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A B S T R A C T  

 

A series of events leads to loss of tooth structure by dental caries, tooth wear and 

trauma, which is often replaced by inert dental materials that replace the bulk of 

the tooth. If pulp health is affected, a series of interventions need to be undertak-

en. Initially, the pulp vitality needs to be maintained. Later, elimination of infec-

tion and filling of the pulp space is necessary. When pulpal involvement occurs 

the choice of material has to change, and materials that interact with the pulp are 

indicated. Interactive materials used for dental procedures include calcium      

hydroxide in its various presentations and hydraulic calcium silicate cement.  

Biodentine is a promising dentine substitute that has been recently introduced in 

dentistry. Although many other materials like Glass Ionomer Cement (GIC),    

composite and Mineral Trioxide Aggregate (MTA) are available for repair of den-

tin loss in tooth structure, none of them possesses ideal properties. Despite many 

advantages, MTA has been replaced by Biodentine, which is a new calcium silicate

-based material, due to its limitations. It has good handling properties, short    

setting time, and improved mechanical properties. Biodentine was designed    

explicitly as a "dentine replacement," with applications ranging from endodontic 

repair to pulp capping. 
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1 .  I n t r o d u c t i o n  
 

Glass-Ionomer cement has been used extensively in deep carious lesions and 

dentine loss in the coronal part. However, its inherent limitation of not stimulat-

ing any reparative dentin formation led to the evolution of many other materials 

[1-3]. When pulpal involvement occurs, the material choice must change, and 

materials that interact with the pulp or the dentine are indicated. Calcium       

hydroxide, in various forms, and, more recently, hydraulic calcium silicate       

cement, are interactive materials used in dental procedures. They can even be 

used on moistened tooth surfaces. In endodontic therapy, the practitioner       

employs endodontic repair materials that are insoluble in oral fluids, maintain an 

adequate seal, are dimensionally stable, non-resorbable, radioopaque, and      

biocompatible. Amalgam, zinc-oxide eugenol cement, composite resin, and glass-

ionomer cement have all been utilised in the past for retrograde filling and      

perforation repair. Unfortunately, none of these materials has been able to meet 

all of the ideal material's requirements.  
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In the early 1990s, mineral trioxide aggregate (MTA), 

a biomaterial, was investigated for its potential in re-

storative dentistry. Its multiple applications include 

direct & indirect pulp clapping, the formation of the 

apical plug, root-end filling, perforation repair, furca-

tion repair, repair of resorptive defects, and the man-

agement of immature apices (Apexogenesis/

Apexification) etc. [4-9]. However, this material has a 

few inherent limitations, including difficulty in manip-

ulation, a prolonged setting time, and is expensive 

[10].  

 

Septodont's research group recently developed Bio-

dentineTM, a novel dental material class that combines 

high mechanical qualities with exceptional biocompat-

ibility and bioactive behavior. Biodentine is the first 

-in-one biocompatible dentine substitute, based on 

Active Biosilicate TechnologyTM, that is used to restore 

and endodontically treat damaged dentine [2]. In 

2009, it was made commercially available. 

 

2 .  C o m p o s i t i o n  o f  B i o d e n t i n e   

 

Biodentine is available in powder and liquid forms. 

The powder primarily consists of Tricalcium silicate 

(3CaO.SiO2) and Di-calcium silicate (2CaO.SiO2). They 

regulate the setting reaction and act as core materials. 

Calcium carbonate (CaCO3) acts as a filler and is      

responsible for improving mechanical properties. A 

radiopacifier may also be present such as Zirconium 

dioxide (ZrO2). 

 

The liquid contains Calcium chloride (CaCl2.2H2O), 

which acts as an accelerator and regulates the setting 

reaction. Water reducing agent (Super-plasticizer) 

such as a hydro-soluble polymer is added to reduce 

the amount of water required for the mix (water/

cement), decreases viscosity and improve cement han-

dling characteristics [11]. 

