

Self-Admitted Technical Debt in the Embedded Systems
Industry
Citation for published version (APA):
Li, Y., Soliman, M., Avgeriou, P., & Somers, L. (2023). Self-Admitted Technical Debt in the Embedded Systems
Industry: An Exploratory Case Study. IEEE Transactions on Software Engineering, 49(4), 2545-2565. Article
9961946. https://doi.org/10.1109/TSE.2022.3224378

Document license:
TAVERNE

DOI:
10.1109/TSE.2022.3224378

Document status and date:
Published: 01/04/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1109/TSE.2022.3224378
https://doi.org/10.1109/TSE.2022.3224378
https://research.tue.nl/en/publications/1228330c-1c22-40fd-8958-33851fa0e0ad

Self-Admitted Technical Debt in the Embedded
Systems Industry: An Exploratory Case Study

Yikun Li , Mohamed Soliman, Paris Avgeriou, and Lou Somers

Abstract—Technical debt denotes shortcuts taken during software development, mostly for the sake of expedience. When such

shortcuts are admitted explicitly by developers (e.g., writing a TODO/Fixme comment), they are termed as Self-Admitted Technical

Debt or SATD. There has been a fair amount of work studying SATD management in Open Source projects, but SATD in industry is

relatively unexplored. At the same time, there is no work focusing on developers’ perspectives towards SATD and its management. To

address this, we conducted an exploratory case study in cooperation with an industrial partner to study how they think of SATD and

how they manage it. Specifically, we collected data by identifying and characterizing SATD in different sources (issues, source code

comments, and commits) and carried out a series of interviews with 12 software practitioners. The results show: 1) the core

characteristics of SATD in industrial projects; 2) developers’ attitudes towards identified SATD and statistics; 3) triggers for practitioners

to introduce and repay SATD; 4) relations between SATD in different sources; 5) practices used to manage SATD; 6) challenges and

tooling ideas for SATD management.

Index Terms—Technical debt, self-admitted technical debt, mining software repositories, source code comment, issue tracking system, com-

mit, empirical study

Ç

1 INTRODUCTION

TECHNICAL debt (TD) refers to compromising the long-
term maintainability and evolvability of software sys-

tems by selecting sub-optimal solutions, in order to achieve
short-term goals [1]. When software developers incur tech-
nical debt, they sometimes explicitly admit it; for example,
software developers may write TODO or Fixme in a source
code comment, indicating a sub-optimal solution in that
part of the code. Potdar and Shihab [2] called these textual
statements Self-Admitted Technical Debt (SATD). SATD can
be found in several sources such as source code com-
ments [2], issues in issue tracking systems [3], [4], and com-
mit messages [5].

The SATD that can be identified in such sources is com-
plementary to the technical debt that can be identified in
source code through static analysis. This is because, certain
types of technical debt cannot be identified by analyzing
source code. For example, partially implemented requirements
is a type of requirement debt [4] that can be identified from
source code comments or issue tracking systems but not

from running source code analysis tools: “TODO: This class
only has partial Undo support (basically just those members that
had it as part of a previous implementation) [from Apache
ArgoUML1].” Therefore it is important to identify and fur-
ther manage SATD, in addition to the more traditional
approach of managing technical debt in source code.

There has been a fair amount of work investigating the
identification [6], [7], measurement [8], prioritization [9], and
repayment [10], [11] of SATD. However, to the best of our
knowledge, all previous studies (but one, namely [5]) identi-
fied SATD in open-source projects; we actually know little
about SATD in industrial projects. Moreover, none of the pre-
vious studies has surveyed software developers about SATD,
in order to capture their perspectives towards SATDmanage-
ment, and tooling support for different sources. Without
involving software developers to investigate SATD, research-
ers risk developing theories or approaches, which do not align
with the needs and practices of software engineers.

To address these shortcomings, we conducted an explor-
atory case study in collaboration with an industrial partner
to investigate how SATD is managed and how this can be
supported. We collected data in two steps. First, we identi-
fied and characterized SATD in projects within that com-
pany from three sources: issues, source code comments,
and commits. This step took place by using pre-trained
machine learning models [12]. Second, we carried out a
series of interviews with 12 software practitioners from that
organization to understand their perception of what SATD
really is, how it is managed, and how this management can
be potentially improved. The contributions and main find-
ings of this study are summarized as follows:

� Yikun Li, Mohamed Soliman, and Paris Avgeriou are with the Bernoulli
Institute for Mathematics, Computer Science and Artificial Intelli-
gence, University of Groningen, 9712 Groningen, CP, The Nether-
lands. E-mail: {yikun.li, m.a.m.soliman, p.avgeriou}@rug.nl.

� Lou Somers is with the Department of Mathematics and Computer Sci-
ence, Eindhoven University of Technology, 5612 Eindhoven, AZ, The
Netherlands. E-mail: l.j.a.m.somers@tue.nl.

Manuscript received 7 February 2022; revised 17 November 2022; accepted 18
November 2022. Date of publication 23 November 2022; date of current ver-
sion 18 April 2023.
This work was supported by ITEA3 and RVO under Grant 17038 VISDOM
(https://visdom-project.github.io/website).
(Corresponding author: Yikun Li.)
Recommended for acceptance by Y. Cai.
Digital Object Identifier no. 10.1109/TSE.2022.3224378

1. https://github.com/argouml-tigris-org/argouml/blob/
d5cd45cb4409c6f50747a3a2671219111b443c48/src/argouml-app/src/
org/argouml/notation/NotationSettings.java#L108

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023 2545

0098-5589 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1566-725X
https://orcid.org/0000-0002-1566-725X
https://orcid.org/0000-0002-1566-725X
https://orcid.org/0000-0002-1566-725X
https://orcid.org/0000-0002-1566-725X
mailto:yikun.li@rug.nl
mailto:Bernoulli Institute for Mathematics, Computer Science and Artificial IntelligenceUniversity of Groningen36479712GroningenCPThe Netherlands
mailto:p.avgeriou@rug.nl
mailto:Department of Mathematics and Computer ScienceEindhoven University of Technology31695612EindhovenAZThe Netherlands
https://visdom-project.github.io/website
https://github.com/argouml-tigris-org/argouml/blob/d5cd45cb4409c6f50747a3a2671219111b443c48/src/argouml-app/src/org/argouml/notation/NotationSettings.java#L108
https://github.com/argouml-tigris-org/argouml/blob/d5cd45cb4409c6f50747a3a2671219111b443c48/src/argouml-app/src/org/argouml/notation/NotationSettings.java#L108
https://github.com/argouml-tigris-org/argouml/blob/d5cd45cb4409c6f50747a3a2671219111b443c48/src/argouml-app/src/org/argouml/notation/NotationSettings.java#L108

� Characterizing SATD in industrial projects.The results
indicate that most technical debt is admitted in
issues, followed by source code comments and com-
mit messages. Non-SATD issues take a significantly
shorter time to close, compared to SATD issues.

� Reporting developers’ attitudes towards identified SATD
and statistics.Most interviewees acknowledged the
identified SATD. However, they do need more infor-
mation to assess the importance of individual SATD
items.

� Reporting relations between SATD from different sources.
We found that SATD in code comments and issues is
referenced in the other sources, while SATD in com-
mits is not referenced in other sources.

� Reporting triggers on SATD introduction and repayment.
The results show developers have different reasons
to introduce and pay back SATD, depending on the
data source (code comments, issues, commits).

� Reporting practices used to manage SATD.We summa-
rize and report practices that are used to assist in
SATD prioritization and repayment.

� Reporting tooling support for SATD management.We
report tool features that developers suggested as use-
ful for SATD identification, traceability, prioritiza-
tion, and repayment.

The rest of this paper is organized as follows. Section 2
discusses related work. The case study design is elaborated
in Section 3. Section 4 presents the results, and Section 5 dis-
cusses the implications of these results on researchers and
practitioners. Finally, threats to validity are evaluated in
Section 6 and conclusions and future work are drawn in
Section 7.

2 RELATED WORK

To facilitate comparison to our work, we split the related
work into two parts: work associated with SATD in Open-
Source Software and work associated with SATD in indus-
trial settings.

2.1 SATD in Open-Source Software

Potdar and Shihab [2] were the first to study SATD in source
code comments. They analyzed four open-source projects
and identified SATD in them. They found that 2.4% to 31%
of source files contain SATD comments and only 26.3% to
63.5% of SATD are removed after introduction. Moreover,
the results of Potdar and Shihab show that experienced
developers tend to introduce more SATD compared to inex-
perienced developers. Building on this work, Maldonado
and Shihab [13] focused on the types of SATD in open-
source projects. They analyzed 33 K code comments from
five projects and categorized SATD into five categories:
design, requirement, defect, documentation, and test debt.
The results indicated that design debt is the most common
type of SATD, as 42% to 84% of classified SATD is design
debt.

Subsequently, there was a significant focus on automatic
SATD identification. Maldonado et al. [6] manually classi-
fied source code comments into different types of SATD
from ten open-source projects and utilized the maximum
entropy classifier to automatically identify design debt and

requirement debt. Similarly, Huang et al. [14] used the fea-
ture selection method to select the most important features
and adopted the ensemble learning technique to leverage
different machine learning approaches to accurately iden-
tify SATD, again from source code comments. Furthermore,
different machine learning approaches were applied to
achieve higher predictive performance for SATD identifica-
tion. Specifically, Ren et al. [7] proposed a Convolutional
Neural Network-based approach to accurately identify
SATD from source code comments. Wang et al. [15] pro-
posed an attention-based neural network to automatically
detect SATD. In addition to using source code comments,
few studies focused on identifying SATD from other sour-
ces. Dai and Kruchten [3] manually analyzed 8 K issue tick-
ets and used the Naive Bayes method to classify SATD
issues and non-SATD issues. In our previous work [16], we
examined 23 K issue sections and proposed a Convolutional
Neural Network-based approach to identify SATD from
issue tracking systems.

In addition to SATD identification, there has been work
related to the measurement, prioritization, and repayment
of SATD. Kamei et al. [8] explored ways to measure the
interest of SATD and suggested using LOC and Fan-In
measures. The results indicated that 42.2% to 44.2% of
SATD incurs positive interest (i.e., technical debt costs more
to repay in the future), while 8.1% to 13.8% of SATD incurs
negative interest (i.e., technical debt costs less to pay back in
the future). Mensah et al. [9] introduced a SATD prioritiza-
tion scheme which consists of identification, examination,
and rework effort estimation. The results showed that a
rework effort of modifying 10 to 25 commented LOC per
SATD source file is required for highly prioritized SATD
tasks. Besides, Maldonado et al. [10] analyzed five open-
source projects to investigate the repayment of SATD. The
results indicated that most of SATD is removed eventually
and the payback is mostly done by those that incurred the
SATD in the first place. They also found that SATD lingers
in the code for approximately 18 to 172 days. In a similar
study, Zampetti et al. [11] looked into how SATD is resolved
in five open-source projects. They found that between 20%
to 50% of SATD comments are removed by accident, and
8% of SATD repayment is documented in commit messages.

Compared to all aforementioned studies, our study has
the following differences: a) we utilized machine learning
models to identify and characterize SATD; b) we performed
this analysis on a number of different sources, instead of
only one; c) we work in an industrial setting instead of
open-source systems; d) we explored developers’ perspec-
tives towards both the nature of SATD and its management.

2.2 SATD in Industrial Settings

SATD in industrial settings is relatively unexplored; there is
only one work that studied SATD in industrial settings and
compared it with open-source settings [5]. Specifically, Zam-
petti et al. surveyed 52 industrial developers and 49 open-
source project contributors. They focused on technical debt
admitted in source code comments and found that technical
debt annotation practices and the typical content of SATD
comments are similar in industrial and open-source settings.
Furthermore, the results showed that admitted technical

2546 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

debt in industrial projects is implicitly discouraged by the
fear of taking on responsibilities. The results indicated that
technical debt is also admitted in other sources, including,
among others, commit messages, pull requests, and issue
trackers.

In contrast to Zampetti et al. [5], who only investigated
source code comments, we focus on analyzing SATD from
multiple sources (i.e., source code comments, commit mes-
sages, and issue tracking systems). In addition, we use
machine learning techniques to identify SATD from differ-
ent sources in industrial settings, demonstrate the character-
istics of SATD, and present the interviewees’ attitudes
towards the identified SATD and statistics. Finally, we also
study the process of managing SATD, as well as how to
improve it from the point of view of software practitioners.

3 STUDY DESIGN

3.1 Objective and Research Questions

The goal of this study, formulated according to the Goal-
Question-Metric [17] template is to “analyze self-admitted
technical debt in source code comments, issue tracking sys-
tems, and commit messages for the purpose of understanding
and improvement with respect to the nature and manage-
ment process of self-admitted technical debt in practice from
the point of view of software engineers in the context of the
embedded systems industry.” To be more precise, we aim
at understanding both the nature of SATD per se and the
process of managing it, as well as improving this process.
Consequently, we formulate three main research questions
(RQs) that are further refined into sub-questions. In Section 4
we will not answer the main RQs directly, but only indi-
rectly through answering the sub-questions.

� RQ1: What is the nature of SATD in industry?
� RQ1.1:What are the types, amounts, resolution time,

and sources of SATD items in industrial settings?
Rationale: There are significant differences

between open-source projects and industrial
projects concerning project management, tooling,
as well as collaboration and communication [18],
[19]. Thus, developers may admit technical debt
differently in the two cases. Meanwhile, as men-
tioned in Section 2, all (but one, namely [5])
previous ‘studies on SATD have focused on
open-source projects. Thus, determining the
types of SATD (e.g., requirements, design, code
debt), amount of SATD (i.e., number and percen-
tages of SATD items), and the sources of SATD
(e.g., issue tracker or source code comments) in
industrial projects, and comparing them with
open-source projects could help researchers
understand what SATD looks like in practice,
and practitioners to better manage SATD in both
cases.

