFNN is not 

used, at around 3 dB. In the following study, 3000 and 20 000 training samples are considered, so as to 

understand if drastically increasing the number of training samples shows better results. 

 

 

Figure 49: EVM vs #Neurons – 2 inputs. 

a) EVM vs #Neurons (3000 samples). b) EVM vs #Neurons (20 000 samples). 
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Figure 49 presents the EVM as a function of the number of neurons considering a) 3000 and b) 

20 000 training samples. Figure 49a) shows that, a higher number of hidden layer neurons will result in 

a lower EVM. In this case, a number of neurons close to 12 or 14 seem to be the optimum number, with 

EVMs being as low as around -19 dB for time fractions 2 and 4. Compared to the previous study, 

considering a FFNN with 3000 samples and 10 neurons, time fractions 2 and 4 have the same EVM 

improvement of around 3 dB. However, time fractions 1 and 3 present an improvement of around 1 dB. 

In figure 49b), the same study is conducted, this time considering 20 000 training samples. It is possible 

to conclude that, considering 12 or 14 neurons, significantly increasing the number of training samples 

does not necessarily result in a significantly lower EVM, which means that the optimum number of 

training samples is 3000. To decide between 12 and 14 neurons, a study considering the mean BER 

along a few hundred time fractions with 2 possible FFNN configurations is going to be conducted. 

However, from these preliminary studies, a FFNN with only these two features does not appear to 

effectively compensate for the ICXT. Table 12 presents the 2 FFNN configurations in study. 

 

Table 12: FFNN configurations – 2 inputs without LPN. 

Configuration Number of training samples Number of neurons 

1 3000 12 

2 3000 14 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50 shows the BER evolution before and after the use of the FFNN. Figure 50a) confirms that 

the optimum configuration will be number 2 with 3000 training samples and 14 neurons, while the mean 

BER seems to stabilize at around 400 time fractions. Figure 50b) shows the evolution of the BER along 

100 time fractions, considering an ICXT level of -13 dB, a sequence of 217 bits and the FFNN with the 

optimum configuration. These results show that this FFNN is sometimes able to provide some sort of 

Figure 50: BER evolution before and after the FFNN – 2 inputs. 

a) Mean BER vs 400 time fractions. b) BER vs 100 time fractions. 

<
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improvement, with the performance varying from time fraction to time fraction, as it can be seen in time 

fraction 18 and 30 in figure 50b) (highlighted in green). There are also some cases where the use of the 

NN results in performance deterioration such as time fraction 21 and 61 (highlighted in red). From these 

100 time fractions, several resulted in a BER without a reasonable confidence interval or with less than 

1 errored bit in a sequence of 217 bits, reason why they are not shown in the figure 50b). Both these 

figures suggest that this configuration will, most likely, not lead to an effective ICXT compensation. 

Nevertheless, the following study considering the evolution of the mean BER (with or without the NN) 

according to the ICXT level will provide conclusive results.  

 

 

Figure 51: Mean BER vs ICXT level – 2 inputs. 

Figure 51 presents the mean BER as a function of the ICXT level. From it, it is finally possible to 

conclude that the FFNN with only the 2 input features – I and Q components of the received signal in 

the interfered core – does not provide any notable improvement on the performance of the 200 Gb/s 

short-reach self-coherent MCF system. These results were obtained considering a sequence of 218 bits 

and the BER was averaged over 400 time fractions, for each level. 

 

B. Evolution of the mean BER considering an ECL and a DFB laser 

 

The results of the mean EVM and mean BER without the FFNN as a function of ΔT/Tc while employing 

an ECL and a DFB laser were slightly different. It is known from [50] and [51] that the LPN does not 

impact the ICXT power, so it was expected that the mean EVM and mean BER results would be the 

same. These results suggest that the mean BER was not stabilized, since only 200 time fractions were 
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considered due to time constraints. To assess that, a study of the mean BER over the 200 time fractions 

considered, was conducted when for both lasers.  