 

3 .  S e t t i n g  r e a c t i o n    

 

Initially, the reaction starts with the hydration of the 

tricalcium silicate, leading to hydrated calcium silicate 

gel (CSH gel) and calcium-hydroxide [12]. The cement 

located in inter-grain areas contains a high level of 

calcite (CaCO3) content. The tricalcium silicate is    

hydrated by the dissolution and precipitation of calci-

um silicate hydrate. In general, it is represented by 

chemists as C-S-H; where ‘C’ is CaO, ‘S’ is SiO2, and ‘H’ 

is H2O. The calcium hydroxide takes origin from the 

liquid phase. C-S-H gel layer formation occurs after the 
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nucleation and growth on the tricalcium silicate       

surface. The remaining unreacted tricalcium silicate 

grains are surrounded by layers of calcium silicate  

hydrated gel, which are relatively impervious to water, 

thereby slowing the further reactions. The C-S-H gel 

formation is due to tricalcium silicate's permanent  

hydration, which gradually fills in the spaces between 

the tricalcium silicate grains. The following chemical 

equation summarises the complete hydration reaction 

[12]. 

 

 

 

 

3.1 Structure of cement 

 

The set cement consists of calcite rich (CaCo3) struc-

tures of variable sizes. The crystals of CaCO3 are       

diamond-shaped (or rhombohedra form) and           

observed at the surface. Taylor (1997) observed that 

calcium- hydroxide crystallizes in the form of a hexag-

onal plate [13]. The surface of the CaCO3 crystals is 

rough and irregular. Therefore, CSH gel is considered 

the cement matrix, and the crystals of CaCO3 fill the 

spaces between grains of cement. Calcite (CaCO3) has 

two distinct functions including Calcite acts as an    

active agent, is implicated in the process of hydration, 

and as a filler that improves the mechanical properties 

of the cement [14]. The hardening process results from 

the formation of crystals that are deposited in a super-

saturated solution. Setting reaction of 3CaO.SiO2      

includes four elements such as the unreacted particles, 

surface products (CSH gel), the content of the pores 

(Ca (OH)2) and porous capillary space [15]. 

 

4 .  P r o p e r t i e s  o f  B i o d e n t i n e    
 

4.1 Setting time  

Compared to MTA, Biodentine has a shorter setting 

time and is in the range of 9-12 minutes. The main  

reason for the shorter setting time is the presence of 

Calcium chloride, which acts as an accelerator. Further, 

this material also contains a Hydro-soluble polymer, 

which acts as a water-reducing agent [16]. The initial 

and final setting times of Biodentine and MTA are giv-

en in table 1. 

Materials 
Initial setting time 

(Minutes) 

Final setting time 
(Minutes) 

Biodentine 6 10.1 

MTA 70 175 

Table 1: Setting time of MTA and Biodentine 
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4. 2 Adhesion  

 

The Biodentine adheres to the dental surfaces with the 

help of physical bonding by ion exchange. The Physical 

process of crystal growth within dentine tubules leads 

to a micromechanical tag that gives a long-lasting seal. 

Compared to the MTA and Dycal, Biodentine exhibits a 

greater bond strength with the dental surfaces [14]. 

 

4.3 Density and porosity 

 

The use of hydro-soluble polymer in Biodentine com-

position reduce the amount of water that exhibits a 

positive influence on the density and porosity of Bio-

dentine. The lower porosity of Biodentine leads to 

higher mechanical strength. Also, it exhibits a lower 

porosity compared to Dycal and MTA [16]. 

 

4.4 Radiopacity 

 

Biodentine is a radiopaque material as it contains   

zirconium oxide, which allows easy identification on 

the radiographs. According to the ISO standard 6876, 

Biodentine shows a radiopacity equivalent to 3.5 mm 

of aluminium. This value obtained is over the mini-

mum requirement of ISO standard (3mm aluminium) 

and makes BiodentineTM particularly suitable in the 

endodontic indications of canal repair [16,17]. 

 

4.5 Compressive strength 

 

The cement must have the capacity to withstand masti-

catory forces; in other words, sufficient compressive 

strength to resist external forces [18]. Biodentine has 

the unique property of demonstrating its ability to  

improve compressive strength over time until it reach-

es a level comparable to natural dentine [19]. In a 

study, Grech et al. (2013) [20] reported that the high-

est compressive strength with the Biodentine com-

pared to Bioaggregate, Tricalcium-Silicate cement and 

Intermediate Restorative Materials (IRM). This        

increase in compressive strength can be attributed to 

the requirement of lower water: powder ratio of the 

Biodentine as it contains a water-soluble polymer in 

the liquid. Kayahan et al. (2013) [18] evaluated the 

compressive strength from another perspective and 

attained conclusions specifically on clinical usage. Acid 

etching was done for mechanical adhesion of Bio-

dentine to the tooth structure. Numerous studies 

aimed to assess whether there will be any alteration in 

the compressive strength due to the etching process. 