� RQ1.2: How is automatically identified SATD
regarded by professional software engineers?

Rationale: The identification of SATD can be
automated, e.g., by using machine learning tech-
niques [7], [16]. However, as far as software engi-
neers are concerned, the identified SATD items

could be obsolete, inaccurate, irrelevant, or
inconsistent with the code. We aim at under-
standing how far software engineers consider
that the SATD items are indeed important and
relevant for their system. We also want to under-
stand whether software engineers agree with the
main statistics of the identified SATD (e.g., per-
centage of backlog items and the lifetime of
SATD items). This can help us understand the
strengths and weaknesses of automated SATD
identification.

� RQ1.3: What are the relations between SATD in dif-
ferent sources?

Rationale: The different sources where SATD
is documented (e.g., source code, issues, com-
mits), are implicitly or explicitly related to each
other. Thus, developers sometimes choose to
document the same technical debt in more than
one source. For example, when developers
encounter SATD in code comments and they
consider this debt as important, they might docu-
ment it in issue tracking systems for more expo-
sure and visibility. In these cases, we are
interested in understanding the connections
between the SATD items in these different sour-
ces. This can assist in improving the traceability
of SATD in different sources.

� RQ2: How is SATD being managed in industry?
� RQ2.1: When is technical debt (not) admitted in

source code comments, issue tracking systems, and
commit messages?

Rationale:It is important to understand the rea-
sons for documenting or not documenting tech-
nical debt in different sources. This can help
researchers in coming up with guidelines and
practices for SATD documentation. Furthermore,
this could help develop tools to assist in docu-
menting SATD.

� RQ2.2: What are the pros and cons of admitting tech-
nical debt in different sources?

Rationale: Each source has its advantages and
disadvantages in terms of documenting technical
debt. For example, technical debt that is admitted
in code comments, allows developers reading
those comments to also examine the problem in
the adjacent code. On the downside, SATD in
code comments has limited visibility for team
leads and project managers and typically does
not get added to the backlog. Understanding the
pros and cons of different sources for document-
ing SATD could help developers make better use
of different sources to document technical debt.

� RQ2.3: What are the triggers to pay back or not pay
back SATD?

Rationale: Developers are more likely to pay
back SATD in certain cases. We plan to investi-
gate the developers’ motivation both for repay-
ment and for deciding to leave SATD in the
system. This could help researchers understand
the reasons for SATD repayment and develop a
tool to assist practitioners in paying back TD.

LI ETAL.: SELF-ADMITTED TECHNICAL DEBT IN THE EMBEDDED SYSTEMS INDUSTRY: AN EXPLORATORYCASE STUDY 2547

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

� RQ2.4: What practices are used to support SATD
management in industrial settings?

Rationale:While, a number of studies have inves-
tigated TDmanagement in industry, we know very
little about managing self-admitted TD. This RQ
can help in understanding the current practices of
SATD management in industrial settings. For
example, developers could group similar SATD to
facilitate the SATD repayment. Software practi-
tionersmay be able to use some of these practices in
their own context, while researchers may investi-
gateways of supporting them.

� RQ3: How can we improve SATD management?
� RQ3.1: What challenges do software practitioners face

when managing SATD?
Rationale: Understanding the challenges of

SATD management can help researchers to pro-
vide support for addressing those challenges.
For example, prioritization of technical debt
items is a typical challenge in any kind of techni-
cal debt, including self-admitted. If we obtain an
in-depth understanding of why it is difficult to
prioritize SATD in specific, we are in a better
position to propose practices, tools, or guidelines
to address this challenge.

� RQ3.2: What features should tools have to effectively
manage SATD?

Rationale:As mentioned in Section 2, there are
tools supporting SATD identification. However,
we currently lack tools to assist in other activities
of SATD management such as prioritization or
repayment [20]. Answering this question can
support the development of new tools or the
improvement of existing ones that could help
practitioners better and easier manage SATD.

Fig. 1 presents the overall framework of our approach to
answering the research questions. The two major processes
(i.e., data collection and data analysis) are elaborated in the
following sub-sections.

3.2 Cases and Units of Analysis

This case study is designed as a single embedded case
study [21]. Our case is a large software company in the

embedded systems industry that chooses to remain anony-
mous. The software development in this company adopts
Scrum development practices.

Because we focus on understanding SATD and its man-
agement process, as well as improving the latter, we col-
lected data from two types of units. The first type of unit is
software artifacts, including source code, commits, and
issue tracking systems. It is noted that the studied projects
mainly use C++ and XML files. There are, on average, 20
software engineers working on the analyzed projects. We
identified and analyzed the nature of SATD from these soft-
ware artifacts. The second type of unit is software engineers
that participated in the development of a specific project.
More specifically, each engineer represents a single unit.
We conducted interviews with software engineers to derive
their opinions on the aforementioned SATD nature, as well
as to understand and improve SATD management. Details
about the background of the practitioners are presented in
Table 2.

3.3 Data Collection

As seen in Fig. 1, data is collected through analysis of work
artifacts and interviews, which are third- and first degree
data collection methods respectively, according to Leth-
bridge et al. [22]. These two methods are explained in the
following subsections in detail.

3.3.1 Analysis of Work Artifacts

In order to answer the research questions, we choose a
large-scale industrial project which contains eight sub-proj-
ects. More specifically, the selected project has over 475 K
lines of comments, 21 K commits, and 130 K files (including
documentation, test files, configuration files, etc.). Regard-
ing issues, we collected 78 K issues from the issue tracking
system. We note that, all embedded software in the selected
company uses the same issue tracking system; thus, the col-
lected issues come from all embedded software while com-
ments and commits are from the selected project where we
had access. Because we focus on three different types of
work artifacts, namely source code comments, issue track-
ing systems, and commits, we obtained data from these dif-
ferent sources separately. For source code comments, we

Fig. 1. The framework of our approach.

2548 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

created a script to first retrieve all code changes in git and
then extract all source code comments using the Comment-
Parser tool.2 We manually verified the correctness of the
extracted comments with this tool before collecting the data.
For issue tracking systems, we extracted all issue descrip-
tions for analysis using the API of the issue tracker used by
the company (Microsoft TFS). Lastly, for commits, we
obtained all commit descriptions in git. The scripts for col-
lecting data are included in the replication package.3 We
analyzed the latest version of the selected industrial project
on July 7th, 2021.

3.3.2 Interviews

We have conducted semi-structured interviews to collect
data from practitioners and answer the research questions.
Semi-structured interviews were selected as they are an
effective approach to exploring participants’ thoughts and

experiences in depth [23]. Regarding the interviewee selec-
tion, we aimed at recruiting participants that have different
roles in the organization and have extensive experience in
dealing with technical debt; these characteristics would
allow us to explore the SATD management process and its
tooling support from different perspectives (see Section 3.1).
Thus, the contact person at the company selected and
invited the interviewees based on these characteristics from
approximately 60 embedded software engineers. These
invitations were accepted by 12 practitioners.

Before the interviews, we extracted work artifacts from
the selected project as aforementioned and identified SATD
from them, as illustrated in Fig. 1. Then we selected a sam-
ple of 15 SATD items, to show to the practitioner in order to
help them gain a basic understanding of what automatically
identified SATD looks like and prepare for the interviews.
The sample of 15 SATD items was selected from the set of
identified SATD items in the previous step based on the
proportion of different types of SATD, and consisted of 5
items from source code comments, 5 items from commit
messages, and 5 items from issues. For example, two of the
presented SATD items were: “stupid code, why isn’t this part
of [function name]?” and “adding sanity check on timing.”
Besides, we provided practitioners with an introductory
document on SATD (including a definition and examples of
SATD as well as the high-level goal of this study).

Practitioners were then interviewed one by one by at least
two of the authors via a web-based platform. We asked practi-
tioners to answer questions relating to their background,
namely their role in the company and years of experience. This
background information is presented in Table 2. After the back-
ground information collection step, we asked interviewees
some introductory questions (e.g., What is your understanding
of technical debt? Can you tell me some examples of technical
debt?). These “warm-up” questions encouraged interviewees
to think about their own experienceswith technical debt so that
they can answer the rest of the questions based on those experi-
ences. During the interviews, we provided statistics on SATD
(such as numbers and percentages of different types of SATD
fromdifferent sources) in the selected project and the sample of
identified SATD items. Practitioners were asked to think about
the SATD examples and statistics before answering interview
questions. Finally, the main part of the interview consisted of
several questions aimed at answering the Research Questions

TABLE 1
Questions for Individual Interviews

Question Related
RQs

Do you acknowledge the identified SATD items
from the different sources?

RQ1.2

Do you consider identified SATD items to be
important?

RQ1.2

What do you think of different types of SATD? RQ1.2
What do you think about the average time to close
different types of SATD issues and non-SATD
issues?

RQ1.2

Do these SATD items and statistics give you new
information or insights about this project?

RQ1.2

What do you think are the relations between TD
documented in different sources?

RQ1.3

Do you record TD in your project? RQ2.1,
RQ2.2

Which TD items do you usually record and which
do not?

RQ2.1,
RQ2.2

Where do you typically record TD? RQ2.1,
RQ2.2

Do you have any constraints on recording TD? RQ2.1,
RQ2.2

Which types of TD do you usually record? RQ2.1,
RQ2.2

What do you think are the differences between TD
documented in different sources?

RQ2.1,
RQ2.2

How do you decide on resolving one of the
recorded TD items?

RQ2.3

How do you manage the recorded TD items in
practice?

RQ2.4

How do you prioritize documented TD items in
practice?

RQ2.4

What strategies do you follow to pay back
documented TD?

RQ2.4

What challenges do you encounter when you
manage recorded TD?

RQ3.1

What features would you like to have from an ideal
tool to manage SATD?

RQ3.2

TABLE 2
Background Information of Interview Participants

Interviewee ID Role in the Company Years of Experience

I1 Architect 22
I2 Architect 19
I3 Architect 20
I4 Software developer 22
I5 Software developer 22
I6 Software developer 20
I7 Software developer 32
I8 Software developer 17
I9 Team lead 18
I10 Software developer 34
I11 Team lead 32
I12 Project manager 24

2. https://github.com/jeanralphaviles/comment_parser
3. https://github.com/yikun-li/satd-in-industry

LI ETAL.: SELF-ADMITTED TECHNICAL DEBT IN THE EMBEDDED SYSTEMS INDUSTRY: AN EXPLORATORYCASE STUDY 2549

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

https://github.com/jeanralphaviles/comment_parser
https://github.com/yikun-li/satd-in-industry

(as shown in Table 1); these were developed by following the
interview guidelines of Seidman [24]. We asked the practi-
tioners to talk about their ideas and opinions freely without
restrictions. During the interviews, we also asked follow-up
questions to delve into their experiences and understanding.
Each interview took approximately 30minutes. After obtaining
permission from interviewees, interviews were recorded to be
transcribed for analysis.

3.4 Data Analysis

3.4.1 Analysis of Work Artifacts

To identify SATD from work artifacts, we first collect data
from the selected projects, as discussed in Section 3.3. Sub-
sequently, we followed the results of our previous
work [12] to identify SATD from different sources using a
deep learning approach. This work is the only one focusing
on accurately capturing SATD from different sources; spe-
cifically, the trained deep learning model achieved an f1-
score (i.e., the harmonic mean of precision and recall) of
0.666, 0.644, 0.557 when identifying SATD from source code
comments, commit messages, and issue tracking systems
respectively. Moreover, the machine learning model can
identify four types of SATD, namely code/design debt,
requirement debt, documentation debt, and test debt. Exam-
ples of each type of SATD are presented in Table 3.

3.4.2 Interviews

To analyze the interviews, we first transcribed all interview
recordings. It is noted that one of the interviewees did not
grant us permission to record the interview, so this inter-
view was transcribed on the fly during the meeting. Then,
we followed an iterative qualitative data analysis process
according to the Constant Comparative method of Grounded
Theory [25], [26]. Specifically, the analysis process is com-
posed of three main steps. The first step is open coding,
which breaks the transcript text down to discrete textual
segments, which are subsequently coded (i.e., labeled).
When reading the interview transcripts, we continuously
added new codes or changed current codes when necessary.

The scope of codes varies, as it could be a phrase, a sentence,
or a paragraph. Second, we applied selective coding, by con-
stantly comparing different codes and annotations, and
then merging similar codes. Third, we worked on the theo-
retical coding to establish conceptual relations between
codes.

To ensure the agreement on codes, the first and second
authors independently performed the Constant Comparative
analysis process, discussed, and compared the generated
codes to eliminate bias. Any disagreements between the
two authors were subsequently resolved.

We used a professional qualitative analysis tool (ATLAS.
ti4) to analyze the interview data. The analysis results and
interview protocol are available in the replication package3.

4 RESULTS

4.1 (RQ1.1) What Are the Types, Amounts,
Resolution Time, and Sources of SATD Items in
Industrial Settings?

Table 4 presents the number of different types of SATD
from different sources. We can observe that most of the iden-
tified SATD is code/design debt(79.1%), followed by docu-
mentation debt and requirement debt (9.5% and 7.7%
respectively). The least amount of identified SATD is test
debt (3.7%).

As mentioned in Section 3.3, the issues come from all of
the embedded software, while comments and commits are
only from one (large) project. Thus, we cannot compare the
absolute numbers of SATD items directly between sources.
Thus, we look into the percentages of items across the dif-
ferent sources that contain SATD of different types (see
Table 5). It is noted that, in this and subsequent tables, the
highest values are highlighted in bold, while the lowest val-
ues are underlined. Specifically, we calculate the percen-
tages of different types of SATD by dividing the number of
SATD items of a specific type from a specific source by the
number of items from this source. We observe that the per-
centage of issues or commits being SATD issues or commits is sig-
nificantly greater than source code comments (16.3% and 12.7%
versus 2.6%). Finally, the percentage of issues being SATD
is slightly greater than commits.