 

 

Figure 52 presents the evolution of the mean BER as a function of the time fractions while employing 

a) an ECL with a 100 kHz linewidth, and b) a DFB laser with a 1 MHz linewidth. As we are able to see 

through figure 52a), when employing an ECL with a 100 kHz linewidth, the mean BER with and without 

the NN is not completely stabilized yet. Furthermore, figure 52b) shows that when a DFB laser is 

employed, the mean BER without NN seems to be stabilized. However, the mean BER when the FFNN 

is employed, is not stabilized yet. 

 

C. Electrical Noise 

 

The electrical noise present at the receiver can be characterized by the NEP. This parameter is used by 

the manufacturers to quantify the effect of the circuit noise. Through this parameter, it is possible to 

obtain the one sided PSD of the electrical circuit noise [43]. This is done by: 

 

                                                                𝑆𝑐(𝑓) = (𝑁𝐸𝑃 × 𝑅𝜆)
2                                                        ( 31 ) 

where 𝑅𝜆is the responsivity. 

To calculate the noise power in the simulation bandwidth, the two sided PSD of the electrical noise 

is considered, which is obtained by: 

                                                                     𝑆𝑐,2(𝑓) =
𝑆𝑐(𝑓)

2
                                                                ( 32 ) 

 

Then, the noise power distributed uniformly along the simulation bandiwdth can be obtained: 

 

a) 100 kHz. b) 1 MHz. 

Figure 52: Evolution of the mean BER as a function of the time fractions while employing a) an ECL with a 

100 kHz linewidth, and b) a DFB laser with a 1 MHz linewidth. 
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                                                                 𝑝𝑛 = 𝑆𝑐,2(𝑓) × 𝑓𝑠                                                               ( 33 ) 

 

where 𝑓𝑠 is the sampling frequency. Finally, the random electrical noise generated for each time sample 

is obtained with the multiplication of √𝑝𝑛 with a random scalar drawn from the standard normal 

distribution.



 

69 

 

Bibliography 

[1] K. Saitoh and S. Matsuo, “Multicore fiber technology,” Journal of Lightwave Technology, vol. 34, 

no. 1, pp. 55-66, Jan. 2016, doi: 10.1109/JLT.2015.2466444. 

[2] W. Klaus, P. J. Winzer, and K. Nakajima, “The role of parallelism in the evolution of optical fiber 

communication systems,” Proceedings of the IEEE, vol. 110, no. 11, pp. 1619–1654, Nov. 2022, 

doi: 10.1109/jproc.2022.3207920. 

[3] P. Winzer, D. Neilson, and A. Chraplyvy, “Fiber-optic transmission and networking: the previous 

20 and the next 20 years [Invited],” Opt. Express, vol. 26, no. 18, pp. 24190-24239, Sep. 2018, 

doi: 10.1364/OE.26.024190. 

[4] D. Butler, M. Li, S. Li, Y. Geng, R. Khrapko, R. Modavis, and V. Nazarov, “Space division 

multiplexing in short reach optical interconnects,” Journal of Lightwave Technology, vol. 35, no. 

4, pp. 677-682, Feb. 2017, doi: 10.1109/JLT.2016.2619981. 

[5] K. Saitoh, “Multi-core fiber technology for SDM: coupling mechanisms and design,” Journal of 

Lightwave Technology, vol. 40, no. 5, pp. 1527–1543, Mar. 2022, doi: 10.1109/jlt.2022.3145052. 

[6] T. Hayashi, T. Nagashima, T. Morishima, Y. Saito, and T. Nakanishi, “Multi-core fibers for data 

center applications,” 45th European Conference on Optical Communication, Dublin, Ireland, 2019, 

pp. 1-4, doi: 10.1049/cp.2019.0754. 

[7] S. Adhikari, S. Jansen, M. Alfiad, B. Inan, V. Sleiffer, A. Lobato, P. Leoni, and W. Rosenkranz, 

“Self- coherent optical OFDM: an interesting alternative to direct or coherent detection,” 13th 

International Conference on Transparent Optical Networks, Stockholm, Sweden, 2011, pp. 1-4, doi: 

10.1109/ICTON.2011.5971099. 

[8] S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, 

“1.72-Tb/s virtual-carrier-assisted direct-detection transmission over 200 km,” Journal of 

Lightwave Technology, vol. 36, no. 6, pp. 1347–1353, Mar. 2018, doi: 10.1109/jlt.2017.2779331. 