They concluded that the acid etching process after  

seven days did not reduce the compressive strength of 

ProRoot MTA and Biodentine [18]. In a study by Koubi 

et al. [19], Biodentine was used as a posterior restora-

tion and revealed favourable surface properties such 

as good marginal adaptation until six months. The 

compressive strength of Biodentine will be 100 MPa in 

the first hour, which will be increased to a value of 300 

MPa after one month. This value becomes relatively 

stable and is in the compressive strength of natural 

dentine (297MPa). 

 

4.6 Flexural strength  

 

High flexural strength is a compulsory prerequisite for 

any restorative material for its long-term efficiency in 

the oral cavity. The three-point bending test was used 

to measure the flexural strength and is of high clinical 

significance. The bending value obtained after 2 hours 

was 34 MPa compared with other materials such as 5-

25 MPa for the Conventional Glass Ionomer Cement; 

17-54 MPa for Resin modified GIC; and 61-182 MPa for 

Composite resin [21]. Therefore, it has been inferred 

from the test that the bending resistance of Biodenti-

neTM is superior to conventional GIC but much lower 

than the composite resin. 

 

4.7 Microhardness  

 

There is an increase in microhardness of Biodentine 

with time. After one month, the hardness of Biodentine 

reaches the same range as natural dentine [14]. 

 

4.8 Biodentine interfaces 

 

Biodentine's interface with adjacent phosphate-rich 

hard tissue substances is improved by the deposition 

of calcium phosphate crystals on the surface. As a    

result, Biodentine is more resistant to acid erosion and 

microleakage. Biodendine appeared to have more   

resistance to decay and microleakage than MTA, Dycal 

and GIC [22]. 

 

4.9 Discoloration 

 

Biodentine exhibits colour stability over five days and 

can serve as an alternative for use under light cure 

restorative materials in highly esthetic areas [23]. 

 

4.10 Antibacterial activity 

 

Biodentine exhibits a significant amount of antibacteri-

al activity as well. Calcium hydroxide ions released 
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from cement during the setting phase of Biodentine 

increases pH to 12.5, which inhibits the growth of   

microorganisms and can disinfect the dentin.  

 

4.11 Biocompatibility 

According to Laurent et al. [24], Biodentine is non-

toxic and has no adverse effects on cell differentiation 

and specific cell function. They reported that Bio-

dentine increases TGF-B1 (growth factor) secretion 

from pulp cells which causes angiogenesis, recruit-

ment of progenitor cells, cell differentiation and miner-

alization. The material is inorganic and non-metallic 

and can be used in direct and indirect pulp capping 

procedures as a single application dentin substitute 

without any cavity conditioning treatment [2]. 

 

4.12 Stability in the oral environment 

 

Biodentine is not that stable as a composite material so 

that it is not suitable as permanent enamel replace-

ment material. When compared to other Portland   

cement-based materials, Biodentine is stable enough 

to use as a temporary filling in the load-bearing areas 

[22]. 

 

4.13 Washout resistance 

 

Washout of a material can be defined as the tendency 

of freshly prepared cement paste to disintegrate upon 

early contact with the fluids such as blood or other 

liquids. The available study results on these character-

istics of Biodentine does not reveal favourable results 

as it demonstrated a high washout with every sample 

used in the methodology [11]. 

 

The advantages of Biodentine include reduced setting 

time, better handling and ease of manipulation, im-

proved mechanical properties, biocompatibility, pre-

serves pulp vitality, which promotes pulp healing and 

helps in remineralisation of dentine [1,2]. However, 

this material possesses a few disadvantages, such as 

poor radio-opacity and lower washout resistance 

[13,25]. 

 

5 .  C l i n i c a l  a p p l i c a t i o n s  o f   

B i o d e n t i n e   

 

In restorative dentistry, Biodentine is used as a direct 

pulp capping material, which helps for reactionary 

dentine stimulation in indirect pulp capping. In endo-

dontics, it is used for pulpotomy, endodontic repairs, 

and root-end filling material. 

 

5.1 Pulp capping agent 

 

Biodentine is used as a indirect pulp capping agent. 