Fig. 2 presents the number of cumulative technical debt
admitted in different sources over time. As can be seen, soft-
ware developers keep documenting technical debt in differ-
ent sources. At the beginning of the studied period (before

TABLE 3
Examples of Different Types of SATD

Debt Type Example

Code/Design
debt

“Perl protocol handler could be more robust against
unrecognised types” - [from Thrift-issue]
“Need to add better handling for hz instance

cleanup.” - [from Camel-issue]

Test debt “TODO: need more tests - [from JMeter-code-
comment]

“Tweaks tests to be a bit more robust” - [from
TrafficServer-commit]

Doc. debt “FIXME: Document difference between warn and
warning” - [from JRuby-code-comment]

“we need to add it to the wiki page” - [from Camel-
issue]

Req. debt “TODO: add a dynamic context... - [from Heron-
code-comment]

“Union is not supported yet... I might be adding
that capability quite soon.” - [from Samza-pull]

TABLE 4
Number of Different Types of SATD Items From Different

Sources

Debt Type Source Total

Comment Issue Commit

Code/Design debt 3,139 9,318 2,236 14,693
Req. debt 602 702 119 1,423
Doc. debt 225 1,350 199 1,774
Test debt 63 540 93 696

All SATD 4,029 11,910 2,647 18,586

4. https://atlasti.com

2550 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

https://atlasti.com

January 2017), the number of SATD in source code com-
ments is comparable with the number of SATD in issues.
Afterward, the rate of admitting technical debt in issues
increases compared to source code comments.

Because issue tracking systems provide additional informa-
tion (e.g., issue type, issue status, issue closed time) that is
related to SATD introduction and repayment,we further inves-
tigate SATD in issue tracking systems. Specifically, we investi-
gate the time required to resolve issues (with and without
SATD), and the types of issues (e.g., backlog item or bug) with
SATD. These are presented in the rest of this sub-section.

Table 6 presents the average time to close different types
of issues and the percentage of different types of issues that
are closed. As we can see, the average time to close different
types of issues varies: the average time to close non-SATD
issues is shorter (47.2 days) compared to different types of SATD
issues; test debt issues take the longest average time to close
(80.7 days). Moreover, non-SATD issues achieve the highest
closed rate (75.5%), while requirement debt issues have the
lowest closed rate (60.8%).

Specifically, to evaluate the significance level and the
effect size of closing time between different types of
issues, we choose Mann-Whitney test [27] and Cliff’s
delta [28]. The Mann-Whitney test is used to determine if
two groups are significantly different from each other
and is widely used in software engineering studies [4],
[14]. The results are demonstrated in Table 7, while the p-
value is highlighted when it is less than 0.05, which indi-
cates the result has statistical significance. We can notice
that, in contrast to previous research findings [29], there are
significant differences between the closing time of non-SATD
issues and different types of SATD issues (p-values are 1.1e-
20, 1.3e-4, 9.9e-4, and 3.3e-7 respectively). Moreover,
according to the Cliff’s delta (i.e., 0.12, 0.24, 0.20, and 0.19

respectively), we can observe that the effect sizes5

between them are all categorized as small [28]. Further-
more, closing time differences between test debt issues
and code/design debt issues or documentation debt
issues are statistically significant (p-values are 0.014 and
0.020). However, their effect sizes are negligible based on
the Cliff’s delta (i.e., 0.07 and 0.01). As specified by the
effect size in Table 7, we find that the closing time differ-
ences between non-SATD issues and different types of
SATD issues are greater than the closing time between
different types of SATD issues. Additionally, we compare
the average time to close different types of issues in
Table 8. As we can see, except for test issues, all other
types of issues align with the finding that SATD items
take longer to solve. The reason for test issues not follow-
ing this trend, might be due to the insufficient number of
test issues in comparison to other types of issues (247 ver-
sus 885/4822/1333/4492).

Next, we study the occurrence of the types of SATD
items (e.g., design or test debt) in the different types of

TABLE 5
Percentages of Different Types of SATD Items From Different

Sources

Debt Type Source Total

Comment Issue Commit

Code/Design debt 2.0% 12.8% 10.7% 5.9%
Req. debt 0.4% 1.0% 0.6% 0.6%
Doc. debt 0.2% 1.9% 1.0% 0.7%
Test debt 0.0% 0.7% 0.4% 0.3%

All SATD 2.6% 16.3% 12.7% -

Fig. 2. Cumulative number of SATD items in different sources over time.

TABLE 6
Average Time to Close Issues and Percentage of Closed Issues

Type Avg. Time to Close (d) Pct. of Closed (%)

Code/Design debt 62.5 71.3
Req. debt 70.2 60.8
Doc. debt 60.4 72.0
Test debt 80.7 67.0
Non-SATD 47.2 75.5

TABLE 7
Comparison of Average Time to Close Issues Between Different

Types of SATD and Non-SATD Issues

Pairwise Comparison p-value Cliff’s Delta

Code/Design debt & Non-SATD 1.1e-20 0.12 (small)
Req. debt 1.3e-4 0.24 (small)
Doc. debt 9.9e-4 0.20 (small)
Test debt 3.3e-7 0.19 (small)

Code/Design debt & Test debt 0.014 0.07
Req. debt 0.361 -0.06
Doc. debt 0.020 -0.01
Non-SATD 3.3e-7 -0.19 (small)

Code/Design debt & Doc. debt 0.641 0.07
Req. debt 0.160 -0.06
Test debt 0.020 0.01
Non-SATD 9.9e-4 -0.20 (small)

Code/Design debt & Req. debt 0.247 0.12 (small)
Doc. debt 0.160 0.06
Test debt 0.361 0.06
Non-SATD 1.3e-4 -0.24 (small)

Req. debt & Code/Design debt 0.247 -0.12 (small)
Doc. debt 0.641 -0.07
Test debt 0.014 -0.07
Non-SATD 1.1e-20 -0.12 (small)

5. Effect sizes are marked as small (0:11 � d < 0:28), medium
(0:28 � d < 0:43), and large (0:43 � d) basedon suggestedbenchmarks [28].

LI ETAL.: SELF-ADMITTED TECHNICAL DEBT IN THE EMBEDDED SYSTEMS INDUSTRY: AN EXPLORATORYCASE STUDY 2551

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

issues (e.g., backlog or bug). Issue tracking systems typically
provide a function that helps developers categorize and
track the progress of specific types of work [30]. In the stud-
ied case company, the issue tracking system (Microsoft TFS)
similarly supports specifying different types of issues. The
most common issue types used by the case company, are
feature, backlog item, task, bug, and test. The hierarchy of issue
types is illustrated in Fig. 3. The studied organization uses
these five issue types as defined by Microsoft [31]: feature is
the highest-level type of work, it is associated with a specific
product feature, and it is the parent of backlog item and bug.
Backlog item is used to track development work, while bug is
for tracking code defects. Moreover, task is used to track
fine-grained work, i.e., it is a child of both backlog item and
bug. Additionally, test-related issue types are used indepen-
dently of other types. Because there are three test-related
types, namely test case, test plan, and test suite, we group
them together under the category of test. Table 9 presents
the number of different types of SATD in accordance with
these different issue types. As we can see, most of SATD is
identified as backlog item and task (4,822 and 4,492 respec-
tively). This indicates that backlog item and task are the two
most popular issue types to admit technical debt.

Because the total numbers of the different types of issues
vary, it is unclear which issue type has the highest percent-
age of SATD issues. To address this, we show the percent-
age of different types of SATD in accordance with different
issue types in Table 10 and Fig. 4. We can notice that
although backlog item and task have similar number of SATD
issues (4,822 versus 4,492) in Table 9, backlog item has a sig-
nificantly higher percentage of SATD issues compared to
task (24.5% versus 12.4%). This means that backlog itemhas
the highest percentage and number of SATD issues among all
issue types; in other words, it is the most used issue type for
admitting technical debt. This is in line with the definition of
technical debt [1]: while defects and poorly/partially imple-
mented features are symptoms of technical debt, pure tech-
nical debt items concern issues that directly affect the
maintenance and evolution of a software system.

Additionally, as can be seen in Fig. 4, feature and backlog
item have a higher chance to contain code/design debt
(16.7% and 19.2% compared to the average of 12.8%), while

task only has 9.2% of items being code/design debt (which
is lower than average). Moreover, the percentages of
requirement debt for feature and backlog item are also higher
than other types of issues (1.4% and 1.8%, respectively).
Finally, issues with the tags of bug and test are less likely to
have documentation debt (0.5% and 0% compared to the
average percentage of 1.9%).

4.2 (RQ1.2) How Is Automatically Identified SATD
Regarded by Professional Software Engineers?

We report here the opinions of the interviewees on identi-
fied SATD and corresponding statistics produced by the
automated SATD analysis. First, we present the attitude
towards SATD identified from different sources (two exam-
ples of identified SATD are shown in Section 3):

� Attitude towards SATD identified from code comments.
We found that eight out of ten interviewees that
commented on this, confirmed that SATD identified
from code comments is indeed technical debt from
their perspective: “yeah, those are the typical things
[technical debt] that we enter in the code indeed.”The
other two interview participants also identified the
vast majority of the discussed SATD items but were
not very sure about one or two items: “the first one I
would say difficult, it could also be a matter of taste; [...]
the last one is the same as the first one, really depends on
the situation.”

� Attitude towards SATD identified from issues.Six out of
seven interviewees acknowledged SATD identified
from issues as debt: “I expect them to be part of the back-
log list, but I cannot explain to you one by one; I think
they are technical debt.”Meanwhile, one interviewee
found it difficult to judge whether it is SATD or not.

TABLE 8
Average Time to Close Different Types of Issues

Type Issue Type

Feature Backlog Item Bug Task Test

SATD 196.6 91.7 75.3 25.5 897.6
Non-SATD 186.6 75.9 68.0 19.4 1110.0

Fig. 3. Hierarchy of issue types.

TABLE 9
Number of Different Types of SATD Items in Different Types of

Issues

Debt Type Issue Type

Feature Backlog Item Bug Task Test

Code/Design debt 695 3,770 1,204 3,355 220
Req. debt 58 350 37 211 10
Doc. debt 85 512 46 701 0
Test debt 47 190 46 250 17
All SATD 885 4,822 1,333 4,492 247

TABLE 10
Percentage of Different Types of SATD Items in Different Types

of Issues

Debt Type Issue Type

Feature Backlog Item Bug Task Test

Code/Design debt 16.7% 19.2% 12.4% 9.2% 12.9%
Req. debt 1.4% 1.8% 0.4% 0.6% 0.6%
Doc. debt 2.0% 2.6% 0.5% 1.9% 0.0%
Test debt 1.1% 1.0% 0.5% 0.6% 1.0%

All 21.2% 24.5% 13.8% 12.4% 14.5%

2552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

� Attitude towards SATD identified from commits.Seven
out of eight participants confirmed that SATD identi-
fied from commits is technical debt from their point
of view. Interestingly, four out of these seven partici-
pants pointed out that SATD in commits concerns
documentation of paying back technical debt instead
of incurring technical debt: “do you recognize technical
debt in commits? yeah, but I think these are [documented]
when somebody solves the technical debt in commit
messages.”There is one interviewee that did not
acknowledge SATD in commits: “we always added
text block in commits but not technical debt in commit
messages.”

Second, we discuss the participants’ opinions about the
importance of the identified SATD items. Five out of nine
interviewees mentioned that they need more information
to determine the importance: “you have to know the imple-
mentation to have some insights on how severe such a thing is
and how much work it will be to solve it; it [importance] is not
immediately clear from the TODO itself.”. Besides, two out
of nine participants believed that some of the items are
not important, while the others need more information to
evaluate: “the first one that I would say it’s something that
isn’t really going to be resolved [...] the third one - it looks like
it depends a bit on the on the functionality; is this really impor-
tant or not, which is difficult to determine.” Meanwhile, the
rest two of the nine interviewees pointed out that none of
the identified SATD are important: “it does not have
urgency to be solved.”

Third, we describe the attitudes towards average time
to close issues (see Tables 6 and 7). Seven out of nine par-
ticipants expected the same as the figure they were
shown: “I think that is correct, which is about the balancing I
told you between new functionality and technical debt.” They
also mentioned that the reason behind this phenomenon
is that they are under big pressure to implement new fea-
tures or fix bugs instead of improving the quality of the
code by solving SATD: “I know [this] project is in challeng-
ing phase; they are high pressured to reach the time-to-market,
[so] we are also under pressure to have shortcuts and do not
redesigns [unless we are] told necessary by the developers.”
One interviewee agreed that technical debt items take a
longer time to be resolved compared to non-debt items,
but he also pointed out that he expected documentation
debt to take the longest time to be solved among all types
of debt: “I did not expect test debt takes that long; I would
have expected the documentation debt to be there the biggest

one.” Besides, one participant had different expectations
than the results: “I think it’s a matter of calculation; it’s the
other way around [compared to the expectation].”

Fourth, we report the thoughts of participants towards
all the presented statistics (see Tables 4, 5, 6, 7, 9 and 10 and
Fig. 2) and identified SATD items (some examples are
shown in Section 3):

� Giving insights on how technical debt is managed.Five
interviewees indicated that statistics help them
understand how technical debt is managed in their
projects: “if you look at the statistics, I think that’s the
objective view of how things are managed.”Furthermore,
two of the participants considered it useful that the
statistics provide information about the different
types of SATD and the average time spent on SATD
items and non-debt items.