[9] V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, 

and Y. Inada, “Evolution from 8QAM live traffic to PS 64-QAM with neural-network based 

nonlinearity compensation on 11000 km open subsea cable,” Optical Fiber Communications 

Conference and Exposition, San Diego, CA, USA, 2018, pp. 1-3, Paper Th4D.5. 

[10] Z. Xu, C. Sun, T. Ji, J. H. Manton, and W. Shieh, “Computational complexity comparison of 

feedforward/radial basis function/recurrent neural network-based equalizer for a 50-Gb/s PAM4 

direct-detection optical link,” Optics Express, vol. 27, no. 25, pp. 36953-36964, Dec. 2019, doi: 

10.1364/oe.27.036953. 

[11] D. Piedade, T. Alves, and T. Brandão, “Short-reach MCF-based systems employing KK receivers 

and feedforward neural networks for ICXT mitigation,” Photonics, vol. 9, no. 5, pp. 286-286, Apr. 

2022, doi: 10.3390/photonics9050286. 



70 

 

[12] K. Peffers, T. Tuunanen, C. Gengler, M. Rossi, W. Hui, V. Virtanen, and J. Bragge, “Design science 

research process: a model for producing and presenting information systems research,” Journal of 

Management Information Systems, vol. 24, no. 3, Dec. 2007, doi: 10.2753/MIS0742-1222240302. 

[13] D. Uzunidis, M. Logothetis, A. Stavdas, D. Hillerkuss, and I. Tomkos, “Fifty years of fixed optical 

networks evolution: a survey of architectural and technological developments in a layered 

approach,” Telecom, vol. 3, no. 4. MDPI AG, pp. 619–674, Nov. 2022. doi: 

10.3390/telecom3040035. 

[14] J. Pires, “Sistemas e Redes de Telecomunicações”. Lisboa, PT: IST, 2006. 

[15] X. Pang, O. Ozolins, R. Lin, L. Zhang, A. Udalcovs, L. Xue, R. Schatz, U. Westergren, S. Xiao, W. 

Hu, G. Jacobsen, S. Popov, and J. Chen, “200 Gb/s/lane IM-DD technologies for short-reach optical 

interconnects,” Journal of Lightwave Technology, vol. 38, no. 2, pp. 492-503, Jan. 2020, doi: 

10.1109/JLT.2019.2962322. 

[16] J. M. Kahn, J. Krause Perin, and A. Shastri, “Data center links beyond 100 Gb/s per wavelength,” 

Optical Fiber Technology, vol. 44., pp. 69–85, Aug. 2018. doi: 10.1016/j.yofte.2017.12.006. 

[17] M. Rapisarda, J. A. Hernández, A. Gatto, P. Parolari, P. Boffi, M. Svaluto Moreolo, J. M. Fábrega, 

L. Nadal, R. Martínez, V. López, J.-P. Fernández-Palacios, G. Otero, and D. Larrabeiti, “All-optical 

aggregation and distribution of traffic in large metropolitan area networks using multi-Tb/s S-

BVTs,” Journal of Optical Communications and Networking, vol. 14, no. 5, pp. 316-326, May 

2022, doi: 10.1364/JOCN.448115. 

[18] E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. 

Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. 

Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical 

communications,” Journal of Optics, vol. 18, no. 6. IOP Publishing, p. 063002, May 2016, doi: 

10.1088/2040-8978/18/6/063002. 

[19] A. Lord, P. Wright, and A. Mitra, “Core networks in the flexgrid era,” Journal of Lightwave 

Technology, vol. 33, no. 5, pp. 1126–1135, Mar. 2015, doi: 10.1109/jlt.2015.2396685. 

[20] Z. Li, M. S. Erkilinc, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Direct-

detection 16-QAM nyquist-shaped subcarrier modulation with SSBI mitigation,” IEEE 

International Conference on Communications, London, UK, 2015, pp. 5204-5209, doi: 

10.1109/ICC.2015.7249150. 

[21] S. Kanazawa, H. Yamazaki, Y. Nakanishi, T. Fujisawa, K. Takahata, Y. Ueda, W. Kobayashi, Y. 