BiodentineTM can stimulate reactionary dentine, which 

is a natural barrier against bacterial invasions. The 

reactionary dentine formation stabilizes at three 

months, indicating that the stimulation process is 

stopped when a sufficient dentine barrier is formed 

[26]. It causes early mineralization by releasing TGF-

β1 from pulpal cells to encourage pulp healing and by 

odontoblast stimulation for dentine bridge formation 

to protect the pulp. In contrast to Dycal, which is asso-

ciated with tissue necrosis and inflammation during 

the initial time of installation, Biodentine has a well-

localized pattern (full dentinal bridge development) 

and no inflammatory reaction histologically. A clinical 

trial conducted by Septodont suggested that the Bio-

dentine™ could be used in direct pulp capping indica-

tions with a reasonable success rate. Perard et al. [27] 

assessed the biological effects of Biodentine for use in 

pulp-capping treatment on pseudo-odontoblastic and 

pulp cells. They found that MTA and Biodentine modify 

the proliferation of pulp cell lines. Nowicka et al. [28] 

concluded that Biodentine had similar efficacy to MTA 

in the clinical setting and can be considered an alterna-

tive to MTA in pulp capping treatment because it pre-

serves pulp vitality and promotes its healing. 

 

5.2. Dentine substitute 

 

Due to its dentine like mechanical properties, Bio-

dentine is used as a permanent dentine substitute   

under a composite, especially in deep carious teeth. 

The absence of aluminates results in less brittleness 

and is thus used as an ideal base under restorations. A 

study conducted by Septodont to compare the Bio-

dentine with FiltekTM Z100 as posterior restorative 

material showed that BiodentineTM has easy handling, 

excellent anatomic form, perfect marginal adaption, 

and establishes a very good interproximal contact [1]. 

 

5.3 In vital pulpotomy 

 

Biodentine is also utilised in a pulpotomy, which is a 

vital pulp therapy. It is commonly employed in pediat-

ric dentistry and involves amputation of the pulp 

chamber and material placement to preserve the radic-

ular pulp tissue vitality. It is preferred when the coro-
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nal pulp tissue is inflamed, and direct pulp capping is 

not suitable. The success rate of vital pulpotomy with 

Biodentine is higher than that of MTA and Pulpotec [29

-31]. 

 

5.4 Endodontic repair material for perforations 

 

The endodontic indications of BiodentineTM are similar 

to the normal calcium silicate-based materials, like the 

Portland cements and MTA. Biodentine is recommend-

ed for perforation repair, the formation of apical plug 

and furcation repair. 

 

5.5 Root-end filling material 

To evaluate this application, Soundappan et al. [32] 

compared MTA, IRM and Biodentine as a retrograde 

filling material and found that at 1mm level, there was 

no difference among tested materials. Still, at 2mm 

level MTA was superior to both IRM and Biodentine. 

The results reveal that further research is required 

before Biodentine can be advocated as root-end filling 

material. Biodentine as root-end filling material has 

also been advised because of its better consistency, 

better handling, safety and faster setting time. 

 

6 .  A d v a n t a g e s  o f  B i o d e n t i n e  O v e r  

M T A  [ 5 , 3 3 - 3 5 ]  

 

• BiodentineTM consistency is better suited to clini-

cal use than MTA. 

• BiodentineTM presentation ensures better han-

dling and safety than MTA. 

• BiodentineTM exhibits better mechanical proper-

ties than MTA. 

• BiodentineTM does not require a two-step resto-

ration procedure as in the case of MTA. 

• As the setting is faster, there is a lower risk of bac-

terial contamination than with MTA. 

 

Despite a few contradicting reports, numerous studies 

support this substance in terms of physical and thera-

peutic characteristics [19, 36, 37]. 

 

7 .  C o n c l u s i o n   

 

Biodentine, a popular tricalcium silicate-based dentine 

replacement and repair material, has been evaluated in 

several aspects since its launching in 2009. Despite a 

few inconsistent results, various investigations have 

demonstrated that the Biodentine is superior in terms 

of physical and clinical features. Biodentine holds 

promise for clinical dental procedures as a biocompati-

ble and easily handled product with a short setting 

time. As more research is performed regarding this 

exciting alternative to MTA, we will be provided with 

more reliable data and confidently implement Bio-

dentine into routine clinical applications. 
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