� Showing what are the focus points.One participant men-
tioned that statistics also show what the team
emphasizes during SATD management: “do you think
statistics is useful? yeah, [...] I would say [I know] what is
focused on.”

� Increasing the awareness of SATD.Five interviews
revealed that statistics and identified SATD help
developers be conscious of technical debt in the proj-
ects: “it could always help to make us aware of technical
debt.”

� Providing insights on future improvement.One inter-
viewee stated that statistics could help developers
become better and achieve higher productivity: “it
gives some insight on how can you improve and be more
efficient in your work.”

4.3 (RQ1.3) What Are the Relations Between SATD
in Different Sources?

The relations between SATD items in different sources, as
derived from the data, are summarized and presented in
Fig. 5. It is evident that technical debt admitted in code com-
ments and issues is referenced in the other two sources,
while technical debt admitted in commits is not mentioned
in other sources. Because each issue has a unique issue ID,
developers can refer to that ID when referencing a SATD
issue: “in most cases, we try to add the issue ID within the
comments.” We call this reference a specific reference. On the
other hand, since there is no unique identifier for each
source code comment, it is impossible to reference specific
comments. Thus, such references are usually approximate
references. We describe the relations in detail as they are
numbered in Fig. 5:

Fig. 4. Percentage of different types of SATD against different issue
types.

Fig. 5. Relations between SATD items in different sources.

LI ETAL.: SELF-ADMITTED TECHNICAL DEBT IN THE EMBEDDED SYSTEMS INDUSTRY: AN EXPLORATORYCASE STUDY 2553

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

1) Technical debt admitted in code comments is referenced in
issues.Two interviewees mentioned that it is not com-
mon to reference SATD code comments within
issues: “in the issues, nine out of ten times, [developers]
never write down which actually line or file [is] related.”
However, one of them also pointed out that develop-
ers sometimes note down in issues the approximate
location of technical debt which has been docu-
mented in code comments: “[developers] only specify a
certain piece of code where the problem resides.”

2) Technical debt admitted in issues is referenced in code
comments.The links from issues to code comments
are mentioned by four interview participants. They
tend to add issue IDs (unique identifiers) in the code
comments to establish clear links: “sometimes you add
a link to the issue in the code.”

3) Technical debt admitted in issues is referenced in commit
messages.Three interviewees mentioned that SATD in
issues is also referenced in commits: “in the commit,
we are able to tag the issue item, and then the link between
commits and issues is made automatically.”This gives
developers a better understanding of the changes in
the commits: “I do not know if it was a single line com-
mit message, which is vague, short, and without explana-
tion [...] we need to have more information in the commit
or a link to the issues.”

4) Technical debt admitted in code comments is referenced in
commit messages.One interviewee indicated that the
repayment of SATD in code comments might be
documented in commit messages: “there could be a
link if you have the previous one in comments, when
somebody solved it, probably in the commit message you
might record the resolve of it.”

4.4 (RQ2.1) When Is Technical Debt (Not) Admitted
in Source Code Comments, Issue Tracking
Systems, and Commit Messages?

During the interviews, we established that software engi-
neers tend to admit technical debt in different sources for
different reasons. For each source (i.e., source code com-
ments, issue tracking systems, and commit messages), we
report several cases why technical debt is being admitted.
We start first with the source code comments:

� Scale of technical debt is small.Four interviewees men-
tioned that developers tend to document small tech-
nical debt items in source code comments: “if it
[technical debt] is too small, just admit it in the code
comments.”Regarding what small technical debt actu-
ally means, as an interviewee stated: “if you look at
things in source code, they are typically smaller; those
things are just magic number or making this as
parameter...”

� Solving technical debt brings little or no benefit.When
solving technical debt yields small or negligible ben-
efit, developers tend to document it in comments: “if
we will not gain the advantage over anyway, then proba-
bly something will be noted in the software [...] a comment
will be added.”

� Deciding not to fix the technical debt.Two participants
pointed out that if developers reach an agreement on

not fixing the technical debt, they usually just docu-
ment it in code comments: “if we already decide not to
fix this technical debt, then probably it will remain as
comments.”

� Helping other developers to become familiar with technical
debt related to code and its rationale.Five interviewees
mentioned that it is important to document technical
debt and its rationale to help other developers
become aware of problematic code and the reasons
behind it: “the comments in software to make sure that
when people are facing troubles and having a look at the
software again that they know about the facts that have
been made to some different choices and which could result
in a problem.”

� It concerns requirement debt.Three interviews revealed
that if the technical debt is of the type requirement
debt, such as partially implemented requirements,
developers prefer to document it in source code com-
ments: “because we have not finished yet, it [code com-
ment] is typically written down while developing the
feature.”

Second, for issue tracking systems, technical debt is docu-
mented in the following cases:

� Scale of technical debt is big.Six interview participants
indicated that developers always document large-
scale technical debt in issue trackers: “If you look at
issue tracker... you have to fix this entire piece of code,
that’s a bigger span, while in code it’s basically for the
next line.”

� Technical debt is part of the future plan.Five interview-
ees pointed out that developers always document
technical debt in issues when they actually plan to
fix them in the future: “I think that we create issues for
them [technical debt] to make sure that they will become
part of the future plans.”

� Features only supported by the issue tracker.Issue track-
ing systems provide features that are not provided
by code comments or commits, such as uploading
attachments and assigning severity levels for issues.
An interviewee mentioned that he always summa-
rizes technical debt and designs in a word document
on a daily basis, then uploads it as an attachment
when creating a new issue.

� Track technical debt repayment in the engineering phase.
Developers in this case study refer to software devel-
opment in later iterations with engineering phase,
which is different from the early phase of develop-
ment. When developers want to track what changes
will be made to solve technical debt in the engineer-
ing phase, they create issues: “I think in engineering
phase [when I] have to clean something up, I will defi-
nitely make issues, so you can always see what has been
done; in the early phase, it’s just about what works are
expected.”

� Duplicate existing technical debt admitted in code com-
ments.Three software engineers believed that exist-
ing technical debt in comments should also be
admitted in issues to facilitate their tracking: “if there
are still TODOs in the code, there should also be an issue
that something still needs to be done.”

2554 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

Third, developers document technical debt in commit
messages, in the following cases:

� Commits introducing Technical Debt.One interviewee
pointed out that, if commits include workarounds
that are typical of technical debt, they usually docu-
ment those problems, as well as the related issue
keys in the commit messages: “we have certain com-
mits which indicate that we have to make shortcuts or we
have implemented a temporary situation.”

� Commits related to technical debt repayment.Three inter-
views disclosed that if commits are about technical
debt repayment, they always document it in commit
messages: “these are when somebody solved technical
debt in these commit messages.”

Finally, we also summarize the cases when technical debt
is ignored or not documented in artifacts:

� Developers are under pressure and forget to document techni-
cal debt.Three participants pointed out that if the pres-
sure is very high, developers usually focus on other
work and postpone technical debt documentation; in
most cases, it is eventually forgotten: “if the pressure is
really high, [...] you will do that [technical debt] tomorrow,
and tomorrow has another thing that got forgotten.”

� Certain types of technical debt are ignored.According to
four interviews, some developers do not consider
certain types of technical debt to be important and
choose not to document them. Specifically, inter-
viewees believed that developers pay less attention
to documenting test debt: “I think we don’t have that
many technical debt items for missing test cases; I think
you more or less know about them, but no real documenta-
tion about test cases and actual implementation.”

� Scale of technical debt is small.When the scale of technical
debt is small, developers may decide not to document
it at all because of its low impact: “what are the reasons
not documenting technical debt? [it depends on] how big is
the technical debt, if just a small thing, it’s probably not.”

� Technical debt in legacy code.Two interviewees
reported that developers are aware of the limitations
of technical debt in old parts of the system and
choose not to document it, because they know it will
not be fixed anyway: “[if] the architecture is already fif-
teen years old [...], you know what the limitations are, you
can still write technical debt to make it better, but you
know it will not be fixed anyway.”

� Short life of technical debt.We noticed that when devel-
opers think the technical debt will be solved in the
near future, they might choose not to document it
(mentioned by three interviewees): “I know that for
the old release, we make a quick workaround, but we don’t
mark [it] as technical debt because we make the actual
good solution in our mainline immediately.”

� Direction is unclear in early phases.Because of uncertain-
ties in the early phases of projects, software engineers
may choose not to document it: “At the beginning of the
project, it can go anywhere, so if you put a lot of effort in
explaining why something is done, it takes lots of time.”

� The responsibility of other developers.In some cases,
developers are in charge of certain parts of software

development or documentation update. When other
developers encounter technical debt, they prefer to
let the responsible person document it: “if it’s some-
one else’s documentation, I might mention it to someone. I
usually do not create an issue for that.”

� Treating technical debt as common knowledge.One par-
ticipant mentioned that technical debt is not docu-
mented when it is known by everyone in the team:
“[technical debt] is not documented [...] [when we] have
accepted [it], and treat [it] as a common knowledge of the
team; the team members know that issue is there, or incon-
venience is there.”

4.5 (RQ2.2) What Are the Pros and Cons of
Admitting Technical Debt in Different Sources?

The pros and cons of documenting technical debt in source
code comments are summarized below:

� Pointing to problems in the code.Five interview partici-
pants pointed out that technical debt documented in
code comments could help developers understand
the existing technical debt in code and potentially
solve it: “make sure that people are looking at the software
[reading source code], they will be familiar with the fact
that there is technical debt in code.”

� Long lifetime of code.One interview participant indi-
cated that code is a very stable artifact compared to
others. In contrast to other artifacts, comments in
source code will not disappear in the future: “I have
seen tools coming and gone; five years back we [switched
the issue tracker] [...], [but] I have code older than five
years, maybe ten years old, so I don’t know the change
request anymore from seven years back and the rationale;
the only thing I have is just the source code.”

� / Limited visibility.On the one hand, documenting
technical debt in code comments causes less distur-
bance to other developers: “too many detailed tasks [in
issues] does not help which could bother teammates [...]
just admit them in the code comments, [...] because you
intend to solve it soon anyway.”On the other hand, it
could restrict the visibility of technical debt, result-
ing in paying less attention to it: “they are not visible
anymore, only if you run into that.”

� Resolving it depends on the initiative of developers.Three
interviewees reported that it highly depends on soft-
ware developers to solve or leave technical debt
admitted in code comments: “you need be lucky that
someone will be working on this to get a solution.” Thus,
documenting technical debt in the source code can
act both as an advantage (if it gets resolved) and a
disadvantage (if it is ignored).

Subsequently, we list the main pros and cons of admit-
ting technical debt in issues:

� / Visible to the whole team.Six interviewees mentioned
that technical debt admitted in issues has the advan-
tage of being visible to everyone in the team, helping
developers to keep track of it: “issue tracker is used for
recording important technical debt which is shared in the
team.”

LI ETAL.: SELF-ADMITTED TECHNICAL DEBT IN THE EMBEDDED SYSTEMS INDUSTRY: AN EXPLORATORYCASE STUDY 2555

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

� Issue trackers provide features not supported by other
artifacts.Two interviewees revealed that issue track-
ing systems provide several features that support
technical debt management. Specifically, issue track-
ers can give developers an overview of all docu-
mented technical debt: “it’s a good thing that technical
debt is mostly recorded in the issue tracker because this
gives an overview.”It also supports uploading techni-
cal debt information as attachments, assigning the
issue type, and assigning the issue severity. Finally,
it supports keeping track of what has been done
about the technical debt: “I will make an issue, so you
can always see what has been done.”

� Support planning to resolve technical debt.Six inter-
viewees reported that technical debt documented in
issues will be a part of the future plan and be
resolved eventually. This is because, in addition to
developers, team managers also participate in the
management of SATD in issues: “[as the team lead]
once they are in issues, they are in my list of choosing pri-
orities, that I can deal with it.”

Finally, the pros and cons of recording technical debt in
commits are presented below:

� Providing explanation for TD changes.Two interview-
ees mentioned that commits are important to explain
what TD changes are made to the repository, such as
introducing TD, modifying TD, and repaying TD:
“commit messages should include what has changed and
what has been done, also for changes to technical debt.”

� / Limited visibility.Similar to code comments, techni-
cal debt admitted in commits has limited visibility.
From the viewpoint of the team lead, it is not visible
to him: “if they are in comments or commits, they’re not
on my desk.”

� Resolving it depends on the initiative of developers.There
is no guarantee that technical debt admitted in com-
mits will be resolved. It depends on the developers
to solve it or leave it. The team lead only manages
technical debt documented in issues: “I don’t manage
technical debt in code comments and commits at all, that’s
really depending on the engineer’s responsibility.”

4.6 (RQ2.3) What Are the Triggers to Pay Back or
Not Pay Back SATD?

According to the interview responses, software developers
tend to repay SATD in the following cases:

� SATD is involved in upcoming changes.Based on six
interviews, developers always choose to repay
SATD when changes are going to take place in the
same part of the system. This is because technical
debt could make the changes more difficult: “for
instance the parameterize thingy, if I was doing a change
which actually needs that or in the same area, I would take
that along because that would really help me if I solve it.”

� SATD is related to bugs.In another case, three inter-
viewees reported that when they find SATD con-
nected to bugs, they will solve the technical debt:
“we really have to start solving [the technical debt] that
keeps bugs popping up with that same piece of code, [for

example if] you have these bugs popping up [while] you
see test debt, [it happens because you] don’t have test cases
in that area.”

� SATD is experienced by stakeholders.One interviewee
indicated that SATD observed by stakeholders is
more important: “I will focus first on technical debt that
is experienced by stakeholders.”