Muramoto, H. Ishii, and H. Sanjoh, “Transmission of 214-Gbit/s 4-PAM signal using an ultra-

broadband lumped-electrode EADFB laser module,” Optical Fiber Communications Conference 

Postdeadline Papers, Anaheim, CA, USA, 2016, doi: 10.1364/OFC.2016.Th5B.3. 

[22] K. Kikuchi, “Fundamentals of coherent optical fiber communications,” Journal of Lightwave 

Technology, vol. 34, no. 1, pp. 157–179, Jan. 2016, doi: 10.1109/jlt.2015.2463719. 



 

71 

 

[23] M. Torbatian, D. Lavery, M. Osman, D. Yao, D. Millar, Y. Gao, A. Kakkar, Z. El-Sahn, C. Doggart, 

A. E. Morra, N. Abughalieh, S. Yang, X. Chen, R. Maher, H. Sun, K.-T. Wu, and P. Kandappan, 

“Performance oriented DSP for flexible long haul coherent transmission,” Journal of Lightwave 

Technology, vol. 40, no. 5, pp. 1256–1272, Mar. 2022, doi: 10.1109/jlt.2021.3134155. 

[24] J. Yu, M. Kong, H. Chien, K. Wang, J. Shi, X. Li, X. Pan, X. Xin, Y. Xia, B. Ye, X. Wei, T. Wang, 

and Y. Chen., “400G/channel 50-GHz WDM coherent transmission: PS 64QAM versus hybrid 

32/64QAM,” Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, 

2019, pp. 1-3, paper Th3G.3. 

[25] M. Kong, K. Wang, J. Ding, J. Zhang, W. Li, J. Shi, F. Wang, L. Zhao, C. Liu, Y. Wang, W. Zhou, 

and J. Yu, “640-Gb/s/carrier WDM transmission over 6,400 km based on PS-16QAM at 106 Gbaud 

employing advanced DSP,” Journal of Lightwave Technology, vol. 39, no. 1, pp. 55–63, Jan. 2021, 

doi: 10.1109/jlt.2020.3024771. 

[26] M. Kong, J. Shi, B. Sang, J. Ding, K. Wang, W. Li, F. Wang, C. Liu, Y. Wang, Y. Wei, B. Zhu, L. 

Zhao, W. Zhou, and J. Yu, “800-Gb/s/carrier WDM coherent transmission over 2000 km based on 

truncated PS-64QAM utilizing MIMO Volterra equalizer,” Journal of Lightwave Technology, vol. 

40, no. 9, pp. 2830–2839, May 2022, doi: 10.1109/jlt.2022.3148336. 

[27] M. Noormohammadpour and C. S. Raghavendra, “Datacenter traffic control: understanding 

techniques and tradeoffs,” IEEE Communications Surveys &amp; Tutorials, vol. 20, no. 2, pp. 

1492–1525, Dec. 2017, doi: 10.1109/comst.2017.2782753. 

[28] Cisco, “Global cloud index: forecast and methodology”, 2016–2021, White Paper, 2018, pp. 1–46. 

[29] L. Zhang, J. Chen, E. Agrell, R. Lin, and L. Wosinska, “Enabling technologies for optical data 

center networks: spatial division multiplexing,” Journal of Lightwave Technology, vol. 38, no. 1, 

pp. 18–30, Jan. 2020, doi: 10.1109/jlt.2019.2941765. 

[30] C. Xie and J. Cheng, “Coherent optics for data center networks,” IEEE Photonics Society Summer 

Topicals Meeting Series, Cabo San Lucas, Mexico, 2020, pp. 1-2, doi: 

10.1109/SUM48678.2020.9161052. 

[31] X. Zhou, R. Urata, and H. Liu, “Beyond 1Tb/s datacenter interconnect technology: challenges and 

solutions,” Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, 2019, 

pp. 1-3, paper Tu2F.5. 

[32] R. Nagarajan, M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 

Gbit/s, PAM4, DWDM data center interconnects,” Journal of Optical Communications and 

Networking, vol. 10, no. 7, pp. 25-36, July 2018, doi: 10.1364/JOCN.10.000B25. 