� SATD hinders other tasks.Two participants pointed
out that they need to repay SATD when it prevents
them from keeping making progress: “if they are hin-
dered by [technical debt], then it’s important to focus on
the bad choices.”

� Small SATD that can be solved easily.Based on three
interviews, we found that when developers encoun-
ter SATD and think the debt can be paid back easily,
they prefer to solve it straight away: “if there is a small
[technical debt], there is time left in your sprint then you
could pick up such a small item.”

� The same SATD keeps annoying developers.Two
responses indicated that when developers encounter
a technical debt item, which is repeatedly of concern
to them, they will take some time to solve it: “if you
hit the same technical debt item and it annoys you enough,
then it will be solved.”

� Certain types of SATD are valued more than others.Some
developers believe that certain types of SATD are
more important than others, and they choose to
repay them with higher priority. More specifically,
two interviewees stated that they prioritize test debt:
“I would prioritize test debt; that’s critical on the code
quality.”On the other hand, two participants men-
tioned they always give design debt higher priority:
“you also see preferences more to the design debt to docu-
mentation debt.”

� Too much SATD in the area.Five participants pointed
out that when too much SATD is accumulated in a
specific part of the system, it gets to be paid earlier
rather than later: “if there is a lot of technical debt in
those modules, you might want to pick up earlier, cause if
there is some TD there, maybe something wrong in the
design...”

� Location of SATD is special.One interview participant
mentioned that SATD in different parts of the project
is treated differently. They always give high priority
to SATD in certain modules: “it is up to the part of the
project if I make a shortcut that should not be in; I am
aware of it and will resolve it.”

� Potential risk of SATD is high.According to three inter-
views, when the potential risk of SATD is very high,
SATD should be worked on: “I think you should work
on the most important things, the highest risk things.”

� Have sufficient time.Three interviewees indicated that
when they have sufficient time, they will take some
time to solve SATD: “when do I decide to solve technical
debt apart? when I have time in the program.”

� Software craftsmanship.Two interview participants
reported that some developers have the attitude of
striving to deliver software of high quality: “[if] I
have craftsmanship, I deliver software as the input and
believe the software needs to be correct and needs to be
maintainable.”

2556 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

Meanwhile, in the following cases, SATD is ignored and
left unresolved:

� Repaying SATD brings small benefit.Three interview-
ees mentioned that if the software works, repaying
SATD yields only a small benefit. Thus, developers
tend to not pay back the debt: “if it already works, why
make it better? someone pays for it.”

� Repaying SATD takes too much effort.Four participants
had concerns about the considerable effort required
to pay back SATD: “we don’t want to invest in it, due to
[...] too much effort.”

� Potential risks of paying back SATD.Four interviewees
expressed the concern that it could be risky to repay
SATD, as it might break existing functionalities:
“there is some regression risk involved; it should be simple
but sometimes takes a long time to finish.”

� Certain types of SATD are ignored during repayment.As
one of the participants mentioned: “the one writing
[documentation] typically isn’t the user of it”; some
developers simply give documentation debt low pri-
ority: “I don’t like writing documentation, so I really try
to postpone writing the document.”Besides, two partici-
pants stated that some developers do not see test
debt as important and choose not to repay it: “[some]
engineers don’t see writing tests really helps them because
you have implemented something; it runs on a machine
and it works.”Moreover, another interviewee pointed
out that architecture debt is sometimes ignored in
the maintenance phase: “architecture debt is addressed
differently than design and test debt because it more pre-
vents production; architecture debt also depends on the
development phase; if it goes to maintenance phase from
earlier phases of building a new product, we often keep the
debt as long as it doesn’t break functionality.”

� Learning effect for the SATD creator.Another inter-
viewee believed that the debt creator should solve it,
to be able to learn from it: “it is important to close the
feedback loop; if others resolve it [technical debt], the peo-
ple who created it will never learn from it.”

� Inactive code.Two interviewees reported that when
the code is inactive and there are no changes planned
for it, related technical debt does not have priority to
be paid back: “If there are no changes or features, or
plans for this, maybe [it] will not be used anymore, then
that’s not so important.”

� Careless developers.Lastly, one interview revealed that
irresponsible developers also lead to SATD
unsolved: “some people say we should solve it, and then
they don’t stick to it.”

4.7 (RQ2.4) What Practices Are Used to Support
SATD Management in Industrial Settings?

In the following, we summarize practices used to assist in
SATD management. First, we describe practices that help
prioritize SATD using different criteria:

� Custom list.Four interviewees indicated that they
maintain a list of SATD with an order of priority.
Specifically, they usually put the high-priority SATD
on the top of the list for quicker repayment: “[we] try

to prioritize the list, and the most important items are on
the top that needs to be solved first.”

� Severity level of tickets.Issue tracking systems always
support setting the priority for each issue ticket (e.g.,
block, minor, and trivial) [32]. One interview partici-
pant mentioned they also use the issue tracker’s
built-in function to set the priority of each issue:
“most items are already categorized with a severity.”

� Type of tickets.Five interviewees mentioned that issue
types have an impact on the priorities of issue tick-
ets. They choose different issue types when creating
issues with different priorities. For example, the
interviewees considered that bugs have higher prior-
ity than backlog items: “I would say I had a task if it is for
short term if you intend to solve it within this sprint, if
[...] you create a backlog item, [it could just] disappear, so
it would be better to write the bug then at least you have a
process to handle these.”

� Referencing issue keys.One participant indicated that
when adding a reference to an issue ticket, the SATD
in code comments will get higher priority: “if that
comment references an issue, it will automatically get
more priority.”

Second, we report two common practices to efficiently
pay back SATD:

� Grouping related technical debt items.Two participants
indicated they usually group related technical debt
items and investigate them together: “we group them
[technical debt] together; that’s we say, those four or five
items are in the same area, let’s now take a look at them
together, to be more effective.”

� Grouping technical debt and development tasks.Two
interviews revealed that developers also group tech-
nical debt and development tasks (e.g., fixing bugs,
creating new features, and adding tests). Then they
solve them jointly: “when we take technical debt we also
resolve other things, which is more efficient.”

4.8 (RQ3.1) What Challenges Do Software
Practitioners Face When Managing SATD?

In the following, we summarize the challenges for SATD
management:

� Convincing developers not to introduce SATD, when not
necessary.Three interviewees indicated that some
technical debt can be paid back easily, so it should
not be incurred in the first place: “many of these [com-
ments] seem to be fixed in five minutes, I think they
shouldn’t write these comments; they do not look like
effort-intensive.”.

� Prioritizing SATD.Five interviewees pointed out that
it is hard to determine priorities of SATD and other
works: “the biggest challenge is setting the priorities [...]
the challenge is always what’s the best to do, a piece of
functionality or technical debt?”

� Getting resources to pay back SATD.Based on two
interviews, we found that getting resources for debt
repayment remains challenging: “to get technical debt
on the agenda is a difficult task [...] there’s always an
argument to not work [on them].”

LI ETAL.: SELF-ADMITTED TECHNICAL DEBT IN THE EMBEDDED SYSTEMS INDUSTRY: AN EXPLORATORYCASE STUDY 2557

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

� Dealing with undocumented technical debt.Three inter-
view participants mentioned the difficulty of dealing
with undocumented debt: “we struggle with the ones
[technical debt] we are not aware of or somebody identified
without clearly communicated as being technical debt.”
One interviewee specified that it is especially chal-
lenging when dealing with technical debt in old
parts of the system without documentation: “what
challenges did you face when dealing with technical debt?
dealing with legacy code in general [...] re-engineering the
code or design sometimes is difficult [...] it could be a lot of
helpful if there is some code documentation.”

� No guideline for SATD documentation.Four interview-
ees pointed out the problem of not having concrete
guidelines for SATD documentation: “we don’t have
any agreements on when you have technical debt and
want to add some comments within the software, then
please use certain tags.”

� No guideline for SATD repayment.Besides, two inter-
viewees reported that there is no guideline for repay-
ing SATD: “there is no complete guideline; if you have to
solve this, then you should do this, this, and this.”

� Dealing with consequences of SATD.Two interviewees
found that it is challenging to deal with an increasing
list of SATD items, as it causes SATD items to be
ignored or not to document new technical debt:
“sometimes the technical debt items get out of sight
because the list is becoming too long and you forgot about
it; I am not sure how to deal with that growing list of tech-
nical debt items.”Meanwhile, another participant
stated the harmfulness of accumulating technical
debt without proper management: “in another project,
it was horrible; the big redesigns block the whole develop-
ment, which also affects the trust of the software.”

4.9 (RQ3.2) What Features Should Tools Have to
Effectively Manage SATD?

In the following, we report the tool features that developers
thought were useful for SATD management. We categorize
features into four groups: SATD identification, SATD trace-
ability, SATD prioritization, and SATD repayment. SATD
identification-related features are reported as follows:

� Automated SATD identification.Seven interviewees
mentioned that it would be useful to be able to auto-
matically identify SATD from different sources: “I
think [the tool should support] the identification of techni-
cal debt, scanning code or issues.”The interviewees sug-
gested the following ways to present the identified
SATD:
� Show the list of identified SATD.Two interviews

indicated that identified SATD items should be
listed: “if the tool could make some kind of printouts
of technical debt items in your source code, then I can
imagine that I will sit together with some engineers,
walk through the list, find the most important, and
solve them.”

� Show the quantity of SATD in the system.One par-
ticipant suggested showing the number of SATD
items in the dashboard to increase the visibility
of SATD in code: “this dashboard will show you

how much TODO in our code, so that is visible for
the whole team.”

� Show the evolution of SATD quantity over time.
Another participant mentioned that it would be
useful to have a function showing the number of
SATD over time to know when they introduce
more SATD or less SATD: “[the tool should show]
total amount technical debt in the system evolving
during the development of the system, [so we can
know] do we have more technical debt in the early
phase.”

� Show the quantity of SATD in different modules.As
mentioned in Section 4.6, if too much SATD is
accumulated in a part of the system or in some
specific modules, developers would give the
debt higher priority. Thus, they would like the
tool to show the quantity of SATD in different
modules: “what would you like to see? [I want to
have] some insights into which module has a lot of
technical debt.”

� Automated differentiation between fixed SATD and
unfixed SATD.As stated in Section 4.4, the identified
SATD may be either repaid or not. There needs to be
a distinction between them; as one participant stated:
“I am curious only about the open ones [unsolved debt].”
The participants mentioned the following means to
visualize the distinction between solved and
unsolved SATD:
� Show the period between SATD introduction and

repayment.One interviewee mentioned that he
wanted to know the repayment time of SATD:
“[the tool should show] how much time is in between
when we decided to introduce technical debt and when
will things be solved.”

� Show how long unsolved SATD survives.Another
interviewee indicated that the tool should show
the survival time of SATD: “[the tool should show]
how long technical debt is there.”

� Show the timeline of fixed and not fixed SATD items.
Another interviewee was interested in the point
in time when they decide to either pay the TD
back or not: “[the tool should show] what is the
moment we solve most technical debt? when do we
decide to leave technical debt in the system and stop
working on them?”

Next, SATD traceability-related features are presented:

� Automated tracing between SATD in different sources.In
Section 4.3, we observed some relations between
SATD in different sources. But, some of these rela-
tions (e.g., technical debt admitted in code comments
referenced in issues) are rarely documented. Thus,
two interviewees think it would be very helpful if
the tool could build traces automatically between
SATD in different sources: “linking back and forth
would really help in getting an overview about technical
debt things.”

� Automated tracing between SATD and code.Two partici-
pants mentioned that it would be useful to know the
location of SATD in the code: “I would like to know
which area of code the technical debt is located at.”

2558 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

� Automated tracing between SATD and related develop-
ment tasks.As described in Section 4.6, when SATD is
involved in upcoming changes, it is usually priori-
tized. Thus, developers are interested in which to-do
items (e.g., fixing bugs, creating new features, or
adding tests) are related to the SATD: “[the tool should
find] related work to it.”

Subsequently, we report the suggested features related to
SATD prioritization:

� Automated SATD prioritization.Two interviewees
wanted to automatically prioritize SATD: “I’m look-
ing to which part of technical debt could be left and which
part of technical debt really needs to pay attention to.”

� Automated identification of SATD risk.Three partici-
pants mentioned that SATD risk identification
should be supported by the tool: “I am looking at [...]
what is the pain? do I need to solve it? what are the conse-
quences [of] not solving it?”

� Automated estimation of benefits to solve SATD.Two
interviewees indicated that estimating the benefits of
solving SATD (e.g., how much technical debt interest
will be saved) could be one of the tool’s functions:
“need to know what the benefit of it [solving SATD],
what is gained by it.”

� Automated estimation of cost to solve SATD.Based on
four interviews, developers mentioned that auto-
mated estimation of SATD repayment cost (also
referred to as the principal of technical debt) is use-
ful: “the other thing is how much effort does it take to get
rid of this technical debt.”

Finally, there is one feature related to SATD repayment:

� Automated SATD solution suggestion.Two interview
participants asked for the tool to provide some
potential solutions (e.g., refactorings) for paying
back SATD: “the other tool could [provide] [...] possible
routes of solution.”

5 DISCUSSION

According to the study design (see Section 3), we formu-
lated three main research questions to investigate the nature
of SATD, the SATD management activities, and SATD man-
agement improvement. Thus, we organize the discussion
into three parts: the discussion about the nature of SATD,
the discussion about SATD management activities, and the
discussion about SATD management improvement.

5.1 Nature of SATD

As mentioned in Section 3, there are significant differences
between open-source and industrial projects. It is important
to know these differences in order to understand how to
better manage SATD in the two cases: what works for each
case, what works for both, and what can be reused from one
to the other. Thus, we compare the characteristics of SATD
in industrial and open-source projects.

We first compare the percentages of different types of
SATD in industrial projects (IP) and open-source projects
(OSP). The comparison is presented in Table 11. It is noted
that data from industrial projects are calculated based on
Table 4, while the open-source data are obtained from 103

open-source projects from our previous work [12]. Specifically,
these 103 open-source projects are from the Apache ecosystem.
They are of high quality and well-maintained by mature com-
munities. Observing the table, we can find that the majority of
SATD is code/design debt in both industrial and open-source proj-
ects, ranging from 77.9% to 84.4% and 73.2% to 80.6% respec-
tively. Moreover, we notice that the second most prevalent
types of SATD from different sources are consistent when com-
paring industrial and open-source projects. Specifically, require-
ment debt is the second most popular SATD type from code
comments in both kinds of projects, while documentation debt is
the second most prevalent type of SATD from issues and com-
mit messages in both kinds.

Implication 1: The majority of SATD in both industrial and
open-source projects is code/design debt. The second most prev-
alent types of SATD from different sources (requirement debt
or documentation debt) are also the same in the two settings.
Researchers could further investigate whether the types of
SATD are similar in the two settings.

Regarding differences between the two settings, in
Table 11, we observe the following: 1) the percentages of
requirement debt from different sources in industrial projects
are significantly higher in comparison with open-source
projects; 2) the percentages of test debt of industrial projects
are lower than open-source projects in the different sources.
For the differences in requirement debt, we conjecture that
this might result from the relatively high level of difficulty
in changing embedded systems [33] and the high pressure
of the studied projects as mentioned in Section 4.2: “I know
[this] project is in challenging phase; they are high pressured to
reach the time-to-market, [so] we are also under pressure to have
shortcuts and do not redesigns [unless we are] told necessary by
the developers.” Similarly, Zampetti et al. [5] found that
industrial developers reported releasing software under
more pressure compared to open-source developers.

Moreover, the lack of self-admitting test debt in industry is
consistent with our findings in Section 4.4 that certain types of
technical debt are ignored as some developers mentioned: “I think
we don’t have that many technical debt items for missing test cases; I
think you more or less know about them, but no real documentation
about test cases and actual implementation.” However, the reasons
behind this phenomenon need further investigation. Addition-
ally, according to the differences in percentage between differ-
ent types of SATD, as well as the interviews, we advise

TABLE 11
Comparison Between Percentages of Different Types of SATD
Items in Industrial Projects (IP) and Open-Source Projects

(OSP)

Debt Type

Source

Comment Issue Commit

OSP IP OSP IP OSP IP

Code/Design debt 80.6% 77.9% 80.0% 78.2% 73.2% 84.4%
Req. debt 12.0% 14.9% 1.0% 5.9% 1.1% 4.5%
Doc. debt 4.3% 5.6% 11.1% 11.3% 19.3% 7.5%
Test debt 3.2% 1.6% 7.7% 4.5% 6.4% 3.5%

LI ETAL.: SELF-ADMITTED TECHNICAL DEBT IN THE EMBEDDED SYSTEMS INDUSTRY: AN EXPLORATORYCASE STUDY 2559

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

practitioners to create thresholds based on the percentages of
different SATD types to evaluate the quality of SATD manage-
ment. For example, if there is significantly less test debt docu-
mented than the threshold and the code analysis tool shows
low coverage, this might refer more to the reluctance of devel-
opers to admit test debt rather than low test debt.

Implication 2: The percentage of requirement debt is higher while
the percentage of test debt is lower in the studied industrial projects
in comparison with open-source projects. The differences between
percentages of different types of SATD between different projects
should be further studied to potentially create thresholds for evalu-
ating the quality of SATDmanagement.

Subsequently, we compare the percentages of SATD (irre-
spectively of type) in industrial projects and open-source proj-
ects, as shown in Table 12. Specifically, the data from industrial
projects are obtained from Table 5, while the data from open-
source projects are still acquired from 103 open-source projects
from our previous study [12]. We perform chi-square tests to
compare the number of SATD items from different sources in
open-source and industrial projects. As can be seen in Table 12,
the percentages of technical debt admitted in industrial and
open-source projects are comparable. Interestingly, the percent-
age of SATD from code comments in industrial projects is just
half of the percentage of open-source projects (2.6% versus
5.2%); this is statistically significant (p-value < 0.00001). Thus,
less technical debt is admitted in code comments in industrial
projects compared to open-source projects. In a recent study,
Zampetti et al. [5] investigated the preferences for documenting
technical debt in source code comments between industrial
developers and open-source developers. They surveyed 101
software developers and found open-source developers tend to
admit more technical debt in code comments in comparison to
industrial developers. Our results confirm these findings.

Implication 3: The overall percentage of technical debt admit-
ted in industrial and open-source projects are comparable.
There is, however, less technical debt admitted in code com-
ments in industrial projects compared to open-source projects
(2.6% versus 5.2%).

Furthermore, we can see that significantly more technical
debt is admitted in issues and commits (+25.4% and +12.4%
respectively) in the industrial projects compared to the

open-source ones in Table 12. This is likely related to the
practices for SATD management that are followed in the
two types of projects. Within our industrial partner, we
established a preference for documenting SATD in issues
for better tracking. However, there might be other factors
that have an impact on technical debt documentation. Thus,
the evidence shows that more technical debt is documented
in issues and commits within the studied industrial projects
compared to open source projects. However, these differen-
ces are not as large as the differences in source code com-
ments (25.4% and 12.4% versus 50%). Ultimately developers
have the need to document SATD somewhere: industrial
developers seem to prefer issues and commits while OS
developers have a preference for source code comments.
Researchers could further investigate if this is true more
generally with further studies in industry.

Implication 4: There is more technical debt admitted in issues
and commits in industrial projects compared to open-source
projects (+25.4% and +12.4%). However, the differences are
not as large as the differences in source code comments.
Researchers can investigate the differences in other projects
and look deeper into the causes of these differences.

Subsequently, we compare our results regarding the issue
closing times and issue closing percentages with previous
work. There are two studies that investigated the closing time
of issues. The first one was conducted by Bellomo et al. [29],
who hypothesized that technical debt issues take a longer time
to resolve than non-technical debt issues. However, they found
that the average open days of issues vary greatly, and their
results did not support their hypothesis. In the other study by
Xavier et al. [34], they found that the median time to close tech-
nical debt issues is longer than other issues (16.7 days versus
4.0 days). In this paper, we investigated the same research ques-
tion in industrial settings (see Section 4.1). The results shown in
Tables 6 and 7 indicate that technical debt issues take a longer
time to resolve compared to non-technical debt issues (with sta-
tistical significance). This supports the hypothesis proposed by
the previous study [29]. It is noted that our study focuses on
SATD in industrial settings. This hypothesis still needs to be
tested in open-source settings. Furthermore, our study con-
firmed that the reason why technical debt issues take a longer
time to close and have a lower closing rate is that developers
are under pressure to implement new features or fix bugs
instead of paying back technical debt (see Section 4.2).

Implication 5: The hypothesis that technical debt issues take a
longer time to resolve than non-technical debt issues is sup-
ported by our study in industrial settings. Researchers could
further examine this hypothesis in open-source settings and
compare the results.

Moreover, our study investigated the time to close issues and
the closing rate of issues with different types of SATD and non-
SATD.The results show that certain types of SATD take a signifi-
cantly longer time to resolve than certain other types of SATD.
Specifically, observing Tables 6 and 7, we notice that requirement
debt and test debt issues take a longer time to close compared to

TABLE 12
Comparison Between SATD Percentages in Different Sources in

Industrial Projects (IP) and Open-Source Projects (OSP)

Source Percentage of SATD

OSP IP Percentage
Diff.

Chi-Square Test

Comment 5.2% 2.6% -50% x2ð1Þ ¼ 2150:66 p <
0:00001

Issue 13.0% 16.3% +25.4% x2ð1Þ ¼ 666:83 p <
0:00001

Commit 11.3% 12.7% +12.4% x2ð1Þ ¼ 37:33 p <
0:00001

2560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

the other two types of SATD (70.2 and 80.7 days versus 62.5 and
60.4 days). Moreover, they also have the first and second lowest
closing rates compared to others (60.8% and 67.0% versus 71.3%
and 72.0%). Furthermore, we find that test debt issues take a sig-
nificantly longer time to resolve than code/design debt and docu-
mentation debt issues (p-value is 0.014 and 0.020 respectively).
Overall, we observe that requirement debt and test debtmight have
a lower priority compared to code/design debt and documentation
debt. This finding is in agreement with the findings of Ebert and
Jones [35] which showed that requirements and tests are the
major cost drivers in embedded-software development (require-
ments engineering and testing take most of the effort). As men-
tioned in Section 4.6, “repaying SATD takes too much effort” is one
of the triggers not to pay back SATD. Thus, we conjecture that
requirement debt and test debt issues take a longer time to close
because they require more effort to repay than other types. The
detailed reasons behind the observations still need to be further
investigated and validated. Additionally, researchers could use
our trained machine learning model to identify SATD issues in
otherprojects and calculate the time spent to closedifferent types
of SATD issues, to investigate the priority of different types of
SATD indifferent projects and compare results.

Implication 6: Requirement debt and test debt take longer time to
be solved compared to code/design debt and documentation debt
in the studied industrial projects. This observation still needs to
be investigated and validated in other projects. Researchers could
also use our SATD analysis approach to study the priority of dif-
ferent types of SATD in open-source projects.

In Section 4.2, we observed thatmost of the interviewpartic-
ipants acknowledged the relevance and importance of the
automatically-identified SATD items. Becausewe utilized pub-
licly available datasets [6], [12], [16] to train machine learning
models to identify SATD from the industrial projects, the
results show that ourmodels can be used to accurately identify
SATD in industrial projects. We thus encourage researchers to
use our approach to study SATD in industrial settings. To facil-
itate this, we share our scripts and trained machine learning
model in the replication package3. Moreover, we noticed that
most of the participants (five out of nine) indicated that it is dif-
ficult to determine the importance of SATD based solely on
SATD statements. We suggest that researchers find the best
method for presenting SATD, e.g., showing the SATD state-
ments together with other contextual information to provide a
broader picture.

Implication 7: Most of the interviewees acknowledged the auto-
matically identified SATD. Researchers could use our trained
machine learning model to further investigate SATD in other
industrial projects.

In Section 4.3, we observed that it is common for source
code comments or commit messages to reference related
technical debt items in issues; the opposite is not com-
mon. Moreover, developers believed it could be very
useful if related SATD is linked together. In the current
state of the art, only the relation between code comments
and commits has been used to study the repayment of

SATD [11], [36], [37]. Thus, we argue that researchers
and practitioners need to study the relations between
SATD in different sources and build tools that aid in
establishing traces between SATD in different sources
and properly visualizing them.

Implication 8: Researchers and practitioners could further
investigate the relations between SATD in different sources
and build tools to automate and visualize traceability between
SATD in different sources.

5.2 SATD Management Activities

In Section 4.4 we saw seven distinct cases that cause technical
debt to be ignoredand stayundocumented. Such implicit techni-
cal debt canhave grave consequences for thedevelopment team.
Researchers could look into this and propose solutions to avoid
missing documentation for important technical debt. Moreover,
as pointed out in Section 4.8, there are no concrete guidelines on
technical debt documentation. Our work extended the scope of
SATD documentation to three sources, namely code comments,
commit messages, and issue trackers. Thus, we suggest that
researchers and practitioners create comprehensive guidelines
and develop tools to help technical debt documentation for dif-
ferent use cases in different sources based on our findings. Fur-
thermore, the pros and cons of documenting technical debt in
different sources, as described in Section 4.5, can also be of assis-
tance in creating the aforementioned guidelines and tools, by
building on the pros andworking to avoid the cons.

Implication 9: Researchers and practitioners could create
guidelines and build tools to assist in technical debt documen-
tation in different sources.

In Section 4.6, we reported the triggers for paying back and
not paying back SATD. However, the interviewees’ opinions
on certain types of SATD are contradictory. More specifically,
some developers saw test debt as a trigger to repay SATD,
while some others believed it should be ignored. This is
caused by different participants’ opinions about the impor-
tance of test debt. We encourage researchers and practitioners
to create guidelines customized for specific organizations and
teams about the importance and ways of repaying different
types of SATD. The triggers identified in our study can act as
an input for such guidelines. Moreover, researchers could also
study how to eliminate the effects of SATD accumulation
caused by triggers for not paying back technical debt. Finally,
researchers could investigate the triggers in open-source proj-
ects, compare them, and create comprehensive lists of triggers
for both open-source and industrial projects.

Implication 10: Researchers could investigate triggers for repaying
and not repaying SATD, and create guidelines and tools for
SATD prioritization based on those triggers. Besides, strategies to
mitigate the effects of SATD accumulation caused by triggers for
not paying back SATD need to be studied. Moreover, researchers
could investigate triggers in open-source projects and compare
results.

LI ETAL.: SELF-ADMITTED TECHNICAL DEBT IN THE EMBEDDED SYSTEMS INDUSTRY: AN EXPLORATORYCASE STUDY 2561

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

In Section 4.7, we reported the practices used to support
SATD prioritization. These practices are not acknowledged by
all the interviewees.; for example, in contrast to the practice of
using issue types (e.g., bug, task, and backlog item) to set priori-
ties of SATD, one participant did not find significant differen-
ces between issue types. This is due to the organization not
using such issue types in a standardized manner. Researchers
should study and propose such practices for SATD prioritiza-
tion that can be standardized across organizations.

Implication 11: Researchers could study and use the practices
to support SATD prioritization by embedding them in tools or
processes.