[33] S. Beppu, D. Soma, S. Sumita, Y. Wakayama, H. Takahashi, T. Tsuritani, I. Morita and M. Suzuki, 

“402.7-Tb/s MDM-WDM transmission over weakly coupled 10-mode fiber using rate-adaptive PS-

16-QAM signals,” Journal of Lightwave Technology, vol. 38, no. 10, pp. 2835-2841, doi: 

10.1109/JLT.2020.2979195. 



72 

 

[34] G. Rademacher, R. S. Luís, B. J. Puttnam, N. K. Fontaine, M. Mazur, H. Chen, R. Ryf, D. T. 

Neilson, D. Dahl, J. Carpenter, P. Sillard, F. Achten, M. Bigot, J. Sakaguchi, and H. Furukawa, 

“1.53 Petabit/s C-band transmission in 55-mode fiber,” European Conference on Optical 

Communications (ECOC), Basel, Switzerland, 2022, paper Th3C.3. 

[35] P. Mishra, S. Saxena, S. Munige, A. Pandey, and A. Mishra, “Successful 200G transmission over 

45 km of 4-core single mode MCF,” Workshop on Recent Advances in Photonic, Mumbai, India, 

2022, pp. 1-2, doi: 10.1109/WRAP54064.2022.9758272. 

[36] Y. Sun, R. Lingle, B. Holland, R. Shubochkin, K. Bansal and D. DiGiovanni, “System transmission 

over multicore fiber for datacom optical interconnect applications,” IEEE CPMT Symposium 

Japan, Kyoto, Japan, 2021, pp. 142-145, doi: 10.1109/ICSJ52620.2021.9648899. 

[37] G. Rademacher, R. S. Luis, B. J. Puttnam, R. Ryf, S. van der Heide, T. A. Eriksson, N. K. Fontaine, 

H. Chen, R.-J. Essiambre, Y. Awaji, H. Furukawa, and N. Wada, “High-capacity transmission in a 

coupled-core three-core multi-core fiber,” Journal of Lightwave Technology, vol. 39, no. 3, pp. 

757–762, Feb. 2021, doi: 10.1109/jlt.2020.3013966. 

[38] D. Soma, S. Beppu, Y. Wakayama, S. Sumita, H. Takahashi, N. Yoshikane, I. Morita, T. Tsuritani, 

and M. Suzuki, “50.47-Tbit/s standard cladding coupled 4-core fiber transmission over 9,150 km,” 

Journal of Lightwave Technology, vol. 39, no. 22, pp. 7099–7105, Nov. 2021, doi: 

10.1109/jlt.2021.3109890. 

[39] R. S. Luis, G. Rademacher, B. J. Puttnam, T. A. Eriksson, H. Furukawa, A. Ross-Adams, S. Gross, 

M. Withford, N. Riesen, Y. Sasaki, K. Saitoh, K. Aikawa, Y. Awaji, and N. Wada, “1.2 Pb/s 

throughput transmission using a 160 µm cladding, 4-core, 3-mode fiber,” Journal of Lightwave 

Technology, vol. 37, no. 8, pp. 1798–1804, Apr. 2019, doi: 10.1109/jlt.2019.2902601. 

[40] G. Rademacher, B. J. Puttnam, R. S. Luís, J. Sakaguchi, W. Klaus, T. A. Eriksson, Y. Awaji, T. 

Hayashi, T. Nagashima, T. Nakanishi, T. Taru, T. Takahata, T. Kobayashi, H. Furukawa, and N. 

Wada, “10.66 Peta-bit/s transmission over a 38-core-three-mode fiber,” Optical Fiber 

Communications Conference and Exhibition, San Diego, CA, USA, 2020, paper Th3H.1. 

[41] T. M. F. Alves and A. V. T. Cartaxo, “Characterization of the stochastic time evolution of short-

term average intercore crosstalk in multicore fibers with multiple interfering cores,” Optics Express, 

vol. 26, no. 4, pp. 4605-4620, Feb. 2018, doi: 10.1364/OE.26.004605. 

[42] B. R. P. Pinheiro, J. L. Rebola and A. V. T. Cartaxo, “Analysis of inter-core crosstalk in weakly-

coupled multi-core fiber coherent systems,” Journal of Lightwave Technology, vol. 39, no. 1, pp. 