In Section 4.7, we also report on two strategies for effi-
ciently paying back SATD. We found that adopting such strat-
egies heavily depends on developers’ personal opinions and
discussions with their colleagues. Researchers could investi-
gate how much effort (i.e., technical debt interest) is saved by
using these strategies and how to automatically group SATD
and other tasks for higher repayment efficiency.

Implication 12: Researchers could investigate the efficiency of
SATD repayment strategies and build tools to help developers
utilize these strategies.

5.3 SATD Management Improvement

In Section 4.8, we list the challenges faced by interviewees
when dealing with SATD. We suggest that researchers exam-
ine the impact of the listed challenges, and propose strategies
and tools to tackle them. Some of the challenges can be
addressed directly within the development team, e.g., convinc-
ing developers not to introduce technical debt when not neces-
sary. Practitioners could discuss these challenges in their team
anddecidewhich they can tackle and how.

Implication 13: Researchers can evaluate the impact of challenges,
and propose strategies and tools to tackle them. Practitioners can
also review them and discuss which ones they can address.

The participating developers have come up with various
features theywould like to see in SATDmanagement tools (see
Section 4.9). This begs the question of whether the current
researchwork can already offer some of these features. To offer
a preliminary answer, we checked research publications in
Google Scholar, using the search string “self-admitted technical
debt”. This resulted in 72 papers that deal with SATD; we then
read their abstract and full text to filter out papers that are irrel-
evant to the required features (see Section 4.9). The resulting set
of 45 related papers is listed in Table 13. As we can see, the
majority of these papers focus on automatically identifying
SATD from source code comments, while there has been no
work investigating automated differentiation between fixed and
unfixed SATD, automated tracing between SATD and code or related
development tasks, and automated identification of SATD risk. For
the other proposed features, some related studies exist, but
these are not fully supported yet or require better support. For
example, there is a study relevant to automated SATD solution
suggestion [70], but it is only able to suggest one of six prede-
fined SATD repayment strategies (e.g., changing API calls or
changing return statements). Furthermore, the usefulness of
each feature and the difficulties of implementing each feature
are different.We recommend that researchers andpractitioners
evaluate the added value of each proposed feature, implement
tools including the most important features, and test the effec-
tiveness of such tools.

Implication 14: Most research works in SATD management
tools focus on automatically identifying SATD from source
code comments. Researchers should investigate other features
required by the interviewees, such as automated differentiation
between fixed and unfixed SATD, automated tracing between
SATD and code or related development tasks, and automated
identification of SATD risk.

6 THREATS TO VALIDITY

6.1 Construct Validity

Threats to construct validity concern the correctness of opera-
tional measures for the studied subjects. One of the threats to
construct validity in the study concerns the potentially different
interpretations of discussed topics between interviewees and
researchers. Because we focus on SATD in this study andmost

TABLE 13
Comparison Between Suggested Features and State-of-the-Art

Suggested Features Related Papers

Automated SATD
Identification
From

Code
Comments

[6], [7], [12], [14], [15], [38],
[39], [40], [41], [42], [43],
[44], [45], [46], [47], [48],
[49], [50], [51], [52], [53],
[54], [55], [56], [57], [58],
[59], [60], [61], [62], [63],

[64], [65], [66]
Issue Trackers [3], [12], [16]
Commit
Messages

[12]

Pull Requests [12]
Automated Differentiation
Between Fixed and Unfixed
SATD

-

Automated
Tracing Between
SATD

in Different
Sources

[11], [12], [36], [37]

and Code -
and Related
Development
Tasks

-

Automated SATD Prioritization [9], [67], [68]
Automated Identification of
SATD Risk

-

Automated Estimation of
Benefits to Solve SATD

[8]

Automated Estimation of Cost to
Solve SATD

[9], [69]

Automated SATD Solution
Suggestion

[70]

2562 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

of the intervieweeswere not familiarwith this concept,we tried
to avoid misunderstanding this term by 1) asking for their
understanding of technical debt; 2) asking them to give some
examples of it to make sure they have the correct comprehen-
sion; 3) reminding them, during the interviews, that we focus
on technical debt that is documented in different sources to
avoid confusion. The responses we received from the inter-
viewees regarding how they understand technical debt and the
examples of technical debt they gave, attest to a correct under-
standing of the concept by all interviewees. For instance, one of
the interviewees gave the following examples of technical debt:
“for me, technical debt can be multiple things; it can be a design that
works now butmight be problematic in the future. It also covers short-
cuts you take in the code. When you have a bug, you create a quick
workaround, so your customers can continue, which you know actu-
ally [...] needs a solid fix so that in the future it will remain intact. I
think technical debt also builds automatically if certain techniques are
no longer maintained, so you need to switch to a new one because you
cannot upgrade it...”.

Another threat to construct validity is related to the pos-
sible reluctance of interviewees to express negative opinions
on their organization or admit mistakes made in the past. To
minimize this threat, we emphasized that we are bound by a
confidentiality agreement, and no sensitive or personal
information would be revealed after the interviews.

6.2 Reliability

Reliability is concerned with the bias that researchers may
induce in data collection and analysis. One threat to reliabil-
ity could be different results obtained from work artifacts’
analysis. Specifically, when extracting source code com-
ments from studied projects, because the projects could use
multiple programming languages, defining and using sim-
ple heuristic rules might not be able to extract all comments
from different programming languages. To reliably and
accurately extract code comments, instead of defining such
heuristic rules ourselves, we chose to use a third-party
library (CommnetParser), which supports multiple program-
ming languages, such as C++, Go, Python, Java, XML, and
Ruby. The studied projects mainly use C++ and XML files.
We manually verified the correctness of the extracted com-
ments with this library before collecting the data.

Another threat to reliability could be the impact of
researchers’ opinions on interviewees. To mitigate this
threat, all authors followed a specific protocol for the inter-
views which is included in the replication package3.
Besides, at least two authors attended each interview, to
ensure that one interviewer did not bias the questions
asked.

Furthermore, another threat to reliability could come from
the selection of the 15 SATD items for interviews. As we can
see in Table 11, the percentages of requirement, documenta-
tion, and test debt are relatively low (always below 15%). If we
randomly collected five SATD items from each source, certain
types of SATD items would likely be missing in the 15 SATD
samples. This could result in the sample misrepresenting the
SATD types. To mitigate this risk, we selected three or four
SATD items for code/design debt and one or two SATD items
for other types of SATD for each source (e.g., code comments)
based on the SATD type proportion (see Table 11). Thus, for

the 15 SATD sample items, we have ten code/design debt
items, one requirement debt item, two documentation debt
items, and two test debt items, which include different types of
SATD items and follow the distribution of different types of
SATD. Therefore, we consider this threat as, at least partially,
mitigated.

The last threat to reliability comes from analyzing the
interview data. To minimize this threat, the first and second
authors carried out the Constant Comparative analysis pro-
cess [25], [26] independently; in case of discrepancy, we
compared and discussed the results until we were able to
reach an agreement.

6.3 External Validity

Threats to external validity concern the generalizability of
the results. In this study, we analyzed work artifacts and
conducted interviews in a large software company in the
embedded systems industry. Our findings may, to some
extent, generalize to other industrial projects of this applica-
tion domain and of similar size and complexity. In several
instances, such as time to close SATD and non-SATD issues
and the percentage of SATD in code comments, we have
demonstrated how our findings support previous studies.
However, we can not claim any further generalization.

7 CONCLUSION AND FUTURE WORK

In this paper, we analyzed SATD in industrial projects using
machine learning techniques and conducted 12 interviews
to understand: 1) characteristics of SATD in industrial proj-
ects; 2) developers’ attitudes towards identified SATD and
statistics; 3) triggers to introduce and repay SATD; 4) rela-
tions between SATD in source code comments, issues, and
commits; 5) practices used to manage SATD; 6) challenges
and tooling ideas for SATD management.

The results present characteristics of SATD in industrial
projects and shed light on developers’ opinions on SATD
management and tooling support. This promotes future
studies in this area, targeting to support developers in terms
of SATD introduction, traceability, prioritization, repay-
ment, and tool support.

In the future, based on the results of this work, we plan to
characterize SATD in more industrial projects to further val-
idate the observation that industrial developers tend to
admit less SATD in code comments and more SATD in
issues and commits in comparison with open-source devel-
opers, and explore the reasons behind it. Moreover, we plan
to conduct a large-scale study to analyze the closing time
and closing rate between different types of SATD in open-
source projects, in order to investigate the priority differen-
ces between different types of SATD and non-SATD issues.
Furthermore, we plan to study the relations between SATD
in different sources and create an automatic approach to
identify related SATD items. Additionally, we plan to create
SATD documentation and repayment guidelines and evalu-
ate them with software practitioners. Next, we plan to
investigate the number of SATD items that are documented
or repaid in terms of the different reasons to document
SATD or pay back SATD. Lastly, we plan to build a tool
that supports SATD management for software practitioners
based on the desired features described in Section 4.9.

LI ETAL.: SELF-ADMITTED TECHNICAL DEBT IN THE EMBEDDED SYSTEMS INDUSTRY: AN EXPLORATORYCASE STUDY 2563

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering (Dagstuhl seminar 16162),”
Dagstuhl Rep., vol. 6, no. 4, pp. 110–138, 2016.

[2] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.,
2014, pp. 91–100.

[3] K. Dai and P. Kruchten, “Detecting technical debt through issue
trackers,” in Proc. 5th Int. Workshop Quantitative Approaches Softw.
Qual., 2017, pp. 59–65.

[4] Y. Li, M. Soliman, and P. Avgeriou, “Identification and remedia-
tion of self-admitted technical debt in issue trackers,” in Proc.
IEEE 46th Euromicro Conf. Softw. Eng. Adv. Appl., 2020, pp. 495–503.

[5] F. Zampetti, G. Fucci, A. Serebrenik, and M. Di Penta, “Self-admit-
ted technical debt practices: A comparison between industry and
open-source,” Empir. Softw. Eng., vol. 26, no. 6, pp. 1–32, 2021.

[6] E. da Silva Maldonado, E. Shihab, and N. Tsantalis, “Using natu-
ral language processing to automatically detect self-admitted tech-
nical debt,” IEEE Trans. Softw. Eng., vol. 43, no. 11, pp. 1044–1062,
Nov. 2017.

[7] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy, “Neural
network-based detection of self-admitted technical debt: From
performance to explainability,” ACM Trans. Softw. Eng. Methodol.,
vol. 28, no. 3, pp. 1–45, 2019.

[8] Y. Kamei, E. d. S. Maldonado, E. Shihab, and N. Ubayashi, “Using
analytics to quantify interest of self-admitted technical debt,” in
Proc. 4th Int. Workshop Quantitative Approaches Softw. Qual. 1st Int.
Workshop Tech. Debt Analytics, 2016, pp. 68–71.

[9] S. Mensah, J. Keung, J. Svajlenko, K. E. Bennin, and Q. Mi, “On the
value of a prioritization scheme for resolving self-admitted techni-
cal debt,” J. Syst. Softw., vol. 135, pp. 37–54, 2018.

[10] E. d. S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik,
“An empirical study on the removal of self-admitted technical
debt,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2017,
pp. 238–248.

[11] F. Zampetti, A. Serebrenik, andM.Di Penta, “Was self-admitted tech-
nical debt removal a real removal? An in-depth perspective,” in Proc.
IEEE/ACM15th Int. Conf.Mining Softw. Repositories, 2018, pp. 526–536.

[12] Y. Li, M. Soliman, and P. Avgeriou, “Automatic identification of self-
admitted technical debt from four different sources,” 2022,
arXiv:2202.02387.

[13] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying dif-
ferent types of self-admitted technical debt,” in Proc. IEEE 7th Int.
Workshop Manag. Tech. Debt, 2015, pp. 9–15.

[14] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-
admitted technical debt in open source projects using text min-
ing,” Empir. Softw. Eng., vol. 23, no. 1, pp. 418–451, 2018.

[15] X. Wang, J. Liu, L. Li, X. Chen, X. Liu, and H. Wu, “Detecting and
explaining self-admitted technical debts with attention-based neu-
ral networks,” in Proc. IEEE/ACM 35th Int. Conf. Autom. Softw.
Eng., 2020, pp. 871–882.

[16] Y. Li, M. Soliman, and P. Avgeriou, “Identifying self-admitted
technical debt in issue tracking systems using machine learning,”
Empir. Softw. Eng., vol. 27, Jul. 2022, Art. no. 131.

[17] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, “Goal
Question Metric (GQM) approach,” in Encyclopedia of Software
Engineering. Hoboken, NJ, USA: Wiley, Jan. 2002, pp. 528–532.

[18] A. Yamashita, M. Zanoni, F. A. Fontana, and B. Walter, “Inter-
smell relations in industrial and open source systems: A replica-
tion and comparative analysis,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evol., 2015, pp. 121–130.

[19] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process
aspects and social dynamics of contemporary code review: Insights
from open source development and industrial practice at Microsoft,”
IEEE Trans. Softw. Eng., vol. 43, no. 1, pp. 56–75, Jan. 2017.

[20] G. Sierra, E. Shihab, and Y. Kamei, “A survey of self-admitted
technical debt,” J. Syst. Softw., vol. 152, pp. 70–82, 2019. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0164121219300457

[21] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study
Research in Software Engineering: Guidelines and Examples. Hoboken,
NJ, USA: Wiley, 2012.

[22] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engi-
neers: Data collection techniques for software field studies,”
Empir. Softw. Eng., vol. 10, no. 3, pp. 311–341, 2005.

[23] M. DeJonckheere and L. M. Vaughn, “Semistructured interview-
ing in primary care research: A balance of relationship and rig-
our,” Fam. Med. Community Health, vol. 7, no. 2, 2019,
Art. no. e000057.

[24] I. Seidman, Interviewing as Qualitative Research: A Guide for
Researchers in Education and the Social Sciences. New York, NY,
USA: Teachers College Press, 2006.

[25] A. Strauss and J. Corbin, Basics of Qualitative Research. Thousand
Oaks, CA, USA: Sage Publications, 1990.

[26] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in soft-
ware engineering research: A critical review and guidelines,” in
Proc. 38th Int. Conf. Softw. Eng., 2016, pp. 120–131.

[27] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” Ann.
Math. Statist., vol. 18, pp. 50–60, 1947.

[28] A. Vargha and H. D. Delaney, “A critique and improvement of the
CL common language effect size statistics of McGraw andWong,”
J. Educ. Behav. Statist., vol. 25, no. 2, pp. 101–132, 2000.

[29] S. Bellomo, R. L. Nord, I. Ozkaya, and M. Popeck, “Got technical
debt? Surfacing elusive technical debt in issue trackers,” in Proc.
IEEE/ACM 13th Work. Conf. Mining Softw. Repositories, 2016,
pp. 327–338.

[30] Atlassian Corporation PLC, “What are issue types?” 2022. [Online].
Available: https://support.atlassian.com/jira-cloud-administration/
docs/what-are-issue-types/

[31] Microsoft Corporation, “Define features and epics in azure boards to
organize your product and portfolio backlogs,” 2022. [Online]. Avail-
able: https://docs.microsoft.com/en-us/azure/devops/boards/
backlogs/define-features-epics?view¼azure-devops&tabs¼scrum-
process/

[32] Atlassian Corporation PLC, “Defining priority field values,” 2022.
[Online]. Available: https://confluence.atlassian.com/adminjira
server/defining-priority-field-values-938847101/

[33] B. Graaf, M. Lormans, and H. Toetenel, “Embedded software
engineering: The state of the practice,” IEEE Softw., vol. 20, no. 6,
pp. 61–69, Nov./Dec. 2003.

[34] L. Xavier, F. Ferreira, R. Brito, and M. T. Valente, “Beyond the
code: Mining self-admitted technical debt in issue tracker sys-
tems,” in Proc. 17th Int. Conf. Mining Softw. Repositories, 2020,
pp. 137–146.

[35] C. Ebert and C. Jones, “Embedded software: Facts, figures, and
future,” Computer, vol. 42, no. 4, pp. 42–52, Apr. 2009.

[36] M. Iammarino, F. Zampetti, L. Aversano, and M. Di Penta, “Self-
admitted technical debt removal and refactoring actions: Co-
occurrence or more?,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol., 2019, pp. 186–190.

[37] M. Iammarino, F. Zampetti, L. Aversano, and M. Di Penta, “An
empirical study on the co-occurrence between refactoring actions
and self-admitted technical debt removal,” J. Syst. Softw., vol. 178,
2021, Art. no. 110976.

[38] M. A. d. Farias, J. A. Santos, M. Kalinowski, M. Mendonça, and R.
O. Sp�ınola, “Investigating the identification of technical debt
through code comment analysis,” in Proc. Int. Conf. Enterprise Inf.
Syst., 2016, pp. 284–309.

[39] S. Wattanakriengkrai, R. Maipradit, H. Hata, M. Choetkiertikul, T.
Sunetnanta, and K. Matsumoto, “Identifying design and require-
ment self-admitted technical debt using n-gram IDF,” in Proc.
IEEE 9th Int. Workshop Empir. Softw. Eng. Pract., 2018, pp. 7–12.

[40] Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Satd detector: A
text-mining-based self-admitted technical debt detection tool,” in Proc.
40th Int. Conf. Softw. Eng.: Companion Proc., 2018, pp. 9–12.

[41] A. F. de O. Passos, M. A. de Freitas Farias, M. G. de Mendonça
Neto, and R. O. Sp�ınola, “A study on identification of documenta-
tion and requirement technical debt through code comment ana-
lysis,” in Proc. 17th Braz. Symp. Softw. Qual., 2018, pp. 21–30.

[42] M. Yan, X. Xia, E. Shihab, D. Lo, J. Yin, and X. Yang, “Automating
change-level self-admitted technical debt determination,” IEEE
Trans. Softw. Eng., vol. 45, no. 12, pp. 1211–1229, Dec. 2019.

[43] S. Wattanakriengkrai et al., “Automatic classifying self-admitted
technical debt using n-gram IDF,” in Proc. IEEE 26th Asia-Pacific
Softw. Eng. Conf., 2019, pp. 316–322.

[44] J. Flisar and V. Podgorelec, “Identification of self-admitted techni-
cal debt using enhanced feature selection based on word
embedding,” IEEE Access, vol. 7, pp. 106475–106494, 2019.

[45] Z. Guo et al., “MAT: A simple yet strong baseline for identifying
self-admitted technical debt,” 2019, arXiv:1910.13238.

2564 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

http://www.sciencedirect.com/science/article/pii/S0164121219300457
http://www.sciencedirect.com/science/article/pii/S0164121219300457
https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/
https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&tabs=scrum-process/
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&tabs=scrum-process/
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&tabs=scrum-process/
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&tabs=scrum-process/
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&tabs=scrum-process/
https://confluence.atlassian.com/adminjiraserver/defining-priority-field-values-938847101/
https://confluence.atlassian.com/adminjiraserver/defining-priority-field-values-938847101/

[46] L. Rantala and M. M€antyl€a, “Predicting technical debt from com-
mit contents: Reproduction and extension with automated feature
selection,” Softw. Qual. J., vol. 28, no. 4, pp. 1551–1579, 2020.

[47] A. Alhefdhi, H. K. Dam, Y. S. Nugroho, H. Hata, T. Ishio, and A.
Ghose, “A framework for self-admitted technical debt identifica-
tion and description,” 2020, arXiv:2012.12466.

[48] M. A. de Freitas Farias, M. G. de MendonçaM. Neto Kalinowski,
and R. O. Sp�ınola, “Identifying self-admitted technical debt
through code comment analysis with a contextualized vocab-
ulary,” Inf. Softw. Technol., vol. 121, 2020, Art. no. 106270.

[49] R. Maipradit, C. Treude, H. Hata, and K. Matsumoto, “Wait for it:
Identifying “on-hold” self-admitted technical debt,” Empir. Softw.
Eng., vol. 25, no. 5, pp. 3770–3798, 2020.

[50] R. Maipradit et al., “Automated identification of on-hold self-
admitted technical debt,” in Proc. IEEE 20th Int. Work. Conf. Source
Code Anal. Manipulation, 2020, pp. 54–64.

[51] R. M. Santos, I. M. Santos, M. C. R. J�unior, and M. G. de Mendonça
Neto, “Long term-short memory neural networks and word2vec
for self-admitted technical debt detection,” in Proc. 22nd Int. Conf.
Enterprise Inf. Syst., 2020, pp. 157–165.

[52] Z. Yu, F. M. Fahid, H. Tu, and T. Menzies, “Identifying self-admit-
ted technical debts with jitterbug: A two-step approach,” IEEE
Trans. Softw. Eng., vol. 48, no. 5, pp. 1676–1691, May 2022.

[53] L. Rantala, M. M€antyl€a, and D. Lo, “Prevalence, contents and
automatic detection of KL-SATD,” in Proc. IEEE 46th Euromicro
Conf. Softw. Eng. Adv. Appl., 2020, pp. 385–388.

[54] X. Chen, D. Yu, X. Fan, L. Wang, and J. Chen, “Multiclass classifi-
cation for self-admitted technical debt based on XGBoost,” IEEE
Trans. Rel., vol. 71, no. 3, pp. 1309–1324, Sep. 2022.

[55] Z. Guo et al., “How far have we progressed in identifying self-
admitted technical debts? A comprehensive empirical study,”
ACM Trans. Softw. Eng. Methodol., vol. 30, no. 4, pp. 1–56, 2021.

[56] R. M. Santos, I. M. Santos, M. C. J�unior, and M. Mendonça,
“Evaluating a LSTM neural network and a word2vec model in the
classification of self-admitted technical debts and their types in
code comments,” in Proc. Int. Conf. Enterprise Inf. Syst., 2021,
pp. 542–559.

[57] D. Yu, L. Wang, X. Chen, and J. Chen, “Using BiLSTM with atten-
tion mechanism to automatically detect self-admitted technical
debt,” Front. Comput. Sci., vol. 15, no. 4, pp. 1–12, 2021.

[58] I. Sala, A. Tommasel, and F. Arcelli Fontana, “DebtHunter: A
machine learning-based approach for detecting self-admitted techni-
cal debt,” in Proc. Eval. Assessment Softw. Eng., 2021, pp. 278–283.

[59] K. Zhu, M. Yin, and Y. Li, “Detecting and classifying self-admitted
of technical debt with CNN-BiLSTM,” J. Phys., vol. 1955, no. 1,
2021, Art. no. 012102.

[60] S. Phaithoon et al., “FixMe: A GitHub bot for detecting and moni-
toring on-hold self-admitted technical debt,” in Proc. IEEE/ACM
36th Int. Conf. Autom. Softw. Eng., 2021, pp. 1257–1261.

[61] T. Xiao et al., “Characterizing and mitigating self-admitted build
debt,” 2021, arXiv:2102.09775.

[62] J. Yu, K. Zhao, J. Liu, X. Liu, Z. Xu, and X. Wang, “Exploiting gated
graph neural network for detecting and explaining self-admitted
technical debts,” J. Syst. Softw., vol. 187, 2022, Art. no. 111219.

[63] H. Tu and T. Menzies, “DebtFree: Minimizing labeling cost in self-
admitted technical debt identification using semi-supervised
learning,” Empir. Softw. Eng., vol. 27, no. 4, pp. 1–37, 2022.

[64] B. Russo, M. Camilli, and M. Mock, “WeakSATD: Detecting weak
self-admitted technical debt,” 2022, arXiv:2205.02208.

[65] E. A. Alomar et al., “SATDBailiff-mining and tracking self-admitted
technical debt,” Sci. Comput. Program., vol. 213, 2022, Art. no. 102693.

[66] G. Zhuang, Y. Qu, L. Li, X. Dou, and M. Li, “An empirical study of
gradient-based explainability techniques for self-admitted technical
debt detection,” J. Internet Technol., vol. 23, no. 3, pp. 631–641, 2022.

[67] F. Zampetti, C. Noiseux, G. Antoniol, F. Khomh, and M. Di Penta,
“Recommending when design technical debt should be self-
admitted,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2017,
pp. 216–226.

[68] B. S. de Lima, R. E. Garcia, and D. M. Eler, “Toward prioritization
of self-admitted technical debt: An approach to support decision
to payment,” Softw. Qual. J., vol. 30, pp. 729–755, 2022.

[69] S. Mensah, J. Keung, M. F. Bosu, and K. E. Bennin, “Rework effort
estimation of self-admitted technical debt,” Proc. CEUR Workshop
Proc., vol. 1771, pp. 72–75, 2016.

[70] F. Zampetti, A. Serebrenik, and M. Di Penta, “Automatically
learning patterns for self-admitted technical debt removal,” in
Proc. IEEE 27th Int. Conf. Softw. Anal., Evol. Reengineering, 2020,
pp. 355–366.

Yikun Li received the BE degree in software engi-
neering fromSoutheast University, Nanjing, China, in
2015, and the MSc degree in artificial intelligence
from the University of Groningen, Groningen, The
Netherlands, in 2019. He is currently working toward
thePhDdegreewithBernoulli Institute forMathemat-
ics, Computer Science, and Artificial Intelligence. His
research interests include artificial intelligence for
software engineering, technical debt management,
andmining software repositories.

Mohamed Soliman received the bachelor’s and
master’s degree in computer and systemsengineer-
ing fromAin-ShamsUniversity, Cairo, Egypt, in 2005
and 2010, respectively, and the PhD degree from
the University of Hamburg, Hamburg, Germany, in
2018, with a thesis entitled Acquiring Architecture
Knowledge for Technology Design Decisions. Since
September 2019, he has been an FSE Postdoc
Fellow with the University of Groningen, Groningen,
The Netherlands. His research focuses on software
architectural knowledge capturing and reuse. He

was a Software Developer and Technical Leader for eight years in different
software companies, including multinational companies, e.g., Hewlett Pack-
ard, where he designed and implemented applications using different tech-
nologies andmethods.

Paris Avgeriou is currently a professor of soft-
ware engineering with the University of Gronin-
gen, Groningen, The Netherlands. His research
focuses on software architecture, with strong
emphasis on architecture modeling, knowledge,
evolution, analytics, and technical debt. He is the
Editor-in-Chief of the Journal of Systems and
Software as well as an Associate Editor for IEEE
SOFTWARE. He is the Vice Chair of the Dutch
National Association for Software Engineering
(VERSEN) and is on the board of the Dutch

research school IPA. He has coorganized several international conferen-
ces, such as ICSME, ECSA, ICSA, and Tech Debt, and was on their
steering committees. He champions the evidence-based paradigm in
Software Engineering research and works toward closing the gap
between industry and academia.

Lou Somers received the doctorate degree in
theoretical physics from the University of Nijme-
gen, Nijmegen, The Netherlands. He is currently
an associate professor with the Department of
Mathematics and Computer Science, Eindhoven
University of Technology (TU/e), Eindhoven, The
Netherlands, and a senior staff Member of Canon
Production Printing (retired). He has been
involved in many national and European R&D
projects. His courses revolve around information
systems and databases, software engineering

and project management. His research interests include performance
modeling, design optimization, scheduling and management of complex,
and software-intensive systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ETAL.: SELF-ADMITTED TECHNICAL DEBT IN THE EMBEDDED SYSTEMS INDUSTRY: AN EXPLORATORYCASE STUDY 2565

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 02,2024 at 11:00:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