42-54, Jan. 2021, doi: 10.1109/JLT.2020.3024609. 

[43] A. Cartaxo, “Transmissão por fibra óptica”, Departamento de Engenharia Electrotécnica e de 

Computadores, Instituto Superior Técnico, Lisbon, Portugal, 2005. 

[44] M. Pereira, “Performance limitations of 40 Gb/s SSB MB-OFDM metropolitan networks induced 

by phase-to-intensity conversion of laser phase noise”, MSc Dissertation, Instituto Superior 

Técnico, Lisbon, Portugal, 2015. 



 

73 

 

[45] F. N. Khan, Q. Fan, C. Lu, and A. P. T. Lau, “An optical communication’s perspective on machine 

learning and its applications,” Journal of Lightwave Technology, vol. 37, no. 2, pp. 493–516, Jan. 

2019, doi: 10.1109/jlt.2019.2897313. 

[46] J. W. Nevin, S. Nallaperuma, N. A. Shevchenko, X. Li, Md. S. Faruk, and S. J. Savory, “Machine 

learning for optical fiber communication systems: an introduction and overview,” APL Photonics, 

vol. 6, no. 12, p. 121101, Dec. 2021, doi: 10.1063/5.0070838. 

[47] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 

2016. Accessed: Dec. 5, 2022. [Online]. Available: https://www.deeplearningbook.org/ 

[48] T. S. R. Shen and A. P. T. Lau, “Fiber nonlinearity compensation using extreme learning machine 

for DSP-based coherent communication systems,” 16th Opto-Electronics and Communications 

Conference, Kaohsiung, Taiwan, 2011, pp. 816–817. 

[49] T. M. F. Alves, A. V. T. Cartaxo and J. L. Rebola, “Stochastic properties and outage in crosstalk-

impaired OOK-DD weakly-coupled MCF applications with low and high skew×bit-rate,” IEEE 

Journal of Selected Topics in Quantum Electronics, vol. 26, no. 4, p. 4300208, Aug. 2020, doi: 

10.1109/JSTQE.2020.2995306. 

[50] T. M. F. Alves, A. V. T. Cartaxo and J. L. Rebola, “DD-OOK multi-core fiber systems impaired by 

intercore crosstalk and laser phase noise,” Journal of Lightwave Technology, vol. 40, no. 5, pp. 

1544-1551, Mar. 2022, doi: 10.1109/JLT.2021.3138186. 

[51] F. M. Saraiva, “Laser phase noise impaired next generation short-reach networks employing MCFs 

and Kramers Kronig receivers”, MSc Dissertation, Iscte - Instituto Universitário de Lisboa, Lisbon, 

Portugal, 2022. 

[52] R. O. J. Soeiro, T. M. F. Alves and A. V. T. Cartaxo, “Dual polarization discrete changes model of 

inter-core crosstalk in multi-core fibers,” IEEE Photonics Technology Letters, vol. 29, no. 16, pp. 

1395-1398, Aug. 2017, doi: 10.1109/LPT.2017.2723662. 

[53] M. Azizoglu and P. A. Humblet, “Optical DPSK with generalized phase noise model and 

narrowband reception,” Proceedings of ICC '93 - IEEE International Conference on 

Communications, vol. 3, pp. 1591-1596, 1993, doi: 10.1109/ICC.1993.397552. 

[54] D. Piedade, “Next generation >200 Gb/s multicore fiber short-reach networks employing machine 

learning”, MSc Dissertation, Iscte – Instituto Universitário de Lisboa, Lisbon, Portugal, 2022. 

[55] YOFC, “Few-mode fiber” https://en.yofc.com/view/2351.html https://myphotos2020.oss-cn-

beijing.aliyuncs.com/en/upload/20190321/1d6fird0ol9jn4cr.pdf (accessed Oct. 10, 2023). 

[56] G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Bélisle, X. Zhang, K. Wu, R. Kashyap, “Phase-noise 

analysis of optically generated millimeter-wave signals with external optical modulation 

techniques,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4861-4875, Dec. 2006, doi: 

10.1109/JLT.2006.884990. 

 

https://www.deeplearningbook.org/

